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Abstract

We study nonthermal production of heavy dark matter from the dynamics of the back-
ground scalar field during a first-order phase transition, predominantly from bubble collisions.
In scenarios where bubble walls achieve runaway behavior and get boosted to very high ener-
gies, we find that it is possible to produce dark matter with mass several orders of magnitude
above the symmetry breaking scale or the highest temperature ever reached by the thermal
plasma. We also demonstrate that the existing formalism for calculating particle production
from bubble dynamics in a first-order phase transition is not gauge invariant, and can lead to
spurious results. While a rigorous and complete resolution of this problem is still lacking, we
provide a practical prescription for the computation that avoids unphysical contributions and
should provide reliable order-of-magnitude estimates of this effect. Furthermore, we point out
the importance of three-body decays of the background field excitations into scalars and gauge
bosons, which provide the dominant contributions at energy scales above the scale of symmetry
breaking. Using our improved results, we find that scalar, fermion, and vector dark matter are
all viable across a large range of mass scales, from O(10) TeV to a few orders of magnitude
below the Planck scale, and the corresponding phase transitions can be probed with current
and future gravitational wave experiments.ar
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1 Motivation

The topic of first-order phase transitions (FOPTs) [1–7] – where the metastable (false, unbroken)
vacuum of the early Universe decays into its stable (true, broken) configuration through the nu-
cleation, expansion, and percolation of bubbles of true vacuum – has received intense scrutiny in
the community in recent years. Studied extensively in the context of inflation [8,9] several decades
ago, this phenomenon has become the subject of renewed interest due to its promise as a viable
cosmological source of gravitational waves (GWs) [10–14] that can be detected with current and
upcoming gravitational wave experiments. Although the Standard Model (SM) of particle physics
in its current form does not feature any FOPTs, such transitions can be readily realized in many
realistic beyond the Standard Model (BSM) scenarios [15–30] and therefore are of great interest.

In this paper, we will be interested in FOPT processes that also address one of the most glaring
shortcomings of the SM of particle physics: the identity of dark matter (DM). We will focus, in
particular, on scenarios where the dynamics of the background field during the FOPT process is also
responsible for DM production. Several papers in the literature have explored various qualitatively
different realizations of this prospect. Refs. [31, 32] examined configurations where a pre-existing
thermal DM abundance in the unbroken phase can be filtered into the broken phase by slow-moving
bubble walls to realize the correct exponentially suppressed relic abundance. Refs. [33–36] made use
of the trapping of dark sector particles in the false vacuum bubbles to realize the correct dark matter
abundance. Ref. [37–39] studied cases where particles crossing across relativistic bubble walls can
upscatter into heavy states that are, or can produce, DM. Ref. [40–42] studied frameworks where
the dynamcis associated with supercooled transitions in a confining sector produce the correct
DM abundance. Ref. [43] explored the prospects of producing heavy DM from bubble collisions
in an electroweak phase transition, finding that scalar DM cannot be produced with the desired
abundance but the production of heavy vector or fermion DM is possible; Ref. [44] extended this
idea to DM in a dark sector. Ref. [45] considered DM production from the collisions of shells of
boosted particles around the bubble walls.

Note that all of the above ideas (except [43, 44]) rely on interactions between bubble walls
and particles in the ambient thermal bath. In this paper, we focus on DM production from the
spacetime dynamics of the background scalar field itself as it undergoes various stages of the phase
transition. This is a fundamental, unavoidable contribution that is present in any FOPT (including
all of the above cases), irrespective of the existence or nature of a thermal bath of particles. Particle
production from a changing background field is a well-known physical phenomenon familiar from
various contexts, such as gravitational particle production [46–49] (for some specific applications to
dark matter production, see e.g. [50, 51]), Schwinger effect [52], and Hawking radiation from black
holes [53,54]. The calculation of particle production from background field dynamics during various
stages of a FOPT, in particular from bubble collisions, is complicated due to the inhomogeneous
nature of the process, but can be calculated in a manner analogous to the production of gravitational
waves. The formalism to study this process was first developed in [55] in the context of reheating
after first-order inflation. This formalism was then explored by [56] for cold baryogenesis, and
further developed in [43] with semi-analytic results for some idealized bubble collision cases and
applications for nonthermal DM production. More recently, the results were refined with numerical
studies for more realistic bubble collisions in [57], and various aspects of the underlying physics
clarified in [58]. Particle production from bubble collisions was shown to be a new source of GWs
in [59]. In this paper, we use the improved results from [57,58] to calculate the production of DM
from the background field dynamics in a dark phase transition.

While the DM production mechanism we discuss here is very general, it is particularly well-
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suited for the production of heavy DM with mass far above the scale of symmetry breaking or the
temperature of the plasma following the phase transition. Ultraheavy DM, with mass ranging from
O(100) TeV to the Planck scale, is of broad interest to the community for several theoretical as well
as experimental reasons [60], but generally suffers from the lack of viable production mechanisms
that realize the correct relic density. Recall that if the Universe reheats to temperatures compara-
ble to the DM mass (in particular, above the freezeout temperature of DM), DM will rethermalize
with the bath, erasing the effects of earlier cosmological events (such as bubble dynamics), and will
undergo conventional freezeout, which cannot produce the correct relic abundance for DM masses
above the unitarity bound of O(100) TeV. Hence nonthermal production mechanisms are required
for the production of ultraheavy DM. Nonthermal freeze-in requires extremely small (∼ 10−10)
couplings [61, 62], whereas production at temperatures lower than the DM mass suffers from ex-
ponential (Boltzmann) suppression. In this context, FOPTs provide a unique configuration not
found in other cosmological setups that can nonthermally produce extremely heavy particles with
masses significantly larger than any other energy scale achieved in the early Universe: since the
bubble walls can accelerate to relativistic speeds in the absence of friction from the plasma, they
can reach energies far above the energy scale of the phase transition or the temperature of the
ambient plasma. The possibility of producing particles with masses far greater than the scale of
phase transition from the collisions of such bubbles was recognized in [55], and subsequently em-
ployed for heavy DM production in [43, 44]; we will extend these studies, clarifying and improving
on several important aspects. We will discuss scalar, fermion, and vector DM, highlighting qual-
itatively distinct features and novel developments relative to the existing literature in each case.
Furthermore, since FOPTs from dark sectors can give rise to large gravitational wave signals, such
configurations provide an opportunity to detect this production mechanism for DM in dark sectors
(otherwise inaccessible with other experimental probes) with gravitational waves, providing added
motivation for this study.

This paper also contains two important developments on the formalism to calculate particle
production. First, we demonstrate that the existing formalism is gauge-dependent and leads to
spurious results in certain cases if not treated carefully. While we are unable to provide a complete
resolution of this problem, we provide a practical prescription for the computation that extracts
physical contributions and can be reliably used for order-of-magnitude estimates of this effect.
Second, we point out that for the production of gauge bosons and scalars, three-body decays of the
background field excitations (rather than two-body decays, which is the only contribution currently
considered in the literature) provide the dominant contribution for heavy DM. Both results are
crucial and substantially change the conclusions regarding the viability and parameter space for
DM derived in previous works.

This paper is organized as follows. In Sec. 2, we describe the framework for the study, discussing
the relevant phase transition configurations, parameters, and particle content. The formalism for
the calculation of particle production from various stages of a FOPT is described in Sec. 3. Sec. 4
discusses issues related to the gauge dependence of the formalism, and provides a practical solution
to the problem that enables the calculation of scalar and gauge boson production, including the
three-body configurations that provide the dominant contributions. In Sec. 5, we discuss dark
matter production contributions from other processes before, during, and after the phase transition,
as well as subsequent evolution of the DM population. The parameter space where DM can be
produced with the correct relic abundance from FOPTs is presented in Sec. 6. Sec. 7 contains a
summary of the main results of this paper and a discussion of various related ideas.
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2 Framework

The dark matter production from FOPT background field dynamics that we calculate in this paper
is very generic: it occurs unavoidably at any FOPT if the DM particles couples directly or indirectly
to the background field undergoing the phase transition, independently of the details of the FOPT
or the thermal plasma. We therefore present our analysis and results in a “model independent”
manner, in terms of phenomenologically relevant parameters characterizing the phase transition
and for simplified minimal DM setups, so that the results can be applied in a straightforward
manner to specific dark sector and DM models.

2.1 Phase Transition Parameters

Here, we list the phenomenological parameters that are relevant for the calculation. Consider a
FOPT in a dark/hidden sector where a background field ϕ transitions from a metastable, false
vacuum, where it has a vanishing vacuum expectation value (vev) ⟨ϕ⟩ = 0, to a stable, true vacuum
configuration with non-vanishing vev ⟨ϕ⟩ = vϕ. The latent energy released in the phase transition
is given by the difference in the potential energies of the two vacua, and we parameterize it as

∆V ≡ V⟨ϕ⟩=0 − V⟨ϕ⟩=vϕ = cV v4ϕ . (1)

The phase transition parameters relevant to our calculation of DM production and abundance
are:

• Tn: temperature of the thermal bath at which the FOPT is triggered, i.e. when bubbles of
true vacuum begin to nucleate at a rate greater than the Hubble scale.

• R0: critical radius of nucleated bubble that can grow. This is typically O(T−1
n ).

• α: strength of the phase transition, defined as α ≡ ρ(vacuum)
ρ(radiation) , where ρ(vacuum) = ∆V

and ρ(radiation) represents the energy density in the radiation bath (SM and dark sectors
combined) at Tn.

• β: (inverse) duration of phase transition. This is generally parametrized relative to the
Hubble scale as β/H, which is a dimensionless parameter.

• vw: velocity of the bubble wall. This quantity is time-dependent: as the bubbles expand,
vacuum energy gets transferred to the wall, accelerating it. Hence vw tends to grow, but can
asymptote to a constant value in the presence of significant frictional forces.

• γw: Lorentz boost factor of the bubble wall, determined from vw via the relation γw =
1/
√
1− v2w. In this paper we are interested in the relativistic regime vw ≈ 1, γw ≫ 1.

• lw: thickness of the bubble wall. This quantity is also time dependent: while the wall thickness
at bubble nucleation is lw0 ∼ O(v−1

ϕ ), the apparent wall thickness in the plasma frame gets
Lorentz contracted as the bubble accelerates to greater velocities, hence lw = lw0/γw tends
to decrease with time.

• R∗: typical size of vacuum bubbles at collision; this is determined from the timescale over
which the transition completes, R∗ ≈ vw (8π)1/3β−1.
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• T∗: temperature of the thermal bath at which bubbles of true vacuum percolate and the phase
transition ends. Since phase transitions complete within a fraction of Hubble time, T∗ ≈ Tn

if the Universe remains radiation dominated throughout. If the Universe instead becomes
vacuum dominated, then T∗ is determined through energy conservation conditions at the end
of the transition.

In a specific model, these quantities can be calculated from the parameters in the underlying
theory, as described in detail in several extensive reviews of phase transitions (see e.g. [10–14]).
For our purposes, we will treat them as independent parameters (except for the relations described
above), so that it should be straightforward to map our results to any given model by calculating
the corresponding parameters in the model.

2.2 (Runaway) Phase Transition Configurations

We now discuss the phase transition setups that are relevant for ultraheavy DM production. As
stated earlier, we are particularly interested in scenarios where the DM mass is higher than the
scale of the phase transition as well as the temperature of the thermal bath. This requires the
bubble walls to gain sufficient energy to produce the heavy DM particles. We are thus interested
in configurations where the bubble walls achieve so-called “runaway” behavior, i.e. are not slowed
down by friction effects but continue to accelerate as they gain the latent energy in the false vacuum
released in the transition. As we discuss here, whether this occurs depends on the details of the
contents of the thermal bath as well as the nature of the transition.

If the dark sector is in thermal equilibrium with the SM bath at some point in the early Universe,
the two sectors share the same temperature, which remains true after the two sectors decouple (up
to small corrections). However, this is not necessary, and the dark sector may be cold, i.e. has a
temperature substantially smaller than that of the SM bath (this occurs, for instance, if the inflaton
or the lightest moduli fields preferentially reheat the visible (SM) sector), or hotter (in the opposite
scenario). Requiring the two sectors to remain decoupled in this manner enforces an upper limit on
possible portal couplings between the two sectors. This condition can be approximately quantified
as λportal ≲

√
T/MPl for any temperature T higher than the mass of the corresponding dark sector

particle. Here MPl is the Planck mass, and the portal coupling could be e.g. a quartic coupling
between the scalar ϕ and the SM Higgs boson, or a kinetic mixing between a dark gauge boson and
the SM hypercharge.

In general, a FOPT can occur either due to thermal effects (temperature dependent corrections
to the scalar potential causes the true vacuum to become energetically favoured) or via quantum
tunneling (the age of the Universe approaches the lifetime for the scalar field to tunnel into the true
vacuum even with the zero temperature potential) – see e.g.[27] for detailed discussions. The former
requires a thermal bath of hidden sector particles (which may or may not be in equilibrium with
the SM bath), and a large coupling between the scalar field and some other particle in the bath;
in this case, with O(1) couplings, the phase transition generally occurs at a temperature T∗ ∼ vϕ
(if the dark and visible sectors have different temperatures, then it is the dark sector temperature
that is relevant here), and is completed within a small fraction of Hubble time, β/H∗ ∼ 100− 1000
(where H∗ is the Hubble scale at temperature T∗ when the phase transition completes), as the
bubble nucleation rate becomes extremely rapid once thermal corrections make the true vacuum
energetically favorable. Transitions via quantum tunneling, on the other hand, do not require a
thermal bath of hidden sector particles (i.e. the hidden sector can be extremely cold before the
transition, and the hidden sector energy density exists primarily in the form of vacuum energy),
although it might be present; the time of transition is determined by the shape of the potential.
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In such instances, T∗ can be several orders of magnitude smaller than vϕ. Such transitions tend to
last longer, completing in an O(1) fraction of Hubble time, so that β/H∗ ∼ 10.

In either case, bubbles of true vacuum nucleate with critical radii R0 and expand, accelerating
as the latent energy released from the false vacuum is converted to kinetic and gradient energies
in the bubble walls. Expanding bubbles encounter friction due to particles in the thermal bath
crossing the wall and becoming massive in the broken phase. A full thermal distribution of a
particle species crossing into the bubble is known to produces a pressure [63] (see also [64–66]):

PLO ≈ 1

24
m2T 2 , (2)

where m is the mass of the particle in the broken phase and T is the temperature of the bath. If
the sum of such effects from all particles exceeds the energy available from the transition, ∆V , the
walls achieve a terminal velocity corresponding to some steady state configuration 1; if not, the
walls continue to accelerate. As the walls become relativistic, friction due to splitting or transition
radiation, corresponding to radiation of gauge bosons from particles crossing into the bubbles,
becomes increasingly important [67–69], producing pressure that scales as

PNLO ∼ g2 γw mV T 3 , (3)

where g is the gauge coupling and mV is now the mass of the gauge boson, and we have dropped
some O(1) factors. This implies that the bubble walls reach a terminal velocity corresponding to
γw ∼ ∆V/(g3T 3vϕ) (where we have used mV = gvϕ) if they have not collided with other bubbles
before this value is reached.

If the frictional energy loss remains subdominant to ∆V , energy conservation dictates that
the boost factor of the wall grows with the growing bubble radius R as γ ≈ 2R

3R0
[70]. In such

configurations, the boost factor can reach extremely large values; parametrically,

γmax ∼ 1

β/H

MPl

vϕ
, (4)

where we have used the relations in Sec. 2.1 and assumed T ∼ vϕ. The energy density in the bubble
wall at collision is then Ewall = γmax/lw0 ∼ MPl/(β/H), making it possible to produce heavy
particles up to this scale. Remarkably, note that Ewall is independent of vϕ: a transition at a lower
scale vϕ, where the bubble walls have lower energy, is compensated by a lower Hubble scale, which
allows the bubbles to expand for longer before collisions occur, and thus the bubble walls can get
boosted for a longer period.

Viable scenarios that can realize such γ ≫ 1 runaway behavior needed for producing ultraheavy
DM can broadly be classified into four distinct categories:

Scenario I: Thermal transition without a gauge boson

This corresponds to scenarios where the FOPT is thermally triggered, i.e. a thermal bath that
interacts with the bubble walls is present, but ∆V > PLO, so that the friction from particles
crossing into the bubbles and becoming massive is not sufficient to slow the walls down, and in the
absence of a gauge boson there is no PNLO contribution.

Scenario II: Thermal transition with a light gauge boson

Even if the broken symmetry is gauged, runaway behavior can be realized if the corresponding
gauge boson is light (mV ≪ vϕ), i.e. the gauge coupling is small (g ≪ 1). Recall that friction

1For a thick-walled bubble, ∆V should represent the difference in potential energies between the false vacuum
and the field value to which the scalar field tunnels, rather than the true vacuum.
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due to splitting radiation (Eq. 3), which grows linearly with γw, eventually saturates the released
latent energy, resulting in a terminal value γw ∼ ∆V/(g3T 3vϕ) for the wall boost factor. Assuming
T ∼ vϕ, we have γw ∼ cV /g

3, hence γw ≫ 1 is possible if g ≪ 1. In such cases, the boost factor at
collision is

γw ∼ min

[
cV
g3

,
2R∗
3R0

]
, (5)

i.e. either the terminal behavior described above is reached, or the bubble walls collide before this
occurs.

Scenario III: Supercooled phase transition

Alternately, one could have a supercooled FOPT [15, 41, 71–81]. In such transitions, ∆V >
ρradiation, leading to a period of vacuum domination and inflation that causes significant dilution
of the pre-existing thermal bath before the phase transition completes. The bubble walls therefore
effectively expand in vacuum, encountering negligible friction, and can reach runaway behavior. In
this case, note that reheating after the completion of the phase transition creates a thermal bath
with ρradiation ≈ ∆V .

Scenario IV: Quantum tunneling in a cold dark sector

Even if a dark thermal bath is effectively absent, the transition could occur via quantum tun-
neling; in this case, there are essentially no particles that interact with the bubble walls, and the
walls continue to accelerate as the bubbles expand. The SM bath could be present or absent; if it is
absent or its energy density is lower than the latent energy ∆V in the false vacuum, this leads to a
vacuum dominated epoch, corresponding to the supercooled regime discussed above. For transitions
that occur via quantum tunneling, the bubbles generally cannot percolate in a vacuum dominated
inflating regime (this is essentially the graceful exit problem in first-order inflation models); to
avoid this, we can assume for simplicity that the SM bath is present with energy density equal to
or greater than the latent energy in the false vacuum, so that the Universe remains radiation domi-
nated throughout and does not enter an inflationary phase during the phase transition. To draw the
distinction with Scenario III above, by quantum tunneling we will therefore mean a transition that
occurs in the absence of a dark sector bath, but without a supercooled (i.e. vacuum-dominated)
phase due to the dominance of the SM bath.

2.3 Particle Content

As stated earlier, we will perform our analysis and calculations for DM production in simplified
frameworks. We will assume the FOPT is characterized by a complex scalar field ϕ with vevs
⟨ϕ⟩ = 0, vϕ and masses mϕ = mf ,mt in the false (unbroken) and true (broken) vacua, with a self-

interaction term
λϕ

4! |ϕ|
4. To minimize notation, we will also use ϕ to denote the physical component

of the field (the radial mode, or the Higgs boson) later in the paper. The broken symmetry might
be global or local; this implies the existence of either a massless Goldstone or massive gauge boson,
respectively, in the broken theory. In the latter case, the mass of the gauge boson Z ′ is mZ′ = g vϕ,
where g is the dark gauge coupling. We will assume that all of these dark sector particles (with
the exception of the DM particle) can decay into the SM through small portal couplings, so that
the energy in the dark sector eventually gets transferred to the SM bath. Such decays could be
necessary to avoid overclosing the Universe or producing dark radiation that leads to excessively
large contributions to the effective number of relativistic degrees of freedom Neff in the late Universe
if the energy density in the dark sector is substantial. Such decays into the SM might not exist for
the Goldstone, which can obtain a small mass due to quantum-gravity effects but might not have
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any SM decay channels kinematically accessible. In this case, one must ensure that the Goldstone
accounts for less than roughly one percent of the total energy density in the Universe for consistency
with Neff.

For the DM particle χ, we will examine scalar, fermion, as well as vector candidates, which
we denote as χs, χf , and χv, respectively. If the DM mass is at or below the scale of symmetry
breaking, mχ ≲ vϕ, DM could have obtained its mass during the FOPT from the ϕ vev. For
ultraheavy masses mχ ≫ vϕ, which is the primary regime of interest to us, DM mass is generated
at some heavy scale, and the dynamics of symmetry breaking associated with the FOPT has
negligible effect on the DM mass.

We will consider the following simplified interactions between the DM candidates and the back-
ground field:

• Scalar DM χs, with mass mχs and interaction λs
4 |ϕ|

2χ2
s.

Note that this is a renormalizable operator that can be valid to arbitrarily high scales. Since
the above interaction term produces a mass contribution

√
λs/2 vϕ once ϕ obtains a nonzero

vev, we will focus on the regime m2
χs

> 1
2λsv

2
ϕ, and treat mχs and λs as independent quantities

for simplicity.

• Fermion DM χf , with mass mχf
and effective interaction yfϕχf χ̄f (+h.c.).

Here the ϕχf χ̄f interaction implies that the χf χ̄f combination is charged under the symmetry
that is broken by the ϕ vev. Here χf could be a chiral fermion, obtaining its mass from the ϕ
vev after the symmetry is broken, analogous to the fermions interacting with the Higgs field in
the SM; however, in this casemχf

= yfvϕ ≲ vϕ. Alternately, the effective yfϕχf χ̄f interaction

could have been derived from a higher dimensional operator of the form
y′f
Λf

|ϕ|2χf χ̄f , where

Λf is some ultraviolet (UV)-cutoff scale. In this case, χf does not have to carry any charge
associated with ϕ, and its mass can be significantly larger than the symmetry breaking scale
of interest, mχf

≫ vϕ, and the effective coupling is yf = 2y′f vϕ/Λf . A specific realization of
this (see [43]) involves ϕ mixing with some singlet scalar S that couples to the fermion χf .
Here we remain agnostic about such underlying details and simply work with the effective
interaction term yfϕχf χ̄f . As with the scalar case, we will focus on masses larger than that
obtained from the symmetry breaking, mχf

> yf vϕ, and consider mχf
and yf as independent

parameters.

• Vector DM χv, with mass mχv and an interaction of the form 1
2λV |ϕ|2(χv)

µ(χv)µ.

Note that (χv)µ is not the field strength tensor, but a component of the gauge field χv,
where the subscript v is not a Lorentz index but simply denotes that this is a vector DM
candidate (analogous to the notation in the previous bullet points, χs for scalar DM and χf

for fermion DM). Thus the above interaction term is a dimension 4 coupling between two
scalar and two vector fields. Again, this interaction does not necessitate that the gauge boson
χv corresponds to the gauge symmetry broken by ϕ, as it could arise from integrating out
intermediate particles (e.g. a singlet mediator field, see [43] for more detailed discussions).
For a vector boson, additional subtleties arise from the interplay between its transverse and
longitudinal modes; these aspects will be discussed in Sec. 6.4. As in the previous two cases,
we will treat the mass and coupling as independent quantities.

In all scenarios, we will restrict ourselves to cases where DM is heavier than the scalar and the
gauge/Goldstone boson, i.e. mχ > mf ,mt,mZ′ ,mG, so that DM cannot be produced from decays
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of other particles in the dark sector, otherwise it can be produced from the oscillations of the scalar
field long after the bubble collisions, effectively reaching a thermal abundance, in which case it
either re-establishes thermal equilibrium with the bath or tends to be overproduced and overclose
the Universe.

Note that the coupling of the scalar field ϕ to particles far heavier than its mass can produce
radiative contributions that can lift its mass to the heavy scale, hence the hierarchy mϕ, vϕ ≪
mχ could involve significant fine-tuning. Likewise, the coupling between ϕ and DM can produce
corrections to the scalar potential that could modify the nature of the phase transition; this is
particularly concerning in scenarios where the coupling is large (O(1)), or where the realization
of the FOPT requires some amount of tuning. However, as we will see below, heavy dark matter
production from bubble collisions can also be realized with extremely small couplings between ϕ
and DM, as small as O(10−10), which do not alter the scalar potential appreciably enough to affect
the FOPT. In any case, such concerns are best addressed in complete particle physics models, and
we ignore such considerations in our simplified framework treatment in this paper.

Finally, additional dark sector particles beyond the ones discussed above might exist, but their
existence is irrelevant as long as they do not couple more strongly to DM than the scalar ϕ and do
not produce significant effects on bubble wall dynamics; we will assume this to be the case for the
purposes of this paper.

3 Formalism: Particle Production Calculation

In this section, we describe the formalism for calculating particle production from the dynamics of
the background field during a FOPT. The transition consists of three stages: bubble nucleation,
expansion, and collision, all of which contribute to particle production, see [58] for detailed discus-
sions. Although the contributions from the former two stages are subdominant for the production
of heavy particles, we will discuss them here briefly for completion.

3.1 Bubble Nucleation

In the thin-wall limit (where the thickness of bubble walls separating the true and false vacua
is significantly smaller than the size of the nucleated bubble, lw0 ≪ R0), the dynamics of the
background field within the bubble can be assumed to be homogeneous, and the number density
of a particle species Y produced within the bubble during the nucleation process can be estimated
as [58]

nY ≈ gY
4π5

l−3
w

(
R0

R∗

)3

I (lw0mY )e
−mY /(λY vϕ) , (6)

where gY is the number of degrees of freedom in field Y , λY is the coupling between the background
field and Y , and the dimensionless integral factor I(a) is

I(a) ≡
∫ ∞

0
dxx2 ×

sinh2
[
1
4

(√
a2 + x2 − x

)]
sinh

(
1
2

√
a2 + x2

)
sinh

(
1
2x
) (bosons)

I(a) ≡
∫ ∞

0
dxx2 ×

cosh
(
1
2a
)
− cosh

[
1
2

(√
a2 + x2 − x

)]
2 sinh

(
1
2

√
a2 + x2

)
sinh

(
1
2x
) (fermions) (7)
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The dilution factor
(
R0
R∗

)3
in Eq. 6 accounts for the fact that the particles produced within

the nucleated bubbles eventually diffuse out over the entire volume of the expanded bubble. Since
R0 ≫ R∗ (recall that R0 ∼ v−1

ϕ whereas R∗ ∼ H−1), this contribution from bubble nucleation
is generally negligible compared to the contribution from subsequent bubble evolution calculated
below. Furthermore, note the exponential suppression factor e−mY /(λY vϕ): particle Y obtains a
contribution to its mass ∆mY = λY vϕ from the phase transition; if this is smaller than the bare
massmY , the field Y is effectively insensitive to the changing background, hence particle production
gets shut off exponentially. Thus, the production of ultraheavy DM mχ ≫ λχvϕ during bubble
nucleation will be exponentially suppressed.

For a thick-walled bubble, spatial inhomogeneities within the bubble are expected to further
suppress particle production compared to the thin-wall case.

3.2 Bubble Expansion

A bubble wall propagating at constant velocity does not produce any particles (for a rigorous
derivation, see [58]): one can simply boost to its rest frame, where the configuration is static, hence
no particle production can take place. However, in the configurations of interest to us for ultraheavy
DM production, bubble walls achieve runaway behavior: they gain the latent energy released from
the phase transition and accelerate to larger boost factors as they propagate outwards. Particle
production from such accelerating bubble walls can be estimated by making use of the equivalence
principle: a nonuniformly accelerating bubble wall is equivalent to a wall at rest in a changing
gravitational field, and the familiar calculation of gravitational particle production yields a number
density of produced particles ∼ y2χR

−3
∗ [58]. This will also be subdominant to the contribution

from bubble collisions discussed in the next subsection.

For thick-wall bubbles, the scalar field might not be at its true minimum anywhere in the bubble
when the bubble nucleates, and instead evolves towards the true minimum and performs oscillations
around it as the bubble expands. This can also be responsible for some particle production (for
related discussions, see [70,82]). Since we are focusing on DM particles that are more massive than
the background scalar field, such oscillations cannot produce any DM particles.

3.3 Bubble Collision

Particle production from the collision of bubble walls and the subsequent evolution of the back-
ground field is a complicated phenomenon due to the highly inhomogeneous nature of the process.
The collision of bubbles was first considered in [83], and particle production from such collisions
was first studied in detail in [55]. Based on the formalism in [55], analytic results were derived
in simplified ideal limits in [43], and recently refined with numerical studies of more realistic se-
tups in [57] and analytic treatment in [58]. Here we provide a brief outline of the formalism; the
interested reader is referred to [43,55,57,58] for greater details.

The probability of particle production from the dynamics of the field ϕ is given by the imaginary
part of its effective action,

P = 2 Im (Γ[ϕ ] ), (8)

where Γ[ϕ ], the effective action, is the generating functional of one-particle irreducible (1PI) Green
functions

Γ[ϕ ] =

∞∑
n=2

1

n!

∫
d4x1...d

4xnΓ
(n)(x1, ..., xn)ϕ(x1)...ϕ(xn). (9)
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The leading (n = 2) term suffices for our purposes (we will briefly discuss higher order terms in the
next section)

Im (Γ[ϕ]) =
1

2

∫
d4x1d

4x2ϕ(x1)ϕ(x2)

∫
d4p

(2π)4
eip(x1−x2)Im(Γ̃(2)(p2)) , (10)

where Γ̃(2) is the Fourier transform of Γ(2).

The Fourier transform of the background field is ϕ̃(p) =
∫
d4xϕ(x)eipx. We assume that the bub-

ble walls are planar and collisions occur in the z−direction, so that ϕ̃(p) = (2π)2δ(px)δ(py)ϕ̃(pz, ω).
Using these and the above expressions, the number of particles produced per unit area of colliding
bubble walls can be written as [43,55]

N

A
= 2

∫
dpz dω

(2π)2
|ϕ̃(pz, ω)|2 Im[Γ̃(2)(ω2 − p2z)] . (11)

This formula invites the following interpretation. The classical background field configuration
can be decomposed via a Fourier transform into its momentum modes. Modes of definite four-
momentum p2 = ω2 − p2z > 0 are to be interpreted as (off-shell) propagating field quanta of the
background field with mass m2 = p2 — we will henceforth denote these as ϕ∗

p — and the probability
for each such mode to decay is given by the imaginary part of its Green function.

Following a change of variables, the above formula can be simplified and expressed in terms of
the four-momentum of the background field excitations as [43]

N

A
=

1

2π2

∫ p2max

p2min

dp2 f(p2) Im[Γ̃(2)(p2)]. (12)

Here f(p2) encapsulates the details and nature of the collisions as contained in the Fourier de-
composition of the background field configuration, representing the efficiency factor for particle
production at a given energy scale p. The integral has a lower limit pmin = 2m (for pair produc-
tion), set by the mass of the particle species being produced, or the inverse size of the bubble,
(2R∗)

−1 (at lower momenta, the existence of multiple bubbles needs to be taken into account),
whichever is greater. The upper cutoff is provided by pmax = 2/lw = 2γw/lw0, the energy in the
two colliding bubble walls, which represents the maximum energy available in the process. The
particles produced on the bubble wall collision surface (Eq. 12) will diffuse out over the volume
occupied by the bubble, so that the final number density of particles per unit volume is

n =
3

4π2R∗

∫ p2max

p2min

dp2 f(p2) Im[Γ̃(2)(p2)]. (13)

Similarly, the energy density in particles per unit area is

E

A
=

1

2π2

∫ p2max

p2min

dp2 p f(p2) Im[Γ̃(2)(p2)]. (14)

The wall collisions can be broadly classified as elastic (where the bubble walls bounce back after
collision, restoring the false vacuum in between) or inelastic (where the walls completely dissipate
their energy into scalar oscillations, and the true vacuum is established everywhere immediately
following the collision). From numerical studies of realistic bubble collision processes, the efficiency
factor in the two cases can be parametrized as [57]

felastic(p
2) = fPE(p

2) +
v2ϕL

2
p

15m2
t

exp

(
−(p2 −m2

t + 12mt/Lp)
2

440m2
t/L

2
p

)
(elastic collisions) (15)
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finelastic(p
2) = fPE(p

2) +
v2ϕL

2
p

4m2
f

exp

(
−(p2 −m2

f + 31mf/Lp)
2

650m2
f /L

2
p

)
(inelastic collisions) (16)

Here mt, mf are the scalar masses in the true and false vacua respectively. Lp = min(R∗,Γ
−1
ϕ ),

where Γϕ is the decay rate of the scalar as it performs oscillations around its true or false minimum
and R∗ is the typical bubble size at collision, provides a measure of the extent to which scalar
oscillations propagate in spacetime. Finally, fPE is the efficiency factor for a perfectly elastic
collision, derived analytically in [43]

fPE(p
2) =

16v2ϕ
p4

Log

[
2(1/lw)

2 − p2 + 2(1/lw)
√
(1/lw)2 − p2

p2

]
. (17)

Recall that lw = lw0/γw is the Lorentz-contracted bubble wall thickness.

Note that Eq. 15 and 16 contain two distinct contributions: an approximately power law com-
ponent fPE ∼ p−4, originating from the nontrivial dynamics of the background field when the
bubbles collide, and an approximately Gaussian peak centered around the mass of the scalar in the
relevant vacuum, coming from the oscillation of the scalar field around its relevant minimum after
the collision. Since we assume that the DM particle is heavier than the scalar, mχ > mt,mf , the
oscillations do not contribute to DM production, and we can ignore the latter component. DM is
thus produced solely via f(p2) = fPE for both elastic and inelastic collisions.

3.4 Particle Physics Aspects

In the formalism above, in Eqs. 13, 14, the efficiency factor f(p2) encodes information about the
spacetime dynamics of the background field. The particle physics information is encoded in the
2-point 1PI Green function Γ(2), to which we now turn our attention.

Using the Optical Theorem, the imaginary part of the 2-point 1PI Green function is given by
the sum [43,55]

Im[Γ̃(2)(p2)] =
1

2

∑
k

∫
dΠk|M̄(ϕ∗

p → k)|2 (18)

Here the sum runs over all possible final states k that can be produced from the background field
excitations ϕ∗

p, |M̄(ϕ∗
p → k)|2 is the spin-averaged squared amplitude for the decay of ϕ∗

p into the
given final state k, and dΠk denotes the relativistically invariant n-body phase space element.

Note that the imaginary part of the 2PI Green function is an inclusive quantity that necessitates
summing over all possible states k that can contribute. To calculate the overall decay probability
of the background field, we therefore need to calculate |M̄(ϕ∗

p → k)|2 for all particle combinations
that are allowed in the setup. However, to calculate the decay probability into a given final state
(such as the DM particle), it is sufficient to perform the calculation solely for this channel, and the
full sum is not required provided the full decay probability remains smaller than 1, i.e. that there
are no channels that are so strong that particle production backreacts on the system.

The scalar ϕ particles themselves can be produced through the background field excitations,

via the quartic term
λϕ

4! |ϕ|
4 in the scalar potential; this gives rise to ϕ∗

p → ϕϕ (with a single vev
insertion) and ϕ∗

p → 3ϕ decay processes. These lead to

Im[Γ̃(2)(p2)]ϕ∗
p→ϕϕ =

λ2
ϕ v

2
ϕ

8π
(1− 4m2

ϕ/p
2)Θ(p− 2mϕ) (19)
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and

Im[Γ̃(2)(p2)]ϕ∗
p→3ϕ =

λ2
ϕ p

2

3072π3
(1− 9m2

ϕ/p
2)Θ(p− 3mϕ) (20)

Note that the three-body process is suppressed relative to the two-body process by a loop factor
due to an additional particle in the final state, but is proportional to p2 rather than v2ϕ, hence

can become more important at higher p2 as it can be realized even in the vϕ → 0 limit where the
symmetry is unbroken.

For scalar DM, which couples as λs
4 ϕ

2χ2
s, the formulae for two- and three-body decays ϕ∗

p → χsχs

and ϕ∗
p → ϕχsχs are analogous to Eqs. 19, 20, with λϕ → λs, 3072 → 1024 due to modified symmetry

factors, and appropriate modifications of the final state masses in the phase space factors and step
functions.

For fermion DM, the relevant expression is

Im[Γ̃(2)(p2)]ϕ∗
p→χf χ̄f

=
y2f
8π

p2(1− 4m2
χf
/p2)3/2Θ(p2 − 4m2

χf
) . (21)

Note that this quantity is proportional to p2 and can occur in the vϕ → 0 limit of unbroken
symmetry, similar to the three-body scalar decay channel above.

The calculation for vector DM, and final states involving gauge bosons in general, is more subtle
and requires a discussion of the gauge dependence of the formalism. This will be the subject of the
next section.

4 Gauge Dependence and Production of Gauge Bosons

Here, we consider the case where the scalar vev breaks a local symmetry, and discuss the production
of the massive gauge boson V associated with the broken symmetry. The results can be extended
in a straightforward manner to other vector bosons, in particular the vector DM candidate we are
interested in.

4.1 Gauge Dependence

To understand the subtleties regarding the gauge dependence of the formalism, let us consider the
decay of a background field excitation into two gauge bosons, ϕ∗

p → V V , which occurs via the
interaction term gvϕϕVµV

µ. The calculation of the squared amplitude of this process requires a
sum over the gauge boson polarizations. Its general form, in Rξ gauge, is∑

ϵµϵν → −gµν + (1− ξ)
pµpν

p2 − ξm2
V

. (22)

Recall that in Rξ gauge, one must also add the contributions from the Goldstone and ghost fields,
which have mass m2 = ξm2

V . For a physical process, the choice of ξ and the separation of the
degrees of freedom into gauge, Goldstone, and ghost fields is simply a matter of bookkeeping, and
the final result should be gauge-invariant, i.e. ξ−independent. As we will see below, this will not
be the case for the above configuration and formalism describing bubble collisions, hence greater
care is needed to avoid spurious results.

Generally, a convenient choice is unitary gauge (ξ → ∞), where the Goldstone and ghost fields
decouple, and one simply needs to consider the gauge degrees of freedom, for which the above sum
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over polarization reduces to the familiar expression
∑

ϵµϵν → −gµν + pµpν

m2
V
. Using this, the squared

amplitude for the ϕ∗
p → V V process can be calculated to be

|M̄(ϕ∗
p → V V )|2 = g2m2

V

(
3− p2

m2
V

+
p4

4m4
V

)
(Unitary gauge). (23)

One can, instead, perform this calculation in Feynman-’t Hooft gauge (ξ = 1). With this
choice, the polarization sum yields

∑
ϵµϵν → −gµν , and one has to add the Goldstone and ghost

contributions separately. Adding these contributions together results in the following expression
for the squared amplitude

|M̄(ϕ∗
p → V V )|2 = g2m2

V

(
3− p2

m2
V

+
λ2
ϕ

g4

)
(Feynman-’t Hooft gauge). (24)

For a physical process, both results should match and give the correct (physical) result. When
the decaying mode corresponds to an on-shell ϕ particle, i.e. p2 = m2

ϕ, this is indeed seen to be

true: in this case p4/(4m4
V ) = m4

ϕ/(4m
4
V ) = λ2

ϕ/g
4, hence the final expressions in the parentheses

in the two equations are identical. The problem arises when the excitation ϕ∗
p is taken off-shell,

i.e. p2 ̸= m2
ϕ. In this case, the two expressions clearly disagree: in particular, at large p2 ≫ m2

ϕ,m
2
V ,

the unitary gauge result scales as ∼ g2 p4/m2
V , whereas the Feynman-’t Hooft gauge result scales as

∼ −g2 p2. Clearly, this discrepancy persists even after the sum over modes (Eq. 12) is performed;
hence the final result for the number density of gauge bosons produced from a bubble collision
appears to be gauge-dependent.

Both results above, Eq. 23 and Eq. 24, are however unphysical. The Feynman-’t Hooft gauge
result gives a negative decay probability at large p2, which is clearly unphysical. The problem with
the unitary gauge result can be seen most clearly by considering the analogous contribution from
the higher multiplicity process ϕ∗

p → 4V . Compared to the ϕ∗
p → 2V process, the 4V process has

an additional scalar propagator, whose contribution to the amplitude squared scales approximately
as ∼ 1

p4
; two additional vector bosons in the final state, which give additional phase space factors

( d3k
(2π)32p

)2 ∼ ( p2

4π2 )
2; and a sum over the two additional gauge boson polarization vectors, which

yields another factor of
(
3− p2

m2
V
+ p4

4m4
V

)
. Thus, we can estimate the leading order contributions

at large p from the ϕ∗
p → 4V and ϕ∗

p → 2V processes to the imaginary part of the two point 1PI
Green function in unitary gauge to be

Im[Γ̃(2)(p2)]ϕ∗
p→4V ∼

g6m2
V

8π(4π2)2

(
p4

4m4
V

)2

, Im[Γ̃(2)(p2)]ϕ∗
p→2V ∼

g2m2
V

8π

(
p4

4m4
V

)
. (25)

Therefore, the ϕ∗
p → 4V contribution appears to grow faster than the ϕ∗

p → 2V contribution at large
p2. By similar arguments, processes with higher vector boson multiplicity in the final state should
grow even faster with p2. If true, this would preclude the calculation of Eq. 18, which is an inclusive
quantity that requires the addition of all of these higher order processes. More worryingly, this
unabated growth suggests a breakdown of perturbativity despite the absence of any strong coupling
in the theory. This is a clear indication that the growth of the squared amplitude with energy in
Eq. 23 is spurious.

A general form worth noting is

Im[Γ̃(2)(p2)]ϕ∗
p→2V = g2m2

V

(
2 +

(p2 − 2m2
V )

2

4m4
V

)√
1−

4m2
V

p2
+

g2

4m2
V

(m4
ϕ − p4)

√
1−

4ξm2
V

p2
. (26)
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Since the gauge, Goldstone, and ghost fields have unequal masses in general Rξ gauge, this
leads to unequal phase space weights for any finite p, so that the sum of their contributions cannot
be expressed as a single squared matrix element as in Eqs. 23 and 24. Note that the above two
cases are the only exceptions to this: in Feynman-’t Hooft gauge these masses are equal, so that
the phase space factor is the same for all contributions a nd can be factored out, whereas in unitary
gauge the Goldstone and ghost fields decouple, and only the gauge component contributes to the
amplitude. One can also write down the following asymptotic expansion:

|M̄(ϕ∗
p → V V )|2 = g2m2

V ×


(ξ−3)p2

2m2
V

+
λ2
ϕ

g4
+ 3 for p2

m2
V
≫ ξ, 1

p4

4m4
V
− p2

m2
V
+ 3 for ξ ≫ p2

m2
V
, 1

(Rξ gauge). (27)

This further illustrates that the high-energy behavior of the off-shell ϕ∗
p decay squared amplitude

is gauge-dependent and can become O(g2p4/m2
V ), O(g2p2), or O(g2m2

V ), depending on the value
of ξ. In particular, in the Fried-Yennie gauge (ξ = 3), both the p4 and p2 terms are absent in the
large-p2 expansion.

In any gauge-specific calculation, the problem arises due to the inclusion of unphysical contribu-
tions that do not get cancelled. For the unitary gauge result, note that the problematic final term
in Eq. 23 comes from the prescription of taking ϵL → pi/mV for the production of two longitudinal
modes. However, in the large pi limit, we know that the emission of the longitudinal component
of the gauge boson should be equivalent to the emission of the corresponding Goldstone boson
“eaten” by the gauge boson, as prescribed by the Goldstone Equivalence Theorem (GET). Since
the Goldstone is a component of the scalar field, this contribution to the matrix element should
therefore scale as ∼ λ2

ϕv
2
ϕ at high energies, and this ∼ p4/m2

V growth is unphysical. The Feynman-’t
Hooft gauge result rectifies this problem: in Eq. 24, the final term, which comes from adding the
emission of two Goldstone bosons, indeed scales as ∼ λ2

ϕv
2
ϕ rather than ∼ p4/m2

V , hence the spurious
growth with energy encountered in the unitarty gauge calculation is eliminated and the behavior
anticipated from the GET is recovered. 2 However, the polarization sum

∑
ϵµϵν → −gµν , which

includes physical as well as unphysical contributions, now gives rise to the negative (second) term
in Eq. 24, resulting in unphysical (negative) probabilities, suggesting that unphysical contributions
to the polarization sum have not been cancelled in the final result.

Fully restoring the gauge independence of the calculation requires choosing an initial config-
uration that is physical, which should result in the cancellation of all unphysical contributions
and guarantee gauge independence of the final result. The gauge dependence of the formalism we
are considering here can be traced to the assumption that the Fourier transform of the classical
field configuration can be interpreted as a collection of off-shell field quanta of different effective
masses corresponding to different four-momenta (see Eq. 11 and the paragraph below it). Since an
ensemble of off-shell quanta is not a physical configuration, there is no guarantee that the ensuing
calculation is gauge invariant.

The issue at hand can be understood in analogy with the familiar example of gauge boson
scattering, V V → V V , at center of mass energy E. If one only considers the process V V →
ϕ∗ → V V mediated by an s-channel scalar particle, the leading contribution grows as ∼ E4. As is
well known, this term is cancelled when adding all other diagrams that contribute to V V → V V
scattering; however, to obtain this physical result, it is necessary to sum over all contributions that
are relevant. Similarly, the spurious pieces in Eq. 23 and Eq. 24 should also be similarly cancelled if
all contributions relevant to the physical process at hand are appropriately included. However, our

2For a related discussion of an equivalent gauge that makes the Goldstone equivalence manifest at high energies,
see [84,85].
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starting point for the calculation is not a physical process (as in V V scattering) but a collection
of off-shell massive excitations ϕ∗

p (akin to only picking out the V V → ϕ∗ → V V contribution for
vector boson scattering, which is incomplete), which cannot ensure gauge invariance. 3

This suggests that the decomposition of the classical scalar field configuration at bubble collision
into a collection of Fourier modes of off-shell field quanta in the above formalism, and considering
only the leading order (n = 2) terms in Eq. 9, misses contributions that are relevant. It is not
clear what these missing ingredients are, but there are likely several things that might be relevant.
Including the higher order terms in the expansion in Eq. 9 is certainly necessary. Other known
techniques, such as gradient expansion or dimensional reduction, might also provide some insight
towards a resolution of the problem. Depending on the gauge of choice, other fields might develop
profiles and contribute to the bubble walls in addition to the scalar field. Likewise, in the above
discussions we have used matrix elements corresponding to the theory in the true vacuum, but
the rigorous construction of an S-matrix element for the decay of a transient excitation across two
stable points of a theory likely involves more subtleties that would need to be addressed.

Without knowing all of the relevant contributions, a fully gauge invariant calculation cannot
be performed. Nevertheless, as we will see below, it is still possible to extract meaningful phys-
ical, gauge independent results from the known contributions by making use of the Goldstone
Equivalence Theorem, which provides a practical path to performing the necessary calculation.

4.2 High Energy Behavior

Practically speaking, the spurious results above arise from unphysical terms in the sum over gauge
boson polarizations. In unitary gauge (ξ → ∞) (Eq. 23), the third term contributes the p4/m2

V

term that is unphysical and should have been cancelled by contributions from other relevant dia-
grams. On the other hand, in Feynman-’t Hooft gauge,

∑
ϵµϵν → −gµν sums over all polarizations,

including unphysical ones; these, again, should be cancelled by contributions from other relevant
diagrams, but remain in their absence and contribute the unphysical −p2 piece in Eq. 24. There-
fore, a practical solution would be to only pick out physical contributions from physically allowed
polarization states explicitly when performing the sum.

Instead of using Eq. 22 to perform the sum over polarizations, we can instead explicitly pick the
polarization states. For a gauge boson moving in the z−direction, the transverse (T) polarization
states are ϵµT = (0, 1, 0, 0), (0, 0, 1, 0), whereas the longitudinal (L) polarization vector is ϵµL =
(p/mV , 0, 0, EV /mV ). The latter has the problematic p/mV growth at large p; however, this can
be tamed with the Goldstone Equivalence Theorem (GET), which states that at high energies the
amplitude for the emission of a longitudinally polarized massive gauge boson becomes equal to the
amplitude for emission of the Goldstone mode ϕG “eaten” by the gauge boson, up to corrections
of order O(m2

V /p
2). Thus, even in the absence of all contributing diagrams, the GET provides a

prescription for extracting the physical behavior of the longitudinal mode at high energies that is
free of unphysical contributions and does not require choosing a specific gauge for the calculation.

We can apply this strategy to the ϕ∗
p → V V process discussed above to extract its high energy

behavior. Three polarization combinations contribute to the calculation of |M|2 :

• TT: The emission of transverse modes is well behaved, and gives 2m2
V .

3It should be noted that there exist various techniques to address similar gauge invariance issues in other contexts,
see e.g. [86–88]; while they might lead to some simplifications in our calculations, they will not completely solve the
problem since we are considering decays of unphysical off-shell field excitations.
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• LL: Using the GET, this is equivalent to the emission of two Goldstones ϕ∗
p → ϕGϕG, and

gives λ2
ϕv

2
ϕ, or equivalently (λ2

ϕ/g
2)m2

V .

• TL: Invoking the GET, we need to calculate ϕ∗
p → VT (p1)ϕG(p2) to obtain the high energy

behavior of this contribution. This diagram comes from the kinetic term of the scalar, and
has a vertex factor ig(pµ + pµ2 ) that contracts with the gauge boson polarization ϵµT . In the
rest frame of ϕ∗

p, the two emitted particles are back to back, these vectors are othogonal, and
this contraction vanishes, hence this combination does not contribute at high energies. 4

Adding these contributions, we obtain the following form of the squared amplitude at high
energies:

|M̄(ϕ∗
p → V V )|2

p2>m2
V−−−−−→ (2g2 +

λ2
ϕ

g2
)m2

V (1 +O(m2
V /p

2)) (Goldstone Equivalence Theorem).

(28)
Note that this result is well-behaved and contains neither the spurious ∝ p4 growing term from the
unitary gauge calculation nor the −p2 term from the calculation in Feynman-’t Hooft gauge; the
above prescription has eliminated all unphysical ingredients and picked out the relevant physical
contributions from the process at hand, without requiring any explicit computation in a specific
gauge. This will continue to be the case for all other relevant diagrams, as we discuss below. There-
fore, we can interpolate between the low energy behavior (Eq. 23) and the high energy behavior
(Eq. 28) to obtain an approximate result for the production of gauge bosons; this method introduces
inaccuracies in the intermediate regime (p2 ∼ mV ∼ vϕ), but the final result for the total number
of particles is expected to be correct within an O(1) factor.

4.3 Other Processes

In addition to ϕ∗
p → V V , there also exists the three-body decay process ϕ∗

p → ϕV V . Naive gauge-
specific calculations also give unphysical results for this decay channel for the reasons described
above, but one can similarly use the prescription above to estimate its high energy behavior:

ϕ∗
p → ϕV V : |M̄|2p<vϕ

∼ g4
(
3− p2

m2
V

+
p4

4m4
V

)
, |M̄|2p>vϕ

∼ λ2
ϕ + 2g4 . (29)

Note that this three-body decay will be phase-space suppressed relative to the two-body decay by
a factor ∼ (16π2)−1 due to an additional particle in the final state but can nevertheless dominate
at large p, analogously to the two and three-body scalar decay processes in Eqs.19, 20.

Similarly, particles can also be produced due to interactions between multiple Fourier modes,
e.g.ϕ∗

p1ϕ
∗
p2 → ϕϕ, V V, χχ. These correspond to higher order terms in the expansion in Eq. 9. The

Fourier transform of the additional ϕ∗
pi excitation in the initial state scales as ∼ (vϕ/p

2)2, hence the
higher order ϕ∗

p1ϕ
∗
p2 → ϕϕ, V V, χχ processes are subdominant for very heavy DM but can introduce

O(1) corrections for DM whose mass arises from its coupling to ϕ.

However, further higher order terms corresponding to additional ϕ∗ in the initial configuration,
or additional vev insertions, can be important in processes involving particles with mass lighter
than the scale of symmetry breaking. For concreteness, consider the scalar DM candidate with

4Strictly speaking, the collection of background field excitation modes has a distribution of pz, and there is no
frame where they are all collectively at rest. Nevertheless, we have assumed that for the decay of each excitation, the
calculation can be performed in its rest frame, as is conventionally done for a collection of particles with a distribution
of momenta, otherwise the result is not Lorentz invariant.
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χs with mass mχs that couples to ϕ via the interaction λs
4 ϕ

2χ2
s. A double ϕ∗ insertion on the

DM state introduces a factor ∼
(
vϕ
p2

)4
from the Fourier transform of the additional ϕ excitations,

vertex factor λ2
s, an additional DM propagator, which gives a 1

p4
contribution, and phase space

factors that scale with some appropriate power of p, resulting in an overall contribution that is a

factor ∼ λ2
s

(
vϕ
p

)4
larger than the original diagram. Therefore, one cannot truncate the expansion

in Eq. 9 at the leading term if p2 ≲ λs v
2
ϕ. However, as mentioned in Sec. 2.3, we restrict ourselves

to m2
χs

> 1
2λsv

2
ϕ, hence it is consistent to ignore such higher order corrections in this region of

parameter space.

4.4 Backreaction Effects

In the previous subsections, we have highlighted two important aspects of particle production from
bubble dynamics: (i) the calculation for gauge boson production is gauge dependent, and the correct
scaling at high energies can be obtained by making use of the Goldstone equivalence theorem; (ii) at
high energies, the emission of three (scalar or gauge) bosons is enhanced compared to the emission
of two bosons despite the phase space suppression, as the squared matrix element scales as ∼ p2

in the former case and as ∼ v2ϕ in the latter. Here we briefly discuss the relevance of these results
for backreaction effects on bubble dynamics and DM abundance; for more detailed discussions on
backreaction effects, see [58].

If the energy density in the produced particles is a significant fraction of the latent energy
released in the phase transition, this creates a backreaction effect on the bubble dynamics, which
should be appropriately taken into account for phenomenological applications such as the calcula-
tion of gravitational waves from the scalar field at and after bubble collision, and for calculating
the relic abundance of DM. From the formula for the energy density in the produced particles
(Eq. 14), we see that the energy density depends critically on the form of Im[Γ̃(2)], or equivalently
the matrix element |M|2. Since f(p2) ∼ p−4 (Eq. 17), if Im[Γ̃(2)] ∼ px with x > 1, the energy
density in particles grows as a positive power of p2, hence backreaction can become significant for
large values of p.

Previous works [43,55] concluded that the production of scalars (for which the matrix element
for pair production scales as |M|2 ∝ p0) is not strong enough, but pair production of fermions
(|M|2 ∝ p2) and gauge bosons (|M|2 ∝ p4) can be efficient enough to backreact on bubble dynamics;
in particular, the production of gauge bosons is so efficient at high energies (as can be seen from
inserting |M|2 ∝ p4 in Eq. 14) that it significantly reduces the energy available for other states,
so that it precludes the possibility for scalar DM in a first-order electroweak phase transition (and
other gauged transitions in general), whereas fermion DM remains marginally possible, and vector
DM can be realized across a large range of masses from ∼ 1− 108 TeV.

Our results disagree with these conclusions. As discussed in Sec 4.1 above, the |M|2 ∝ p4 scaling
for gauge boson pair production at large p2 is a spurious gauge artifact, and the correct scaling at
energies above the scale of symmetry breaking is in fact |M|2 ∝ p0 (Eq. 28). However, we noted
that the three-body decay processes involving scalars and gauge bosons ϕ∗

p → 3ϕ, ϕV V , Eq. 20, 29

(which were not considered in [43,55], but discussed in [58]), do scale as Im[Γ̃(2)] ∝ p2 (albeit with
additional phase space suppression). As a result, there is no process with Im[Γ̃(2)] ∝ p4 that can
backreact severely on the bubble dynamics, but the processes with Im[Γ̃(2)] ∝ p2 can backreact if
the associated coupling is sufficiently large; see [58] for a more detailed and qualitative treatment.
As we will see below, these modified results open up significant parameter space for scalar, fermion,
and vector DM.
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5 Dark Matter Production

Before exploring the parameter space where the above mechanism yields the correct dark matter
relic abundance, we first discuss other DM production mechanisms that might be active at various
stages of the phase transition in different cases. Here we will use the general interaction form
1
4λχϕ

2χ2, using the general notation χ for DM and λχ for its coupling to the background field,
as the discussion is broadly applicable to DM of arbitrary spin. We will revert to spin-specific
notations as introduced in Sec. 2.3 where this is not the case. Here we are simply interested in
obtaining order-of-magnitude estimates, hence we will make use of several approximations without
worrying about O(1) factors.

The relic abundance of DM can be written as

Ωχh
2 = 6.3× 108

mχ

GeV

nχ

g∗(T∗)T 3
∗
, (30)

where nχ is the DM number density at the time of production (in our case, given by Eq. 13),
when the temperature of the thermal bath after the FOPT is T∗, and g∗ is the number of degrees
of freedom in the bath at this time. Recall that the observed abundance of DM corresponds to
ΩDMh2 = 0.12.

5.1 Pre-Transition Contributions

The early Universe before the phase transition could already contain some DM abundance. If DM
is in thermal equilibrium with the bath, it obtains an equilibrium number density nχ ∼ T 3 before
undergoing thermal freezeout, during which its abundance can drop exponentially for T < mχ. For
DM masses beyond the unitarity bound O(100) TeV, the frozen-out relic abundance is too large
and not viable; in this case, the abundance can be suppressed below ΩDMh2 = 0.12 if there is a
large amount of entropy injection that dilutes the DM yield by several orders of magnitude. This
can occur if the transition is supercooled, or through late decays of some heavy particles, or if the
dark sector is decoupled from the visible (SM) sector and colder.

Freeze-in:

Another viable possibility for masses beyond the unitarity bound involves DM never reaching
equilibrium with the dark or SM bath, but only realizing smaller, nonthermal abundances via the
freeze-in mechanism [61,62]. This can occur if the reheat temperature of the Universe TR, defined
as the maximum temperature of the thermal bath after the onset of radiation domination following
inflation, is below the freezeout temperature for DM.5 Alternately, non-equilibrium is maintained
at higher temperatures above the DM mass if the associated coupling is sufficiently small; this is
achieved for λχ ≲

√
vϕ/MPl. In both cases, DM is produced gradually via freeze-in processes such

as ϕϕ → χχ.

If ϕ is in thermal equilibrium with the SM bath and the ϕϕ → χχ process originates from a
renormalizable coupling

λχ

4 ϕ2χ2, as would be the case if DM is a scalar or a vector, the DM relic
abundance from this contribution is [62]

Ωχh
2 ∼ 1020 λ2

χe
−2mχ/TR

(
Tn

T∗

)3

, (31)

5The Universe could have reached temperatures higher than TR during the thermalization phase between the end
of inflation and the onset of radiation domination [89], which can also enable the production of massive particles [90].
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where the exponential factor has been added to account for the Boltzmann suppression that exists

if mχ > TR, and the
(
Tn
T∗

)3
factor accounts for entropy dilution from the energy injection from the

FOPT. Recall that we have assumed that none of the dark sector particles can decay into DM, so
that there is no contribution from ϕ → χχ or other dark sector decays.

If, instead, this annihilation occurs through a higher dimensional operator of the form 1
Λϕϕχχ,

as could be the case for fermion DM, or for DM in the presence of a heavy mediator (in this case
additional considerations might be relevant, see [91]), the abundance is UV-dominated [92, 93],
i.e. receives dominant contributions at the largest temperatures. If ϕ is in equilibrium with the SM
bath, the UV freeze-in abundance of fermion DM produced from this operator is [93]

Ωχh
2 ∼ 0.1

( mχ

GeV

)(1000TR MPl

Λ2

)
e−2mχ/TR

(
Tn

T∗

)3

. (32)

If ϕ is out of equilibrium with the SM bath, then ϕ itself gets produced via freeze-in processes,
and its subsequent annihilations produce DM. The DM abundance in this case can be calculated
analogously using appropriately modified versions of the above formulae.

Note that the above contributions only exist in the presence of a dark sector bath (Scenarios
I, II in Section 2.2), but are irrelevant in scenarios where a dark sector bath is essentially absent
(Scenarios III, IV).

5.2 Other Contributions during the Transition

Wall-plasma interactions:

In the presence of a dark sector bath, additional DM production can occur when ϕ particles
present in the bath interact with relativistic bubble walls as they cross into true vacuum bubbles 6

[37,38,95,96]. For a renormalizable interaction of the form
λχ

4 ϕ2χ2, the probability for a ϕ particle
to up-scatter into χχ as it transitions across a bubble wall is [37]

P (ϕ → χχ) =
λ2
χ v

2
ϕ

96π2m2
χ

. (33)

Here, λ2
χv

2
ϕ/m

2
χ can be thought of as an effective mixing angle between ϕ and the χχ state. This

transition requires the crossing of the ϕ particle across the bubble wall to be non-adiabatic, i.e. the
evolution occurs sufficiently rapidly that the ϕ particle cannot adiabatically track the massive ϕ
eigenstate across the wall but instead upscatters into the χχ combination. This non-adiabaticity
condition is given by [37,38,95]

γw >
lw0m

2
χ

T∗
∼

m2
χ

v2ϕ
, (34)

where in the second step we have assumed l−1
w0 ∼ T∗ ∼ vϕ. Thus we see that merely being above

the kinematic threshold for DM production, γwT∗ > mχ, is not sufficient; the non-adiabaticity
condition requires γw to be larger than this by an additional factor of mχ/vϕ. Provided Eq. 34 is
satisfied, the DM contribution from the above particle-bubble interaction process is [37]

Ωχh
2 ≈

1.35× 105λ2
χ

g∗

v2ϕ
m2

χ

mχ

GeV

(
Tn

T∗

)3

. (35)

6It is also worth noting here that for properly calculating the effects of particles transitioning across the bubble
wall in a gauged theory, the fields need to be appropriately quantized across the bubble wall, and the quantization
of the longitudinal mode of the gauge boson in particular is subtle [94].
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Bubbletron:

Particle-bubble interactions can also produce DM via another mechanism. Particles gaining
mass from bubble crossing can produce shells of accelerated particles with large boost factors that
get dragged along with the bubble walls, and when the bubble walls collide, these particle shells
also collide with high energies, an event dubbed a “bubbletron” [45, 97]. The realization of this
configuration requires the particles to retain their energies over the course of the expansion phase
(i.e. not interact with other particles in their vicinity). In this case, since the accelerated particles
gain boost factors comparable to the boost factor of the wall ∼ γw, their collisions can also produce
very heavy DM. The modeling of such particles shells and their phase space distributions and
collisions is complicated and the subject of ongoing work in the literature (see [45]). Here, using
the simple estimates from [45] (see also [97] for more recent detailed calculations), we approximate
the DM contribution from this process to be

Ωχh
2 ∼ 10−15 λ2

χ

β

H

(
Tn

T∗

)4 mχ vϕ

GeV2 . (36)

We have checked that this is consistent with the DM abundance estimated by (optimistically)
assuming that a collection of particles with a thermal abundance ∼ T 3

n undergoes collisions with
energy ∼ γw/lw0 for a duration ∼ R−1

∗ .

5.3 Post-Transition Contributions

The phase transition completes when the bubbles of true vacuum collide, and the energy carried
by the bubble walls dissipates into dark sector particles and scalar waves. Recall that the bubble
collisions produce particles with very high energies, up to ∼ 1/lw = γw/lw0 ∼ γwvϕ. Therefore,
these particles are energetic enough to produce DM through their collisions even when the DM
mass is significantly higher than the temperature of the bath T∗ or the scale of symmetry breaking
vϕ (or even the reheat temperature TR). Note that this post-transition contribution exists for all
FOPTs (Scenarios I-IV in Sec. 2.2), including the ones that are devoid of a dark sector bath before
the phase transition, since the bubble collisions populate dark sector particles in all cases.

We can make some simple qualitative observations to estimate the importance of this effect.
From the previous sections, we know that the leading order diagram for the production of a particle
of any spin scales as |M|2 ∝ p2 at high energies through either two- or three-body decays; therefore,
the abundances of dark sector particles at a given energy are approximately proportional to their
couplings to the background field. From this, it is straightforward to deduce that any dark sector
particle with a coupling to the background field smaller than that of the DM particle is produced
with lower abundance than DM (beyond the kinematic threshold where DM can be produced), and
cannot affect its abundance. It is only possible to substantially alter the DM abundance in the
presence of a dark sector particle that has a larger coupling to the background field than the DM
particle.

Scalar Annihilation:

The existence of such particles is a model-dependent question; nevertheless, in the minimal
model we can consider the contribution from the production and subsequent annihilations of the
scalar field ϕ itself. In the presence of a large self coupling (λϕ > λχ), ϕ particles are produced
at high energies with a greater abundance than χ particles through the ϕ∗

p → 3ϕ process (Eq. 20).
These high energy ϕ particles decay with a finite lifetime into the SM bath, but before they
decay, they can self-scatter and thermalize through the quartic coupling, approaching a thermal
distribution. During this thermalization process, they can also (with a lower probability) annihilate
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into DM states. Since we are interested in mϕ ≪ mχ, we can only consider the fraction of the ϕ
population with energies greater than the DM mass. For this population, a simple estimate for the
number density of DM particles from ϕ annihilation in a Hubble time after the completion of the
phase transition is

nχ (ϕϕ→χχ) ≈ nϕ (Eϕ>2mχ)nϕ σϕϕ→χχ/H ≈
λ2
χ

32π
√
g∗

nϕ (Eϕ>2mχ)nϕMPl

m2
χ T

2
∗

, (37)

where nϕ, the abundance of scalar particles produced from bubble collisions, can be calculated using
the formalism described in the previous sections. We will calculate this contribution numerically
in the next section, but it is possible to provide some qualitative arguments that the above can at
most be an O(1) correction to DM abundance, as follows: The ratio of the abundances is given
approximately by the ratio of the squares of the corresponding couplings, nχ/nϕ (Eϕ>2mχ) ∼ y2χ/λ

2
ϕ.

The fraction of high energy ϕ states that annihilate into DM states rather than losing their energy
through scattering can be roughly estimated to be ∼ y2χ/λ

2
ϕ. Therefore, the ϕ particles with

sufficient energy to produce DM through annihilations are ∼ λ2
ϕ/y

2
χ times as abundant as DM, but

only a ∼ y2χ/λ
2
ϕ fraction annihilate into DM, hence this contribution to the DM relic abundance is

expected to be an O(1) effect. Once the ϕ particles attain a thermal distribution, or decay into a
thermal SM bath, this thermal population does not contain sufficient energy to produce DM. The
above estimates hold if all ϕ particles participate in annihilations or scatterings; in practice, the
number density nϕ can be sufficiently low that these interactions do not occur frequently as the
Universe expands, in which case the DM contribution is correspondingly smaller.

In addition to the scalar ϕ, there exists at least one other dark sector particle in the physical
spectrum: either a (pseudo) Goldstone boson (if the broken symmetry is global) or a gauge boson
(if the broken symmetry is gauged). Goldstone annihilations are expected to give a contribution
comparable to that from the scalar, since annihilations that produce heavy DM occur at energies
above the scale of symmetry breaking, where Goldstone interactions are expected to be similar to
scalar interactions. Gauge bosons can only annihilate directly to DM provided the DM particle is
charged under the symmetry that the gauge boson corresponds to; in this case, the contribution
from this process can be calculated in the same way. In the absence of a direct (gauge) coupling,
gauge boson annihilation to DM can occur through diagrams mediated by the scalar, but this
contribution is expected to be subdominant compared to the abundance produced directly from
scalar annihilations.

In a specific model, the DM abundance from such ϕ as well as other dark sector particle
annihilations can be obtained by numerically solving the Boltzmann equations with the appropriate
injection of the dark sector particle spectra from bubble collisions; however, this is beyond the scope
of the present work.

5.4 Subsequent Evolution

At production, the DM particles are localized around sites of bubble collisions, but since they
are highly boosted, with energies Eχ ∼ γwvϕ, they quickly propagate over all space and reach a
homogeneous distribution. For consistency with observations, the DM population is required to
become cold (i.e. nonrelativistic) by the time of matter-radiation equality, which should occur when
the temperature of the radiation bath drops down to the keV scale. If Eχ/mχ > T∗/keV, the
redshift of momenta due to the expansion of the Universe is not sufficient to achieve this, and DM
particles need to scatter multiple times with other dark sector particles to become sufficiently cold.
To this end, one can check if a DM particle scatters with a ϕ particle within a Hubble time after the
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completion of the phase transition, weighed by the fractional momentum loss from each collision;
the condition for this to occur is [38]

nϕ σϕχ→ϕχv
δpDM

pDM
> H ⇒ nϕ

λ2
χ

64m2
χ

Tn

T∗
> 1.66

√
g∗

T 2
∗

MPl
, (38)

where in the second step we have used various relations given in [38]. It can be challenging to
satisfy the above condition if DM only has a small coupling λχ to the scalar field, or if the ϕ
number density nϕ is significantly smaller than a thermal abundance ∼ T 3. In such cases, DM
cannot dissipate its energy and might be too hot at late times to be consistent with observations.

If DM does cool sufficiently through a combination of redshift due to the expansion of the Uni-
verse and scattering with other dark sector particles, such DM particles can nevertheless feature
long free-streaming lengths that can leave observable imprints. Ref. [38] explored various observa-
tional effects of heavy DM produced with large boosts, and found that such long free-streaming
lengths for DM can result in a suppressed matter power spectrum that could provide measurable
effects for future cosmological observations; see Ref. [38] for further details. It is also interesting to
note that a small fraction of DM, if sufficiently boosted, might also contribute to dark radiation
at Big Bang Nucleosynthesis (BBN) (see e.g. [98]). Finally, it is worth noting that ultraheavy
DM close to the Planck scale could potentially also be detected purely through its gravitational
interactions with experimental efforts such as the Windchime project [99].

6 Dark Matter Parameter Space

In this section, we explore the parameter space where dark matter can be produced with the desired
abundance using the formalism described in the previous sections. We will provide an extensive
discussion for the case of scalar DM, and discuss fermion and vector DM, which involve more
subtleties (see discussion in Sec. 2.3), more briefly.

First, it is useful to rewrite various relevant expressions and conditions discussed above in terms
of the phase transition parameters defined in Sec. 2.1. We assume that the energy released in the
phase transition gets converted to a thermal bath of SM and dark sector particles. Eventually all
dark sector particles (other than DM) decay into the SM. Using energy conservation, the temper-
ature T∗ of this SM bath can be calculated via

π2

30
g∗T

4
∗ = ρradiation +∆V =

∆V

α
+∆V =

1 + α

α
cV v4ϕ , (39)

where ρradiation is the energy density in the radiation bath prior to the phase transition, T∗ is the
temperature of the thermalized bath, g∗ is the number of degrees of freedom (d.o.f.) in the final
thermal bath (for which we will use g∗ = 100, which approximates the SM d.o.f. above the QCD
phase transition), and we have used various definitions and relations provided in Sec. 2.1. Thus we
have

T∗ =

(
30(1 + α)

g∗π2α
cV

)1/4

vϕ . (40)

For the temperature Tn at which the phase transition commences, we can similarly use

π2

30
g∗iT

4
n =

∆V

α
⇒ Tn =

(
30

g∗iπ2α
cV

)1/4

vϕ , (41)

23



where g∗i is now the number of degrees of freedom in the plasma when the phase transition occurs.
For simplicity, we will assume that the initial bath is made up of both SM and dark sector particles,
and use g∗i ≈ g∗ = 100; if the bath only contains the SM or dark sector, this only introduces O(1)
corrections to our final results. Thus we have Tn/T∗ = (1 + α)−1/4.

We can also rewrite the formula for the DM abundance, Eq. 30, in terms of the phase transition
parameters from Sec. 2.1 and the formula for the number density produced from background field
dynamics, Eq. 13, as

Ωχh
2 ≈ 5× 10−12 β

H

(
α

(1 + α)g∗cV

)1/4 mχ

vϕ

1

GeV2

∫ p2max

p2min

dp2 f(p2) Im[Γ̃(2)(p2)] . (42)

As stated earlier, we can use the functional form f(p2) = fPE(p
2) from Eq. 17 for both elastic

and inelastic collisions, as we assume that DM is heavier than the scalar field ϕ, hence the second
terms in Eqs.15, 16, corresponding to scalar field oscillations after wall collision, cannot produce
DM particles and can be neglected. The logarithmic factor in the expression for fPE(p

2) requires
a numerical evaluation of the integral in Eq. 42, which is cumbersome and time-consuming; a
simplification can be made by observing that this logarithmic factor evaluates to a number between
6 and 60 across the range of parameter values of interest to us, hence we can reasonably approximate

Log

[
2(γw/lw)2−p2+2(γw/lw)

√
(γw/lw)2−p2

p2

]
≈ 20 for all cases to simplify our calculations. This enables

us to further simplify the above formula as

Ωχh
2 ≈ 0.1

(
β/H

10

)(
α

(1 + α)g∗cV

)1/4 mχ vϕ

(2.5 TeV)2

∫ p2max

p2min

dp2

p4
Im[Γ̃(2)(p2)] . (43)

For a given form of the function Im[Γ̃(2)(p2)], it is then possible to solve this integral analytically,
thereby obtaining a fully analytic expression for the DM relic abundance. We will do this for
various cases in the following subsections.

6.1 Gravitational Waves

Before delving into the details of DM production, it is worth discussing the connection with grav-
itational waves. One of the main attractive features of FOPTs in contemporary research is that
they can give rise to stochastic GW signals that can be observed with a variety of existing and
upcoming GW detectors. It is therefore judicious to examine whether the FOPTs that can produce
the correct DM relic abundance can also give sizable GW signals, which would provide a unique
observational probe of this DM production mechanism.

FOPTs can produce gravitational waves in several ways: through the scalar field energy densities
in the bubble walls after collision [4–7, 63, 82, 100–106], the production of sound waves [107–112]
and turbulence [7,110,113–117] in the surrounding plasma, or through energy transfer to nontrivial
spatial configurations of feebly-interacting particles [30]. In this paper, we are primarily interested
in runaway bubble configurations, where the bubble walls carry most of the energy released in the
transition, hence the GWs are primarily sourced by bubble wall collisions, i.e. the scalar field. For
such GWs, we use the peak frequency of the signal today as obtained from the results of [82], which
can be expressed as [38]

fpeak(GW) = 15 µHz
β

H
g
1/6
∗

(
T∗

103GeV

)
= 20 µHz

β/H

g
1/12
∗

(
(1 + α)

α
cV

)1/4 ( vϕ
103GeV

)
. (44)
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Experiment foptimal/Hz vϕ/GeV mDM/GeV

Pulsar Timing Arrays (PTAs) [118,119] 10−8 0.1 1013 − 1016

LISA [120] 0.001 104 106 − 1015

BBO [121], DECIGO [122] 0.1 106 105 − 1013

Einstein Telescope (ET) [123], Cosmic Explorer (CE) [124] 10 108 106 − 1010

Table 1: Peak gravitational wave frequencies, corresponding scales of phase transition, and ranges of vi-
able (scalar) dark matter masses (with couplings in the range 10−4 to 1) for various existing and planned
gravitational wave experiments.

Using this relation, we can map the scale of the phase transition vϕ to the optimal frequencies
of various gravitational wave detectors, as shown in Table 1. The table shows the corresponding
scales of FOPTs that provide GW signals that peak at the optimal frequencies of various detectors
as determined by the above formula for some reasonable choices of parameters (β/H = 10, g∗ =
100, α = 1, cV = 0.1). For these parameter choices, we also list the viable window of DMmasses that
can be produced from bubble collisions for reasonable couplings between DM and the background
field (in the range 10−4 to 1) in each case, as derived from our calculations below (see Sec. 6.2,
Fig. 2 ; these numbers correspond to the case of scalar DM, but the numbers for fermion or vector
DM should be comparable).

Here, it is worth mentioning that if particle production (including DM production) from bubble
collisions is a strong effect, it can affect the subsequent production of GWs, modifying the amplitude
as well as shape of the GW signal [59].

6.2 Scalar Dark Matter

Consider scalar DM χs that couples to the background field ϕ via 1
4λsϕ

2χ2
s, and can be produced

via ϕ∗
p → χ2

s, ϕχ2
s. Substituting the expressions from Eqs. 19, 20 into Eq. 43, and dropping the

phase space factors in these equations to enable the integral to be performed analytically, we derive
the following expression for the scalar DM relic abundance

Ωχh
2 ≈ 0.1

β/H

10

(
α

(1 + α)g∗cV

)1/4 λ2
s mχs vϕ

(24 TeV)2

[
v2ϕ
m2

χs

+
1

16π2
ln

(
2 γw/lw0

(2mχs +mϕ)

)]
. (45)

The two terms in the square parenthesis correspond to contributions from the two- and three-body
decays, respectively. We can see that the latter contribution dominates for mχs ≳ 4π vϕ, clearly
demonstrating the importance of the three-body decay channel for heavy scalar DM. We have
numerically checked that the above analytic result matches the full numerical result (obtained from
evaluating Eqs. 17, 19, 20 numerically without dropping any factors) up to an O(1) factor over the
parameter space we are interested in.

As discussed in the previous sections, several processes contribute to DM production in FOPTs
in addition to the background field dynamics at bubble collision: bubble nucleation, bubble expan-
sion (bubble wall acceleration), and annihilations of dark sector particles produced from bubble
collisions in all cases (with or without a thermal bath), as well as freeze-in from the thermal bath,
wall-plasma interactions, and collisions of accelerated particle shells in the presence of a thermal
bath of particles. In Fig. 1, we plot the relative weights of these contributions in the final DM relic
density as a function of DM mass for various parameters choices in the absence (left column) or
presence (right column) of a thermal bath of particles. We have chosen vϕ = 104 GeV in the top
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Figure 1: Relative contributions to scalar dark matter relic abundance from various processes as a function of
dark matter mass, for vϕ = 104 GeV (top row) and vϕ = 108 GeV (bottom row), in the absence (left panels)
or presence (right panels) of a thermal bath. The bubble collision contributions on the right column panels
represent the sum of the 2- and 3-body decay contributions from the corresponding left column panels. See
text for further details.

panel (the relevant scale for a GW signal observable by LISA) and vϕ = 108 GeV in the bottom
panel (the appropriate scale for Einstein Telescope / Cosmic Explorer). In all cases, the coupling
λs has been chosen such that the sum of all contributions produces the correct DM relic density.
For these plots, we have chosen the following values for the various parameters:

cV = 0.1, β/H = 10, α = 1, R0 = 10/vϕ, lw0 = 1/vϕ . (46)

We have assumed that the bubble walls are in the runaway regime throughout the bubble expansion
phase, and with the parameters of Eq. 46 the wall boost factor at the time of collision is

γw =
2R∗
3R0

≈ 0.15

β/H

MPl

vϕ
, (47)

where we have used the relations and parameters listed above. Recall that in the presence of a
light gauge boson, the boost factor can reach a terminal value smaller than the above expression
(see Eq. 5); however, we do not consider this possibility in this paper.

In the left panels, we plot the two- and three-body decay contributions from ϕ∗ → χ2, ϕχ2

separately, in blue and green respectively. It can be seen that the former dominates for mχ ≲ 4πvϕ,
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whereas the latter takes prominence for higher DM masses, as anticipated from earlier discussions.
The contribution from the annihilation of ϕ particles produced from bubble collisions into DM
(assuming the scalar quartic coupling λϕ = 1), corresponding to Eq. 37, is shown in red; this con-
tribution is always found to be a few orders of magnitude smaller than the two-body contribution,
and therefore subdominant. Likewise, we also plot the contributions from the bubble nucleation
and bubble wall acceleration phases (Sec. 3), in purple and gold respectively. These contributions
are seen to be several orders of magnitude smaller than that from bubble collision due to the rea-
sons discussed in Sec. 3 and therefore completely negligible. These patterns continue to hold as vϕ
is increased from 104 to 108 GeV (top to bottom left panel). The wall acceleration contribution
increases by a few orders of magnitude since it scales as R−3

∗ ∼ H3 and the Hubble scale is higher
for higher vϕ, but remains negligible. Meanwhile, the bubble nucleation contribution gets further
suppressed as it does not rise as rapidly as the other contributions with vϕ. Therefore, in the ab-
sence of a thermal bath, we find that bubble collisions are the dominant DM production mechanism
for any choice of parameters.

In the right panels, we show the relative contributions from various processes in the presence of a
thermal bath. We now combine the two- and three-body decays into a single contribution, denoted
by the blue curves labelled “bubble collision”. As discussed in the previous section, the presence of
a thermal bath introduces several new DM production mechanisms: freeze-in from the annihilation
of the scalar particles present in the thermal bath ϕϕ → χsχs (Eq. 31), denoted by the green curves
labelled “freeze-in”; non-adiabatic transition of ϕ to χsχs when ϕ particles from the plasma interact
with the bubble walls (Eq. 35), denoted by the gold curves labelled “wall-plasma”; and the collisions
of boosted ϕ particle shells (Eq, 36), denoted by the red curves labelled “bubbletron”. We see that
the freeze-in contribution from annihilations of ϕ particles in the thermal bath can dominate for
mχs ≲ vϕ, but rapidly becomes ineffective for mχs ≳ vϕ as the exponential suppression in (Eq. 31)
becomes significant (here we chose TR ≈ vϕ; for larger TR, the freeze-in contribution is expected
to dominate for mχs ≲ TR). The non-adiabatic wall-plasma interaction contribution dominates in
the intermediate DM mass regime, as long as

1

β/H

(
mχs/vϕ
105

)2 vϕ
104 GeV

≲ 1 . (48)

Raising mχs/vϕ results in the suppression of the effective mixing angle between ϕ and χsχs (see
discussion surrounding Eq. 34), which eventually makes this contribution subdominant to the abun-
dance produced from three-body decays of the background field excitations. For higher mχs values,
bubble collision therefore becomes the dominant DM production process. The bubbletron contri-
bution is seen to grow in importance with increasing mχs but does not dominate in any part of the
parameter space, only contributing at percent level at best; however, annihilation cross-sections at
high energies scale as ∼ E−2 ∼ (γwvϕ)

−2 (using γw from Eq. 47), so it is possible that a configura-
tion with smaller γw could enhance the bubbletron contribution and make it relevant in some parts
of parameter space. Note that the above contributions exist in the presence of a plasma, but can
be suppressed in a supercooled phase transition, where a brief inflationary phase due to vacuum
domination can lead to significant dilution of the pre-existing thermal bath, thereby suppressing
these contributions.

Here it is worth emphasizing that previous studies only considered the two-body decay channel
ϕ∗
p → χsχs and hence underestimated particle production from bubble collisions, finding it to be

subdominant to the wall-plasma or bubbletron contribtutions. When the three-body decay process
ϕ∗
p → ϕχsχs is taken into account, we find that this can constitute the dominant contribution for

heavy DM even in the presence of a thermal bath and the above processes.
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Figure 2: Contours of the value of the coupling λs for which the correct scalar dark matter relic density is
achieved, as a function of the dark matter mass and the scale of symmetry breaking. The vertical dashed
blue lines denote the transition scales that produce gravitational waves at peak sensitivity frequencies for
various GW detectors (see Sec. 6.1). The shaded regions represent various constraints, see text for detailed
discussions. Note that the blue (“freeze-in dominates”) and purple (“wall-plasma dominates”) regions are
only applicable if a thermal dark sector bath is present before the phase transition, whereas the other regions
are applicable for all FOPTs, with or without a bath.

Having examined the relative importance of various processes, we next plot, in Fig. 2, contours
of the magnitude of the coupling λs required to produce the correct DM relic abundance from
bubble collisions as a function of vϕ and mχs , together with various constraints. This figure shows
that bubble collisions can account for the correct DM relic density across a vast range of scales
spanning several orders of magnitude. In this plot, we have restricted vϕ to values above 100 MeV
(below this, an FOPT is likely to disrupt BBN) and mχs to values above 100 GeV (lower values
are possible, but there are no qualitatively new features beyond what is already seen in the figure).
On both axes, we implement an upper cutoff of 1016 GeV; beyond this, the value approaches the
UV-cutoff of the system (given by the bubble wall thickness at collision γw/lw0), and details of the
bubble wall profile, which we have not taken into account, become important. The dashed vertical
lines denote the FOPT symmetry breaking scales corresponding to the peak sensitivities of various
gravitational wave experiments, as described in Sec. 6.1 (see Table 1). We see that ultraheavy
DM several orders of magnitude heavier than the symmetry breaking scale vϕ can be produced for
reasonable values of the coupling λs across a large range of FOPT scales of interest for various
current and planned GW experiments. It should be emphasized that the DM mass could also be
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significantly larger than the highest temperature ever reached in our cosmic history.

In the figure, we see that all the contours feature sharp kinks at mχs ∼ 4πvϕ. This corresponds
to the transition between regions of parameter space where two- or three-body decays of the back-
ground field excitations dominate the DM production process. For mχs ≲ 4πvϕ, the two-body
process dominates; from Eq. 45, Ωχh

2 ∝ 1/mχs when the first term in the parenthesis dominates,
hence as mχs is increased for fixed vϕ, the required coupling increases. In the opposite regime
mχs ≳ 4πvϕ, the three-body process dominates, and the relic density scaling from Eq. 45 when the
second term in the parenthesis dominates is instead Ωχh

2 ∝ mχs , and now the required coupling
decreases as mχs is increased for fixed vϕ. This explains the reversal of the contour shapes across
the two regions in the plot.

The shaded regions denote various constraints, as follows:

• The red region in the bottom left denotes parameter space where the backreaction from
particle production becomes important, given approximately by the condition λs > 10; note
that this also corresponds to a regime where the coupling becomes nonperturbative.

• The green triangular region denotes parameter space where DM is too hot to account for the
structures observed today. The constraint disappears for higher mχs because heavier DM
is not as boosted and can redshift to become cold by the time of matter-radiation equality.
Similarly, the constraint also disappears below mχs ≈ 108.5 GeV because the value of λs

required to produce the correct relic density increases, enabling more efficient χs−ϕ scattering,
which disperses the energy carried by DM particles, allowing them to cool.

• The orange region in the bottom left represents parameter space where the produced DM
population re-enters chemical equilibrium with the dark sector bath (i.e. the rate for χsχs →
ϕϕ scattering is faster than Hubble), in which case imprints of the bubble collision process
are washed out and DM subsequently undergoes thermal freezeout. Note that this region
disappears to the right even though mχs ≪ vϕ since the associated coupling λs also becomes
very small.

• The brown region in the bottom right corresponds to configurations where mχs < R−1
∗ , i.e.

the formalism used to calculate particle production from bubble collisions falls below its IR
cutoff and is no longer valid, since the existence of multiple bubbles should be taken into
account in the Fourier transform of the background field.

• The blue region corresponds to parameter space where freeze-in from the annihilation of the
scalar particles ϕϕ → χsχs (Eq. 31) from the pre-existing thermal bath, if present, dominates
over production from bubble collision. Note that its upper boundary occurs at roughly
mχs ∼ vϕ; for heavier DM masses, the exponential suppression in Eq. 31 rapidly suppresses
this contribution (recall that we chose TR ∼ vϕ; for larger TR this region is expected to
get bigger). Likewise, the lower boundary of this region coincides approximately with the
λs ∼ 10−10 contour; as we can see from Eq. 31, even in the absence of the exponential,
freeze-in cannot provide the correct relic density for smaller values of λs.

• The purple region represents parameter space where the non-adiabatic transition of ϕ to χsχs

due to ϕ particles from the plasma (if it exists) interacting with the bubble walls (Eq. 35)
dominates over the bubble collision contribution. Beyond the upper boundary and to the right
of this region, the non-adiabaticity condition from Eq. 34 continues to hold, but production
becomes less efficient than that from bubble collisions. Where blue and purple regions overlap,
the blue (freeze-in) contribution generally tends to be larger (see Fig. 1).
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• As discussed earlier, we grey out the region m2
χs

< 1
2λsv

2
ϕ, where the mass contribution ex-

pected from the phase transition exceeds the DM mass. In this part of the parameter space,
higher order insertions beyond the leading contribution considered in this paper can also be-
come important, as discussed in Sec. 4.3. Furthermore, in this region DM is likely lighter than
ϕ as well as other dark sector states, hence the assumption that decays of dark sector particles
do not produce DM also possibly breaks down. In addition, it should be kept in mind that we
have used f(p2) = fPE for our calculations, which assumes mχ > mϕ; in regions of parameter
space where this is not the case, additional contributions from the scalar oscillations after
bubble collisions would likely dominate and overproduce DM.

Note that Eq. 45 can be further simplified by approximating the second parenthesis as 1 when
α ≥ 1 and the log factor as 10 over the region of parameter space shown in Fig. 2. In the regime
where three-body decays dominate (generally the case for mχs ≳ 4πvϕ), this yields the following
simple relation among the parameters to achieve the correct DM relic density

λ2
s β/H

10

mχs vϕ

(100 TeV)2
≈ 1. (49)

This is found to be in excellent agreement with the results shown in Fig. 2.

Finally, we provide an intuitive discussion of the number density of heavy DM particles pro-
duced from bubble collisions, based on the results derived above (in particular Eqs. 13, 30, 42, 45).
Parametrically, we see that the number of particles produced per unit area of colliding bubble walls
scales as ∼ λ2

s v
2
ϕ (times a logarithmic factor), with no other parametric suppression. This diffuses

over the size of the bubble to yield a number density n ∼ λ2
s v

2
ϕ/R∗; since lw0 ∼ v−1

ϕ and T∗ ∼ vϕ,

this can be rewritten as n ∼ λ2
s T

3
∗ (lw0/R∗). This invites the interpretation that for O(1) couplings,

bubble collisions are efficient at producing essentially a thermal abundance ∼ T 3
∗ of particles within

the extent of the bubble wall lw0 (as seen in its rest frame), which then diffuses out throughout
the bubble. One can also understand the above parametric scaling through a different argument:
the energy released in the phase transition is ∆V ∼ v4ϕ, whereas bubble collisions produce particles
with typical energy γwvϕ. Hence efficient particle production from bubble collisions should lead
to a number density n ∼ v3ϕ/γw. Recalling that γw ∼ R∗/R0 ∼ R∗/lw0, this is the same number
density as above for O(1) couplings.

6.3 Fermion Dark Matter

We now consider the case of fermion DM. Many of the qualitative details and discussions are similar
to the case of scalar DM, and we will not repeat them here but instead focus on the differences.

The fermion DM relic abundance from ϕ∗
p → χf χ̄f decays arising from the interaction term

yfϕχf χ̄f can be expressed as

Ωχh
2 ≈ 0.1

β/H

10

(
α

(1 + α)g∗cV

)1/4 mχf
vϕ

(8.6 TeV)2
y2f ln

(
γw/lw0

mχf

)
. (50)

In Fig. 3, we plot contours of the magnitude of the coupling yf required to produce the correct
fermion DM relic abundance as a function of vϕ and mχf

, analogous to the scalar DM case in Fig. 2.
We choose the same parameters as for scalar DM (Eq. 46), with the boost factor given by Eq. 47.
As in Fig. 2, we denote the exclusion region (shaded golden) where the DM mass falls beyond
the IR cutoff and the Fourier transform of a single bubble collision is no longer sufficient, and
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Figure 3: Contours of the value of the coupling yf for which the correct fermion DM relic density is achieved,
as a function of the scale of symmetry breaking and the DM mass. The vertical dashed blue lines denote the
transition scales that produce gravitational waves at peak sensitivity frequencies for various detectors (see
Sec. 6.1). Details of the constraints in the various regions are discussed in the text.

the region (shaded blue) where backreaction from particle production becomes important, i.e. the
energy density in the DM particles (calculated using Eq. 14) exceeds the latent energy released in
the phase transition, ∆V . The latter region is found to correspond to yf > 1.5. Note that this
backreaction region for fermion DM is larger than the corresponding region for the scalar DM case
in Fig. 2 (corresponding approximately to λs > 10) since the fermion is produced via the two-body
decay channel ϕ∗

p → χf χ̄f , whereas the leading contribution for scalar DM at high energies is the
phase-space suppressed three-body decay ϕ∗

p → ϕχ2
s. Also note that the contours of constant yf

in Fig. 3 are straight lines, as two-body decay is the only relevant process for fermion DM, and
do not feature the kinks observed in Fig. 2 due to two- and three- body decays being important
in different parts of parameter space for scalar DM. Similarly, we show the boundary mχf

= yfvϕ
below which higher order corrections become important and need to be included to get the correct
result (see Sec. 4.3). As with the scalar DM case, we emphasize that we have used f(p2) = fPE for
our calculations, which assumesmχ > mϕ; in regions of parameter space withmχ < mϕ, production
from oscillations of the scalar field, not considered in the above calculations, will dominate the DM
abundance.

Unlike Fig. 2, here we do not plot any constraints arising from interactions, such as hot DM,
rethermalization, or freeze-in constraints, since these involve 2 → 2 interactions, whose nature
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depends on the UV-completion of the yfϕχf χ̄f term. As discussed in Sec. 2.3, if χf is not charged
under the symmetry broken by ϕ, the above interaction is an effective field theory (EFT) interaction
derived from some higher dimensional operator of the form 1

Λf
ϕ2χf χ̄f , obtained by integrating out

some UV physics at the scale Λf to give the low energy effective coupling yf = vϕ/Λf . In the plot,
we denote the region (labelled “EFT insufficient”) where Λf < min(mχf

, vϕ), which corresponds to
the breakdown of this EFT, where the new degrees of freedom are no longer heavy and cannot be
integrated out. This does not mean that fermion DM with such masses cannot be produced with
FOPTs at these scales, but simply that additional physics beyond the minimal EFT interaction
considered above would be relevant and could provide the leading effect, hence the EFT calculation
can no longer be trusted to give the correct result. Note that these new d.o.f. at the scale Λf also
affect the result in the remainder of parameter space where Λf > mχf

, vϕ: the particle production
calculation involves evaluating the integral in Eq. 43, which runs up to pmax ≈ Ew. Since the EFT
interaction term is only valid up to p = Λf , the new d.o.f. would modify the integrand at larger p
values; however, since the integral evaluates to a logarithm (see Eq. 50), we expect this to modify
the result only by an O(1) factor.

Finally, we can also obtain a very simple approximate relation among the parameters that
achieves the correct fermion DM relic density, analogous to Eq. 49 and obtained by making the
same approximations:

y2f β/H

10

mχf
vϕ

(2.7 TeV)2
≈ 1. (51)

6.4 Vector Dark Matter

Next, we briefly discuss the case of a vector DM particle χv, which gets produced via the effective
operator 1

2λV ϕ
2χµ

vχv µ introduced in Sec. 2.3. The production of vector DM is similar to the case
of scalar DM discussed in Sec. 6.2 and Fig. 2 (since it gets produced through two- and three-body
decays ϕ∗

p → χvχv, ϕχvχv similar to the scalar case), with the same UV-completion caveats as for
fermion DM (Sec. 6.3). We therefore do not make a separate plot for vector DM or repeat similar
discussions, but simply mention the additional aspects relevant for the vector case.

If χv is the gauge boson corresponding to the symmetry broken by the ϕ vev (in which case
mχv = g vϕ ≲ vϕ, , where g is the gauge coupling), the details of production of transverse and
longitudinal modes map directly to the discussion in Sec. 4, with λV → g2. In this case, for the
two-body decay ϕ∗

p → χvχv one can interpolate between the low energy (p2 < m2
χv
) behavior given

by Eq. 23 and the high energy (p2 > m2
χv
) behavior obtained from the Goldstone Equivalence

Theorem, Eq. 28, to construct an approximate solution valid across all energy scales. For the three-
body decay ϕ∗

p → ϕχvχv, one can similarly interpolate between the two expressions in Eq. 29 to
construct an approximate solution across all energies. Note that the production rate now depends
not only on the gauge coupling g but also the scalar quartic coupling λϕ, as the longitudinal
component of the gauge boson behaves as the Goldstone field at high energies, as anticipated from
the GET.

For mχv ≫ gvϕ, χv cannot be the gauge boson of the broken symmetry and hence does not
couple directly to ϕ, and the effective operator 1

2λV ϕ
2χµ

vχv µ must arise from integrating out some
mediator fields at some scale Λv. As discussed for the case of fermion DM, the new d.o.f. can modify
the results obtained from the EFT operator, and even invalidate the EFT approach in some regions
of parameter space. For vector DM, this also introduces an additional consideration: as discussed in
Sec. 4, a practical approach to obtain physical, pathology-free results for the production of vectors,
which might otherwise be gauge-dependent, is to use the Goldstone Equivalence Theorem to obtain
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the high energy behavior of longitudinal mode production. This requires appropriately replacing
the longitudinal mode with the corresponding Goldstone mode at high energies in the UV theory.

Overall, we expect the production of vector DM to be as general and efficient as the production
of scalar DM (from Fig. 2), but any model-specific study of vector DM production from bubble
collisions must properly address the various aspects discussed above.

7 Summary and Discussions

Here, we summarize the main points of our paper:

• We have studied nonthermal production of ultraheavy dark matter (DM) from background
field dynamics during a first-order phase transition (FOPT), dominated by bubble collisions,
where the bubble walls achieve runaway behavior. This constitutes an unavoidable contribu-
tion to DM abundance that exists in any FOPT, irrespective of the nature of the transition
or the plasma, when DM couples directly or indirectly to the background field undergoing the
transition. The contribution studied in this paper can constitute the dominant production
mechanism for heavy DM even in the presence of a thermal plasma and the existence of other
well-known DM production mechanisms.

• This mechanism is very general and can produce the correct relic density of scalar, fermion,
or vector DM across a large range of masses, from O(10) TeV to a few orders of magnitude
below the Planck scale. This broad regime of validity is the result of the DM number density
from bubble collisions being only logarithmically sensitive to the DM mass, resulting in a
milder DM mass dependence for the DM relic density (see e.g. Eq. 45, Eq. 50) compared to
other traditional production mechanisms.

• Such setups provide a natural configuration to produce ultraheavy DM with masses many
orders of magnitude greater than the scale of the phase transition as well as the temperature
of the thermal bath at any point in cosmological history – for instance, a phase transition at
the GeV scale can produce DM as heavy as ∼ 1016 GeV (see e.g. Fig. 2).

• We have demonstrated that the existing formalism for the calculation of particle production in
a gauge theory is not gauge invariant, and can lead to spurious results if not treated carefully
(see Sec. 4). We offer a practical prescription to avoid these complications that makes use of
explicit polarization vectors and the Goldstone Equivalence Theorem to extricate physically
relevant contributions while avoiding spurious unphysical components.

• We have pointed out the importance of three-body decays of the background field excitations,
generally ignored in the literature, for the production of scalar and vector particles, which
dominate over two-body decays at large energies and provide the dominant contributions for
heavy scalar and vector DM. Such three-body decays can also be relevant for fermion DM if
the interaction between the background field and fermion DM is mediated by scalar or vector
states.

• Although DM from bubble collisions does not require any significant couplings to Standard
Model particles, which hampers the detection prospects from traditional direct and indirect
DM searches, three phenomenological aspects are noteworthy. (i) FOPTs that produce the
correct DM relic abundance can also produce observable gravitational wave signals across a
large range of frequencies relevant for current and planned gravitational wave experiments
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(see Fig. 2, Fig. 3). (ii) DM produced from bubble collisions is highly boosted, which gives
rise to a modified matter power spectrum that could be detectable with future cosmological
observations. (iii) Ultraheavy DM with mass close to the Planck scale, which can readily be
produced via the mechanism discussed in this paper, could be detectable purely through its
gravitational couplings.

We conclude by discussing the broader implications of our work and highlighting several specific
directions that could benefit from further study. We have provided model-independent results for
heavy DM production from a FOPT with runaway bubbles, which was found to be viable over a
large region of parameter space spanning several orders of magnitude. These results have broad
applicability and can be implemented in a straightforward manner in specific models of FOPTs,
hence it will be interesting to check whether various well-motivated BSM scenarios that give rise
to FOPTs with runaway bubbles can be extended to include heavy DM candidates. At the same
time, the gauge dependence of the formalism suggests that it is not on rigorous footing, and awaits
additional theoretical developments towards a proper completion. It would also be interesting to
study the effects of particle production from bubble collisions on the subsequent generation of grav-
itational wave signals. Various cosmological and astrophysical aspects of ultraheavy boosted DM
from bubble collisions, in particular the observational aspects of a modified matter power spectrum,
are also worth exploring in greater detail. Beyond DM, the formalism for particle production from
bubble collisions developed here could also find applications in other open questions in particle
physics, such as baryogenesis or leptogenesis [125]. We leave the pursuit of such questions for
future work.
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