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Abstract: We explore the difference Langlands correspondence using the four dimensional
N = 2 super-QCD. Surface defects and surface observables play the crucial role. As an
application, we give the first construction of the full set of quantum integrals, i.e. commuting
differential operators, such that the partition function of the so-called regular monodromy
surface defect is their joint eigenvectors in an evaluation module over the Yangian Y (gl(2)),
making it the wavefunction of a N -site gl(2) spin chain with bi-infinite spin modules. We
construct the Q- and Q̃-surface observables which are believed to be the Q-operators on the
bi-infinite module over the Yangian Y (gl(2)), and compute their eigenvalues, the Q-functions,
as vevs of the surface observables.

Dedicated to the 40th anniversary of the BPZ paper [1]
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1 Introduction

This paper explores the BPS/CFT correspondence at the example of the N = 2 asymptoti-
cally free super-QCD in four dimensions, i.e. gauge theory with 8 supercharges, with SU(N)
vector multiplet (Aµ, ϕ, ϕ̄), and Nf = 2N hypermultiplets (Qf , Q̃

f )2N
f=1 in fundamental repre-

sentation. The theory has been thoroughly explored, its two-derivatives low-energy effective
action computed exactly, both indirectly using the constraints of electro-magnetic duality
[2] and by the direct field theory computation employing equivariant localization [3]. This
approach works well for computations of supersymmetric partition functions and correlators
of observables, commuting with a specific supercharge Q.

This gauge theory has a string realization, making it possible to establish connections
to other gauge theories, e.g. maximally supersymmetric super-Yang-Mills theory on different
spacetimes, and mathematical structures associated with them. It would be very hard, if even
possible, to envision these theoretical bridges without string theory framework. One such
structure is the celebrated geometric Langlands (GL for short) program. Another related one
is the mathematics of two dimensional conformal field theory, and that of quantum integrable
systems.

We explore the correlation functions of extended observables associated to two-dimensional
surfaces in Euclidean spacetime, and find their role in establishing the difference Langlands
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correspondence, or di-Langlands for short. Other names, recently appeared in the literature,
are the ℏ-Langlands correspondence (for additive difference operators) and q-Langlands cor-
respondence (for multiplicative difference operators). We prefer not to use these terms, in
order not to confuse with the setting of quantum Langlands correspondence (which has to do
with general (q1, q2) or general (ε1, ε2) Ω-deformation reviewed below).

A few remarks on our terminology From the four dimensional gauge theory we are
extracting, via taking the vacuum expectation values, a set of functions of various parameters
of the theory. These functions will be organized into a vector space H. The gauge theory
operators whose expectation values produce vectors in H will be called observables, and
denoted using the boldface font, e.g. O,Q,Y,H-observables. The expectation values of some
of these observables will be called functions, and denoted using the regular font, e.g. O, Q,
H-functions. Some of observables correspond to defects, e.g. Ψ, so they expectation values
will be called the vectors, e.g. Ψ ∈ H:

Ψ = ⟨Ψ⟩
⟨1⟩

(1.1)

Some of our observables have the bonus property that they can be expressed as polynomials in
the topological charges, up to Q-exact terms. In this case the insertion of such an observable in
the correlation function computing Ψ is equivalent to action on the Ψ by differential operators
in topological fugacities, e.g. complexified theta-angles, Kähler moduli, etc. In this case we
shall call such an observable and operator, and denote its action as

ÔΨ := ⟨OΨ⟩
⟨1⟩

(1.2)

Another remark concerns the use of gauge origami. This is a non-commutative gauge theory
setup inspired by IIB string theory D-brane configuration, which geometrizes the N = 4
gauge theory together with codimension two and codimension four defects, as well as the
truncated version of the theory, corresponding to orbifolding the closed string background
by a subgroup of SU(4), preserving the geometry of branes. It is in this frame of mind
that we often approach the gauge theory of interest: the A1-quiver gauge theory: SU(N)
theory with 2N fundamental flavors. It is the limit q1, q2 → 0 of the Â2-quiver gauge theory,
which is the theory with the gauge group SU(N)0 ×SU(N)1 ×SU(N)2, with bi-fundamental
hypermultiplets in (N1, N̄0), (N2, N̄1), (N0, N̄2)-representations. In our conventions, the
ten-dimensional space-time is viewed as a product C1 ×C2 ×C3 ×C4 ×C5, with the physical
spacetime of gauge theory being the product C2

12 = C1 × C2, spanned by N D3-branes. The
defects are produced by adding D3-branes stretched along C2

34 = C3 × C4, giving rise to
qq-observables, and/or C2

13 or C2
14, producing Q- or Q̃-observables. To produce the Â2-quiver

theory one performs the orbifold by the Z3-group acting via (z3, z4) 7→ (e 2πi
3 z3, e

− 2πi
3 z4)

Finally, one of the main applications of gauge theory is seen in the limit ε2 → 0. We shall
call such a specialization of the general Ω-background the Ω1-background, thereby stressing
that C1 × C3 × C4 planes are equivariant topological, and C2 is topological.
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1.1 The main results and outline

The main results of the paper are: the identification of Ψ with the state of quantum N -
site integrable gl(2) XXX spin chain, whose inhomogeneities, spins, and reference charges
(the parameters of the HW-modules [4] which are the local site representations of gl(2)) are
determined by the masses and Coulomb parameters in the units of ℏ = ε1, the Ω1-background
parameter, while the twist q is determined by the gauge coupling and the theta angle of the
theory. We construct the full set of quantum integrals of motion (QIM). The conventional
way of organizing them uses the transfer matrix formalism and representation theory of
the Yangian Y (gl(2)). There are constructions in terms of supersymmetric interfaces in
lower dimensional supersymmetric gauge theories [5, 6], but these apply to finite dimensional
representations of the Yangian (or bounded modules for affine quivers). We do not quite
follow this route.

The outline of the paper is as follows. In section 2, we recall the setup of the theory, both
in field theory language, and through string and M-theory constructions. In section 3, we focus
on specific surface observables, called Q(x) and Q̃(x)-observables. In section 4, we review
the argument showing the expectation values Q(x)/Q̃(x) obey the Baxter’s TQ equation. We
then study the fractionalization of Q/Q̃-observables in the presence of the monodromy surface
defect. In section 5, we show their vacuum expectation values obey a set of linear equations
(which we prove by an extension of the method employing the regularity of partition functions
of the gauge origami models), which can be organized in the form of Lax operator formalism
of the Leningrad school [7]. This allows us to identify the action of the trace of the twisted
transfer matrix on a state of the spin chain (realized by differential operators in parameters of
the monodromy surface defect) with the operator product expansion of the local bulk chiral
operators with the said surface defect. Using supersymmetry and cluster decomposition, we
demonstrate the surface defect is an eigenvector of the transfer matrix, with the eigenvalue
given by the vacuum expectation value of these bulk operators. As a result, we establish
the di-Langlands to infinite and bi-infinite dimensional setting (in the usual considerations
of mathematicians only bounded or finite dimensional modules are considered). Finally, we
conclude with discussions in section 6. The appendices contain a brief review of the Yangian
algebra and Manin matrices, and some computational details.

Acknowledgement The authors thank Mina Aganagic, Kevin Costello, Mykola Dedushenko,
Chris Elliott, Alba Grassi, Nathan Haouzi, Nafiz Ishtiaque, Shota Komatsu, Jihwan Oh, An-
drei Okounkov, Miroslav Rapčák, and Yehao Zhou for discussions and collaboration on related
subjects. SJ is grateful to Du Pei for helpful discussion and support during his visit to Center
for Quantum Mathematics at University of Southern Denmark, where a part of the work
was done. The work of SJ is supported by CERN and CKC fellowship. The work of NL is
supported by IBS project IBS-R003-D1. Research of NN is partly supported by NSF grant
2310279.
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2 The webs of gauge and string theories

In this section we briefly review the interconnections between the quantum 4d N = 2 super-
symmetric gauge theory and two and three dimensional gauge theories whose moduli spaces
of special classical solutions describe the moduli spaces of vacua of the four dimensional the-
ories. We also briefly describe the surface defects and observables, and what is known or
conjectured about their presentations in the framework of gauge and string theories in vari-
ous dimensions. Finally, we review the geometric Langlands correspondence and its extension
− di-Langlands correspondence − which we develop in this paper in the specific case.

2.1 Four dimensional quantum field theory

The equivariant localization approach to exact computations in quantum field theory uses
two deformations.

2.1.1 Noncommutativity and stability

The first, curing the ultraviolet singularities of the moduli spaces of instantons deforms the
Euclidean space-time R4 to its noncommutative version R4

Θ, with the flat coordinates Xi

obeying
[Xi, Xj ] = iΘij , (2.1)

with constant antisymmetric tensor Θ, while keeping the metric Euclidean

g =
4∑

i=1
dXidXi (2.2)

By an SO(4) rotation of Xi’s the tensor Θ can be brought to the normal form

Θ = θ1
∂

∂x1 ∧ ∂

∂x2 + θ2
∂

∂x3 ∧ ∂

∂x4 (2.3)

The important for the structure of our observables is the sign of the combination

ζR = θ1 + θ2 (2.4)

We shall call the theory at ζR > 0 the holomorphic phase, and that at ζR < 0 an anti-
holomorphic phase.

2.1.2 Equivariance with respect to rotations

The second deformation cures the infrared divergencies, by placing the theory in an effectively
rotating frame, creating a potential well for localized field configurations attempting to run
away to infinity. This is achieved by the Ω-deformation, i.e. a supergravity background,
whose effect on the bosonic part of the gauge multiplet kinetic term is to replace the covariant
derivatives DAϕ, DAϕ̄ and the commutators [ϕ, ϕ̄] of the adjoint scalars in the vector multiplet
by

DAϕ+ ιVεFA , DAϕ̄+ ιVε̄FA , [ϕ, ϕ̄] + ιVεDAϕ̄− ιVε̄DAϕ+ ιVειVε̄FA , (2.5)
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respectively, with the vector fields Vε, Vε̄ being the infinitesimal SO(4) rotations, preserving
θ (2.3):

Vε = ε1

(
X2 ∂

∂X1 −X1 ∂

∂X2

)
+ ε2

(
X4 ∂

∂X3 −X3 ∂

∂X4

)
Vε̄ = ε̄1

(
X2 ∂

∂X1 −X1 ∂

∂X2

)
+ ε̄2

(
X4 ∂

∂X3 −X3 ∂

∂X4

) (2.6)

Here ε1, ε2 ∈ C are the two complex parameters of the Ω-deformation, and ε̄1, ε̄2 are their
conjugates.

In this paper, we shall be often working in the limit ε2 → 0, with ε1 ̸= 0. We call this
particular case of Ω-deformation the Ω1-background.

In this paper we are going to study the gauge theory observables, both local and extended,
which supercommute with a supercharge Qε preserved by the Ω-background.

One such class of observables are the gauge invariant functions of ϕ(X), evaluated at the
fixed point locus X = X∗ of Vε, i.e. where Vε(X∗) = 0:

O(0)
k (X) = trϕ(X)k , k = 2, 3, . . . , N (2.7)

Classically, all gauge invariant polynomial functions of ϕ(X) can be expressed polynomially in
(2.7). In performing the instanton calculations it is convenient to operate with all single-trace
operators at once, by defining the generating function, the Y -observable,

Y(x) = xN exp
∞∑

k=1
− 1
kxk

O(0)
k (2.8)

where the X-dependence is omitted, while the auxiliary (at this stage) variable x ∈ E is
introduced. Here E is a valuation group for the equivariant parameters of global symmetries.
For four dimensional theories E ≈ C (which we shall call, more specficially, C5 in what
follows), with additive structure. Our theory admits a lift to five dimensions, where E ≈
C×, and related theories admit lifts to six dimensions, where E becomes a compact elliptic
curve. This observable survives the limit ε1, ε2 → 0, although its expectation value exhibits
a complicated analytic behavior. To describe it we need to specify a few more details about
our gauge theory. Having Nf = 2N means the ultraviolet theory is superconformal, and is
characterized by the microscopic gauge coupling e2 and theta angle ϑ, conveniently combined
into the parameter

q = exp 2πiτ := eiϑ− 8π2
e2 (2.9)

The 2N hypermultiplets are characterized by the set {m1, . . . ,m2N } ⊂ E. We shall often use

P (x) =
2N∏
f=1

(x−mf ) (2.10)

to encode the masses.
Finally, a vacuum state of the theory is characterized by the asymptotic eigenvalues of

ϕ(x) x→∞−−−→ diag(a0, . . . , aN−1). The set a = {a0, . . . , aN−1} ⊂ E will be a parameter of our
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correlation functions. The normalized vacuum expectation value of an observable O will be
denoted as:

Oa = ⟨O⟩a
⟨1⟩a

(2.11)

We can now recall the structure of the moduli space of vacua of the theory, i.e. the behavior
of correlators in the limit ε1, ε2 → 0 [8]. The expectation values of O(0)

k can be recovered
from two pieces of information: first, define the hyperelliptic curve

y + q
P (x)
y

= t(x) := t0x
N + t1x

N−1 + u2x
N−2 + . . .+ uN (2.12)

where
t0 = 1 + q , t1 = −q

∑
f

mf − (1 − q)
∑

α

aα (2.13)

while
u = (u2, u3, . . . , uN ) ∈ U ≈ CN−1 (2.14)

implicitly determined from requiring A-periods of the differential 1
2πix

dy
y to be equal to

a1, . . . , aN−1; second (x, Ya(x)) is a branch of (x, y) which asymptotes to (x, xN ) for x → ∞.

2.2 Two and three dimensional classical gauge theories and integrability

The curve (2.12) is called the Seiberg-Witten curve. It has been long known to coincide with
the spectral curves of several classical algebraic integrable systems: an XXX Heisenberg sl(2)
spin chain with N spin sites, or a Gaudin-Garnier sl(N) spin chain with 4 spin sites.

There are both physical and mathematical aspects of such identification. Mathematically
it means that the total space of fibration of Jacobians of the curves (2.12) over the affine space
U of polynomials t(x) is a holomorphic symplectic manifold (P, ωC), with the Lagrangian
projection π : P → U having polarized abelian varieties as fibers. The Coulomb moduli a are
the holomorphic action variables, they are supplemented with aD, a dual set of periods, such
that

ωC =
N−1∑
i=1

dai ∧ dφi =
N−1∑
i=1

dai
D ∧ dφD

i (2.15)

where the corresponding angle variables φi on the fiber π−1(t(x)) defined up to a lattice

φi ∼ φi + 2πni + 2π
∑

j

τ ijmj , n
i,mj ∈ Z (2.16)

with φD
i = ∑

j τ
−1
ij φj , and τ ij the period matrix, obeying

τ ij = ∂2F
∂ai∂aj

, ai
D = ∂F

∂ai
(2.17)

with the prepotential F(a) governing the ε1, ε2 → 0 limit of the partition function

⟨1⟩a ∼ e
F(a)
ε1ε2 (2.18)
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In addition to this action-angle picture of P, identifying it with such and such integrable model
usually means having another Lagrangian foliation P → X, the coordinates on X playing the
role of coordinates (suitable coordinates on the fiber being momenta). For example, Hitchin
system P ≈ MH is almost isomorphic to T ∗BunG(C, S), for some curve C and colored divisor
S so that X is a moduli space of parabolic G-bundles. Specifically for the subject of this paper,
G = SL(N), C ≈ P1, and S = µ00 + µqq + µ11 + µ∞∞ are four points {0, q, 1,∞} where
µα are conjugacy classes in G, with µ0, µ∞ being diagonal matrices with distinct eigenvalues,
while µq, µ1 are the diagonal matrices with eigenvalues of multiplicity (N − 1, 1). The special
nature of a genus zero Hitchin system is that it can be described by a finite dimensional
Hamiltonian reduction, specifically in our case (it is trivial to generalize this formalism to the
case of multiple punctures [9]):

P =
(
Oµ0 × Oµq × Oµ1 × Oµ∞

)stable
//G (2.19)

where Oν ⊂ g ≈ g∗ is the coadjoint orbit of ν. The Higgs field ϕwdw of Hitchin’s equations
is a meromorphic 1-form on C valued in g,

ϕwdw = J0
dw

w
+ Jq

dw

w − q
+ J1

dw

w − 1 , J∞ = −J0 − Jq − J1 (2.20)

with Jα ∈ Oµα . Now let us remember that G = SL(N), so that each orbit, and all of P, can
be given a quiver variety description (the physical significance of this picture is justified in
going to three dimensions and applying mirror symmetry), as a symplectic quotient T ∗E //G

of the cotangent bundle T ∗E of the vector space E of homomorphisms between the vector
spaces attached to the end-points of oriented edges of star-shaped graph, by the action of the
group G of general linear transformations of these vector spaces. By keeping only one of the
two homomorphisms per edge, and taking a quotient instead of the symplectic quotient, one
arrives at E /G , a stand-in for BunG(C, S).

The beauty of Hitchin system is that P has not only the complex structure I and the
symplectic structure ωC =: ΩI , but also a metric g, which is Kähler with respect to the
complex structure, i.e. defines a (1, 1)-type symplectic form ωR = g(I·, ·), and two more
complex structures J,K, such that: IJK = I2 = J2 = K2 = −1, and ΩI = g(J ·, ·)+ig(K·, ·).
This metric g stems from the identification of P with the moduli space of solutions to Hitchin
equations with sources at {0, q, 1,∞} on a pair (A,Φ) of a gauge field and adjoint-valued
one-form, living on C\{0, q, 1,∞}. The hyperkähler metric g depends on a conformal class
[hC ] of a metric on C\{0, q, 1,∞}. The (I, ωC)-part of data does not depend on g and [hC ].
However, for special choices of [hC ] one finds yet another interpretation of P. Namely, by
making C\{0,∞} a flat cylinder R × S1

R, and temporarily forgetting about q, 1 one can
interpret Hitchin’s equations as a loop space version of Nahm equations describing SU(2)-
monopoles, i.e. solutions to Bogomolny equations

DAσ + ⋆FA = 0 (2.21)

on R2 ×S1
1/R, with N Dirac monopole-like singularities of −1 charge, and N Dirac monopole-

like singularities of +1 charge. Here R2 ≈ C is the target of the Higgs field Φ ∈ C ⊗ sl(N)
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of Hitchin’s equations, while the R in R × S1 of Hitchin’s equation is the target of the Higgs
field σ ∈ R⊗ sl(2) of Bogomolny equations. The circle S1

R of the cylinder supporting Hitchin
data is dual to the circle S1

1/R of R2 ×S1
1/R supporting Bogomolny data, i.e. one parametrizes

flat U(1)-connections on the other. The positions of ±1 Dirac monopoles map to the µ∞-
(µ0-)monodromy data on Hitchin’s side, respectively. The cross ratio q of the four points
{0, q, 1,∞} determines the asymptotics of

g(x) ∼ P exp
∮

(x1,x2)×S1
1/R

(A+ σ) (2.22)

at (x1, x2) → ∞ in R2.
The identification with the monopole moduli space (which goes by Nahm transform) gives

another interpretation of P as an integrable system. Perhaps the short way of describing it is
as a Hamiltonian reduction of T ∗A

L̂Ǧ
(Č, Ď), with A

L̂Ǧ
the space of (0, 1)-L̂Ǧ-connections on

a trivial bundle over Č = C∪∞, with Ǧ = SL(2). Since affine Lie algebra Lie(L̂Ǧ) = C⊕Lǧ,
i.e. central extension of the loop algebra Lǧ, is not isomorphic to its dual Lie(L̂Ǧ)∗ ≈ the
space of λ-connections on S1, the Higgs field has different nature from the gauge field.

2.3 Langlands duality for algebraically integrable systems

The overused name Langlands duality borrowed from the original Langlands program in the
theory of automorphic functions is now used in the geometric context mostly in reference
to Hitchin system MH . The reason is that the moduli space of principal G-bundles over an
algebraic curve has a double coset presentation similar to the one underlying the automorphic
side of the number-theoretic Langlands program, while the fundamental group of the curve
is an analogue of the Galois group. The representations of the fundamental group in the
LG-group are the local systems, whose moduli space is the phase space of the Hitchin system
for the LG gauge group, albeit in the J complex structure.

The physics approach to the geometric Langlands uses the mirror symmetry of the two
dimensional N = (4, 4) supersymmetric sigma model with MH target. More specifically,
using the algebraic integrable structure of MH in the I complex structure, where it presents
itself as a fibration of abelian varieties, one employs the fiber-wise T-duality, passing to
the dual abelian varieties. Of course, this is an approximate picture, valid far away from the
discriminant locus. The magic of N = (4, 4) theory is that this approximate picture completes
to the exact equivalence of superconformal field theories.

The consequences of this equivalence for the Fukaya/Db(CohMH)-category (the hyper-
kähler nature of MH implies the multi-faceted nature of D-branes in the theory) can be very
interesting mathematically. For example, the quantization of Hitchin system [10] viewed as a
commutative subalgebra of K

1
2
MH

-twisted differential operators on MH of the algebra of mor-
phisms End(Bcc) of the canonical coisotropic brane on MH , maps, under the mirror symmetry,
to the Lagrangian brane of LG-opers [11]– special holomorphic flat LG-connections.

– 8 –



2.4 Q- and Q̃-observables, surface defects, and spin chains

Gauge theories have lots of extended observables. Wilson and ’t Hooft operators are associated
to one-dimensional and codimension-three chains. There are codimension-two defects defined
by prescribing the singularity of the gauge field near the support of the defect. In four
dimensional theory of our interest these are called monodromy surface defects.

The main object of study in this paper are the Q- and Q̃-observables, which we define
as peculiar surface observables in gauge theory.

Recall that Donaldson theory (a twisted version of pure N = 2 super-Yang-Mills theory)
has the surface observables

O(2)
k,Σ =

∫
Σ
kTrϕk−1FA + fermions (2.23)

which are defined by the slant product of the universal characteristic class associated to Ok

with the two dimensional homology cycle Σ in spacetime. In the theory on R4 there are
no nontrivial two-cycles, moreover equivariantly every Qε-descendant of Ok such as (2.23) is
equivalent to a local observable inserted at the fixed point of Vε. However, one can define
something nontrivial using infinite-dimensional bundles. Specifically, given a Vε-invariant two
dimensional submanifold Σ ≈ R2, one can take the space EΣ of solutions of Dirac equation
/DBΨ = 0 on Σ with the gauge field B = A|Σ restricted from the bulk. The characteristic
classes of EΣ viewed as a bundle over the gauge equivalence classes of gauge fields on R4 are
the observables we are interested in. Were EΣ finite dimensional, we would organize them
into the Chern polynomial

QΣ(x) =
rkEΣ∑
k=0

(−)kxrkEΣ−kck(EΣ) (2.24)

But EΣ is infinite-dimensional (like a the first Landau level on a infinite plane) so (2.24) does
not make literally sense. Nevertheless, with the help of Ω-deformation (2.24) can be defined
by using ζ-regularization. For example, for Σ = C1 ⊂ C2 with A = 0 the space EΣ ≈ C[z] is
the space of all holomorphic functions on C, viewed equivariantly with respect to the group
U(1) of rotations z 7→ zeiα. Then

QΣ(x) ∼ x(x− ε1)(x− 2ε1) . . . ∼ exp d

ds

∣∣∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt

t
ts

etx

1 − e−tε1
:= E

[
ex

1 − q−1
1

]
(2.25)

where we introduced the notation E[ · · · ] for plethystic exponent. The general instance of Q-
observable associated with surfaces, invariant under the rotations of Ω-background is defined
in the main body of the paper.

2.5 Topological sigma model with Hitchin target space

In this paper, the N = 2 theory in consideration is the class S theory [12] of type AN−1
associated to the cylinder C× = P1 \{0,∞} with n marked points S = {p1, p2, · · · , pn} ⊂ C×,
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which is the linear An−1-quiver SU(N) gauge theory in an appropriate S-duality frame. The
corresponding Coulomb branch is the moduli space MH(SU(N),P1;S) of Hitchin’s equations
on P1 with (regular) ramification data at S ∪ {0,∞} [13]. The main example will be the case
n = 2. Some details for the general An−1-quiver theory are discussed in [14]

To see the Hitchin moduli space at hand, we consider the N = 2 theory subject to the
Donaldson-Witten twist [15] and further to the Ωε1,ε2-background associated to the U(1)2

isometry of the worldvolume C2 [3]. Then we compactify this theory along the torus T 2, where
C2 is viewed as a T 2 fibration over Σ = R+×R+, to obtain a two-dimensional N = (2, 2) sigma
model of maps from the worldsheet Σ to the Hitchin moduli space target MH(SU(N),P1;S)
[16, 17]. As a cohomological field theory in the preserved supercharge, it is a topological
sigma model; either an A-model associated with one of the symplectic structures (with a B-
field in general) or a B-model associated with one of the complex structures. This association
is determined by the ratio κ = − ε2

ε1
of the Ω-background parameters in the original four-

dimensional N = 2 theory [18, 19].
In our recent study [19], it was demonstrated that certain types of branes and functors

acting on them descend from half-BPS surface defects in the N = 2 gauge theory supported on
a complex plane in C2. Specifically, a regular monodromy surface defect descends to a brane of
λ-connections, while a canonical surface defect leads to a Hecke operator. The magnetic eigen-
brane corresponding to an oper, on which the Hecke operators act diagonally, was revealed to
have its origin in the boundary condition at infinity, where the opers are parametrized by the
Coulomb moduli [9, 19]. We showed that the vacuum expectation values and the correlation
functions of surface defects satisfy the constraints for the sections of corresponding twisted
D-modules. Moreover, it was suggested that this N = 2 gauge theoretical formulation of the
geometric Langlands correspondence (with ramifications) [10, 11, 20, 21] is related to more
conventional approach of a topologically twisted (GL-twisted) N = 4 gauge theory [22–25]
by a string duality. See also [26–29] for vertex algebra approach of the geometric Langlands
correspondence.

2.6 di-Langlands correspondence from N = 2 gauge theory

The goal of the present work is to view the geometry of the same moduli space from a
dual perspective (see section 2.2). The Hitchin moduli space MH(SU(N),P1;S) is known
to be isomorphic as a hyper-Kähler space to the moduli space of periodic U(n)-monopoles
on P1 × S1 with a framing at ∞ ∈ P1 and Dirac singularities at D × {0}, where D =
{m+

0 ,m
+
1 , · · · ,m+

N−1} ⊂ P1 \ {∞} = C [30–34]. In particular, these two moduli spaces are
related to each other by a Nahm transform. From this presentation, it also follows that it is
isomorphic to the moduli space MmHiggs(GL(n),P1;D) of multiplicative GL(n)-Higgs bundles
on P1 with a framing at ∞ ∈ P1 and regular singularities at D [30, 34, 35].

Due to the isomorphism, the target space of the aforementioned topological sigma model
can now be viewed as MmHiggs(GL(n),P1;D), and it is tempting to reevaluate our findings
from the N = 2 gauge theory within this perspective. This shift leads to an exploration
of relationships between geometric structures on MmHiggs(GL(n),P1;D). The N = 2 gauge
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theory of class S thus offers a methodology to investigate the ℏ-deformation of the geometric
Langlands correspondence.

The geometric Langlands correspondence has two sides − the automorphic side and the
Galois side − both of which have a respective ℏ-difference analogs defining the di-Langlands
(“di” for difference) correspondence. On the Galois side, (quasi-coherent sheaves on) the
moduli space of local systems in the ordinary case gets replaced by the moduli space of ℏ-
difference connections on P1 with a framing at ∞ ∈ P1 and regular singularities at D. We
focus on a special subspace spanned by ℏ-opers, for which the ℏ-difference connections can
be expressed by scalar ℏ-difference operators. In our N = 2 gauge theory setup, we construct
the ℏ-opers as the quantized chiral ring relation for Q-observable [9, 19].1 The vacuum
expectation value Q(a;x) of the Q-observables in the limit ε2 → 0 is shown [9, 19, 37] to be
solutions to the ℏ-oper

0 =
[
1 − t(a;x)e−ℏ∂x + qP (x)e−2ℏ∂x

]
Q(a;x), for n = 2. (2.26)

On the automorphic side, we expect twisted D-modules appearing in the ordinary case to
be replaced by ℏ-difference modules on the moduli space BunGL(n)(P1;D) of parabolic GL(n)-
bundles over P1 with a framing at ∞ ∈ P1 and parabolic structures at D. Our aim will not
be formulate this object geometrically as a sheaf of modules, as our methodology lies in the
N = 2 gauge theory. Instead, we only note that the ℏ-difference modules on BunGL(n)(P1;D)
should arise from the (Bcc,B

′)-strings stretched between a canonical coisotropic brane Bcc and
another A-brane B′, on which the (Bcc,Bcc)-strings act by joining the strings. The latter gives
the quantized algebra of holomorphic functions on the moduli space MmHiggs(GL(n),P1;D),
which is known to be a module over the Yangian Y (gl(n)) [32–34].

Our proposal is to realize the Yangian module in the vector space spanned by vacuum
expectation values of monodromy surface defects in the N = 2 gauge theory, defined over a
Z-lattice of Coulomb vacua, specified below. In particular, we demonstrate that the regular
monodromy surface defect (also supported on C1×{0} ⊂ C1×C2) gives rise to a distinguished
basis of a module H over the Yangian Y (gl(n)) enumerated by the Coulomb moduli a, by its
vacuum expectation values:

ψ(a) ∈ H, Y (gl(n)) → End(H). (2.27)

We show this by constructing the Yangian R-matrices from the correlation function of the
monodromy surface defect, the Q-observable, and the qq-characters. This Yangian module H
is evaluation module realized on a tensor product of N bi-infinite (i.e., neither highest- nor
lowest-weight) gl(n)-modules. The gl(n) generators are represented by ℏ-difference operators,
where the Yangian deformation parameter ℏ is identified with the Ω1-background parameter
ε1 = ℏ.

Had we realized the ℏ-difference modules as a sheaf over BunGL(n)(P1;D), we could have
defined the ℏ-analogue of the Hecke operator by employing the Hecke correspondence and

1See [36] for the derivation of the chiral ring relation in the absence of surface observables.
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the projections to BunGL(n)(P1;D). This is not the approach we take in this work. Instead,
we define a Q-operator, the ℏ-analogue of the Hecke operator, within our N = 2 gauge
theory context. More specifically, we define the Q-operator on the aforementioned Yangian
module by inserting the Q-observable on top of the regular monodromy surface defect in the
correlation function. Using the cluster decomposition of the two surface defects in the limit
ε2 → 0, we prove that the Q-operators act diagonally on the distinguished basis elements
ψ(a) ∈ H in the limit ε2 → 0, where the eigenvalues are given by the Q-functions Q(a;x)
satisfying the ℏ-oper equation. Namely,

Qi(x) · ψ(a) = Qi(a;x)ψ(a), i = 1, 2, · · · , n. (2.28)

Further, we demonstrate that the Q-operator satisfies the universal ℏ-oper equation for Yan-
gian Y (gl(n)) represented on the module H, viewed as a quantized chiral ring relation of the
coupled system. From this, we show that the Q-eigenstate property of the distinguished basis
implies that its elements are also common eigenstates of the transfer matrices t̂(x) of the
Yangian Y (gl(n)) represented on H,

0 = (t̂(x) − t(a;x))ψ(a), (2.29)

with the eigenvalues (coefficients of t(a;x)) parametrizing the space of ℏ-opers.
All in all, we conclude the following statement: for a ℏ-oper associated to the Coulomb

moduli a, there is a corresponding Q-eigenstate ψ(a) in the Yangian module H realized by
the vacuum expectation value of the regular monodromy surface defect in the limit ε2 → 0
at the vacuum a. The Q-eigenstates also represent the spectral ℏ-difference equations for the
associated XXX spin chain. The quantum spectra are precisely determined by the Coulomb
moduli a that specify the ℏ-oper. This can be regarded as a ℏ-deformation of the ordinary
geometric Langlands correspondence associated to twisted D-modules and opers [10, 11].

3 Four dimensional gauge theory, surface defects and surface observables

In this section, we begin our N = 2 gauge theory formulation.
The path integral of gauge theory is a sum over k ∈ Z of integrals over the space Ak/Gk

of gauge equivalence classes of connections on a principal G-bundle over S4 = R4 ∪ ∞.
Although the moduli space Mk of instantons (i.e. solutions to F+

A = 0 equation) depends
only on the conformal class of the metric on the four dimensional spacetime, the metric on Mk

depends on the metric itself. The proper setup for computations of the low-energy effective
theory is the moduli space Mframed

k of framed instantons on R4. It is hyperkähler, yet not
complete. Path integral of N = 2 theory has a mathematical interpretation as Mathai-Quillen
representative of the Euler class of certain infinite-dimensional vector bundle over Ak/Gk. The
bundle depends on the field content of the theory. In this paper we are mostly dealing with
asymptotically conformal super-QCD G = SU(N) gauge theory. The corresponding Euler
class can be modeled, for each k, on a finite-dimensional model of Mframed

k , which admits
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smooth partial G×Grot-equivariant compactification. Here Grot = U(2) is the spin cover of
the group of rotations of R4, compatible with the structure used in the compactification.

We present the construction of the base four-dimensional N = 2 supersymmetric gauge
theory and its half-BPS surface defects in the gauge origami formulation [38–40].

The gauge origami is the configuration of intersecting D3-branes in the IIB theory on the
ten-dimensional spacetime X × C, where X is a local Calabi-Yau four-fold. We will consider
the cases X = C1 × C2 × (C3 × C4)/Γ34 and X = C1 × (C2 × C3 × C4)/(Γ34 × Γ24), where
Γ34 = Zn+1 and Γ24 = Zl. Here, Γab gives an orbifolding action rotating Ca and Cb in the
opposite direction. We implement the Ω-background for the U(1)3 ⊂ SU(4) rotations of X.
The three independent Ω-background parameters are written as εa, a = 1, 2, 3, 4, ∑4

a=1 εa = 0;
εa associated to the rotation of the Ca-plane. In order to preserve the supersymmetry, the
D3-branes must wrap two complex planes among four in X and be located at the origin of
the remaining two planes, while they can be positioned at any points on the transverse C. We
abbreviate the notation so that, for instance, C2

12 indicates C1 × C2 × {0} ⊂ X and certain
position on C.

IIB branes 0 1 2 3 4 5 6 7 8 9
D3 x x x x

KK5n+1 x x x x x x
KK5l x x x x x x
D3 x x x x

Table 1: IIB brane configuration for gauge origami

C1 C2 C3 C4 C5
x0, x1 x2, x3 x4, x5 x6, x7 x8, x9

Table 2: Spacetime for gauge origami

On top of stacks of D3-branes, we have D(−1)-instantons. The path integral of the
gauge origami configuration is exactly computed by equivariant localization [40]. The framing
equivariant weights of the Chan-Paton bundles are given by the positions of the D3-branes
on the transverse plane C5.

After introducing the gauge origami construction of the base N = 2 gauge theory, we will
define Q-operators as surface defects realized by coupling two-dimensional N = (2, 2) chiral
multiplets. Also, we will define the monodromy defect as assigning singular behavior of the
gauge field at the chosen surface, modelled by an orbifold. Their vacuum expectation values
are computed by the gauge origami partition functions. See also [41–44] for an algebraic
approach of engineering the gauge theory and its monodromy surface defects.
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3.1 Four-dimensional N = 2 supersymmetric gauge theory

By a well-described construction, the A1-type quiver theory is a limit q1, q2 → 0 of the theory
of N regular branes on Z3-orbifold. In the gauge origami setup it is a stack of 3N D3-branes
on C2

12 × {0} ⊂ C2
12 × C2

34/Z3 (see the first two rows of Table 1 with n = 2). Unlike the fully
dynamical Â2-type quiver theory, the A1-limit does not depend on ε3, so we can simplify our
formulas below by setting it to zero. The Chan-Paton bundle has the character decomposition

N12 = N0R0 +N1R1 +N2R2 =
N−1∑
α=0

eaα · R0 + em−
α +ε1+ε2 · R1 + em+

α · R2, (3.1)

where Ri, i = 0, 1, 2, denote the three irreducible one-dimensional representations of Z3, R0
being the trivial one, and R1 = R∗

2.2 The gauge origami partition function, upon dropping a
1-loop contribution of non-dynamical (N1, N̄2)-hypermultiplets, reduces to

Z =
∑

λ

q|λ| E
[

−SS∗ +M+S∗ + q−1
12 (M−)∗S

P ∗
12

]
=:
∑

λ

q|λ|µa,λ, (3.3)

where S := S0 = N0 − P12K, M+ = S2 = N2, M− = S1 = N1, and λ now denotes (slightly
abusing the notation) an N -tuple of partitions. This is exactly the partition function of the
A1-quiver gauge theory, i.e., U(N) gauge theory with N fundamental and N anti-fundamental
hypermultiplets. The explicit formulas for the 1-loop contribution µa,λ of the perturbative
fluctuations around the instanton configuration λ in the Coulomb vacuum a is well-known
[3].

In Ω1-background the four-dimensional theory is described by an effective two-dimensional
N = (2, 2) theory on the C2-plane, with the effective twisted superpotential W̃(a; q). The
partition function (3.3) in the ε2 → 0 limit behaves as [45]3

lim
ε2→0

Z(a,m, ε1, ε2; q) = e
W̃(a,m,ε1;q)

ε2 . (3.4)

We also note that the C2-plane becomes topological in the limit ε2 → 0 (as the supercharge Qε

becomes the twisted supercharge of a hybrid A/B-model with worldsheet C2). In particular,
the local Qε-closed observables in the effective two-dimensional theory can be translated
modulo Qε-exact corrections.

The path integral with insertions of local or non-local BPS observables can be localized to
a sum over colored partitions λ. For SU(N) or U(N) gauge theory λ stands for a collection

λ = (λ(0), . . . , λ(N−1)) (3.5)
2so that

C[Z3] = R0 ⊕ R1 ⊕ R2 (3.2)

3This limiting behavior of the partition function can also be obtained from the limit shape [8, 46].
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of partitions
λ(α) =

(
λ

(α)
1 ≥ λ

(α)
2 ≥ . . . ≥ λ

(α)
ℓ(λ(α)) > 0

)
(3.6)

of sizes
|λ(α)| = λ

(α)
1 + λ

(α)
2 + . . .+ λ

(α)
ℓ(λ(α)) (3.7)

so that
k = |λ(0)| + . . .+ |λ(N−1)| (3.8)

is the instanton charge.
For observable O we denote by O[a,λ] its evaluation at the instanton configuration

corresponding to the N -tuple of partitions λ, in the vacuum characterized by the Coulomb
moduli a. Therefore the normalized vacuum expectation value of O is computed by

⟨O⟩a
⟨1⟩a

=
∑

λ q|λ|µa,λ O[a,λ]∑
λ q|λ|µa,λ

. (3.9)

3.1.1 Local observables in four dimensions

The local observables in the four-dimensional N = 2 gauge theory are polynomials in the
single trace invariants of the complex scalar ϕ in the vector multiplet. In our main example
of N = 2 theory with SU(N) gauge group, there are N − 1 independent local observables,

Trϕk, k = 2, 3, · · · , N. (3.10)

We organize them into a generating function, called the Y-observable,

Y(x) = exp Tr log(x− ϕ) = xN exp
[
−

∞∑
l=1

1
lxl

Trϕl

]
, (3.11)

whose evaluation at the instanton configuration λ is the virtual Chern polynomial of the
universal sheaf,

Y(x)[a,λ] = E [−exS[a,λ]∗] . (3.12)

with, for ζR > 0,

S[a,λ] =
N−1∑
α=0

eaα

1 − (1 − q1)(1 − q2)
∑

(i,j)∈λ(α)

qi−1
1 qj−1

2

 (3.13)

and, for ζR < 0,

S[a,λ] =
N−1∑
α=0

eaα

1 − (1 − q1)(1 − q2)
∑

(i,j)∈λ(α)

q−i
1 q−j

2

 . (3.14)
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3.2 Q/Q̃-surface observables

Having fixed our N = 2 gauge theory, we will turn to the construction of various surface
defects and observables. We introduce the Q- and Q̃-observables which are built by inserting
an additional D3-brane that intersects the worldvolume of the original stack of D3-branes of
the gauge theory along a surface.

3.2.1 Q/Q̃-observables

On top of the stack of D3-branes wrapping C2
12 which engineers the four-dimensional N = 2

theory, we add a single D3-brane wrapping C2
13 carrying the Z3-charge 1 for Q or 0 for Q̃,

respectively (cf. the fourth row of Table 1),

N12 =
N−1∑
α=0

eaα · R0 +
N−1∑
α=0

em−
α +ε1+ε2 · R1 +

N−1∑
α=0

em+
α · R2

N13 = ex+ε1 · R1 , or = ex+ε1 · R0

(3.15)

The gauge origami partition function, in the limit q1 = q2 = 0, becomes, by simple computa-
tion: (

ZQ
ZQ̃

)
=
∑

λ

q|λ|µa,λ

(
Q(x)[λ]
Q̃(x)[λ]

)
. (3.16)

with

Q̃(x) = q
x

ε1

∞∑
d=0

qd ϕd Q̃d(x),

ϕd =
d∏

j=1

(
1 + ε2

jε1

)
, Q̃d(x) := Q(x)M(x+ dε1)

Q(x+ dε1)Q(x+ ε2 + (d+ 1)ε1)

(3.17)

where M(x) is entire function of x solving

M(x)
M(x− ε1) = P (x). (3.18)

We call these surface observables Q- and Q̃-observable, respectively.
Finally, the evaluation of Q(x)[λ] at the instanton configuration λ is entire function of

x, with the zeroes, at ζR > 0, at

x = aα + ε1(i− 1) + ε2λ
(α)
i , α = 1, . . . , N , i = 1, 2, (3.19)

Explicitly, we have

Q(x)[λ] =
N−1∏
α=0

 ε
x−aα

ε1
1

Γ
(
−x−aα

ε1

) ∞∏
i=1

x− aα − ε1(i− 1) − ε2λ
(α)
i

x− aα − ε1(i− 1)

 (3.20)

It is easy to show by the methods of [38] that ⟨Q̃(x)⟩ is also entire in x, for any ε1, ε2.

– 16 –



For later purpose, we denote the normalized vacuum expectation value of the Q/Q̃-
observables in the limit ε2 → 0 by

lim
ε2→0

⟨Q(x)⟩a
⟨1⟩a

= Q(a;x), lim
ε2→0

〈
Q̃(x)

〉
a

⟨1⟩a
= Q̃(a;x), (3.21)

where we specified the vacuum by the Coulomb parameter a.

3.3 Monodromy surface defect

The monodromy surface defect ΨΣ in the four-dimensional N = 2 gauge theory is engineered
by assigning a singular behavior of the gauge field along a surface Σ [47, 48], effectively
coupling the four dimensional gauge theory to a two dimensional sigma model [49].

3.3.1 Curvature singularity

The connection between the orbifold structure and the monodromy surface defect is the
following. Requiring the singular behavior of the form

Fz2z̄2(z1, z̄1, z2, z̄2) ∼ J(z1, z̄1)δ(2)(z2, z̄2) (3.22)

with J(z1, z̄1) ∈ Om ⊂ g being a z1-dependent element of a conjugacy class in the Lie algebra
of the gauge group,

Om = G/Lgauge (3.23)

characterized by a choice of the Levi subgroup of the gauge group. Additionally, the mon-
odromy surface defect depends on the choice of a Levi subgroup of the flavor group it preserves
[48]. The choice of the Levi subgroup is conveniently encoded in coloring functions. In our
main example of the SU(N) gauge theory with N fundamental and N anti-fundamental
hypermultiplets, the coloring functions (c, cf , caf ) assign Zl-charges to the framing and the
flavor bundles,

(c, cf , caf ) : {0, . . . , N − 1} −→ {0, 1, · · · , l − 1} (3.24)

from which the preserved Levi subgroups are read off as

Lgauge = S

(
l−1×
ω=0

U(#c−1(ω))
)
,

Lmatter = S

(
l−1×
ω=0

U(#c−1
matter(ω))

) (3.25)

In the case of l = N and the coloring functions c, cf , and caf are chosen to be one-to-one
(without loss of generality, c(α) = cf (α) = caf (α) = α), the associated monodromy surface
defect is said to be regular. For the purpose of studying the di-Langlands correspondence (as
well as the ordinary geometric Langlands correspondence, as studied in [19]), we will mainly
consider the regular monodromy surface defect throughout the work.
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3.3.2 Parabolic structure

The curvature singularity (3.22) translates to the language of algebraic geometry as a parabolic
structure of the gauge bundle E, as a flag of subbundles 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fl−1 ⊂ E|Σ, of
the restriction of gauge bundle on Σ. Working modulo the supercharge Q means we can as-
sume all bundles and subbundles holomorphic. Also, a Q-exact deformation leads to a partial
compactification of the moduli space of parabolic bundles by the moduli space of parabolic
torsion free sheaves:

F0 = z2E ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fl−1 ⊂ E (3.26)

where z2 = 0 is the equation defining Σ (it is clear that (3.26) can be generalized to Σ being
a normal crossing divisor).

3.3.3 Orbifold construction

The singular behavior of the gauge field can be modelled by placing the N = 2 gauge the-
ory on an orbifold [50], C1 × (C2/Zl). The supersymmetry preserving construction is best
formulated in the gauge origami language, where the Zl-orbifold group acts via (z2, z4) 7→
(e 2πi

l z2, e
− 2πi

l z4).
In orbifold computations we shall often use the following notation:

q̃2 = q
1
l
2 , q̃l

2 = q2 , (3.27)

also, for ω ∈ Z we denote by

[ω] := ω mod l ∈ {0, 1, · · · , l − 1} (3.28)

its projection to the fundamental domain for Z/lZ.
The map z2 7→ zl

2 sends the spacetime of gauge theory on the Zl-orbifold to the ordinary
spacetime C1 × C2. The branching locus represents the singularity of gauge fields along
the locus {z2 = 0}. This map is holomorphic but not isometric, of course. The actual
field redefinition requires complex gauge transformations, which, in turn, entail complicated
functional Jacobians. Fortunately, in computations involving Q-closed observables all these
complications are irrelevant, up to Q-exact terms.

To summarize, the monodromy surface defect in Ân-theory is implemented by the gauge
origami on the orbifold C1 × (C3

234/Γ13 × Γ24), where Γ13 = Zn+1 and Γ24 = Zl (see the third
row of Table 1), with Chan-Paton spaces now being representations of both Zl and Zn+1.
They are encoded in the coloring functions,

cA,i : {1, . . . , NA,i} −→ {0, 1, · · · , l − 1}, A ∈ {12, 13, 14, 23, 24, 34}, i ∈ {0, 1, · · · , n}.
(3.29)

In the A1 limit, with n = 2, and q1, q2 → 0, where we can also set ε3 = 0 without any loss of
generality, we arrive at N = 2 gauge theory with a specific monodromy surface defect.
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The path integral of the N = 2 gauge theory on the Zl-orbifold localizes to an equivariant
integral over the moduli space MZl of instantons on the Zl-orbifold [40]. As explained in [19],
one associates a projection ρ : MZl → M to the map z2 7→ zl

2 of the underlying spaces. The
pushforward ρ∗1, summed over all fractional topological charges but kN−1 is an observable in
the N = 2 gauge theory, the monodromy surface defect representative Ψ(u) in Qε-cohomology.

Now we present the evaluation Ψ(u)[λ] of the monodromy surface defect associated to
the coloring function c (3.24). First, we can write the equivariant Chern character of the
framing bundle as

N̂12 =
N∑

α=1

(
eaα q̃

c(α)
2 R0 ⊗ Rc(α) + em+

α q̃
cf (α)
2 R2 ⊗ Rcf (α) + em−

α +ε1q
δcaf (α),0
2 R1 ⊗ q̃

caf (α)
2 Rcaf (α)

)
,

(3.30)

Here, Rω denotes the one-dimensional representation of Zl with charge ω. Accordingly, the
universal sheaf of the instantons on the Zl-orbifold, carrying a representation of Zl, can be
written as

Ŝ12 =
l−1∑
ω=0

[
SωR0 + q13q

δω,0
2 M−

[ω−1]R1 + q−1
3 M+

ω R2
]

⊗ q̃ω
2 Rω, (3.31)

where we defined Sω = ∑
α∈c−1(ω)(Nα−P1Kα)+qδω,0

2
∑

α∈c−1([ω−1]) P1Kα, M±
ω = ∑

α∈c−1
f,af

(ω) e
m±

α .
The projection map ρ : MZl → M gives the universal sheaf for the instantons and the flavor
bundles in the absence of the orbifold by

S =
l−1∑
ω=0

Sω = N − P12Kl−1, M± =
l−1∑
ω=0

M±
ω . (3.32)

In particular, the projection ρ induces a map of fixed point sets ρ :
(
MZl

)TH → MTH , where
the fixed points of MZl enumerated by colored partitions {λ̂} map to the sub-partitions {λ}
formed by the columns carrying Zl-charge l − 1. It is convenient to relate the fractionalized
universal sheaf to the parabolic sheaf by working with

Σω = Sω+1 + · · · + Sl−1, ω = 0, 1, · · · , l − 2. (3.33)

Then, the gauge origami partition function gives, by a standard computation

Z = ⟨Ψc(u)⟩a (3.34)

with the surface defect observable

Ψc(u)[λ] =
∑

λ̂∈ρ−1(λ)

l−2∏
ω=0

q
kω−kl−1
ω E

[
SΣ∗

0
P ∗

1
+

l−2∑
ω=0

−Σω(Σω − Σω+1)∗ −M+
ω Σ∗

ω + q−1
1 (M−

ω )∗Σω

P ∗
1

]
,

(3.35)
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labelled by the coloring function c. There are l − 1 defect parameters (qω)l−2
ω=0 encoding the

singularity of the gauge field and the magnetic flux along the support C1.
We parameterize these defect parameters using u = (uω)l−1

ω=0,

qω = uω+1
uω

, ω = 0, 1, · · · , l − 2, (3.36)

with a redundancy of overall scaling. Also, we introduce the tree-level normalization of the
surface defect by multiplying (3.35) by

Ψc(u)classical =
N−1∏
α=0

u
m+

α −aα
ε1

c(α) . (3.37)

3.3.4 Basis of Yangian module from monodromy surface defect

Here, we will restrict our consideration to the regular monodromy surface defect. We define a
vector space H as a suitably completed vector space of multi-valued functions Ψ(u0, . . . , uN−1)
on (C×)N , which are the eigenfunctions of the monodromy around the coordinate axes:

Ψ(e2πin0u0, . . . , e
2πinN−1uN−1) =

N−1∏
ω=0

tnω
ω Ψ(u0, . . . , uN−1), (3.38)

with the monodromy eigenvalues

tα = e
2πi(aα−m+

α )
ε1 , α = 0, . . . , N − 1. (3.39)

We denote collectively
t = (tα)N−1

α=0 ∈
(
C×)N . (3.40)

A typical element of H has the form
N−1∏
ω=0

u
m+

ω −aω
ε1

ω × (a homogeneous Laurent polynomial in uω). (3.41)

We are completing the space of Laurent polynomials by allowing infinite (convergent) series
in uω/uω′ , with ω > ω′. We also allow formal paths in H, parametrized by q, such that at
qk order one admits finite polynomials in uω′/uω of degree bounded by k.4 Thus the vacuum
expectation values of the monodromy surface defect becomes a vector in H,〈

Ψ(u)
〉

a
∈ H. (3.42)

Importantly, so do vevs of the monodromy surface defects at other vacua of the N = 2 theory
enumerated by the Z-lattice of Coulomb parameters:〈

Ψ(u)
〉

a+ε1n
∈ H, (3.43)

4As we will see in section 5.2, we introduce a twist parameter q that parametrizes a twist of the periodic
boundary condition of the gl(2) XXX spin chain. Then, we construct a q-parametric family of basis elements
of H by the construction above.
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for any vector n = (n0, . . . , nN−1) ∈ ZN satisfying n0 + . . .+ nN−1 = 0.
As we will clarify in section 5.2, the space H is the weight-zero subspace in a U(gl(2))-

module H̃, from which we construct the evaluation module over the Yangian Y (gl(2)) (recall
section A.2). When considering the Bethe subalgebra, we may restrict to H since the degree-
zero condition only amounts to setting one of the Hamiltonians (the total momentum) to a
number.

In the Ω1-background, the monodromy surface defect becomes a local observable on the
C2-plane. Its normalized vacuum expectation value becomes

lim
ε2→0

〈
Ψ(u)

〉
a

⟨1⟩a
= ψ(a; u; q), (3.44)

which we can view as above-mentioned q-parametric family of basis vectors in H.

3.4 Parallel surface defects

Finally, we consider the configuration where a regular monodromy surface defect and Q- or
Q̃-observable are extended along the same C1-plane in parallel. The parallel surface defect
configuration here should not be confused with the intersecting surface defect configuration
studied in [51, 52] in the regard of the associated isomonodromy problem. Rather, the config-
uration here is a ℏ-analogue of the parallel configuration of the monodromy surface defect and
the canonical surface defect studied in [19], utilized for the N = 2 gauge theoretical account
of the ordinary geometric Langlands correspondence.

In the gauge origami setup, the parallel surface defect configuration descends from adding
a stack of N D3-branes to the stack of D3-branes engineering the N = 2 gauge theory with
the monodromy surface defect, each of which carries a ZN -charge ω = 0, 1, · · · , N − 1, as we
now explain.

3.4.1 Q-observable and monodromy surface defect

First, we assign the coloring functions for the framing Chan-Paton bundles. We keep the
coloring function (3.24), where (c, cf , caf ) are one-to-one functions, for the stack of 3N D3-
branes supported on C1×C2×{0}, while also giving an one-to-one coloring function for the new
stack ofN D3-branes supported on C1×{0}×C3×{0}×x, where x = {x0, x1, · · · , xN−1} ⊂ C5.
The configuration is summarized by the following equivariant Chern characters of Chan-Paton
spaces,

N̂12 =
N−1∑
ω=0

[
eaω+1R0 + e

m−
[ω−1]+ε1q

δω,0
2 R1 + em+

ω R2

]
⊗ q̃ω

2 Rω,

N̂13 =
N−1∑
ω=0

exω+ε1+ε2 q̃ω
2 · R1 ⊗ Rω .

(3.45)

The corresponding gauge origami partition function reads

Z12,13 = ⟨⟨Q(x)⟩⟩ (3.46)
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with the generalized Q-observable Q(x) defined by its evaluation at the instanton configura-
tion:

Q(x)[λ̂] =
N−1∏
ω=0

Qω(xω)[λ̂] :=
N−1∏
ω=0

E
[
exω (M−

ω − Sω[λ̂])∗

P ∗
1

]
(3.47)

where we use the double bracket ⟨⟨· · ·⟩⟩ to indicate the ensemble average over the colored
partitions {λ̂}.

Instead of considering arbitrary positions x, let us set a reference value x and ε1-integral
shifts, namely, xω = x− nωε1 with nω ∈ Z. Then the generalized Q-observable factorizes as
a product of the Q-observable, and a fractional 0-observable inserted at the intersection of
the surface defect and the surface observable:

Qn(x)[λ̂] = Q(x)[λ]E
[

N−1∑
ω=0

nω−1∑
i=0

ex−iε1S∗
ω[λ̂]

]
, (3.48)

Therefore, the gauge origami partition function (3.46) computes the correlation function of
the two surface defects and the fractional 0-observable at their intersection.

Let us consider the case where x = xω := (x, · · · , x︸ ︷︷ ︸
ω+1 times

, x− ε1, · · · , x− ε1︸ ︷︷ ︸
N−ω−1 times

). The correspond-

ing generalized Q-observable factorizes as

Qω(x) := Q(xω) =
ω∏

ω′=0
Qω′(x)

N−1∏
ω′=ω+1

Qω′(x− ε1) ,

Qω(x)[λ̂] = Q(x)[λ]E

 N−1∑
ω′=ω+1

exS∗
ω[λ̂]

 , ω = 0, 1, · · · , N − 1, (3.49)

relating the 0-observables to the parabolic structure (3.26). The 0-observable is absent in
the case of ω = N − 1, QN−1(x) = Q(x), where the gauge origami becomes the OPE of the
regular monodromy surface defect and the bulk Q-observable,

⟨⟨QN−1(x)⟩⟩ =
〈
Q(x)Ψ(u)

〉
a

=
∑

λ

q|λ|µa,λ Q(x)[λ]Ψ(u)[λ], (3.50)

with Q(x)[λ] and Ψ(u)[λ] given by (3.16) and (3.35).

3.4.2 Q̃-observable and monodromy surface defect

Next, we bring together Q̃-observable and monodromy surface defect, again with both surfaces
being parallel. The gauge origami configuration is represented by the equivariant Chern
characters of Chan-Paton bundles,

N̂12 =
N−1∑
ω=0

[
eaω R0 + e

m−
[ω−1]+ε1+ε3q

δω,0
2 R1 + em+

ω −ε3R2

]
⊗ q̂ω

2 Rω,

N̂13 =
N−1∑
ω=0

exω+ε1 q̂ω
2 R0 ⊗ Rω,

(3.51)
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where we placedN D3-branes supported on Ĉ2
13 at at generic positions x = (x0, x1, · · · , xN−1) ∈

CN−1. In A1-quiver gauge theory the instantons on Ĉ2
13 only grow along Ĉ1. The correspond-

ing partitions λ13 classifying the fixed points on the instanton moduli space are single-columns:

K̂13 =
N−1∑
ω=0

exωq1
1 − qdω

1
1 − q1

q̃ω
2 R0 ⊗ Rω,

Ŝ13 =
N−1∑
ω=0

exω+ε1 q̃ω
2

(
qdω

1 R0 + q3(1 − qdω
1 )R1

)
⊗ Rω,

(3.52)

where we set the lengths of the columns as d = (dω)N−1
ω=0 .

The gauge origami partition function is given by

Z̃S(x) =
∑

λ̂

N−1∏
ω=0

qkω
ω µZN

a,λ̂
Q̃(x)[a, λ̂] (3.53)

where we defined, after including the classical part, the generalized Q̃-observable by

Q̃(x) =
∑

d

N−1∏
ω=0

q
xω
ε1

+dω

ω Φd(x)Q̃d(x), (3.54)

where

Φd(x) =
N−1∏
ω=0

dω∏
j=1

x[ω−1] − xω + (d[ω−1] + 1 − j)ε1 + ε2δω,0

jε1
,

Q̃d(x) =
N−1∏
ω=0

Qω(xω)Mω(xω + dωε1)
Qω(xω + dωε1)Q[ω+1](xω + (dω + 1)ε1 + ε2δω,N−1) .

(3.55)

They satisfy the following recursion relations:

Φd−eω (x + ε1eω) = dωε1
x[ω−1] − xω + d[ω−1]ε1 + ε2δω,0

Φd(x)

Φd+eω (x − ε1eω) =
x[ω−1] − xω + (d[ω−1] + 1)ε1 + ε2δω,0

(dω + 1)ε1
Φd(x)

Q̃d−eω (x + ε1e1) = Yω(xω + ε1) Q̃d(x)

Q̃d+eω (x − ε1e1) = 1
Yω(xω) Q̃d(x).

(3.56)

In the ε2 → 0 limit with all xω = x, ω = 0, 1, · · · , N − 1, identical, all the non-negative
integers dω in the sum (3.54) would have to be the same (otherwise the numerator of Φd
vanishes, cf. (3.55)):

lim
ε2→0

Q̃(x, x, . . . , x)[λ̂] = lim
ε2→0

Q̃(x)[λ]. (3.57)

In this sense Q̃ω(x) is a generalization of the Q̃-observable.
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3.4.3 Q-observables as Q-operators
Even with the additional insertion of the Q-observable, the correlation function (3.50) of the
Q-observable and the monodromy surface defect is valued in the space of degree-zero Laurent
polynomials in the monodromy defect parameters u = (uω)N−1

ω=0 ,

Q(x) ·
〈
Ψ(u)

〉
a

:=
〈
Q(x)Ψ(u)

〉
a

∈ H =
(

N−1⊗
ω=0

Hω

)C×

, (3.58)

just as the vacuum expectation value of the monodromy surface defect itself. In other words,
we can view the Q-observable also as an operator

Q(x) ∈ End (H) , (3.59)

whose action on the basis element ⟨Ψ(u)⟩a is given by the above correlation function. Under
this context, we will refer to Q(x) as the Q-operator. Since the contribution at each partition
λ is modified by the insertion of the Q-observable, the action of Q-operator is highly non-
trivial.

In the limit ε2 → 0, the surface defect and the surface observable can be moved around
the plane C2 topologically. Therefore the vacuum expectation value (3.50) factorizes:

lim
ε2→0

〈
Q(x)Ψ(u)

〉
a

⟨1⟩a
= Q(a;x)ψ(a; u), (3.60)

by cluster decomposition. The normalized vacuum expectation values Q(a;x) and ψ(a; u) are
precisely the ones we already obtained in (3.21)and (3.44). In the point of view of the action
(3.59), the factorization implies that the Q-operator acts diagonally on the basis ψ(a; u) of
the space H enumerated by the Coulomb moduli a, with the eigenvalue Q(a;x). Under this
context, we will refer to the eigenvalue Q(a;x) also as the Q-function.

Note that such a factorization does not occur for other Q-observables (3.49), thus they
do not act diagonally in the basis ψ(a; u).

The Q̃-observable also defines an action on the space H by its insertion in the correlation
function,

Q̃(x) ·
〈
Ψ(u)

〉
a

:=
〈
Q̃(x)Ψ(u)

〉
a

∈ H, Q̃(x) ∈ End (H) . (3.61)

In the limit ε2 → 0, the action is diagonal on the basis ψ(a; u) of the space H enumerated by
the Coulomb moduli a, with the eigenvalue Q̃(a;x),

lim
ε2→0

〈
Q̃(x)Ψ(u)

〉
a

⟨1⟩a
= Q̃(a;x)ψ(a; u). (3.62)

To sum up, the Q-observables can be viewed as Q-operators on the space H. In the limit
ε2 → 0, the action of Q-operators are simultaneously diagonalized on the basis ψ(a; u) ∈ H,
the normalized vacuum expectation value of the monodromy surface defect. The eigenvalues
are the normalized vacuum expectation values (Q(a;x) and Q̃(a;x)) of the Q-observables,
which we call the Q-functions.
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4 Non-perturbative Dyson-Schwinger equations in the presence of surfaces

Having introduced the surface defects and observables, we turn to the modification of the
chiral ring of the four-dimensional gauge theory in their presence. We derive the so-called
TQ equations and show they provide the quantization of the chiral ring in the form of ℏ-opers.

First, we give geometric constructions of the ℏ-difference connections and ℏ-difference
opers, or ℏ-opers, for short. Then we move on to their N = 2 gauge theoretical realization.
Within the gauge origami configuration, we add D3-branes wrapping C2

34, thereby engineering
the qq-characters [38]. By the regularity property of the vacuum expectation value of the qq-
character [39], we show that the vacuum expectation values of Q- and Q̃-observables obey
quantum ℏ-oper equation. Further, the correlation functions of the Q-, Q̃-observables and
the regular monodromy surface defect are shown to satisfy fractional TQ equations.

4.1 Moduli space of ℏ-connections and affine space of ℏ-opers

We introduce the moduli space of ℏ-connections on P1 with a framing at ∞ ∈ P1 and regular
singularities at D ⊂ P1 \ {∞} = C, and the affine space of ℏ-opers as a subspace. The
presentation in this section resembles the one in [53–55], but is different in detail.

Fix ℏ ∈ C. Let us consider the shift automorphism eℏ∂x : P1 −→ P1 defined by x 7→ x+ℏ.
Note that it restricts to a well-defined automorphism on P1 \{∞} = C, eℏ∂x : C −→ C. Given
a rank n vector bundle E −→ P1, let Eℏ be the pullback of E under the map eℏ∂x .

Consider a map A : E −→ Eℏ. Upon trivialization of E on an open dense subset
U ⊂ P1, the map A is determined by the matrix A(x) ∈ gl(n) ⊗C(x) representing linear map
Ex → Ex+ℏ with respect to a chosen basis on U ∩ e−ℏ∂x(U). A change of trivialization by
g(x) modifies the matrix A(x) by

A(x) 7→ g(x+ ℏ)A(x)g(x)−1. (4.1)

The shift automorphism induces an operator eℏ∂x : E −→ Eℏ that sends a section s(x) to
s(x+ ℏ). The above gauge transformation can also be expressed as

1n −A(x)e−ℏ∂x 7→ g(x+ ℏ)
(
1n −A(x)e−ℏ∂x

)
g(x+ ℏ)−1. (4.2)

The map A : E −→ Eℏ is called meromorphic ℏ-connection on E with a framing K ∈ GL(n)
and regular singularities at D = {m+

0 ,m
+
0 , · · · ,m+

N−1} ⊂ P1 \ {∞} = C, if A(x) has simple
poles only at D and A(x) x→∞∼ K. In particular, A(x) is regular at ∞ ∈ P1 and detA(x) =
detK P −(x)

P +(x) = detK∏N−1
a=0

x−m−
α

x−m+
α

for some {m−
α |α = 0, 1, · · · , N − 1} ⊂ P1 \ {∞} = C. In

other words, {m−
α |α = 0, 1, · · · , N − 1} is the locus where A(x) is not invertible, and we

regard it also as an input data for the ℏ-connection. We will consider the generic case where
the ℏ-lattices originating from the zeros and the simple poles do not overlap anywhere, i.e.,
{m±

α + ℏZ≥0} ∩ {m±
β + ℏZ≥0} = ∅ for any pair of ± and α, β ∈ {0, 1, · · · , N − 1}.

Now let us restrict to our main case n = 2. We start from a ℏ-connection in the form of

A(x) =
(
α(x) β(x)
γ(x) δ(x)

)
, A(x) x→∞∼

(
q 0
0 1

)
, detA(x) = q

P−(x)
P+(x) . (4.3)
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We can always make a gauge transformation to set the lower-left component to be 1
P +(x) , at

the price of creating singularities of the ℏ-connection at the zeros of γ(x). The ℏ-opers are
defined to be the ℏ-connections which do not contain any additional singularity in this gauge,
i.e., γ(x) = 1

P +(x) . Then, by making a triangular gauge transformation by

g(x) =
(

1 P+(x)δ(x)
0 1

)
, (4.4)

we get

A′(x) =

 t(x)
P +(x) −qP−(x)

1
P +(x) 0

 , (4.5)

where we defined t(x) := P+(x)α(x)+P+(x+ℏ)δ(x+ℏ) = (1+q)xN + · · · , which is a degree
N polynomial in x. The coefficients of the polynomial t(x) span the space of ℏ-opers. The
leading coefficient is fixed to be 1+q by the framing as noted above. We will also soon restrict
to the subspace where the next-to-leading order coefficient is fixed to a number. After doing
so, the space of ℏ-opers is a (N − 1)-dimensional affine space.

In the gauge (4.5), we can write the ℏ-difference equation for a horizontal section as

0 =

12 −

 t(x)
P +(x) −qP−(x)

1
P +(x) 0

 e−ℏ∂x

 1
M+(x)

(
Q(x+ ℏ)
Q(x)

)
, (4.6)

where, as a convention, we normalized the horizontal section by a product of Γ-functions

M+(x), defined by M±(x) = ∏N−1
α=0

(−ℏ)
x−m±

α
ℏ

Γ
(

− x−m±
α

ℏ

) satisfying M±(x)
M±(x−ℏ) = P±(x). It follows that

the lower component Q(x) of the horizontal section satisfies a second-order scalar ℏ-difference
equation,

0 =
(
1 − t(x)e−ℏ∂x + qP (x)e−2ℏ∂x

)
Q(x+ ℏ). (4.7)

We call this ℏ-difference equation the ℏ-oper equation, and call Q(x) the ℏ-oper solution.
Note that the ℏ-oper equation is nothing but the scalar Baxter TQ equation satisfied by
Q-functions for the gl(2) XXX spin chain with N sites. We will give a gauge theoretical
construction of the ℏ-opers in the next subsection, and come back to the spectral problem of
the XXX spin chain as a consequence of our N = 2 theoretical formulation of the ℏ-Langlands
correspondence in section 5.4.

Let us be given with two independent ℏ-oper solutions Q(x) and Q̃(x). The ℏ-Wronskian
of the corresponding horizontal sections is defined by

Wℏ(x) := 1
M+(x)

(
Q(x+ ℏ)
Q(x)

)
∧ 1
M+(x)

(
Q̃(x+ ℏ)
Q̃(x)

)

= 1
M+(x)2

(
Q(x+ ℏ)Q̃(x) − Q̃(x+ ℏ)Q(x)

)
.

(4.8)
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From (4.6), it follows that

Wℏ(x)
Wℏ(x− ℏ) = q

P−(x)
P+(x) , Wℏ(x) = q

x
ℏ
M−(x)
M+(x) . (4.9)

Note that the ℏ-Wronskian Wℏ(x) of the ℏ-oper has N semi-infinite ℏ-lattices of zeros at
x ∈ m−

α + ℏZ≥0, as well as N semi-infinite ℏ-lattices of simple poles at x ∈ m+
α + ℏZ≥0,

α ∈ {0, 1, · · · , N − 1}. This is in contrast with the ℏ-(or q-)opers studied in [53–55] whose ℏ-
(or q-)Wronskian have finite lattices of zeros (without any pole). As we will show in section 5,
this extension to semi-infinite ℏ-lattices of zeros and simple poles is necessary to incorporate
bi-infinite Yangian modules in the XXX spin chain. When our formulation is restricted to the
special loci where the positions of zeros m−

α and poles m+
α are related by an integer multiple

of ℏ, i.e., m+
α − m−

α ∈ ℏZ>0, the bi-infinite modules precisely contain finite-dimensional
submodules and the ℏ-Wronskian with finite ℏ-lattices of zeros is recovered by cancellation
between Γ-functions.5

The holomorphic symplectic structure of the moduli space of ℏ-connections was stud-
ied in [34], from the twistor rotation for the hyper-Kähler structure of the moduli space
MmHiggs(GL(n),P1;D) of multiplicative Higgs bundles (the space of ℏ-opers is called the
Hitchin section there in the view of the twistor rotation. See also [56]). We expect the space
of ℏ-opers is a holomorphic Lagrangian submanifold of the moduli space of ℏ-connections.
We postpone the description of the space of ℏ-opers in Darboux coordinates on the moduli
space of ℏ-connections to future work. See also [57] for a different realization of ℏ-opers.

4.2 TQ equation for Q/Q̃-observables and ℏ-opers

4.2.1 Q-observable

To the gauge origami setup for the Q-observable we add one more D3-brane supported on
{0} × C2

34. The effect of that insertion is to engineer the qq-character. Consequently, the
equivariant Chern characters of the Chan-Paton bundles are given by

N12 =
∑

α

eaα · R0 +
∑

α

em−
α −ε4 · R1 +

∑
α

em+
α −ε3 · R2

N13 = ex′+ε1+ε3 · R1

N34 = exR0.

(4.10)

5To be precise, the bi-infinite module Hα in consideration contains a lowest-weight sub-Verma module at
the discrete loci m+

α − aα ∈ ℏZ. If we impose further m+
α − m−

α ∈ ℏZ > 0, then we obtain the described finite-
dimensional submodule. These specializations of the parameters can be understood in the view of higgsing.
See [52].
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Flowing to the A1 theory by setting q1, q2 = 0 we arrive at the gauge origami partition
function

Z(x, x′) =
∑

λ12,λ34

q|λ12|+|λ34|E
[
− P̂3Ŝ12Ŝ

∗
12

P̂ ∗
12

− P̂2Ŝ13Ŝ
∗
13

P̂ ∗
13

− P̂1Ŝ34Ŝ
∗
34

P̂34

−q̃12Ŝ
∗
12Ŝ34 + q̃2P̂4Ŝ13

Ŝ∗
12
P̂ ∗

1
− q̃13

P̂2

P̂3
Ŝ34Ŝ

∗
13

]Z3

. (4.11)

It was shown in [19] that the contribution

−q̃13
P̂2

P̂3
N̂34N̂

∗
13 (4.12)

can be replaced by

−q̃13N̂34N̂
∗
13 − q̃34N̂13N̂

∗
34. (4.13)

For completeness, we will repeat the derivation here. This term originates from the product
of weights of an infinite set of equations

J13B
k
3 I34 = 0, J34B

k
3 I13 = 0, k ≥ 0. (4.14)

on the origami ADHM data. We now show that in our setup the matrix B3 vanishes, hence
the corresponding weights are never zero, and can be dropped from the numerator without
introducing poles in the relevant variable x. First, B3I12 = 0 by the standard stability
condition of gauge origami. Secondly, the choice of N̂13 in R2 representation of Z3 orbifolding
ensures that instanton cannot move onto the C2

13 subspace in the freezing, K13 = 0. Thus,
we get

B3 I13 = 0.

Finally, the would-be vectors B3I34(N34) belong to the R2-component of K34, which is empty
in the ungauging limit. This implies

B3I34 = 0.

Therefore, all constraints are automatically satisfied for all k > 0. The only remaining
constraints imposed to the gauge origami data are

J13I34 = 0, J34I13 = 0, (4.15)

whose contributions to the partition function read exactly

E
[
−q̃13N̂34N̂

∗
13 − q̃34N̂13N̂

∗
34 + P̂2P̂4N̂13K̂

∗
34

]
.

With the simplification (4.13), the gauge origami partition function becomes

Z(x, x′) = ⟨T(x) ⋆Q(x′)⟩a =
∑

λ

q|λ|µa,λ

(
T(x) ⋆Q(x′)

)
[a,λ], (4.16)
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i.e. the vev of the OPE of the qq-character T(x) and the Q-observable Q(x′), which evaluates
to

T(x) ⋆Q(x′)[a,λ] =
(

(x− x′)Y(x+ ε1 + ε2)[a,λ] + q(x− x′ + ε2) P (x)
Y(x)[a,λ]

)
Q(x′)[a,λ]

(4.17)

with

P (x) = P+(x)P−(x), P±(x) =
N∏

f=1
(x−m±

f ). (4.18)

on an instanton configuration λ in the vacuum a. Now, the absence of poles in x implies that
the left hand side of (4.16) is a degree N + 1 polynomial in x, whose coefficients are entire
functions of x′. We can write:

Z(x, x′) = (x− x′)⟨T0(x) · Q(x′)⟩ + qε2⟨T1(x) · Q(x′)⟩ + ⟨T−1 · Q(x′)⟩ (4.19)

where the observables

T0(x) =
(
Y(x+ ε1 + ε2) + q

P (x)
Y(x)

)
x≥0

T1(x) =
(
P (x)
Y(x)

)
x≥0

T−1 = Coeffx−1

(
Y(x+ ε1 + ε2) + q

P (x)
Y(x)

) (4.20)

are, explicitly, polynomials6 in x, whose coefficients are some polynomials in Trϕk and the
masses, and T−1 is also a polynomial in Trϕk’s and the masses. The product · in (4.19)
means that the evaluations at λ of the factors simply multiply, i.e.(

T0(x) · Q(x′)
)

[a,λ] = T0(x)[a,λ] × Q(x′)[a,λ] (4.21)

At special values x = x′ and x = x′ − ε2, the Eq. (4.16) gives

Z(x′, x′) = ε2q

〈
P (x′)
Y(x′) Q(x′)

〉
= ε2qP (x′)⟨Q(x′ − ε1)⟩

Z(x = x′ − ε2, x
′) = −ε2⟨Y(x′ + ε1)Q(x′)⟩ = −ε2⟨Q(x′ + ε1)⟩

(4.22)

Let us now evaluate
Z(x, x) − Z(x− ε2, x)

ε2
(4.23)

in two ways: first, from (4.22), second, from (4.19). We arrive at the equation:

⟨Q(x+ ε1) + qP (x)Q(x− ε1)⟩ = ⟨t(x) · Q(x)⟩ (4.24)
6The notation (. . .)x≥0 means taking the polynomial part in expansion near x = ∞, similarly the notation

Coeffx−1 (. . .) means taking the residue at x = ∞
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where we defined an observable-valued degree N polynomial in x,

t(x) = T0(x− ε2) + q (T1(x) − T1(x− ε2)) (4.25)

whose coefficients are again the polynomials in the local observables Trϕk and the masses.
We call (4.24) the quantum TQ equation.

In Ω1-background the quantum TQ equation reduces to the Baxter’s TQ equation on the
Q-function:

0 =
[
1 − t(a;x)e−ε1∂x + qP (x)e−2ε1∂x

]
Q(a;x+ ε1), (4.26)

which we shall also call the ℏ-oper equation, where

t(a;x) := lim
ε2→0

⟨t(x)⟩a
⟨1⟩a

(4.27)

is the normalized expectation value of the qq-character T(x) in the limit ε2 → 0.
The second-order scalar ℏ-difference equation (4.26) is precisely the ℏ-oper equation (4.7)

that we derived in section 4.1. Thus, we gave a N = 2 gauge theoretical realization of the
GL(2) ℏ-opers on C (more precisely, P1 with a framing at ∞) with regular singularities at
D = {m±

α |α = 0, 1, · · · , N − 1} ⊂ C by the Q-observable surface defect.
Note that the positions of the singularities are given by the mass parameters m± and

the twist parameter is identified with the gauge coupling q. Finally, t(a;x) is a degree N
polynomial whose coefficients are parametrized by the Coulomb moduli a. The first two
coefficients are respectively 1 + q and a simple combination of m̄± and ε1. The rest of N − 1
coefficients are combinations of normalized vacuum expectation values of the local observables
in the limit ε2 → 0, namely, limε2→0

〈
Trϕk

〉
a
, k = 2, 3, · · · , N . We will collectively denote

these coefficients as Ek(a), k = 2, 3, · · · , N . These coefficients (Ek(a))N
k=2, and therefore the

Coulomb moduli a, parameterize the affine space of ℏ-opers.
At this point, recall that we split the Coulomb moduli (aα)N−1

α=0 into the values aα
ε1

mod Z
and ε1-integral shifts. The former is considered to be fixed, and the ε1-integral shifts param-
eterize the ℏ-opers for the fixed values of aα

ε1
mod Z. In turn, we regard the space of ℏ-opers

as a (N − 1)-dimensional ε1-lattice for each choice of aα
ε1

mod Z rather than an affine space
over C.

Even though we do not describe the space of ℏ-opers in Darboux coordinates on the
moduli space of ℏ-connections in this work, it would be desirable to do so to find an explicit
relation between them and the Coulomb moduli a, and to express the generating function for
the space ℏ-opers in terms of the Coulomb moduli. See [9] for the gauge theoretical derivation
of the equivalence of the generating function for the space of opers, under a higher-rank
generalization of the NRS (sometimes called a higher-rank generalization of the complexified
Fenchel-Nielsen, cf [58, 59]) coordinates on the moduli space of flat connections, and the
effective twisted superpotential of the Ω1-deformed N = 2 theory, as conjectured in [60].
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4.2.2 Q̃-observable

We now verify that the identical TQ equation is satisfied by the Q̃-observable in the Ω1-
background. As in the case of Q-observable, we insert an additional D3-brane supported on
{0} × C2

34. The gauge origami setup is represented by the following

N12 =
∑

α

eaα · R0 +
∑

α

em−
α −ε4 · R1 +

∑
α

em+
α −ε3 · R1

N13 = ex′+ε1 · R0

N34 = exR0.

(4.28)

The gauge origami partition function gives the correlation function of the Q̃-observable and
the qq-character,

Z̃(x, x′) =
〈
T(x) ⋆ Q̃(x′)

〉
= q

x′
ε1

∞∑
d=0

qdϕd ×

[(
x′ − x− ε2 + dε1ε2

x′ − x+ dε1

)〈
Q̃d(x′)Y(x+ ε1 + ε2)

〉
+

+qP (x)
(
x′ − x− ε2

ε2 + (d+ 1)ε1
x′ − x+ (d+ 1)ε1

) 〈Q̃d(x′)
Y(x)

〉]
,

(4.29)

We stress that in (4.29) the potential poles at x = x′ + dε1 are absent even before taking the
expectation value.

Thus, Z̃(x, x′) is a polynomial of degree N + 1 in x. We can express Z̃(x, x′) in a form,
somewhat similar to (4.19) (cf. (4.20)):

Z̃(x, x′) = (x′−x−ε2)⟨T0(x)·Q̃(x′)⟩+qε2⟨T1(x)·Q̃(x′)⟩−⟨T−1 ·Q̃(x′)⟩ +ε1ε2 z̃(x, x′) (4.30)

with the ‘error’ term

z̃(x, x′) = −q
x′
ε1

∞∑
d=1

dqd ϕd

〈
Q̃d−1(x′)G(x, x′ + dε1)
Y(x′ + (d+ 1)ε1 + ε2)

〉
,

G(x, x′) =
Y(x+ ε1 + ε2)P (x′)

Y(x′) − Y(x′ + ε1 + ε2)P (x)
Y(x)

x′ − x

=
(T0(x) − qT1(x)) P (x′)

Y(x′) − Y(x′ + ε1 + ε2)T1(x)
x′ − x

+ o(1/x)

(4.31)

At the special values x′ = x+ ε2, or x′ = x the Eq. (4.29) simplifies to

Z̃(x− ε2, x) = ε2

〈
Q̃(x+ ε1)

〉
, (4.32)
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as there is no contribution from d = 0 in the first line due to the factor x′ − x − ε2 + dε1 in
the numerator, and

Z̃(x, x) = −ε2qP (x)
〈

Q̃(x− ε1)
〉
, (4.33)

where we again used the definition (3.17). Again, by computing Z̃(x−ε2,x)−Z̃(x,x)
ε2

in two ways,
we arrive at the equation〈

Q̃(x+ ε1) + qP (x)Q̃(x− ε1)
〉

=
〈

(t(x+ ε2) + q (T1(x− ε2) − T1(x+ ε2))) · Q̃(x)
〉

+
∞∑

d=1
q

x
ε1

+d (ϕd − ϕd−1)
〈

Q̃d−1(x)T1(x) − Q̃d(x) (T0(x) − qT1(x))
〉

(4.34)

We call this quantum TQ equation for the Q̃-observable.
In the limit ε2 → 0, the quantum TQ equation reduces to the Baxter’s TQ equation, or

equivalently the ℏ-oper difference equation, on the Q̃-function:

Q̃(a;x+ ε1) + qP (x)Q̃(a;x− ε1) = t(a;x)Q̃(a;x),

0 =
[
1 − t(a;x)e−ε1∂x + qP (x)e−2ε1∂x

]
Q̃(a;x+ ε1).

(4.35)

It is clear from (4.34) that t(a;x), the degree N polynomial whose coefficients are nor-
malized vevs of the local observables, in the above equation is identical to the one appearing
in the ℏ-oper equation (4.26) for the Q-function. It can also be directly checked as follows.
Multiplying the normalized vevs t(a;x) and Q̃(a;x) (3.17) in the limit ε2 → 0, we get

t(a;x)Q̃(a;x)

= q
x

ε1

∞∑
d=0

qd M(x+ dε1)
Q(a;x+ dε1)Q(a;x+ (d+ 1)ε1) t(a;x)Q(a;x)

= q
x

ε1

∞∑
d=0

qd M(x+ dε1)
Q(a;x+ dε1)Q(a;x+ (d+ 1)ε1)(Q(a;x+ ε1) + qP (x)Q(a;x− ε1))

= Q̃(a;x+ ε1) + qP (x)Q̃(a;x− ε1),

(4.36)

where we used the the TQ equation for the Q-observable in the second line and the definition
(3.17) of the Q̃-observable in the fourth line. Accordingly, we conclude that the normalized
vacuum expectation value Q̃(a;x) of the dual Q-observable in the limit ε2 → 0 satisfies the
same ℏ-oper equation (4.35),

0 =
[
1 − t(a;x)e−ε1∂x + qP (x)e−2ε1∂x

] (
Q(a;x+ ε1) Q̃(a;x+ ε1)

)
. (4.37)

– 32 –



4.2.3 Remark: Fourier transformation between ℏ-opers and opers
Here, we make a short digression and remark about the relation between the quantum TQ
equation for the Q/Q̃-observables and the quantum oper equation for the canonical surface
defect [9]. The aim is only to motivate the quantum TQ equations with ε2 ̸= 0. The detail
of the relation and its implication on the bispectral duality can be found in the companion
paper [61].

The canonical surface defect, for which we call the corresponding observable H-observable,
is related to the Q-observable by the Fourier transformation [9]

H(α)(y) =
∑

x∈Lα

y
− x

ε1 Q(x), α = 0, 1, · · · , N − 1, (4.38)

where Lα = aα +ε1Z is the ε1-lattice centered at the Coulomb parameter aα. The summation
converges in the domain |q| < |y| < 1 due to the zeros of the Γ-functions in Q(x). The
description of the canonical surface defect as coupling a two-dimensional N = (2, 2) gauged
linear sigma model and its observable expression are explained in [19, 61].

Under the Fourier transformation, the quantum TQ equation for Q-observable passes to
a N -th order differential equation for H-observable,

0 =
[
∂N

y + t2(y)∂N−2
y + · · · + tN (y)

]
Ĥ(y), (4.39)

where we introduced a proper normalization factor to bring the differential into a canonical
form. This is called the quantum oper equation [9, 19].

Now, we consider the Q̃-observable. We define the H̃-observable by the Fourier transfor-
mation

H̃(α)(y) =
∑

x∈L̃α

y
− x

ε1 Q̃(x), α = 0, 1, · · · , N − 1, (4.40)

where L̃α = m−
α + ε1Z is the ε1-lattice centered at the mass parameter m−

α . It is not difficult
to see that the series converges in the domain 0 < |y| < |q| due to the Γ-functions in Q̃(x).

Since the quantum TQ equation (4.34) for the Q̃-observable involves more terms com-
pared to the one for the Q-observable, it is not immediate that the two quantum TQ equations
turn into the same kind of N -th order differential equation through the Fourier transforma-
tion. Here, we will show the two equations are actually the same, explicitly at the example
of N = 2.

At N = 2, it is straightforward to compute

T0(x) =
(
Y(x+ ε1 + ε2) + q

P (x)
Y(x)

)
x≥0

= (x− a1 + ε+)(x− a2 + ε+) + ε1ε2⟨|λ|⟩ + q(x2 + (a−m)x+ a2
1 + a2

2 + a1a2 − am− ε1ε2⟨|λ|⟩)

T1(x) =
(
P (x)
Y(x)

)
x≥0

= x2 + (a−m)x+ a2
1 + a2

2 + a1a2 − am− ε1ε2⟨|λ|⟩,
(4.41)
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where we use the notation ε+ = ε1 + ε2, a = a1 + a2, and m = m+
1 +m−

1 +m+
2 +m−

2 . Also,
we compute

z̃(x, x′) =
〈

(x+ ε1∇q)
[
(q − 1)

(
∇q − x′

ε1

)
+ q

ε+
ε1

]
Q̃(x′)

〉
−
〈[

(2ε+ − a)
(

∇q − x′

ε1

)
+ (m− a)q

(
∇q − x′

ε1
+ ε1 + ε2

ε1

)]
Q̃(x′)

〉
,

(4.42)

where ∇q = q∂q. By a direct substitution into the quantum TQ equations, we get〈
P+(x+ ε1)Q(x+ ε1) + qP−(x)Q(x− ε1)

〉
=
〈[

(1 + q)x2 + (2ε1 − qm− (1 − q)a)x+ (a1 − ε1)(a2 − ε1) + q(a(a−m) − a1a2)
]
Q(x)

〉
+ ε1ε2(1 − q)∇q ⟨Q(x)⟩ ,

(4.43)

and〈
P+(x+ ε1)Q̃(x+ ε1) + qP−(x)Q̃(x− ε1)

〉
=
〈[

(1 + q)x2 + (2ε1 − (1 − q)(a− ε2) − qm)x+ (a1 − ε)(a2 − ε) + q ((a−m)(a− ε2) − a1a2 − ε1ε2)
]
Q̃(x)

〉
+ ε1ε2(1 − q)∇q

〈
Q̃(x)

〉
,

(4.44)

where we normalized the Q- and Q̃-observables using some Γ-functions. In particular, it
is crucial to have z̃(x, x′)-terms in the quantum TQ equation for Q̃(x) to pull out the q-
derivative outside the bracket. We notice that the above two equations are identical, after
shifting a1 → a1 + ε2 in the latter and multiplying q

− a1−ε1
ε1 to Q̃(x). Therefore, under such a

redefinition taken into account, the Fourier transform of Q- and Q̃-observables give solutions
to the same quantum oper equation, converging in different domains. For more detail of the
Fourier transformation between the quantum TQ equation and the quantum oper equation
and its implication on the bispectral duality, see [9, 19, 61]. For the quantum oper equation
associated to the Fourier transform of the next-to-simplest Q-observable, see [62].

4.2.4 ℏ-Wronskian and QQ̃-relation

So far, we achieved two solutions to the ℏ-oper difference equation by the normalized vacuum
expectation values of the Q-observable and the dual Q-observable in the limit ε2 → 0. Here,
we will show that these two solutions are indeed generically independent by computing the
ℏ-Wronskian.

The ℏ-Wronskian7 is defined to be the determinant of the matrix formed by the ℏ-jets of
7It is called quantum Wronskian in some literature. The term quantum sometimes indicates the ε2 ̸= 0

deviation (i.e. non-critical level κ ̸= 0), so that we avoid using this terminology and call it ℏ-Wronskian not
to cause any confusion.

– 34 –



solutions to ℏ-difference equation,

det
(
Q(a;x+ ε1) Q̃(a;x+ ε1)
Q(a;x) Q̃(a;x)

)
= Q(a;x+ ε1)Q̃(a;x) − Q̃(a;x+ ε1)Q(a;x). (4.45)

By simply plugging the expression for the normalized vacuum expectation value Q̃(a;x) of the
dual Q-observable in the limit ε2 → 0 into the above definition, the ℏ-Wronskian is computed
to be

Q(a;x+ ε1)Q̃(a;x) − Q̃(a;x+ ε1)Q(a;x) = q
x

ε1M(x), (4.46)

where M(x) is a product of inverse Γ-functions defined in (3.18). Thus, the ℏ-Wronskian is
an entire function in x ∈ C with simple zeros only at discrete loci, confirming independence
of the two solutions to the ℏ-oper equation at generic x ∈ C. Note that the ℏ-Wronskian is
precisely what appeared in the ℏ-oper condition (4.9), up to a unimportant entire function.

We remind that the ℏ-Wronskian relation is a special of the QQ̃-relation (see [63] for
instance), which reads

Q (a;x+mε1) Q̃(a;x) − Q̃(a;x+mε1)Q(a;x) = q
x

ε1M(x) t(m)(a;x+mε1), (4.47)

where m ∈ Z>0 and t(m)(a;x) is the eigenvalue of the transfer matrix t(m)(x) = TrCmKT (x)
defined by using the auxiliary space Cm, at the eigenstate specified by a (see appendix A and
section 5.1). At m = 1, we recover the ℏ-Wronskian relation (4.46). We show here that the
QQ̃-relation holds in the next-to-simplest case m = 2, involving the standard transfer matrix
for Y (gl(2)).

Using the expression for the normalized vacuum expectation value Q̃(a;x) of the dual
Q-observable (3.17), we compute

Q(a;x+ 2ε1)Q̃(a;x) − Q̃(a;x+ 2ε1)Q(a;x)

= q
x

ε1M(x)
(
Y(a;x+ 2ε1) + q

P (x+ ε1)
Y(a;x+ ε1)

)
= q

x
ε1M(x)Q(a;x+ 2ε1) + qP (x+ ε1)Q(a;x)

Q(a;x+ ε1)
= q

x
ε1M(x) t(a;x+ ε1).

(4.48)

We confirm the QQ̃-relation is satisfied at each basis elements specified by a, with the transfer
matrix t(a;x) = t(2)(a;x+ε1) given by the vev of the qq-character of the N = 2 gauge theory
in the limit ε2 → 0 (see (5.10) and footnote 13). This is indeed anticipated from our gauge
theoretical formulation of the ℏ-oper equation (4.26) and (4.37).

For higher m > 2, the QQ̃-relation expresses the transfer matrices defined by the higher-
dimensional auxiliary space Cm in terms of the higher qq-characters. In the present case of
Y (gl(2)), the only non-trivial transfer matrix is at m = 2 from which all the other higher
transfer matrices can be expressed. This is precisely in accordance with that the higher
qq-characters of the A1-quiver gauge theory can be expressed in terms of the fundamental
qq-character in the limit ε2 → 0.
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4.3 Non-perturbative Dyson-Schwinger equations for surface defects and ob-
servables

Having established the ℏ-oper equations as chiral ring equations for the Q-observables, we
turn to the configuration of the parallel surface defects: the (dual) Q-observable and the
regular monodromy surface defect inserted on top of each other.

Recalling from section 3.4.3 that the Q-observables act as Q-operators when inserted on
top of the monodromy surface defect, our goal is to construct the universal ℏ-oper equation
(equivalently, the operator Baxter TQ equation) as chiral ring equations. In fact, the 0-
observables inserted at the interface of the two defects make the construction even richer,
leading to the R-matrices of the Yangian which are building blocks of the monodromy matrix.
Therefore, we investigate the chiral ring equations for the generalized Q-observables (3.49),
which we refer to as the fractional quantum TQ equations.

4.3.1 Q-observable in the presence of the surface defect

For this, we insert an additional D3-brane supported on {0} ×C2
34 , which leads to the gauge

origami configuration represented by

N̂12 =
N−1∑
ω′=0

[
eaω′ R0 + q13q

δω′,0
2 e

m−
[ω′−1]R1 + q−1

3 em+
ω′ R2

]
⊗ q̃ω′

2 Rω′ ,

N̂13 =
N−1∑
ω′=0

ex′
ω′ +ε1+ε3 q̃ω′

2 R1 ⊗ Rω′ ,

N̂34 = exq̃ω
2 R0 ⊗ Rω.

(4.49)

The gauge origami partition function8

Zω(x,x′) =
∑

λ̂

N−1∏
ω=0

qkω
ω µc

a,λ̂
Tω(x) ⋆ Q(x′)[a, λ̂], (4.50)

becomes the expectation value of the OPE of the generalized Q-observable and the qq-
character,

Tω(x) ⋆ Q(x′) =(x− x′
ω)Y[ω+1](x+ ε1 + δω,N−1ε2)Q(x′) + qω(x− x′

[ω+1] + δω,N−1ε2)Pω(x)
Yω(x)Q(x′),

(4.51)
8

Zω(x, x′) =
∑

λ̂12,λ̂34

N−1∏
ω=0

q
k12,ω+k34,ω
ω E

[
− P̂3Ŝ12Ŝ∗

12

P̂ ∗
12

− P̂2Ŝ13Ŝ∗
13

P̂ ∗
13

− P̂1Ŝ34Ŝ∗
34

P̂ ∗
34

− q̃12Ŝ∗
12Ŝ34

+q̃2P̂4Ŝ13
Ŝ∗

12

P̂ ∗
1

− q̃13N̂34N̂∗
13 − q̃34N̂13N̂∗

34 + P̂2P̂4N̂13K̂∗
34

]Z3×ZN
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where Pω(x) = P+
ω (x)P−

ω (x) and P±
ω (x) = x − m±

ω+1, and we use the notation (3.28) for
l = N . Recall the large x expansions 9:

Y[ω+1](x) = x− p[ω+1] + x−1
(
ε1D

(1)
ω +

p2
[ω+1]
2 −

a2
[ω+1]
2

)
+ o(x−2) ,

Pω(x)
Yω(x) = x−m+

ω −m−
ω + pω+

x−1
(

−ε1D
(1)
ω−1 + ε2

1
2 ν

2
ω−1 + (m+

ω −m−
ω − aω − ε1)ε1νω−1 + P+

ω (aω)P−
ω (aω)

)
+ o(x−2)

(4.52)

Since Zω(x,x′) has no singularities in x, it is a polynomial of degree 2 in x, which can be
computed by expanding the right hand side (4.51) at large x dropping all negative powers of
x. Using (4.52) we get:

Zω(x,x′) =(x− x′
ω)⟨⟨(x− a[ω+1] + ε1 + ε2δω,N−1 + ε1νω)Q(x′)⟩⟩

+ ⟨⟨
(
ε1D

(1)
ω + ε2

1
2 ν

2
ω − ε1a[ω+1]νω

)
Q(x′)⟩⟩

+ qω(x− x′
[ω+1] + ε2δω,N−1)⟨⟨(x−m+

ω −m−
ω + aω − ε1νω−1)Q(x′)⟩⟩

+ qω⟨⟨
(

−ε1D
(1)
ω−1 + ε2

1
2 ν

2
ω−1 + (m+

ω −m−
ω − aω − ε1)ε1νω−1

+P+
ω+1(aω)P−

ω (aω + ε1)
)
Q(x′) ⟩⟩

(4.53)

where

D(1)
ω = ε2kω +

∑
□∈Kω

ĉ□ −
∑

□∈Kω+1

ĉ□ = ε2kω + ĉω − ĉω+1.

ĉ□ = âα + (i− 1)ε1 + (j − 1)ε̂2, □(i,j) ∈ λ̂(α).

(4.54)

At the special values of x in (4.51) we get

Zω(x = x′
[ω+1]−δω,N−1ε2,x′) = (x′

[ω+1]−δω,N−1ε2−x′
ω)P−

[ω+1](x[ω+1]+ε1)⟨Q(x′+ε1e[ω+1])⟩,

Zω(x = x′
ω,x′) = qωP

+
ω (x′

ω)(x′
ω − x′

[ω+1] + δω,N−1ε2)⟨Q(x′ − ε1eω)⟩ , (4.55)

where
eω = (δω,ω′)N−1

ω′=0 . (4.56)
9p[ω+1] = a[ω+1] − ε1νω, νω = kω − kω+1
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We now compute, again in two ways,

Zω(x = x′
ω,x′) − Zω(x = x′

[ω+1] − δω,N−1ε2,x′)
x′

ω − x′
[ω+1] + δω,N−1ε2

=by (4.53)

=
(
x′

[ω+1] − a[ω+1] + ε1 + ε1uω+1∂uω+1 + qω(x′
ω −m+

ω −m−
ω + aω − ε1uω∂uω )

)
⟨⟨Q(x′)⟩⟩

=by (4.55)

= qωP
+
ω (x′

ω)⟨⟨Q(x′ − ε1eω)⟩⟩ + P−
[ω+1](x[ω+1] + ε1)⟨⟨Q(x′ + ε1e[ω+1])⟩⟩ (4.57)

which we can call the fractional quantum TQ equations.
Again, we normalize Ψ by the tree level contribution (3.37)

N−1∏
ω=0

u
m+

ω −aω
ε1

ω , (4.58)

For the generalized Q-observables defined in (3.49) the fractional TQ equations simplify
to

T̂ω(x)⟨⟨Qω(x)⟩⟩ = ⟨⟨Qω+1(x)⟩⟩ + qωPω(x)⟨⟨Qω−1(x)⟩⟩, ω = 0, 1, · · · , N − 1, (4.59)

with the understanding Qω+N (x) = Qω(x+ ε1) and

T̂ω(x) = (1 + qω)x+ ε1uω+1(∂uω+1 − ∂uω ) −m+
ω+1 − qωm

−
ω . (4.60)

as computed from (4.57).

4.3.2 Q̃-observable in the presence of the surface defect

Next we consider the gauge origami setup:

N̂12 =
N−1∑
ω′=0

[
eaω′ R0 + q13q

δω′,0
2 e

m−
[ω′−1]R1 + q−1

3 em+
ω′ R2

]
⊗ q̃ω′

2 Rω′ ,

N̂13 =
N−1∑
ω′=0

ex′
ω′ +ε1 q̃ω′

2 R0 ⊗ Rω′ ,

N̂34 = exq̃ω
2 R0 ⊗ Rω.

(4.61)

The gauged origami partition function is computed to be

Z̃ω(x,x′) =
∑

λ̂

N−1∏
ω=0

qkω
ω µZN

a,λ̂
T̃ω(x) ⋆ Q̃(x′)[a, λ̂] (4.62)
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where OPE of the fractional qq-character and the Q̃-observable is given by

T̃ω(x) ⋆ Q̃(x′)

=
N−1∏
ω′=0

∑
d

q

x′
ω′

ε1
+dω′

ω′

[(x′
ω − x)(x− x′

[ω+1] + ε2δω,N−1 − d[ω+1]ε1)
x− x′

ω − dωε1
Y[ω+1](x+ ε1 + δω,N−1ε2)

+ qω

(x′
[ω+1] − x− ε2δω,N−1)(x′

[ω−1] − x+ (d[ω−1] + 1)ε1 + ε2δω,0)
x′

ω − x+ (dω + 1)ε1

Pω(x)
Yω(x)

]
Zd(x′)Q̃d(x′),

(4.63)

where we used the notation of (3.55). Again, the apparent poles at x = x′
ω + dωε1 actually

cancel. See the appendix B for some details. The regularity theorem implies Z̃ω(x,x′) is
a linear function of x. By expanding the right hand side of (4.63) in x we relate Z̃ω to
expectation values of Q̃d(x′)

Z̃ω(x,x′) = ⟨⟨ −x2 + x
(
x′

ω + x′
[ω+1] − ε2δω,N−1 + (d[ω+1] − dω)ε1 − x′

ω

)
Q̃d(x′) ⟩⟩ (4.64)

Now, at special values of x, Z̃ω reduces to vevs of fractional Q̃-observables. First we
consider the case x = x′

ω:

Z̃ω(x = x′
ω,x′)

(x′
[ω+1] − x′

ω − ε2δω,N−1) = qωPω(x′
ω) ⟨⟨Q̃(x′ − ε1eω)⟩⟩ . (4.65)

Here we used (3.56). Next, x = x′
[ω+1] − ε2δω,N−1 gives

Z̃ω(x = x′
[ω+1] − ε2δω,N−1,x′)

(x′
ω − x′

[ω+1] + ε2δω,N−1) = Q̃(x′ + ε1e[ω+1]) , (4.66)

where we again used the relations (3.56).
Let us define a differential operator in fractional couplings, also a degree 1 polynomial in

x′ by

T̃ω(x′) = x′
[ω+1]−a[ω+1]+ε1+ε1uω+1∂uω+1+ε2δω,N−1+qω(x′

ω−m+
ω −m−

ω +aω+ε1uω∂uω −ε2δω,0).
(4.67)

Then, by taking the difference between the two equations (4.65) and (4.66) (and changing
the notation from x′ to x) we arrive at

T̃ω(x)⟨⟨Q̃(x)⟩⟩ = ⟨⟨Q̃(x + ε1e[ω+1]⟩⟩ + qωPω(xω)⟨⟨Q̃(x − ε1eω)⟩⟩, ω = 0, 1, · · · , N − 1. (4.68)

These are the fractional quantum TQ equations for the generalized dual Q-observables.
By multiplying the classical part

u
ε2
ε1
0

N−1∏
ω=0

u
m+

ω −aω
ε1

ω (4.69)
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and assign x = xω := (x, · · · , x︸ ︷︷ ︸
ω+1 times

, x− ε1, · · · , x− ε1︸ ︷︷ ︸
N−ω−1 times

), we obtain for Q̃ω(x) := Q̃(xω),

Tω(x)⟨⟨Q̃ω(x)⟩⟩ = ⟨⟨Q̃ω+1(x)⟩⟩ + qωPω(x)⟨⟨Q̃ω−1(x)⟩⟩, ω = 0, 1, · · · , N − 1, (4.70)

where Tω(x) is precisely the degree 1 polynomial,

Tω(x) = (1 + qω)x+ uω+1(∂uω+1 − ∂uω ) −m+
ω+1 − qωm

−
ω , (4.71)

that appeared in the fractional quantum TQ equation (4.59) for the generalized Q-observables.
Thus, we have shown that the generalized Q-observables and generalized dual Q-observables
of specific type satisfy the same fractional quantum TQ equation (4.59) and (4.70).

5 di-Langlands correspondence

Finally, we present the N = 2 gauge theoretical account of the difference Langlands cor-
respondence. We construct the R-matrices of the Yangian Y (gl(2)) represented on specific
modules from the fractional TQ equations. The consternation of them leads to the univer-
sal ℏ-oper equation satisfied by the correlation function of the (dual) Q-observable and the
regular monodromy surface defect. By taking the limit ε2 → 0, where the correlation func-
tion factorizes by cluster decomposition, we prove that the Q-eigenstates constructed as the
normalized vacuum expectation values of the regular monodromy surface defect, enumerated
by the Coulomb moduli a, are also common eigenstates of the quantum Hamiltonians of the
XXX spin chain.

5.1 Yangian and universal ℏ-oper

The Yangian Y (gl(n)) of gl(n) is an associative algebra, which is reviewed in the appendix
A.1. We introduce the universal ℏ-oper which generate a maximal commutative subalgebra
of Y (gl(n)).

It is straightforward to show that, due to the defining relation (A.2), T (x)e−ℏ∂x ∈
End(Cn)⊗Y (gl(n))[[x−1, ∂x]] is a Manin matrix [64, 65], i.e. a matrix over a non-commutative
ring for which, nevertheless, the determinant can be well-defined by the column expansion
[66]. The notion of Manin matrix and its relevant properties are reviewed in the appendix
A.3. The determinant of T (x)e−ℏ∂x is computed to be

det
(
T (x)e−ℏ∂x

)
= qdetT (x− (n− 1)ℏ)e−nℏ∂x . (5.1)

A Manin matrix defines another Manin matrix when it is added or multiplied by any
constant matrix. Let us be given with a constant matrix K ∈ End(Cn), and consider a
Manin matrix

1n −KT (x)e−ℏ∂x ∈ End(Cn) ⊗ Y (gl(n))[[x−1, ∂x]]. (5.2)
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Note that the constant matrix K introduces a twist in the periodic boundary condition for
the XXX spin chain (A.18). The determinant can be expanded in e−ℏ∂x as

det
(
1n −KT (x)e−ℏ∂x

)
= 1 +

n∑
m=1

(−1)mtm(x)e−mℏ∂x

= 1 − t1(x)e−ℏ∂x + · · · + (−1)ntn(x)e−nℏ∂x .

(5.3)

The coefficients tm(x) ∈ Y (gl(n))[[x−1]] are called universal transfer matrices.10 In explicit
terms, the transfer matrices are given by

tm(x) =
∑

j1<j2<···<jm

qdet ((KT (x− (m− 1)ℏ))j1j2···jm), 1 ≤ m ≤ n, (5.4)

where [(Aj1j2···jm)ab]ma,b=1 = [Ajajb
]ma,b=1 is a minor of size m. In particular, t1(x) = Tr(KT (x))

and tn(x) = detK qdetT (x + n − 1). It can be shown that the universal transfer matrices
mutually commute

[tm(x), tl(x′)] = 0, m, l = 1, 2, · · · , n. (5.5)

In fact, if the constant matrix K has a simple spectrum, the coefficients of the universal
transfer matrices span a maximal commutative subalgebra of the Yangian, called the Bethe
subalgebra B(Y (gl(n))) ⊂ Y (gl(n)) [67, 68]. Note that tn(x) = detK qdetT (x − (n − 1)ℏ)
generates the center of the Yangian Z(Y (gl(n))) ⊂ B(Y (gl(n))). All the rest of the universal
transfer matrices generate non-central elements in the Bethe subalgebra.

Let us define the quantum powers11 of the generating matrix KT (x) by

(KT (x))[0] := 1n

(KT (x))[i] := KT (x+ (i− 1)ℏ)KT (x+ (i− 2)ℏ) · · ·KT (x+ ℏ)KT (x), i > 0.
(5.6)

Note the recursive relation (KT (x))[i+1] = (KT (x+ ℏ))[i]KT (x).
For any v ∈ Cn, let us consider G(x) ∈ End(Cn) ⊗ Y (gl(n))[[x−1]] defined by Gab(x) =∑n

c=1 vc((KT (x+ ℏ))[n−a])cb. Then, it can be shown that

G(x− (n− 1)ℏ)
(
1n −KT (x− (n− 1)ℏ)e−ℏ∂x

)

=

1n −


t1(x) −t2(x) · · · · · · (−1)n−2tn−1(x) (−1)n−1tn(x)

1 0 · · · · · · 0 0
0 1 · · · · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 1 0

 e
−ℏ∂x

G(x− (n− 1)ℏ).

(5.7)
10The definition of the transfer matrices tm(x) obviously depends on the choice of the constant matrix K.

We will not explicitly indicate this dependence for brevity.
11The procedure developed here is ℏ-deformation of the one for U(sl(N) ⊗ t−1C[[t−1]]) which was studied in

[69]. The latter was also used in [19] to realize the universal oper in the N = 2 gauge theory. See also [70].
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The first line of the identity follows from the Cayley-Hamilton theorem12 for Manin matrices,
proven in [65]. All the rest are trivial identities.

Now, let us be given with a solution Q(x) = (· · · , · · · ,Q(x)) ∈ Cn ⊗ End(V ), where V is
a module over Y (gl(n)), to the Manin matrix,

0 =
(
1n −KT (x)e−ℏ∂x

)∣∣∣
V
Q(x). (5.8)

Then by using (5.7) with v = (0, · · · , 0, 1), we obtain the following ℏ-difference equation
satisfied by Q(x), the last component of Q(x):

0 =
(
1 − t1(x)e−ℏ∂x + t2(x)e−2ℏ∂x − · · · + (−1)ntn(x)e−nℏ∂x

)∣∣∣
V

Q(x). (5.9)

We will call this n-th order ℏ-difference operator the universal ℏ-oper. It generates the transfer
matrices ti(x)|V ∈ End(V )[[x−1]], i = 1, 2, · · · , n. By construction, the transfer matrices
generate a maximal set of mutually commuting operators in End(V ), namely, the quantum
Hamiltonians and the central elements. The above ℏ-difference equation for the universal
ℏ-oper represented on the module V is nothing but the operator Baxter’s TQ equation where
Q(x) is a Q-operator.

Let us specialize to our main case Y (gl(2)). Then the above universal ℏ-oper equation
reads

0 =
(
1 − t(x)e−ℏ∂x + qP (x)e−2ℏ∂x

)∣∣∣
V

Q(x+ ℏ), (5.10)

where we set detK = q and qdetT (x) = P (x), so that t2(x) = detK qdetT (x − ℏ) =
qP (x− ℏ), and t(x) := t1(x− ℏ).

We will construct the universal ℏ-oper represented on the space H (see section 3.3.4) in
our N = 2 gauge theoretical setup. It is crucial that the N = 2 theory provides not only the
universal ℏ-oper itself, but also its solutions, namely, the Q-operators, by Q/Q̃-observables.

5.2 R-matrices from fractional TQ equations

We construct the R-matrices (A.16) of the Yangian of gl(2) from the fractional quantum TQ
equations (4.59) and (4.70). Let us rewrite the fractional TQ equation (4.59) and (4.70) in a
matrix form as

Ξω+1(x) =
(
Tω(x) −qωP

−
ω (x)

P+
ω+1(x) 0

)
Ξω(x) =: Lω(x)Ξω(x), the same for Ξ̃ω(x), (5.11)

for all ω = 0, 1, · · · , N − 1, where we repackaged the generalized (dual) Q-observables into
columns

Ξω(x) :=
(

⟨⟨Qω(x)⟩⟩
P+

ω (x)⟨⟨Qω−1(x)⟩⟩

)
, Ξ̃ω(x) :=

(
⟨⟨Q̃ω(x)⟩⟩

P+
ω (x)⟨⟨Q̃ω−1(x)⟩⟩

)
. (5.12)

120 =
∑n

m=0(−1)mtm(x)T [n−m](x − (n − 1)ℏ), where we set t0(x) = 1.
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Satisfying exactly the same equations, the procedure that follows will be identical for Ξω(x)
and Ξ̃ω(x). We will only explicitly write Ξω(x).

We make a transformation Θω(x) = gω(x)Ξω(x) with

gω(x) = − 1
ε1u[ω]

1 −1 − ε1uω∂uω

P +
ω (x)

0 − ε1u[ω]
P +

ω (x)

 , gω(x)−1 =
(

−ε1u[ω] P
+
ω (x) + ε1uω∂uω

0 P+
ω (x)

)
, (5.13)

which gives

Θω(x) =
( 1

ε1u[ω]
(−⟨⟨Qω(x)⟩⟩ + P+

ω (x)⟨⟨Qω−1(x)⟩⟩) + ∂uω ⟨⟨Qω−1(x)⟩⟩
⟨⟨Qω−1(x)⟩⟩

)
. (5.14)

Then, the matrix form (5.11) of the fractional TQ equation, for ω = 0, 1, · · · , N − 2, becomes

Θω+1(x) = gω+1(x)
(
Tω(x) −qωP

−
ω (x)

P+
ω+1(x) 0

)
gω(x)−1Θω(x)

=
(
x− ε1uω∂uω −m−

ω − ε1 −(m+
ω −m−

ω − ε1)∂uω + ε1uω∂
2
uω

−ε1uω x+ ε1uω∂uω −m+
ω

)
Θω(x)

=
[
x− θω − ε1

(
s0

ω s−
ω

s+
ω −s0

ω

)]
Θω(x)

=: Rω(x− θω)Θω(x).

(5.15)

The last component ω = N − 1 of the fractional TQ equation requires more care, as [N ] = 0,
giving

ΘN (x) =
(
q 0
0 1

)[
x− θN−1 − ε1

(
s0

N−1 s−
N−1

s+
N−1 −s0

N−1

)]
ΘN−1(x)

=: KRN−1(x− θN−1)ΘN−1(x).
(5.16)

where we defined the twist matrix K = diag(q, 1) parameterized by the gauge coupling q.
Thus, we discover the fractional TQ equations give rise to the R-matrix of the Yangian

Y (gl(2)),

Rω(x) := x− ε1

(
s0

ω s−
ω

s+
ω −s0

ω

)
∈ End(C2) ⊗ End(Hω), (5.17)

that we introduced in (A.16) with the identification ε1 = ℏ between the Yangian deformation
parameter and the Ω-background parameter, up to a trivial redefinition of multiplication by
x. Indeed, s±,0

ω denote the generators of sl(2) ⊂ gl(2) represented as differential operators in
the monodromy defect parameter uω,

[s0
ω, s±

ω ] = ±s±
ω , [s+

ω , s−
ω ] = 2s0

ω,

s0
ω = uω∂uω − sω, s+

ω = uω, s−
ω = 2sω∂uω − uω∂

2
uω
,

ω = 0, 1, · · · , N − 1, (5.18)
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acting on the space of Laurent polynomials Hω = u
m+

ω −aω
ε1

ω C(uω). The spin sω is given in
terms of the mass parameters by

sω = m+
ω −m−

ω − ε1
2ε1

, ω = 0, 1, · · · , N − 1. (5.19)

The trace part acts trivially. Finally, the evaluation parameter θω is encoded in the rest of
the degrees of freedom of the mass parameters by

θω = m+
ω +m−

ω + ε1
2 , ω = 0, 1, · · · , N − 1. (5.20)

Note that the gl(2)-module Hω is irreducible for generic values of gauge theory parameters.
Moreover, it is a bi-infinite module, possessing neither a highest-weight state nor a lowest-
weight state.

Note that the quantum determinant (A.7) of the R-matrix is computed to be a simple
combination of the mass parameters,

qdet(Rω(x− θω)) = (x−m+
ω )(x−m−

ω ) = Pω(x), ω = 0, 1, · · · , N − 1. (5.21)

To present the gl(2)-module Hω more explicitly as a ε1-difference module, we introduce
variables (wω)N−1

ω=0 constrained by ∑N−1
ω=0 wω = 0, which are Fourier dual of the monodromy

defect parameters (uω)N−1
ω=0 , namely, uω = e−ε1∂wω . Then we can express Hω as the vector

space spanned by ε1-difference operators,

Hω =
⊕
l∈Z

C e(aω−m+
ω −lε1)∂wω , ω = 0, 1, · · · , N − 1, (5.22)

on which the sl(2) ⊂ gl(2) generators act now by ε1-difference operators,

s0
ω = wω

ε1
− sω, s+

ω = e−ε1∂wω , s−
ω =

(
wω

ε1
− 1

)(
2sω − wω

ε1

)
eε1∂wω . (5.23)

In principle, we would be able to construct this gl(2)-module as a (twisted) ℏ-difference module
on the moduli space BunGL(2)(P1;D) of parabolic GL(2)-bundles over P1 with a framing at
∞ ∈ P1 and parabolic structures at N marked points D ⊂ P1 \ {∞} = C, by a ℏ-deformed
version of the Beilinson-Bernstein localization [71]. In particular, (wω)N−1

ω=0 would be identified
with holomorphic coordinates on an open patch of BunGL(2)(P1;D). In this sense, the vacuum
expectation value ⟨Ψ⟩a of the regular monodromy surface defect should be viewed as a section
of this (twisted) ℏ-difference module on BunGL(2)(P1;D), enumerated by the Coulomb moduli
a. More precisely, recall that we split each Coulomb parameter aω into aω

ε1
modZ and its ε1-

integral shifts, and treat the former to be fixed. The aforementioned sections of the (twisted)
ℏ-difference module over BunGL(2)(P1;D) are enumerated by the latter, the ε1-integral shifts
in the Coulomb moduli a. In other words, the vacuum expectation value of the regular
monodromy surface defect provides a distinguished basis of the (twisted) ℏ-difference module
on BunGL(2)(P1;D) enumerated by the ε1-integral shifts of the Coulomb moduli a.

This is not the approach taken in the present work, however, and we only give a concrete
Y (gl(2))-module arising from our N = 2 gauge theory setup.
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5.3 Monodromy matrix and universal ℏ-oper

Note that the column vectors Θω(x) of vacuum expectation values of generalized Q-observables
are valued in End(C2)⊗H̃, where H̃ is the space of Laurent polynomials in monodromy defect
parameters (uω)N−1

ω=0 ,

H̃ =
N−1⊗
ω=0

Hω, Hω = u
m+

ω −aω
ε1

ω C(uω). (5.24)

We view H̃ as a evaluation module over the Yangian Y (gl(2)) (defined in (5.18) and (5.20),
cf. section A.2). In terms of the associated XXX spin chain with N sites, H̃ is precisely
the space of states. By concatenating all the N R-matrices (5.15) and (5.16), we arrive at a
difference equation,

ΘN (x) = KRN−1(x− θN−1)RN−2(x− θN−2) · · ·R0(x− θ0)Θ0(x)
= KT (x)|H̃ e−ε1∂xΘN (x),

(5.25)

where we used the periodicity Θω+N (x) = Θω(x + ε1) = eε1∂xΘω(x) in the second equality.
The product of R-matrices appearing on the right hand side is exactly the monodromy matrix,

T (x)|H̃ = RN−1(x− θN−1)RN−2(x− θN−2) · · ·R0(x− θ0) ∈ End(C2) ⊗ End(H̃), (5.26)

for the XXX spin chain with N sites. In particular, it agrees with the monodromy matrix
introduced in (A.18) with the relevant Yangian module chosen to be H̃ (5.24). We remind that
the monodromy matrix is nothing but the generating matrix T (x) ∈ End(C2)⊗Y (gl(2))[[x−1]]
for the Yangian represented on H̃, and equivalently the universal R-matrix represented on
the tensor product, T (x)|H̃ = (ρC2 ⊗ ρH)(R(x)).

Note also that the quantum determinant of the monodromy matrix is a simple degree
2N polynomial whose coefficients are the mass parameters,

qdet(T (x))|H̃ =
N−1∏
ω=0

qdet(Rω(x− θω)) =
N−1∏
ω=0

∏
±

(x−m±
ω ) = P (x), (5.27)

by the factorization property (A.8) and the quantum determinants (5.21) of individual R-
matrices.

The difference equation (5.25) is reorganized into the form of (5.8), a Manin matrix
represented on the Yangian module H̃ annihilating the column vector ΘN (x),

0 =
[
12 −KT (x)e−ε1∂x

]∣∣∣
H̃

ΘN (x). (5.28)

Note that the bottom component of the column vector ΘN (x) is precisely ⟨⟨QN−1(x)⟩⟩ =
⟨Q(x)Ψ(u)⟩a, namely, the correlation function of the Q-observable and the regular mon-
odromy surface defect without any 0-observable on their interface. As we have seen in (3.59),
the Q-observable can be viewed as the Q-operator Q(x) ∈ End (H) since it defines an action
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on the monodromy surface defect by its insertion in the correlation function. It follows that
the equation (5.9) satisfied by the bottom component of ΘN (x) can be written as an operator
equation valued in End (H),

0 =
[
1 − t̂(x)e−ε1∂x + qP (x)e−2ε1∂x

]
Q(x+ ε1), (5.29)

where we used detK = q and qdet(T (x))|H = P (x). This is precisely the universal ℏ-oper
equation represented on H (equivalently, the operator Baxter TQ equation). Here, we defined
the transfer matrix t̂(x) ∈ End (H) by the trace,

t̂(x) := TrC2KT (x+ ε1)|H, (5.30)

which is none other than the universal transfer matrix t1(x) (5.4) represented on the module
H̃ (recall that we restrict to the degree-zero subspace H by fixing the total momentum).13

Since the universal transfer matrix generates the non-central elements of the Bethe subalgebra
B(Y (gl(2))) ⊂ Y (gl(2)), the coefficients of the transfer matrix t̂(x) span a maximal set of
mutually commuting operators acting on the space of states H. They are precisely the
quantum Hamiltonians of the XXX spin chain system with N spin sites.

Among N + 1 coefficients of degree N polynomial t̂(x), the leading coefficient of xN

is simply 1 + q. The next-to-leading coefficient of xN−1 involves the total momentum,∑N−1
ω=0 ε1uω∂uω , which becomes a number when restricted to H. Therefore, we obtain N − 1

mutually commuting quantum Hamiltonians in total, which we collectively denote by Ĥk ∈
End (H), k = 2, 3, · · · , N .

We emphasize that the XXX spin chain that we constructed above is defined upon bi-

infinite modules Hω = u
m+

ω −aω
ε1

ω C(uω) (5.18). Recall that we regard the values of aα
ε1

to
be fixed mod Z. If we now specialize this parameter aω

ε1
mod Z to the locus m+

ω −aω

ε1
∈ Z

(namely, tω = 1), the bi-infinite module under consideration becomes reducible, containing
a lowest-weight submodule. Note that the loci m+

ω −aω

ε1
∈ Z are precisely where a higgsing

from four-dimensional N = 2 theory to a two-dimensional N = (2, 2) theory is triggered
[72]. After going through the higgsing, we recover the standard Bethe/gauge correspondence
[73, 74] where the algebraic Bethe ansatz equation is identified with the vacuum equation of
the emergent two-dimensional N = (2, 2) theory. See [52] also for more elaboration on the
higgsing.

5.4 Spectral equations for XXX spin chain

Finally, we show that the eigenstates for the Q-operators are also common eigenstates of the
quantum Hamiltonians of the gl(2) XXX spin chain with N sites. The first few spectral equa-
tions were derived in [75] without using the Q-operators constructed by the Q/Q̃-observables.
Here, we verify the all N − 1 spectral equations simultaneously, for arbitrary N .

13Comparing with the universal transfer matrix t1(x) = TrC2 (KT (x)) that we defined earlier in section
5.1, there is an additive shift of the argument by ε1. We make such a redefinition merely for a conventional
purpose, which only amounts to rearranging its coefficients, namely, the quantum Hamiltonians.
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Let us remind that the normalized vacuum expectation value ψ(a; u) of the regular
monodromy surface defect in the limit ε2 → 0 provides distinguished basis of the space
H of states which diagonalizes the action of the Q-operators. Such an eigenvalue property
can be understood as the factorization of the correlation function of the two surface defects
in the limit ε2 → 0,

lim
ε2→0

〈
Q(x)Ψ(u)

〉
= e

W̃(a;q)
ε2 Q(a;x)ψ(a; u; q). (5.31)

Now, we apply the limit ε2 → 0 to the universal ℏ-oper equation (5.29) acting on the
distinguished basis element ψ(a; u) ∈ H. Then the Q-operator is converted into its eigenvalue
Q(a;x), so that we have

0 =
[
1 − t̂(x)e−ε1∂x + qP (x)e−2ε1∂x

]
Q(a;x+ ε1)ψ(a; u; q). (5.32)

Here, it should be stressed that the difference operator e−ε1∂x acts only on the normalized
vacuum expectation value Q(a;x+ε1) of the Q-observable, while the operator t̂(x) ∈ End (H)
acts only on the normalized vacuum expectation value ψ(a; u; q) of the monodromy surface
defect.

Meanwhile, it was independently shown in (4.26) that the ε2 → 0 limit of the normalized
vacuum expectation value Q(a;x) of the Q-observable by itself satisfies the ℏ-oper equation,
which reads

0 =
[
1 − t(a;x)e−ε1∂x + qP (x)e−2ε1∂x

]
Q(a;x+ ε1). (5.33)

The two equations (5.32) and (5.33) look almost identical, but actually there is a crucial
difference: the coefficients of t̂(x) are operators in End(H), while the coefficients of t(a;x) are
numbers given by the normalized vacuum expectation values of the local chiral observables.
By multiplying ψ(a; u; q) to the second equation and subtracting the two, we get

0 =
((
t̂(x) − t(a;x)

)
ψ(a; u) 0

0 0

)(
Q(a;x) Q̃(a;x)

Q(a;x− ε1) Q̃(a;x− ε1)

)
, (5.34)

where we organized ℏ-jets of two solutions, the Q-observable and the dual Q-observable, into
a 2 × 2 matrix. The determinant of this matrix is precisely the ℏ-Wronskian for the ℏ-oper
difference equation, which was computed in (4.46). We remind that it is an entire function
in x ∈ C with simple zeros only at discrete loci, so that we can invert the 2 × 2 matrix at
generic x to get

0 =
(
t̂(x) − t(a;x)

)
ψ(a; u). (5.35)

Since the equation holds for generic x ∈ C, each coefficient of the degree N polynomial
vanishes individually. The first two equations are trivially satisfied, and the rest of N − 1
coefficients finally give

0 =
(
Ĥk − Ek(a)

)
ψ(a; u; q), k = 2, 3, · · · , N, (5.36)
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where Ĥk ∈ End(H) is the k-th quantum Hamiltonian of the gl(2) XXX spin chain system with
N sites obtained in (5.30), while Ek(a) is a combination of normalized vacuum expectation
values of local observables obtained in (4.26). Thus, we conclude that the eigenstates ψ(a; u)
of the Q-operators, constructed as the normalized vacuum expectation value of the regular
monodromy surface defect, are also common eigenstates of the quantum Hamiltonians Ĥk

of the associated XXX spin chain with N sites. The corresponding eigenvalues Ek(a) are
normalized vacuum expectation values of the local chiral observables, which parameterize the
space of ℏ-opers by our construction of the ℏ-oper and its solutions in section 4.2.

6 Discussion

We have clarified how the ℏ-Langlands correspondence can be formulated in the four-dimensional
N = 2 gauge theory with the help of two kinds of surface defects − regular monodromy sur-
face defect and the Q-observable. We show that the vacuum expectation value of the former
gives a distinguished basis ψ(a) for the degree-zero subspace H of an evaluation module over
the Yangian Y (gl(2)), while the insertion of the Q-observable on top of it gives the action of
a Q-operator. The action was shown to be diagonal in the limit ε2 → 0 due to the cluster
decomposition of the surface defects, with the eigenvalue being the Q-function. Using this
construction, we showed that the Q-eigenstate constructed by a regular monodromy surface
defect is also a common eigenstate of the quantum Hamiltonians of the associated XXX spin
chain. The result can be regarded as a ℏ-deformation of the geometric Langlands correspon-
dence [10, 11], realized in the N = 2 gauge theory setting.

While this study sheds light on crucial aspects, the subject merits further exploration in
various layers.

q-Langlands correspondence and 5d N = 1 uplift It would be desirable to uplift our
formulation to the five-dimensional N = 1 field theories compactified on a circle. In the twisted
M-theory setting, this amounts to replacing the holomorphic surface C × C× by C× × C×.
Doing so, we would be able to study (quantum) q-Langlands correspondence with ramifica-
tions [76, 77], where the surface defects are replaced by codimension-two defects wrapping
the circle. While the monodromy surface defect will still be defined by singular behavior of
fields along a codimension-two surface, interestingly, both Q-observable and canonical surface
defect will uplift to multiplicative Q-observables, defined by coupling the five-dimensional
theory to a three-dimensional N = 2 gauge theory either in the Coulomb phase or in the
Higgs phase. The bispectral duality between two XXZ spin chains is expected from the iso-
morphism between two moduli spaces of multiplicative Higgs bundles on C× (on P1 with a
framing at 0,∞ ∈ P1), with the rank of the bundle and the number of regular singularities
swapped [78–81]. In particular, this construction will allow incorporating bi-infinite (i.e.,
non-highest-weight) modules of quantum affine algebra Uq(ŝl(N)) on the automorphic side
of the q-Langlands correspondence with ramifications. See [5, 53, 54, 82] for more previous
studies of the q-Langlands correspondence.
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Affinization and circular quiver theories In the present work, we considered the linear
quiver N = 2 gauge theory. It would be interesting to apply our methodology to the circular
quiver theories. In the twisted M-theory setting, this amounts to replacing the holomorphic
surface C × C× by C × T 2. The moduli space of Higgs bundles on T 2 and the associated
geometric Langlands correspondence can be analyzed in the usual way as here. On the other
hand, in the bispectral point of view, the moduli space of multiplicative Higgs bundles on C
should be modified with a further affinization since the transverse holomorphic surface is now
T 2 rather than C×. See [83, 84] for previous studies in the N = 2 gauge theory side.

Yangian double and quantum vertex algebra There should be a vertex algebra ap-
proach to the ℏ-Langlands correspondence parallel to the one for the ordinary Langlands
correspondence. Let us briefly recall the ordinary case. Let g be a finite-dimensional simple
Lie algebra over C. The vacuum module Vk(ĝ) = Indĝ

ĝ+⊕CK
Cvk of the affine Lie algebra at

any level k ∈ C is endowed with a vertex algebra structure, whose center Z(ĝk) is a commuta-
tive associative algebra. The center is given by the ĝ+-invariant subspace, Z(ĝk) = Vk(ĝ)̂g+ ,
which is trivial at all k ∈ C except at the critical level k = −h∨ where h∨ is the dual Coxeter
number of g [85]. As vector spaces, the vacuum module Vk(ĝ) is isomorphic to the universal
enveloping algebra U(ĝ−). The induced injective map Z(ĝk) ↪→ U(ĝ−) turns out to be an
algebra morphism. Hence, the non-trivial center Z(ĝ−h∨) can be viewed as a maximally com-
mutative subalgebra of U(ĝ−), which we call the universal Gaudin algebra.14. Then it was
shown that it is isomorphic to the classical W-algebra associated to Lg as a Poisson algebra,
by the Miura transformation of the latter.

The story parallels after the ℏ-deformation. The Yangian double of gl(n) with a central
extension, which we denote by DY (gl(n)), was defined in [86]. It can be viewed as a ℏ-
deformation of the (completed) universal enveloping algebra of the affine Kac-Moody algebra
ĝl(n). The vacuum module Vc(DY (gl(n))) of the Yangian double is endowed with a quantum
vertex algebra structure [87], whose concept was originally defined in [88, 89].15 The Yangian
double has a non-trivial center at the critical level c = −n, Z(DY (gl(n))−n) [90]. As a
vector space, the vacuum module is isomorphic to the Yangian Y (gl(n)), and the induced
map Z(DY (gl(n))−n) ↪→ Y (gl(n)) is an injective algebra morphism. Thus, the non-trivial
center can be viewed as a maximally commutative subalgebra of Y (gl(n)), i.e., the Bethe
subalgebra. It should also be isomorphic to the classical ℏ-W-algebra [91, 92] associated to
gl(n) as a Poisson algebra, due to the ℏ-Miura transformation of the latter. The statement
is expected to follow from a limit of [76].

In this context, it would be nice to express the vacuum expectation value of the regular
monodromy surface defect explicitly as a ℏ-conformal block of the quantum vertex algebra for

14It is said to be universal since the coproduct of U(ĝ−) and the evaluation homomorphism U(ĝ−) → U(g)
give an algebra morphism U(ĝ−) → U(g)⊗(n+2) for any n, under which the universal Gaudin algebra maps to
a maximally commutative subalgebra in U(g)⊗(n+2), called the Gaudin algebra

15The term quantum sometimes indicates deviating from the critical level. In this sense, calling it quantum
vertex algebra may cause a confusion. We could have referred to it as ℏ-vertex algebra.
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the Yangian double. Such a presentation would naturally provide its geometric construction
as a section of a ℏ-difference module over BunGL(n)(P1;D). We also anticipate that the Q-
operator would be given by the insertion of a degenerate vertex operator for a module over
the Yangian double DY (gl(n)) which is a ℏ-deformation of the spectral flow module for ĝl(n).

Analytic Langlands correspondence from N = 2 gauge theory In recent studies
[93–96], the analytic version of the Langlands correspondence was formulated. In particular,
the Hecke operator that we obtained as a contour integral of the correlation function of
parallel surface defects in [19] was reconstructed as the chiral Hecke operator [96]. It would
be interesting to incorporate the analytic Langlands correspondence in our N = 2 gauge
theoretical framework by replacing a part of the four-dimensional worldvolume by a compact
P1. The analytic version of the ℏ-(and q-)Langlands correspondence is also a subject to be
developed. See [97] for the account of the analytic Langlands correspondence in the GL-
twisted N = 4 gauge theory setup.

The quantum analytic Langlands correspondence realized as an one-parametric defor-
mation, established recently in [98], is expected to arise by turning on both Ω-background
parameters, where ε1 is associated to the isometry of the compact P1 while ε2 is associated
to the isometry of the non-compact R2 as usual.

R-matrices for bi-infinite modules from stable envelopes In this work, we con-
structed the R-matrices of the Yangian Y (gl(2)) on the tensor product of a bi-infinite (i.e.,
non-highest-weight) module and C2. Meanwhile, the R-matrices on highest-weight modules
admit a geometric construction from stable envelopes [99, 100]. The stable envelope was
realized in the context of the Bethe/gauge correspondence by the Janus interface interpolat-
ing different values of real masses [6, 101–103]. It would be interesting to extend this gauge
theoretical construction of the stable envelopes so that the R-matrices on bi-infinite modules
would be incorporated, perhaps by regarding the Cε2-plane as a cigar and compactifying along
its circle fiber.

A Yangian of gl(n) and Manin matrices

A.1 Yangian and universal R-matrix

We review the definition of Yangian, as well as its coproduct, quantum determinant, and the
universal R-matrix.

A.1.1 Definition

Let us recall the definition of the Yangian of gl(n), which we denote by Y (gl(n)).16 The
Yangian of gl(n) is a unital associative algebra with generators Tab[s], a, b = 1, 2, · · · , n and

16See [104, 105] for comprehensive reviews.
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s ∈ Z>0. We can write the generating series as

Tab(x) = δab − ℏ
∞∑

s=1
Tab[s]x−s ∈ Y (gl(n))[[x−1]], a, b = 1, · · · , n. (A.1)

The defining relation of Y (gl(n)) is

(x− x′)[Tab(x), Tcd(x′)] = ℏ
(
Tcb(x)Tad(x′) − Tcb(x′)Tad(x)

)
, a, b, c, d = 1, · · · , n. (A.2)

Let Eab, a, b = 1, · · · , n, be the standard basis of End(Cn). We can combine the gen-
erating series into a matrix T (x) = ∑n

a,b=1Eab ⊗ Tab(x) ∈ End(Cn) ⊗ Y (gl(n))[[x−1]]. The
rational R-matrix R(x) ∈ End(Cn ⊗ Cn) defined by

R(x) = 1n ⊗ 1n − ℏ
x
P

= 1n ⊗ 1n − ℏ
x

n∑
a,b=1

Eab ⊗ Eba,
(A.3)

where P (v ⊗ w) = w ⊗ v is the permutation operator. The defining commutation relation
(A.2) for Y (gl(n)) is equivalent to the RTT-relation

R(12)(x− x′)T (13)(x)T (23)(x′) = T (23)(x′)T (13)(x)R(12)(x− x′), (A.4)

valued in End(Cn) ⊗ End(Cn) ⊗Y (gl(n))[[x−1]]. Here, the superscripts indicate where R and
T are valued among the tensor product. For instance, R(12)(x) = R(x) ⊗ id ∈ End(Cn) ⊗
End(Cn) ⊗ Y (gl(n))[[x−1]].

A.1.2 Coproduct and quantum determinant

The Yangian Y (gl(n)) is a Hopf algebra. In particular, it is endowed with a coproduct
∆ : Y (gl(n)) → Y (gl(n)) ⊗ Y (gl(n)) defined by

∆(Tab(x)) =
n∑

c=1
Tcb(x) ⊗ Tac(x), a, b = 1, · · · , n. (A.5)

This relation can be also expressed as

(id ⊗ ∆)T (x) = T (13)(x)T (12)(x), (A.6)

as an element of End(Cn) ⊗ Y (gl(n))[[x−1]] ⊗ Y (gl(n))[[x−1]].
The quantum determinant qdet : End(Cn) ⊗ Y (gl(n))[[x−1]] → Y (gl(n))[[x−1]] is defined

by

qdetT (x) =
∑

σ∈Sn

sgn(σ)T1σ(1)(x) · · ·Tnσ(n)(x+ (n− 1)ℏ)

=
∑

σ∈Sn

sgn(σ)Tσ(1)1(x+ (n− 1)ℏ) · · ·Tσ(n)n(x).
(A.7)
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Under the coproduct the quantum determinant factorizes

∆(qdetT (x)) = qdetT (x) ⊗ qdetT (x). (A.8)

The quantum determinant can be expanded as a formal series as

qdetT (x) = 1 + d1x
−1 + d2x

−2 + · · · ∈ Y (gl(n))[[x−1]]. (A.9)

The coefficients (di)i≥1 generate the center of the Yangian Z(Y (gl(n))) ⊂ Y (gl(n)).
We may generalize the notion of quantum determinant to the minors of the generat-

ing matrix T (x). Let m ≤ n and consider the m × m minor T i1i2···im
j1j2···jm

(x) with elements
(T i1i2···im

j1j2···jm
)ab(x) = Tiajb

(x). Then, we define its quantum determinant by

qdetT i1i2···im
j1j2···jm

(x) =
∑

s∈Sm

sgn(σ)Ti1js(1)(x)Ti2js(2)(x+ ℏ) · · ·Timjs(m)(x+ (m− 1)ℏ)

=
∑

s∈Sm

sgn(σ)Tis(1)j1(x+ (m− 1)ℏ)Tis(2)j2(x+ (m− 2)ℏ) · · ·Tis(m)jm(x).

(A.10)

A.1.3 Universal R-matrix

There exists a universal R-matrix R(x) ∈ (Y (gl(n)) ⊗ Y (gl(n))) [[x−1]] satisfying the Yang-
Baxter equation

R(12)(x− x′)R(13)(x)R(23)(x′) = R(23)(x′)R(13)(x)R(12)(x− x′), (A.11)

valued in (Y (gl(n)))⊗3 [[x−1, x′−1]] [106]. For any representation U, V,W (ρU : Y (gl(n)) →
End(U), etc) of the Yangian, we obtain the R-matrices

RU,V (x) = (ρU ⊗ ρV )(R(x)), (A.12)

which satisfy the Yang-Baxter equation

RU,V (x− x′)RU,W (x)RV,W (x′) = RV,W (x′)RU,W (x)RU,V (x− x′), (A.13)

valued in End(U) ⊗ End(V ) ⊗ End(W ).

A.2 R-matrices and monodromy matrix

We start to introduce representations for the Yangian. We construct R-matrices, and then
the monodromy matrix by their concatenation. We construct the XXX spin chain with N

sites.
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A.2.1 Evaluation module

It is clear that the Yangian Y (gl(n)) contains the universal enveloping algebra U(gl(n)) as
a Hopf subalgebra. The embedding ι : U(gl(n)) ↪→ Y (gl(n)) is given by eab 7→ Tba[1],
where eab are the standard generators of gl(n), [eab, ecd] = δbcead − δadecb. Moreover, there
is an evaluation homomorphism ϵ : Y (gl(n)) → U(gl(n)) defined by ϵ : Tab[1] 7→ eba for
a, b = 1, · · · , n, and ϵ : Tab[s] 7→ 0 for s > 1 and all a, b = 1, · · · , n. Note that ϵ ◦ ι = id.

There is an one-parameter θ ∈ C family of automorphisms sθ : Y (gl(n)) → Y (gl(n))
defined by sθ(T (x)) = T (x − θ). Namely, we get the action of sθ on the generators by
expanding the right hand side in x−1. Note that ϵ ◦ sθ ◦ ι = id. A gl(n)-module V can be
promoted to a Y (gl(n))-module V (θ) with the help of of the map ϵ◦sθ : Y (gl(n)) → U(gl(n)).
This is called evaluation module with the evaluation parameter θ.

A.2.2 R-matrices and monodromy matrix

Now, consider the standard n-dimensional representation Cn of U(gl(n)) and the associated
evaluation Yangian module ρCn : Y (gl(n)) → End(Cn). Then, we can recover the rational
R-matrix (A.3),

R(x) = (ρCn ⊗ ρCn)(R(x)) ∈ End(Cn) ⊗ End(Cn), (A.14)

and the generating matrix for the Yangian Y (gl(n)),

T (x) = (ρCn ⊗ id)(R(x)) ∈ End(Cn) ⊗ Y (gl(n)), (A.15)

by applying this representation to the universal R-matrix. The Yang Baxter equation satisfied
by the rational R-matrix and the RTT relation (A.4) for the Y (gl(n)) are consequences of
(A.11).

For representation V of gl(n), consider the associated evaluation Yangian module, and the
evaluation homomorphism ρV : Y (gl(n)) → End(V ). Then, the generating matrix represented
on V is computed to be

T (x)|V = (id ⊗ ρV )(T (x)) = 1n −
ℏ
∑n

a,b=1Eab ⊗ eba|V
x

∈ End(Cn) ⊗ End(V )

=: RV (x),
(A.16)

which, by (A.15), can also be viewed as the universal R-matrix represented on the tensor
product, RV (x) = (ρCn ⊗ ρV )(R(x)). For this reason, we call RV (x) an R-matrix.

Let us given with N gl(n)-modules (Hω)N−1
ω=0 and N evaluation parameters (θω)N−1

ω=0 ∈ CN .
Then we construct a Y (gl(n))-module

H :=
N−1⊗
ω=0

Hω = H0 ⊗ · · · ⊗ HN−1 (A.17)
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with the help of ϵ⊗N ◦(sθ0 ⊗· · ·⊗sθN−1)◦∆N−1. Then, the generating matrix T (x) represented
on the module H is computed to be

T (x)|H =

1n −
ℏ
∑n

a,b=1Eab ⊗ e
(N−1)
ba

x− θ0

 · · ·

1n −
ℏ
∑n

a,b=1Eab ⊗ e
(0)
ba

x− θN−1


∈ End(Cn) ⊗ End(H),

(A.18)

where e(ω)
ab = 1 ⊗ · · · ⊗ 1 ⊗ eab|Hω︸ ︷︷ ︸

ω-th

⊗1 ⊗ · · · ⊗ 1. In terms of the R-matrices (A.16), it is written

as

T (x)|H = RN−1(x− θN−1)RN−2(x− θN−2) · · ·R0(x− θ0), (A.19)

where we denote Rω(x) := RHω (x). This is precisely the known expression for the monodromy
matrix for the periodic XXX spin chain with N sites. Each site is labelled by the gl(n)-module
Hω and the evaluation parameter θω.

A.3 Manin matrices

We give a brief review of the definition and properties of Manin matrices [66] relevant to this
work. See [65] for a comprehensive review.

Let R be a non-commutative associative ring. Let M ∈ Hom(Cn,Cm) ⊗ R be a m × n

matrix with its entries in R. We call M a Manin matrix if

• Elements in the same column commute with themselves.

• Commutators of cross terms of any 2 × 2 minor of M are equal; namely,

[Mij ,Mkl] = [Mkj ,Mil] for all i, j, k, l. (A.20)

Let M ∈ End(Cn) ⊗ R be a Manin matrix. Then we define the determinant of M by the
column expansion,

detM :=
∑

σ∈Sn

(−1)σ
↷∏

i=1,2,··· ,n

Mσ(i),i, (A.21)

where Sn is the permutation group and the product is taken in the order of column that the
entries lie in. It can be shown that the determinant is not dependent of the order of the
columns, and thus it is well-defined as determinant.

Some relevant properties of Manin matrices are:

• Any minor of a Manin matrix is a Manin matrix.

• If A and B are Manin matrices and [Aij , Bkl] = 0 for all i, j, k, l, then A+B is a Manin
matrix.

• If A and B are Manin matrices and [Aij , Bkl] = 0 for all i, j, k, l, then AB is a Manin
matrix and det(AB) = detA detB.
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B Absence of poles in T̃ω(x, x′)

The residue of the right hand side of (4.63) at x = x′
ω + dωε1 is proportional to

dωε1(x′
ω − x′

[ω+1] + dωε1 − d[ω+1]ε1 + ε2δω,N−1)Y[ω+1](x′
ω + dωε1)

N−1∏
ω′=0

dω′∏
j=1

x′
[ω′−1] − x′

ω′ + d[ω′−1]ε1 − (j − 1)ε1 + ε2δω′,0

jε1

Qω′(x′
ω′)Mω′(x′

ω′ + dω′ε1)
Qω′(x′

ω′ + dω′ε1)Q[ω′+1](x′
ω′ + (dω′ + 1)ε1 + ε2δω′,N−1)

− (x′
ω − x′

[ω+1] + dωε1 − ε2δω,N−1)(x′
[ω−1] − x′

ω + (d[ω−1] − dω + 1)ε1 + ε2δω,0)Pω(x′
ω + dωε1)

Yω(x′
ω + dωε1)

×
N−1∏
ω′=0

dω′ −δω′,ω∏
j=1

x′
[ω′−1] − x′

ω′ + (d[ω′−1] − δ[ω+1],ω′)ε1 − (j − 1)ε1 + ε2δω′,0

jε1

×
Qω′(x′

ω′)Mω′(x′
ω′ + (dω′ − δω′,ω)ε1)

Qω′(x′
ω′ + (dω′ − δω′,ω)ε1)Q[ω′+1](x′

ω′ + (dω′ + 1 − δω′,ω)ε1 + ε2δω′,N−1)

=
∏

ω′ ̸=ω,ω+1

dω′ −δω,ω′∏
j=1

x′
[ω′−1] − x′

ω′ + d[ω′−1]ε1 − (j − 1)ε1 + ε2δω,0

jε1∏dω
j=1 x

′
[ω−1] − x′

ω + d[ω−1]ε1 − (j − 1)ε1 + ε2δω,0∏dω−1
j=1 jε1

∏d[ω+1]+1
j=1 x′

ω − x′
[ω+1] + dωε1 − (j − 1)ε1 + ε2δω,0∏d[ω+1]

j=1 jε1

−
∏dω

j=1 x
′
[ω−1] − x′

ω + d[ω−1]ε1 − (j − 1)ε1 + ε2δω,0∏dω−1
j=1 jε1

∏d[ω+1]+1
j=1 x′

ω − x′
[ω+1] + dωε1 − (j − 1)ε1 + ε2δω,0∏d[ω+1]

j=1 jε1


× Qω′(x′

ω′)Mω′(x′
ω′ + dω′ε1)

Qω′(x′
ω′ + dω′ε1)Q[ω′+1](x′

ω′ + (dω′ + 1 − δω,ω′)ε1 + ε2δω′,N−1)
= 0

(B.1)
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