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Abstract: Small instantons which increase the axion mass due to an appropriate modi-
fication of QCD at a UV scale ΛSI, can also enhance the effect of CP-violating operators
to shift the axion potential minimum by an amount, θind, proportional to the flavorful
couplings in the SMEFT. Since physical observables must be flavor basis independent, we
construct a basis of determinant-like flavor invariants that arise from instanton calculations
containing the effects of dimension-six CP-odd operators at the scale Λ��CP. This new basis
provides a more reliable estimate of the shift θind, that is severely constrained by neutron
electric dipole moment experiments. In particular, for the case of four-quark, semi-leptonic
and gluon dipole operators, these invariants are then used to provide improved limits on
the ratio of scales ΛSI/Λ��CP for different flavor scenarios. The CP-odd flavor invariants also
provide a classification of the leading effects from Wilson coefficients, and as an example,
we show that a semi-leptonic four-fermion operator is subdominant compared to the four-
quark operators. More generally, the flavor invariants, together with an instanton NDA,
can be used to more accurately estimate small instanton effects in the axion potential that
arise from any SMEFT operator.
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1 Introduction

The Standard Model (SM) has provided a remarkably successful description of the ele-
mentary particles and non-gravitational interactions. However, one unresolved issue is CP
violation which remains to be completely understood. In particular, there are two sources
of CP violation in the Standard Model at the renormalizable level: a weak CP phase from
the CKM matrix and the strong CP phase θ̄ = θQCD − arg det[YuYd], where θQCD is the
QCD vacuum angle and Yu,d are the up, down Yukawa coupling matrices. Limits from not
observing a neutron electric dipole moment (EDM) imply an upper bound θ̄ ≲ 10−10 [1].
This unexpectedly small value for θ̄ compares with the order-one weak CP phase and leads
to the well-known strong CP problem. The strong CP problem occurs at the renormal-
izable level in the SM Lagrangian and remains rather stable under renormalization group
flow where radiative corrections to θ̄, induced by the weak CP phase, first appear at seven
loops [2, 3] (finite contributions appear at four loops although still highly suppressed [4]).
However, the problem can be exacerbated by phases arising from higher-dimensional terms
in the UV theory, which can cause order-one shifts in θ̄ thereby potentially invalidating
solutions to the strong CP problem [5].

Such a solution to the strong CP problem is the Peccei–Quinn (PQ) mechanism [6]
where a global U(1) PQ symmetry is spontaneously broken giving rise to the axion [7, 8].
The PQ symmetry is anomalous because it is explicitly broken by non-perturbative QCD
effects, generating the axion potential with a minimum that exactly cancels θ̄. However,
an underlying assumption of the PQ mechanism is that the explicit breaking of the global
PQ symmetry must be dominated by non-perturbative QCD effects. Generically, shift-
symmetry violating terms (which may be CP-violating) arising from interactions of the
axion with gravity spoil the axion solution by misaligning the axion potential minimum.
These contributions must therefore be sufficiently suppressed, leading to the so-called axion
quality problem, which can be addressed by one of several mechanisms in the literature (see
for example Refs. [9–16]).

However, even under the assumption that shift-violating operators in the axion EFT
are sufficiently suppressed, another aspect of the axion quality problem occurs within the
Standard Model Effective Field Theory (SMEFT) where higher-dimensional CP-violating
terms induced at a scale Λ��CP can shift θ̄ and misalign the axion potential [17–19]. These new
sources of CP violation depend on the specific UV completion. If QCD is not modified in
the UV completion then the effects on the axion potential and the neutron EDM constrain
Λ��CP and these effects decouple as Λ��CP →∞. Alternatively, there has been renewed interest
in the old idea to modify QCD at a UV scale, ΛSI that can increase the axion mass while
still solving the strong CP problem [17, 20–29]. In this case, new CP-violating sources can
also be enhanced by small (UV) instantons whose effects are no longer suppressed due to the
assumed larger QCD coupling at the scale ΛSI. The leading contributions to θ̄ then scale as
Λ2
SI/Λ2

��CP [19] which do not necessarily decouple (i.e. when ΛSI,Λ��CP →∞ with a finite ratio
ΛSI/Λ��CP) and give rise to important constraints on CP violation in certain UV scenarios.
For a sufficiently small (although large) QCD gauge coupling these effects can be computed
by performing a one-instanton calculation which provides the dominant contribution to

– 2 –



the action. However, when the QCD gauge coupling becomes non-perturbative, the dilute
instanton gas approximation breaks down and non-perturbative methods must be used.

The effects of CP-violation arising from higher-dimension operators in an instanton
background, including a four-quark SMEFT operator were computed in Ref. [19, 30, 31]
and estimated using an instanton naive dimensional analysis (NDA) in Ref. [32]. How-
ever, different CP-violating UV scenarios can give rise to many other operators [33, 34] and
therefore previous estimates of the contributions to θ̄ should be generalized for the complete
list of SMEFT operators. These new contributions to θ̄ must be independent of the flavor
basis, and hence can be written in terms of flavor-invariant quantities constructed from
the Wilson coefficients. Flavor-invariant quantities allow for an estimation of the physical
consequences of the Wilson coefficients – especially when used together with other NDA
techniques [32] – prior to any explicit computation. Indeed, knowledge of CP-violating
invariants has previously been used for physical estimates [2, 3, 35–38]. This is particularly
relevant in instanton calculations where the computation can become quite cumbersome.
Besides providing an order parameter to estimate CP-violating physical effects, CP-odd
invariants also provide selection rules on the contribution from a particular Wilson coeffi-
cient, such as the number of Yukawa coupling insertions or loop factor suppressions. For
example, we will show that semi-leptonic operators generate a θ but are suppressed by one
extra loop-order and an extra lepton Yukawa factor compared with four-quark operators.
Furthermore, knowing the number of up, down and lepton Yukawa couplings needed to
construct the invariants, we will be able to classify the leading contributions for arbitrary
Wilson coefficients. The use of flavor invariants also helps to explain the size of the instan-
ton effects in different flavor scenarios. Moreover, most computations in the literature have
focused on the limit of completely diagonal Yukawa matrices but, with the help of flavor
invariants, the extension to general flavorful matrices becomes simpler.

Due to the CP-nature of θ̄, the induced θ̄ in the presence of different SMEFT operators
can be parameterized via the CP-violating invariants introduced in Refs. [39, 40], where a
basis of CP-odd flavor invariants was proposed at leading order in the corresponding Wilson
coefficient. The invariants introduced were all constructed as the imaginary part of a trace
of flavorful matrices. However, as will be made clear throughout this work, we find that
the instanton calculations can be more directly captured by a different basis, built out of
determinant-like structures, which were first pointed out in Appendix F of Ref. [39]. Indeed,
we find that the instanton computations of the enhanced θ̄ directly result in quantities
proportional to invariants in our new basis, instead of a complicated combination of CP-
even and -odd invariants if the results were projected onto the trace-like basis. We will show
that these determinant-like structures naturally arise in the path integral calculation of θ̄,
after performing the Grassmann integration over fermion zero modes. While any CP-odd
quantity can clearly be projected into both bases, the invariants built in this paper allow
for an immediate estimation of the CP-violating effects in the SMEFT, in the presence of
instanton backgrounds.

While the new flavor invariants introduced in this paper improve the estimate of θ̄
induced in the SMEFT, we will also perform the detailed computation of θ̄ in the presence
of small instantons, using the one-instanton (or dilute instanton gas) approximation, to ex-
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plicitly show how the new invariants appear and more naturally describe physical processes
that arise from instanton computations. In particular, we generalize previous results on
the insertion of the CP-violating four-quark operator O(1)quqd and calculate the effects of the

semi-leptonic, O(1)lequ and gluon dipole, OdG operators. These results can then be used to
translate the stringent upper bound on θ̄ into limits on the scale of new physics generating
these operators. For the leading order operators, such as the four-quark and gluon dipole
operators, we find that Λ��CP ≳ 106ΛSI, assuming a minimally flavor violating (MFV) sce-
nario for the SMEFT couplings. Under these same flavor assumptions, the loop suppressed
contributions, arising from O(1)lequ, lead to the weaker constraint Λ��CP ≳ 104ΛSI. The bounds
become more stringent if there is no flavor structure in the Wilson coefficients, such as the
anarchic flavor scenario. In this case, assuming all the Wilson coefficients are order one, we
obtain Λ��CP ≳ 1011ΛSI for the four-quark operator O(1)quqd, Λ��CP ≳ 108ΛSI for the gluon dipole

operator OdG and Λ��CP ≳ 107ΛSI for the semi-leptonic operator O(1)lequ. As a non-trivial
check, we also verify the expected independence of the renormalization scheme as well as
the cancellation of divergences in the renormalized effective theory that arise from loop
integrals. To arrive at this cancellation, one has to include the appropriate counterterms
which lead to the renormalization group equations (RGEs) of the SMEFT.

The paper is organized as follows. In Section 2, we introduce the determinant-like
invariants, showing that they form a basis of CP-violating invariants, and then build such
a basis for certain SMEFT operators. The instanton calculations are presented in Section 3
where we show explicitly that the determinant-like invariants appear directly from the
topological susceptibility computation; furthermore, we also explore why the determinant
structures appear in this sort of calculation and the information it contains prior to any
actual computation. In Section 4, we compute the enhanced θ̄ and obtain new bounds on the
ratio between the small-instanton scale ΛSI and the CP-violating scale Λ��CP . We conclude
and suggest future directions for this work in Section 5. The Appendices review background
information and contain further details of the calculation. In Appendix A, we introduce
our conventions and the relevant SMEFT operators. A complete basis of determinant-like
invariants is given in Appendix B, while in Appendix C we briefly review the basics of
instanton calculations that are relevant for this paper. Finally, in Appendix D we perform
the integrals over collective coordinates used throughout the main text; in particular, we
verify the cancellation of divergences with the appropriate counterterms, which is a new
result obtained from an instanton calculation.

2 Flavor invariants featuring θQCD

Perturbative CP violation in the SM induced by the CKM phase is an intricate collective
effect that can only be properly described by a combination of Lagrangian parameters. The
most effective way to capture this effect in the SM is by using the Jarlskog invariant J4,
defined as [41–43]

J4 = Im (Tr [Xu,Xd]3) , (2.1)
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U(3)Q U(3)u U(3)d U(3)L U(3)e
eiθQCD 1+6 1−3 1−3 10 10

Yu 3+1 3̄−1 10 10 10

Yd 3+1 10 3̄−1 10 10

Ye 10 10 10 3+1 3̄−1

Table 1: Flavor transformation properties of θQCD and the Yukawa coupling matrices Yu,d,e. The subscripts
of the SU(3) representations denote the charge under the U(1) part of the flavor symmetry.

where Xu,d ≡ Yu,dY
†
u,d. The quantity J4 captures, in a flavor basis-invariant way (c.f.

Table 1), the single physical phase that appears in the renormalizable part of the SM
Lagrangian and hence is the order parameter of CP violation in the SM. Here, we have
used the fact that U(3)5 ≡ U(3)Q × U(3)u × U(3)d × U(3)L × U(3)e is the largest possible
flavor group allowed by the SM fermion kinetic terms and is only broken by the SM Yukawa
couplings and global anomalies. The Lagrangian can be formally made invariant under this
symmetry by promoting the Yukawa couplings to spurions transforming under U(3)5 as
given in the Table 1.

Following the same logic, Refs. [39, 40] constructed the flavor invariants which capture
new CP-violating phases present at lowest order in the SMEFT parametrization of UV
physics. In Appendix A, we briefly introduce the SMEFT and the relevant operators which
will be considered throughout our work. The construction of these invariants specifically
adopted the philosophy of the Jarlskog invariant in Eq. (2.1) in the sense that they are built
out of traces of flavorful matrices. Similarly, we can construct an invariant for the QCD
theta angle, θQCD. Using the charges introduced in Table 1, the flavor invariant given by1

Jθ = Im[e−iθQCD det(YuYd)] , (2.2)

captures the non-perturbative source of CP violation in the SM Lagrangian, specifically
θ̄ = θQCD − arg det[YuYd]. Indeed, contributions to the θ potential in the presence of an
instanton background gives the following dependence [23, 46]:

V (θQCD, Yu, Yd)∝ e−iθQCD
3

∏
i=1
ŷu,i ŷd,i , (2.3)

where ŷu,i, ŷd,i are the Yukawa matrix eigenvalues and i labels the quark flavors. Later, the
eigenvalues will sometimes be referred to by their particle name, i.e. for instance ŷu,3 = yt.
This result does not appear to be flavor invariant. However, the result can be reproduced
from Jθ or Kθ = Re[e−iθQCD det(YuYd)] (depending on the CP parity of the contribution
to V ) that is calculated by expanding the invariants in the limit of diagonal SM Yukawa
matrices. This suggests that the flavor invariants can appear directly in the instanton
calculations provided general flavorful couplings are used in the computation.

1For instance, the correction to the axion mass in the SM is proportional to Kθ =
Re[e−iθQCD det(YuYd)]∝ cos θ̄, leading to the well-known cosine potential [44, 45], whereas the linear term
of the axion potential generated via non-perturbative QCD effects in the SM is proportional to Jθ ∝ sin θ̄.
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In this paper, our goal is to consider the contribution of SMEFT operators to the
topological susceptibility in the presence of (small) instantons. We begin by considering the
effect of the four-fermion operator O(1)quqd = Q̄uQ̄d in the Lagrangian, L ⊃ C(1)quqdO

(1)
quqd/Λ

2
��CP.

The effect of inserting this effective operator in an instanton background to the topological
susceptibility, χquqd, or equivalently the potential, was calculated in Ref. [19] (see figure
1a). In the limit of diagonal SM Yukawa couplings,2 we obtain a contribution proportional
to

V (θQCD, Yu, Yd,C
(1)
quqd)∝ e−iθQCD

cij

ŷu,iŷd,j

3

∏
k=1

ŷu,kŷd,k , (2.4)

where cij captures the contribution from the two possible flavor structures cij = C(1)quqd,iijj

or cij = C(1)quqd,ijji and k labels the six entries of the diagonal Yukawa matrices. The propor-
tionality factor in Eq. (2.4) depends on the details of the instanton calculation and these
factors will be derived in Section 3.

It is not immediately apparent that Eq. (2.4) is related in any way to the trace-like
invariants introduced in Ref. [39]. As mentioned in the Introduction, determinant-like
invariants are much better suited to describe instanton calculations. Respecting the charge
assignments introduced in Table 1, we can build the following simplest leading order (in
the EFT power counting) invariant

I(C(1,8)quqd) = Im [e−iθQCDϵABCϵabcϵDEF ϵdefYu,AaYu,BbC
(1,8)
quqd,CcDdYd,EeYd,Ff] , (2.5)

which contains the Wilson coefficient C(1,8)quqd,ijkl and we sum over repeated indices. Note
that this exact invariant had already been proposed in Appendix F of Ref. [39]. In the limit
of diagonal Yukawa couplings and vanishing θQCD (assumed in Ref. [19]), Eq. (2.5) can be
expanded as

I(C(1,8)quqd) = 4(
3

∏
k=1

ŷu,kŷd,k)
3

∑
i,j=1

Im[C(1,8)quqd ]iijj
ŷu,iŷd,j

, (2.6)

which matches the result obtained in Eq. (2.4) and explains the flavor structure appearing
in the instanton contribution. Similarly, the C(1,8)quqd,ijji flavor structure arises if we consider
a second invariant where the indices C and D are interchanged.

At this point several questions arise regarding these determinant-like invariants: why
do they seem to more naturally appear in instanton calculations? How can their knowledge
help in these computations? Can we construct similar determinant-like invariants for all
effective operators and how do they appear in instanton calculations? Furthermore, one
should also connect with the previously constructed trace-like basis of invariants: can a
complete basis be built out of the determinant-like invariants and how do they relate with
the previously constructed basis? While the former questions will be addressed in detail
in Section 3, the remainder of Section 2 will answer the latter questions regarding the
construction of a determinant-like basis suitable for instanton calculations.

2The CKM matrix is assumed to be unity here, which is possible in the SM below the W -boson mass,
since all effects of the CKM matrix can be put into effective operators.
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2.1 A basis of determinant-like flavor invariants

In this section, we will discuss how one can, in principle, construct a complete basis of flavor
invariants for all SMEFT operators that are suitable for instanton calculations featuring
θQCD. By complete, we mean that the basis captures all CP-violating effects from UV phases
in the Wilson coefficients of SMEFT operators. Hence, we do not include opportunistic
effects where the interference of the real part of a Wilson coefficient with the CKM phase
induces CP violation, as previously considered in Ref. [40]. We also want to emphasize that
we only work at leading order in the EFT, i.e., all flavor invariants will be linear in the
Wilson coefficients. Higher-order terms are negligible and we have estimated their effects
in Appendix D.1.

To test our set for completeness we will use the transfer matrix method introduced in
Ref. [39]. The linearity of the invariants in the Wilson coefficients implies that there is a
linear map between the flavor invariants and the entries of the Wilson coefficients C(6)

Ia (C(6)) = Tai C⃗
(6)
i , (2.7)

where we have defined the transfer matrix T and the vector of Wilson coefficients C⃗(6)i =
((ReC(6))

1
, (ReC(6))

2
, . . . , (ImC(6))

1
, (ImC(6))

2
, . . .) which is a list of the real and imag-

inary parts of the entries of the Wilson coefficients. The index a ranges from 1 to the total
number of independent flavor invariants built out of C(6) and the index i ranges from 1 to
the total number of parameters in the theory which cannot be removed by field redefinitions
and that can appear in an interference amplitude with the SM. The transfer matrix has a
block-diagonal form T = (T R T I) where the block T R will be ignored because it captures
the interference of the real part of the Wilson coefficients with the phases of the SM. To
check if the set captures all sufficient and necessary conditions of CP violation at the lead-
ing order in the EFT, we simply check if the block T I of the transfer matrix has full rank,
i.e., if the rank equals the number of phases which can interfere with the SM (see Ref. [39],
where the maximal ranks are given for all operators in the Warsaw basis). Note also that,
in this paper, we do not consider Yukawa matrices with any special values, e.g. degenerate
masses, zero masses or texture zeros in the CKM matrix, that enlarge the flavor symmetry
of the SM left unbroken by the Yukawa couplings.

OuH operator: As a first example for building a complete basis with determinant-like
invariants, we consider the higher-dimensional Yukawa interactions of the up-type quarks,
OuH = ∣H ∣2Q̄H̃u. This requires constructing an object that simultaneously removes the
U(1) transformations of e−iθQCD (which appears in instanton calculations) and is invariant
under the remaining non-Abelian part of the flavor symmetry, while at the same time being
linear in the Wilson coefficients. Following the previous discussion, the simplest flavor
invariant object that fulfills all these requirements is

Im [e−iθQCDϵIJKϵijkYu,IiYu,JjCuH,Kk detYd] , (2.8)

where the rephasings of the Yukawa couplings and the Wilson coefficients precisely cancel
those of e−iθQCD and the determinant-like structure of the Levi-Civita symbols allows the

– 7 –



construction of SU(3)-invariant structures. Starting from the form in Eq. (2.8), we can
now systematically construct flavor invariants that can capture all phases in the Wilson
coefficient CuH by using the matricesXu,d = Yu,dY

†
u,d, transforming in the adjoint of SU(3)Q,

to project out different entries of the Wilson coefficients.
With the help of the transfer matrix method, one can check that a set of flavor invariants

which captures all the sources of CP violation for the operator OuH, for J4 = Jθ = 0, is

I0000(CuH), I1000(CuH), I0100(CuH), I1100(CuH), I0110(CuH),
I2200(CuH), I0220(CuH), I1220(CuH), I0122(CuH) ,

(2.9)

where we have defined

Iabcd(CuH) ≡ Im [e−iθQCDϵIJKϵijkYu,IiYu,Jj (Xa
uX

b
dX

c
uX

d
dCuH)Kk detYd] . (2.10)

O(1,8)quqd operators: After discussing this simple complete example for an operator that

only contains 9 CPV phases, we next return to the four-fermion operator O(1)quqd, and its

SU(3) adjoint form O(8)quqd, that appeared in the previous section. A complete invariant
basis can also be built for this operator by defining the following two structures

Aa1,b1,c1,d1a2,b2,c2,d2
(C(1,8)quqd) = Im [e−iθQCDϵABCϵabcϵDEF ϵdefYu,AaYu,Bb (X

a1
u Xb1

d X
c1
u X

d1
d )

C′

C

×C(1,8)quqd,C′cD′d (X
a2
u Xb2

d X
c2
u X

d2
d )

D′

D
Yd,EeYd,Ff] ,

Ba1,b1,c1,d1a2,b2,c2,d2
(C(1,8)quqd) = Im [e−iθQCDϵABCϵabcϵDEF ϵdefYu,AaYu,Bb (X

a1
u Xb1

d X
c1
u X

d1
d )

C′

D

×C(1,8)quqd,C′cD′d (X
a2
u Xb2

d X
c2
u X

d2
d )

D′

C
Yd,EeYd,Ff] .

(2.11)

Here, the index assignment A0000
0000(C

(1,8)
quqd) corresponds to the invariant in Eq. (2.5) and

B00000000(C
(1,8)
quqd) corresponds to the second invariant mentioned in the last section, where the

indices C and D are interchanged. The operator O(1,8)quqd has 81 phases that can interfere
with the dimension-4 terms of the SM. We list a full set of 81 invariants that capture all
these phases in non-perturbative calculations in Appendix B.1.

O(1,3)lequ operators: One can also build determinant-like invariants for (semi-)leptonic oper-
ators. For instance, the invariants capturing the 27 CP-odd phases of the Wilson coefficients
C
(1,3)
lequ of the semi-leptonic operator O(1)lequ = (L̄e) (Q̄u) and its SU(2) adjoint form O(3)lequ

are

Ifabcd(C
(1,3)
lequ ) ≡ Im [e−iθQCDϵIJKϵijkYu,IiYu,Jj (X

a
uX

b
dX

c
uX

d
d)

L

K
(Y †

e X
f
e )

mN
C
(1,3)
lequ,NmLk detYd ] .

(2.12)
Here again the index assignments for the insertion of Xu,d,e are the same as those in the
trace invariants of Ref. [39] for the same operators, which are also mentioned in Section B.1.
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O(1,3)Hq operators: As a last example, one can also build invariants for SMEFT operators
that are not charged under the U(1) rephasings of the flavor group. For instance, for the
phases in the Wilson coefficients C(1,3)Hq of the operator O(1)Hq = (H†i

←→
DµH) (Q̄γµQ) and its

SU(2) adjoint form O(3)Hq , one can write down the following invariants

I1100(C(1,3)Hq ), I2200(C
(1,3)
Hq ), I1122(C

(1,3)
Hq ) , (2.13)

where

Iabcd(C(1,3)Hq ) ≡ Im [e−iθQCDϵIJKϵijkYu,IiYu,Jj (Xa
uX

b
dX

c
uX

d
d C
(1,3)
Hq Yu )

Kk
detYd ] . (2.14)

Following this procedure, a complete set of flavor invariants capturing all CP-violating
effects at leading order in the SMEFT expansion can be built for all operators in the
Warsaw basis [47]. We present a few more complete examples in Appendix B.1.

Let us once again emphasize that these new invariants are redundant with respect to
the trace-like invariants introduced in Ref. [39], as those were already a complete basis of
invariants which fully characterize the CP-violating phases of the theory. Therefore, the
determinant-like invariants must be redundant in regards to the trace-like invariants. For
example, the invariants in Eq. (2.13) can be rewritten as

Iabcd(C(1,3)Hq ) =Im [(e
−iθQCD det (YuYd)) ϵIJKϵIJL (Xa

uX
b
dX

c
uX

d
dC
(1,3)
Hq )

L

K
]

=2 (JθRabcd(C(1,3)Hq ) +Kθ Labcd(C(1,3)Hq )) , (2.15)

where Rabcd(C) = Re [Tr (Xa
uX

b
dX

c
uX

d
dC)] and Labcd(C) = Im [Tr (Xa

uX
b
dX

c
uX

d
dC)], as de-

fined in Ref. [39]. There are also similar relations for other operators such as

Iabcd(CuH) = 2 (JθR(a−1)bcd(CuHY
†
u ) +Kθ L(a−1)bcd(CuHY

†
u )) , (2.16)

Ifabcd(C
(1,3)
lequ ) = 2 (Jθ ImAf(a−1)bcd(C

(1,3)
lequ ) +Kθ ReAf(a−1)bcd(C

(1,3)
lequ )) , (2.17)

where Afabcd(C
(1,3)
lequ ) = X

f
e,ji (Xa

uX
b
dX

c
uX

d
d)lk Y

†
e,mjYu,nlC

(1,3)
lequ,imkn. This procedure allows us

to map all determinant-like invariants directly to the trace invariants of Ref. [39] for all
operators up to the invariants of the form I0bcd(CuH), where inverse Yukawa couplings
appear in the trace invariants (c.f. I0000(CuH) in Eq. (2.16)). We will show in Appendix B.2
how these latter invariants can also be mapped to the old basis, or alternatively a different
basis from the one given in Ref. [39] would be required, including invariants with inverse
Yukawa couplings. It also becomes apparent that Iabcd captures both the CP-violation due
to the phases introduced by SMEFT operators and that due to the interference between
these SMEFT operators and the SM strong CP phase.

In the next section we will explore why (and when) the determinant-like invariants are
better suited to describe CP violation.
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3 The interplay of Topological susceptibilities and Flavor invariants

As mentioned earlier, the determinant-like invariants capture the interference between the
strong CP phase θ̄ and the Wilson coefficients of various SMEFT operators. In particular,
we focus on CP-violating SMEFT operators

L ⊃
Cij⋯O
ΛD−4
��CP

OD, ij⋯ , (3.1)

where D is the mass dimension of the EFT operator O and i, j, . . . are the flavor indices.
Since both the parameters θ̄ and CO are odd under CP , the vacuum energy is given by [48]

V (θ̄, CO) =
1

2
(uθ θ̄ 2 + 2uθO θ̄ CO + uO C2

O) , (3.2)

where uθ, uθO, uO can be computed in terms of SM and SMEFT operators. We can arrive
at Eq. (3.2) by computing the terms quadratic in the θ term and the SMEFT operator O
in the effective action, which implies

uθ ∼ ⟨(GG̃)
2⟩ , uθO ∼

1

ΛD−4
��CP

⟨GG̃O⟩ , uO ∼
1

Λ2D−8
��CP

⟨O2⟩ . (3.3)

As such, the uO term can be neglected compared to the other two terms. Note that
Eq. (3.2) introduces a linear term in θ̄, implying that the minimum of the energy is shifted.
In the PQ mechanism, i.e., when θ̄ is promoted to a/fa, a dynamical degree of freedom, the
effective value of θ̄ ≡ ⟨a/fa⟩ is determined by Eq. (3.2). To be concrete, the potential can
be re-written in terms of the axion field a

V (a) = χO(0)
a

fa
+ 1

2
χ(0) ( a

fa
)
2

, (3.4)

where we have introduced χ(0) and χO(0) to replace uθ and uθO, respectively, which can
be defined as [49–52]

χ(0) = −i lim
k→0
∫ d4xeikx ⟨0 ∣T { g2

32π2
GG̃(x) , g2

32π2
GG̃(0)}∣0⟩ , (3.5)

known as the QCD topological susceptibility and

χO(0) = −i lim
k→0
∫ d4xeikx ⟨0 ∣T { g2

32π2
GaµνG̃

µν
a (x) ,

Cij⋯O
ΛD−4
��CP

OD, ij⋯(0)}∣0⟩ . (3.6)

The shift in the axion potential of Eq. (3.4) is then given by

θind ≡ −
χO(0)
χ(0) . (3.7)

Experimental bounds on the neutron EDM lead to the constraint θind ≲ 10−10, which can
then be used to obtain limits on any UV parameters contained in χO(0).
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Usually, models of axions or axion-like particles (ALPs) are constructed with a U(1)
Peccei–Quinn symmetry in mind, which dictates the ALP couplings to the SM particles
– either directly or in an EFT after integrating out the heavy modes from the theory. If
one allows for some explicit breaking of the U(1) symmetry,3 responsible for the Nambu–
Goldstone boson nature of the ALP, an axion potential can be generated in ordinary pertur-
bation theory. The interactions of the ALP with the SM particles, including those breaking
the shift symmetry, can be captured in an EFT in a relatively model-independent way.
In this case, the axion potential can be determined by calculating the Coleman–Weinberg
potential in the ALP EFT including operators that break the shift symmetry of the ALP
explicitly. The tadpole term of the resulting potential should be proportional to the in-
variants presented in Ref. [58] that capture all sources of shift symmetry breaking in the
effective theory (see also Ref. [59]).

In this work, we focus on the dimension-six SMEFT operators in the Warsaw basis [47]
– see also Appendix A for definitions and conventions. We will show in Section 3.2 how the
determinant-like CP-odd invariants introduced in Section 2 arise in the vacuum-to-vacuum
amplitude in Eq. (3.6) in the presence of the one-(anti)instanton background. To illustrate
how the invariants for different types of SMEFT operators appear in the instanton calcu-
lations, we will focus on the operators O(1)quqd, O

(1)
lequ, OdG. The full instanton computation

to estimate the contribution of the SMEFT operators to χO(0) requires the substitution of
the zero mode profile of fermions and gauge fields, which are reviewed in Appendix C.1, as
well as the evaluation of loop and collective coordinates integrals. These final steps will be
carried out in detail in Appendix D, where the calculated expressions will then be used in
Section 4 to obtain phenomenological bounds on the CP-odd invariants.

3.1 Topological Susceptibilities

In quantum field theory, much of the essential information (e.g. the S-matrix elements,
power spectrum) can be accessed by evaluating correlation functions of operators. In this
section, we schematically evaluate the two-point correlation functions which are relevant
for our calculations in the presence of a one-(anti)-instanton background by using the path
integral formalism together with the result derived by ’t Hooft [46] (see Eq. (C.13) in
Appendix C.).

As an example to illustrate how to evaluate the correlator defined in Eq. (3.6), we
consider a generic dimension-six operator O[φI, φ], where φI are fields with instanton so-
lutions (e.g. gluon and quark fields), and φ denotes the other fields unrelated to instanton
dynamics (e.g. Higgs or lepton fields). The susceptibility associated with O is given by

χO(0) = −i lim
k→0
∫ d4xeikx ⟨0 ∣T { g2

32π2
GG̃(x) , CO

Λ2
��CP

O[φI, φ](0)}∣0⟩ ,

= e−iθQCD ∫ d4x0∫
dρ

ρ5
dN(ρ)∫

Nf

∏
f=1
(ρdξ(0)f dξ̄

(0)
f )

3Even if this explicit breaking is not introduced by hand it will be generated by quantum gravity
effects [53–57].
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× ∫ Dφe−S0[φ]−Sint[φI,φ]∫ d4x
g2

32π2
GG̃(x) × CO

Λ2
��CP

O[φI, φ](0)∣
1-(a.-)inst.

, (3.8)

where S0[φ], Sint[φI, φ] describe the action containing the φ kinetic terms and the inter-
actions between φI and φ, respectively. The key points to evaluate Eq. (3.8) depend on
the different treatments of the fields φI, φ and their corresponding path integrals. The
essential steps are summarized as follows:

• Fields with instanton solutions φI. The field φI is expanded in eigenmodes, where
only the zero modes of φI are replaced by the instanton solutions. In particular, the
fermion fields are expanded as

ψf(x) =∑
k

ξ
(k)
f ψ(k) ; ψ̄f(x) =∑

k

ξ̄
(k)
f ψ̄(k) , (3.9)

where ξ(k)f , ξ̄(k)f are Grassmann variables, f is a fermion flavor index and the explicit
form of ψ(0) is given in Eq. (C.10). Importantly, the non-zero modes of φI are inte-
grated out and the path integral over the zero modes is interpreted as an integration
over collective coordinates (see Appendix C for further details). Thus, we can directly
replace the path integral of φI using ’t Hooft’s result [46]

∫ DφI e
−SE[φI] → e−iθQCD ∫ d4x0∫

dρ

ρ5
dN(ρ)∫

Nf

∏
f=1
(ρdξ(0)f dξ̄

(0)
f ) , (3.10)

where dξ(0), dξ̄(0) are Grassmann integration measures associated with the fermion
zero modes and dN(ρ) is the instanton density in the SU(N) theory (see Eq. (C.14))
with ρ denoting the instanton size.

• Fields without instanton solutions φ. The remaining fields, φ, are integrated over
without performing the eigenmode expansion. This procedure can be diagrammati-
cally seen as closing the external legs φI (e.g. quark fields) which are coupled to the
instanton vertex by using the fields φ (e.g. Higgs fields), e.g. see Fig. 1a. The crucial
step is to expand the interaction terms of e−Sint[φI,φ], obtaining the contributions of
the φI zero modes.

• The remaining steps require substituting the zero mode profiles of φI (given by
Eqs. (C.4), (C.10)) and evaluating the remaining loop integrals induced by φ and col-
lective coordinate integrals. Most of these calculations are carried out in Appendix D.
Finally, the integral over instanton size, ρ, is performed in Section 4, where some UV
scenarios responsible for the instanton dynamics are specified.

Another relevant correlation function is the QCD topological susceptibility defined in Eq. (3.5).
This two-point correlation function has been computed in the literature, assuming χ(0) only
receives contributions from the Standard Model, and within the perturbative regime and
one-instanton approximation is given by [23, 60]

χ(0) = −3! (2Kθ) i∫
dρ

ρ5
dN(ρ)

1

(6π2)3 , (3.11)

where Kθ = Re [e−iθQCD det (YuYd)] as introduced in the footnote 1.
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3.2 Relevance of determinant-like flavor invariants

The appearance of determinant-like structures in instanton computations, which are more
directly parameterized by the invariants introduced in Section 2.1, is related to the techni-
calities introduced in the previous section which are explored in further detail here.

The main point relates to the treatment of the fermionic contributions in the instanton
background. The fermion fields are expanded in their eigenmodes, such that one can then
isolate the zero modes as in Eq. (C.9). The Grassmann integration measures dξ(0)f will

effectively project out the zero modes of the fermions, since ∫ dξ
(0)
f ξ

(0)
f = 1. In the full path

integral calculation, the following Grassmann integral relations are useful

∫ d3ξ1d
3ξ2 e

ξ1Aξ2 = detA,

∫ d3ξ1d
3ξ2 e

ξ1Aξ2ξ1Bξ2 =
1

2
ϵi1i2i3ϵj1j2j3Ai1j1Ai2j2Bi3j3 ,

∫ d3ξ1d
3ξ2d

3ξ3d
3ξ4 e

ξ1Aξ2+ξ3Bξ4ξ1Cξ2 =
1

2
ϵi1i2i3ϵj1j2j3Ai1j1Ai2j2Ci3j3 detB ,

∫ d3ξ1d
3ξ2d

3ξ3d
3ξ4 e

ξ1Aξ2+ξ3Bξ4ξ1Cξ2 ξ3Dξ4 =
1

4
ϵi1i2i3ϵj1j2j3Ai1j1Ai2j2Ci3j3

× ϵk1k2k3ϵl1l2l3Bk1l1Bk2l2Dk3l3 ,

(3.12)

where ξ1,...,4 are three-dimensional Grassmann variables and A,B,C,D are 3 × 3 matrices.
These identities are at the origin of the appearance of flavorful objects contracted with
Levi-Civita symbols in the calculation, which we describe as determinant-like.

As such, in computations where the fermion zero modes in an effective operator are
integrated over, the determinant-like invariants introduced in Section 2.1 are better suited
at describing CP-violation. This happens not only because the final result is more easily
connected to them, but also because they capture the full dependency of the final result
in terms of the flavorful couplings of the theory. In other words, the result obtained will
be proportional to a determinant-like invariant times instanton-related quantities; all the
dependence on the rest of the theory (in this case Yukawa couplings) is captured by the in-
variant. This would not be the case if we were considering the trace-like basis of invariants.
While the results could be projected into this basis, this would occur as complicated com-
binations of the invariants and with coefficients which include other SM flavor invariants
as we explicitly show in Appendix B.1.

Furthermore, a direct relation between diagrammatic contributions and invariants seems
to be clear. Consider the example of the calculation performed in Ref. [19], where the
topological susceptibility from an insertion of the effective operator O(1)quqd was studied.
Diagrammatically this process can be understood as that of Fig. 1a; one can observe in
the diagram that since all fermion legs of the effective operator are directly connected to
the instanton background, this corresponds to their zero modes being projected out in the
path integral calculations. Therefore, as previously shown, the resulting contribution will
follow a determinant-like structure on all indices of the Wilson coefficient. Indeed, as we
will prove explicitly in the next section, this diagram gives a contribution proportional to
the introduced invariants A0000

0000(C
(1)
quqd) and B00000000(C

(1)
quqd).
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H

H

I O(1)quqd

(a) Instanton diagram with an insertion of the
effective operator O(1)

quqd
.

HH

H

I O(1)quqd

(b) Instanton diagram with an insertion of
the effective operator O(1)

quqd
and additional

Yukawa coupling insertions, corresponding to
invariants of higher order in the Yukawa cou-
plings.

H

H

I

O(1)Hq

(c) Instanton diagram with an insertion of a
non-chirality-flipping effective operator O(1)Hq .

O(1)lequ H

H

H

I

(d) Instanton diagram with an insertion of an
effective operator, giving rise to mixed trace
and determinant-like invariants. One example
is the insertion of the effective operator O(1)

lequ
.

Figure 1: Examples of instanton diagrams corresponding to invariants discussed in the text. Here, the
gray blob depicts the instanton background that the fermions (solid lines) are coupled to. The fermion lines
are closed via Yukawa interactions with the Higgs (dashed lines).

Another interesting contribution which illustrates the previous points is the contribu-
tion from the insertion of the operator O(1)lequ. The corresponding diagram is that of Fig. 1d
and only the quarks emerging from the effective operator have zero modes, as the leptons
are assumed not to be charged under the symmetry group responsible for the instanton
dynamics. Indeed, looking at the constructed invariants Ifabcd(C

(1)
lequ), we see exactly that

only the quark indices are contracted with the anti-symmetric ϵ-structure (determinant-
like) whereas the lepton indices are contracted in a trace-like manner over a matrix product
with a lepton Yukawa coupling.

A final illustrative example is that of rephasing invariant operators such as O(1)Hq . In
this case, even at the lowest order in Yukawa couplings, one cannot build an invariant
where both quark indices are directly contracted with an ϵ-structure; at most one index
is contracted, as shown in the invariant Iabcd(C(1)Hq ). This means that diagrammatically
only one fermionic propagator is directly connected to the instanton background, that is,
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only one zero mode is projected out from the effective operator. This case is illustrated in
Fig. 1c.

We have so far argued that the result of instanton calculations are proportional to the
determinant-like invariants (and no extra flavor structures). Next, we will show how these
patterns arise explicitly.

3.3 Four-quark operator

Diagrammatically speaking, having effective operators in the theory allows for a different
way to contract the open fermion legs coupled to the instanton vertex apart from utilizing
mass terms or Yukawa couplings [28]. Let us start by considering the operator O(1)quqd, which
can give rise to the instanton diagram in Fig. 1a. Since the SM SU(2) gauge group is
unrelated to the instanton dynamics, the SU(2) quark structure can be treated in the same
way as a flavor index. As such, zero modes in the instanton background will not depend
on the SU(2) index. The topological susceptibility, Eq. (3.6), induced by the four-fermion
operator can be calculated as4

χ
(1)
quqd(0)

1−inst. = −i lim
k→0
∫ d4xeikx ⟨0

RRRRRRRRRRRRR
T

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

32π2
GG̃(x),

C
(1)
quqd

Λ2
��CP

O(1)quqd(0)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

RRRRRRRRRRRRR
0⟩ ,

= e−iθQCD ∫ d4x0∫
dρ

ρ5
dN(ρ)∫ DHDH† e−S0[H,H†]∫

3

∏
f=1
(ρ2 dξ(0)uf dξ

(0)
df
d2ξ̄
(0)
Qf
)

× e∫ d4x(Q̄YuH̃u+Q̄YdHd+h.c.)(x) 1

32π2
∫ d4xGG̃(x)

⎛
⎜
⎝

C
(1)
quqd

Λ2
��CP

Q̄uQ̄d(0) + h.c.
⎞
⎟
⎠
,

(3.13)

where d2ξ̄(0)
Q

f

≡ dξ̄(0)
Q1

f

dξ̄
(0)
Q2

f

for the two components of the SU(2) quark doublet. The fermions

are expanded in their eigenmodes (c.f. Eq. (C.9)) and only those terms containing fields
with zero modes in the instanton background have been kept. As can be seen in Eq. (C.10)
this will be u, d,Q† in the instanton background and the conjugates will contribute to the
anti-instanton scenario.

The next step is to expand the exponential of the interacting action of the fermions
and Higgs, such that precisely enough fermion fields appear in the Grassmann integral to
obtain a non-vanishing result. We will also make the SU(2) indices of all SU(2) doublets
explicit in the following calculations by giving all SU(2) doublets upper case indices. We
find

χ
(1)
quqd(0)

1−inst. = e−iθQCD ∫ d4x0∫
dρ

ρ5
dN(ρ)∫ DHDH† e−S0[H,H†]

3

∏
f=1
(ρ2 dξ(0)uf dξ

(0)
df
d2ξ̄
(0)
Qf
)

× ∫ d4x1d
4x2d

4x3d
4x4

1

4!

⎡⎢⎢⎢⎢⎢⎣
∑

perm. over
fermion fields

ξ̄
(0)
QI

i1

(ψ̄(0)Yu,i1j1H̃IPRψ
(0))(x1)ξ(0)uj1

4Note, that all computations are done in Euclidean space by Wick-rotating the time coordinate every-
where in the calculations.
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×ξ̄(0)
QJ

i2

(ψ̄(0)Yu,i2j2H̃JPRψ
(0))(x2)ξ(0)uj2 ξ̄

(0)
QK

k1

(ψ̄(0)Yd,k1l1HKPRψ
(0))(x3)ξ(0)dl1 (3.14)

×ξ̄(0)
QL

k2

(ψ̄(0)Yd,k2l2HLPRψ
(0))(x4)ξ(0)dl2 ∫ d4x

GG̃(x)
32π2

⎛
⎜
⎝

C
(1)
quqd,mnop

Λ2
��CP

ξ̄
(0)
QM

m
(ψ̄(0)PRψ(0))ξ(0)un ϵMN

× ξ̄(0)
QN

o
(ψ̄(0)PRψ(0))ξ(0)dp )(0) ] ,

where the indices m,M of ξ(0)
QM

m
denote the SU(2) and flavor indices, respectively, of the zero

mode Grassmann vector ξQ, which in this case is six-dimensional. After integrating over
all Grassmann variables of the zero modes and considering all the permutations over the
fermion fields, we find that the flavor invariants constructed in Section 2 appear explicitly

χ
(1)
quqd(0)

1−inst. = 1

4Λ2
��CP

[e−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2C
(1)
quqd,mnopϵ

k1k2oϵl1l2pYd,k1l1Yd,k2l2

+e−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2C
(1)
quqd,onmpϵ

k1k2oϵl1l2pYd,k1l1Yd,k2l2] ∫ d4x0∫
dρ

ρ5
dN(ρ)ρ6

× ∫ DHDH† e−S0[H,H†] [∫ d4x1d
4x2(ψ̄(0)H†

I ϵ
IJPRψ

(0))(x1) (ψ̄(0)ϵJKHKPRψ
(0))(x2)]

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2! [∫ d4x1d4x2(ψ̄(0)PRψ(0))(x1)∆H(x1−x2)ϵIJ ϵJI(ψ̄(0)PRψ(0))(x2)]

2≡2!I2

× (ϵMN ϵ
MN ψ̄(0)PRψ

(0) ψ̄(0)PRψ
(0)) (0)∫ d4x

GG̃(x)
32π2

.

(3.15)

The factor of 1/4 at the beginning of Eq. (3.15) appears because the integral over the
fermion zero modes is expressed in terms of the Levi-Civita symbols (see also Eq. (3.12)).
The last step is to integrate over the Higgs field in the Euclidean path integral; using the
definition of the Higgs propagator in position space

∫ DHDH†e−S0[H,H†]HI(x1)H
†
J(x2) =∆H(x1 − x2) δIJ , (3.16)

we are left with the integral

I = 2∫ d4x1d
4x2(ψ̄(0)PRψ(0))(x1)∆H(x1 − x2)(ψ̄(0)PRψ(0))(x2) , (3.17)

multiplying the invariant that we set out to find. After some simplifications, we finally
arrive at

χ
(1)
quqd(0)

1−inst. =
A
(1)
quqd +B

(1)
quqd

Λ2
��CP

∫ d4x0∫
dρ

ρ5
dN(ρ)ρ6I2 (ψ̄(0)PRψ(0)ψ̄(0)PRψ(0)) (0) ,

(3.18)

where we have defined

A
(1)
quqd = e

−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2C
(1)
quqd,mnopϵ

k1k2oϵl1l2pYd,k1l1Yd,k2l2 ,

B
(1)
quqd = e

−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2C
(1)
quqd,onmpϵ

k1k2oϵl1l2pYd,k1l1Yd,k2l2 .
(3.19)
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The same calculation can be performed with the anti-instanton solution. In this case,
the non-vanishing contributions will arise from the Hermitian conjugate terms in the calcu-
lation. Furthermore, the winding number ∫ d4xGG̃(x) will flip its sign, which also induces
a sign flip in the exponential of θQCD. Therefore, the full one-instanton and anti-instanton
contribution to the topological susceptibility induced by a four-fermion operator reads

χ
(1)
quqd(0) = χ

(1)
quqd(0)∣1−inst. + χ

(1)
quqd(0)∣1−a.-inst.

= 1

Λ2
��CP

(A(1)quqd +B
(1)
quqd)∫ d4x0∫

dρ

ρ5
dN(ρ)ρ6I2 (ψ̄(0)PRψ(0) ψ̄(0)PRψ(0)) (0)∣

1-inst.

− 1

Λ2
��CP

(A(1)quqd +B
(1)
quqd)

∗
∫ d4x0∫

dρ

ρ5
dN(ρ)ρ6I2 (ψ̄(0)PLψ(0) ψ̄(0)PLψ(0)) (0)∣

1-a.-inst.
.

(3.20)

Substituting the explicit form of the fermion zero modes from Eq. (C.10) gives

ψ̄
(0)
i PRψ

(0)
i ψ̄

(0)
j PRψ

(0)
j ∣

1-inst.
= 4ρ4

π4
1

(x20 + ρ2)6
= ψ̄(0)i PLψ

(0)
i ψ̄

(0)
j PLψ

(0)
j ∣

1-a.-inst.
, (3.21)

which in turn leads to the result

χ
(1)
quqd(0) =

2i

Λ2
��CP

Im (A(1)quqd +B
(1)
quqd)∫ d4x0∫

dρ

ρ5
dN(ρ)ρ6I2 [

4ρ4

π4
1

(x20 + ρ2)6
] . (3.22)

As expected, the final result depends explicitly on the determinant-like invariants introduced
in Eq. (2.11), since using Eq. (3.19) we find

Im(A(1)quqd) = A
0000
0000 (C

(1)
quqd) , Im(B(1)quqd) = B

0000
0000 (C

(1)
quqd) . (3.23)

It is instructive to compare our results with the NDA estimates introduced in Ref. [32],
which states that the loop factor suppression, (4π)−α, can be predicted by

α = z − 2v + 2p , (3.24)

where z is the number of fermion zero modes, v the number of vertices and p the number
of propagators in the instanton calculation. From Fig. 1a, we verify that for an insertion
of O(1)quqd we have α = 12 − 10 + 4 = 6. After appropriately substituting the fermion zero
modes, our result in Eq. (D.6) gives a suppression of 1/(45π6). Clearly, the power of π
matches the NDA prediction, but the numerical factor is smaller than 46 obtained from
NDA. This difference arises from the fact that we have assumed an unbroken SU(2) group
and there are also combinatoric factors. Taking these effects into account and summing both
the instanton and anti-instanton configurations, the estimation from NDA would predict a
suppression factor 1/(256π6) in Eq. (D.6), which is within one order of magnitude compared
to the full calculation.
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3.4 Semileptonic four-fermion operator

In Section 2.1, we showed that invariants featuring θQCD can also be constructed for the
semileptonic operator O(1)lequ, so it is important to verify whether they arise in instanton
calculations. As the leptons are not charged under the gauge group generating the instan-
tons, they are not coupled to the instanton vertex directly and should, hence, be treated
perturbatively like the Higgs field in the last section. The invariants of a semi-leptonic oper-
ator can therefore only enter by treating the leptons perturbatively on top of the instanton
background giving the special functional form to the quark zero modes (c.f. Eq. (C.10)), as
we will now show. The topological susceptibility will be calculated with an insertion of the
operator O(1)lequ, where the leptons will be kept in the path integral. As before, we will split
off the zero modes and integrate over the non-zero modes of the quark fields. This gives

χ
(1)
lequ(0)

1−inst. = −i lim
k→0
∫ d4xeikx ⟨0

RRRRRRRRRRRRR
T

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

32π2
GG̃(x),

C
(1)
lequ

Λ2
��CP

O(1)lequ(0)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

RRRRRRRRRRRRR
0⟩ ,

= e−iθQCD ∫ d4x0∫
dρ

ρ5
dN(ρ)∫ DHDH†DLDL̄DeDē e−S0[H,H†] e−S0[L,L̄] e−S0[e,ē]

× ∫
3

∏
f=1
(ρ2 dξ(0)uf dξ

(0)
df
d2ξ̄
(0)
Qf
) e∫ d4x(Q̄YuH̃u+Q̄YeHd+L̄YeHe+h.c.)(x)

× 1

32π2
∫ d4xGG̃(x)

⎛
⎜
⎝

C
(1)
lequ

Λ2
��CP

L̄eQ̄u(0) + h.c.
⎞
⎟
⎠
.

(3.25)

As previously, we will now expand the exponential of the action containing the fermion and
Higgs field. We expand the exponential over the quark Yukawa couplings in the zero modes
as before and neglect the quark non-zero modes. Then, as is usually done in perturbation
theory, we expand the exponential of the lepton Yukawa interaction order by order in the
small Yukawa coupling, since expanding the exponential to first order will be sufficient to
obtain a non-vanishing result.

χ
(1)
lequ(0)

1−inst. = e−iθQCD ∫ d4x0∫
dρ

ρ5
dN(ρ)∫ DHDH†DLDL̄DeDē e−S0[H,H†]

× e−S0[L,L̄] e−S0[e,ē]
3

∏
f=1
(ρ2 dξ(0)uf dξ

(0)
df
d2ξ̄
(0)
Qf
)∫ d4x1d

4x2d
4x3d

4x4d
4x5

× 1

6!

⎡⎢⎢⎢⎢⎢⎣
∑

perm. over
fermion fields

ξ̄
(0)
QI

i1

(ψ̄(0)Yu,i1j1H̃IPRψ
(0))(x1)ξ(0)uj1 ξ̄

(0)
QJ

i2

(ψ̄(0)Yu,i2j2H̃JPRψ
(0))(x2)ξ(0)uj2

× ξ̄(0)
QK

k1

(ψ̄(0)Yd,k1l1HKPRψ
(0))(x3)ξ(0)dl1 ξ̄

(0)
QL

k2

(ψ̄(0)Yd,k2l2HLPRψ
(0))(x4)ξ(0)dl2

× ξ̄(0)
QM

k3

(ψ̄(0)Yd,k3l3HMPRψ
(0))(x5)ξ(0)dl3 ∫ d4x

GG̃(x)
32π2

⎛
⎜
⎝

C
(1)
lequ,mnop

Λ2
��CP

(L̄Nmen) ϵNO

× ξ̄
(0)
QO

o
(ψ̄(0)PRψ(0))ξ(0)up )(0) ] ∫ d4x6 (ēqY †

e,qrH
†,PLPr ) (x6) .

(3.26)
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Note that in comparison to the computation of O(1)quqd, an extra down Yukawa coupling is

needed to complete the zero mode expansion because O(1)lequ has no down-quark bilinear.
In the next step, we will perform the integration in the path integral over the Higgs and
lepton fields, as well as the zero mode integrals. Using

∫ DψDψ̄ e−S0[ψ,ψ̄]ψI(x1)ψ̄J(x2) ≡∆F (x1 − x2) δIJ , (3.27)

the lepton fields are contracted to form a loop.5 The resulting expression reads

χ
(1)
lequ(0)

1−inst. = 1

2Λ2
��CP

e−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2C
(1)
lequ,opmnY

†
e,po detYd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ I(1)

lequ

× 3! ∫ d4x0∫
dρ

ρ5
dN(ρ)ρ6 I2 ∫ d4x5d

4x6 (ψ̄(0)PRψ(0)) (x5)∆H(x5 − x6)

× tr (PR∆F (x6 − 0)PL∆F (0 − x6)) (ψ̄(0)PRψ(0)) (0) ϵOP ϵPO ∫ d4x
GG̃(x)
32π2

.

(3.28)

As before, we add the anti-instanton contribution to obtain the full result, which leads to
the complex conjugate invariants appearing with the opposite sign in the final result. Thus,
the final result is proportional to the invariant

Im (I(1)lequ) = Im [e−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2C
(1)
lequ,opmnY

†
e,po detYd] = I

0
0000 (C

(1)
lequ) ,

(3.29)

that we have defined in Section 2.1 multiplied by a complicated integral. In Appendix D.2,
the integrals in Eq. (3.28) are evaluated; in particular the integral over the leptonic loop is
divergent. We have explicitly verified that when considering the appropriate renormalized
effective field theory, the counterterms cancel this divergence, as expected. Furthermore,
the NDA estimation of Ref. [32] also works in this case: following Eq. (3.24), we expect a
suppression of (4π)−8 which matches the π suppression of the result obtained in Eq. (D.19),
where the numerical factor ≃ 1/(450π8). For this factor, if we take into account the combi-
natoric factors, the unbroken SU(2) and the sum over instanton and anti-instanton config-
urations, the NDA estimation of 4−8 becomes approximately half of the full result.

This analysis can be repeated for all other operators in the SMEFT following the same
procedure. We present calculations for the insertion of the gluon dipole operator OdG in
Appendix D.3, that will also be considered in a phenomenological study in Section 4. For
some SMEFT operators, their leading contribution might not arise from projecting the
zero modes out of all the fermion legs. Indeed, considering non-zero modes of the quarks in
the effective operators is also needed to obtain the invariants with more powers of Yukawa
couplings introduced in Section 2.1. We next discuss the calculations in these cases.

3.5 Higher-order invariants and selection rules

In our calculations we have only considered contributions at leading order with the least
possible power of the Yukawa couplings. However, one could compute higher-loop dia-
grams with more powers of Yukawa couplings, which would be captured by higher-order

5The indices I, J represent all internal indices, like the flavor and SU(2) gauge group indices.
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invariants, such as the diagram depicted in Fig. 1b. The explicit calculation of higher-loop
diagrams works differently than what was performed in Sections 3.3 and 3.4, because some
interactions mix the zero and non-zero modes of the fermions charged under the instanton
group. Explicitly performing this calculation is beyond the scope of this paper but we will
comment on how these calculations work in principle. Instead of just including the quark
zero modes in the calculations, one would have to include the non-zero mode interactions
in the action as well. These should be treated perturbatively as was done for the leptons
in Section 3.4. As a consequence, one can no longer simply integrate over the free part of
the action containing just the non-zero modes to remove them from the path integral as
done in Eq. (3.10), since their interactions with the zero modes necessarily appear in the
action as well. Hence, we would have to reevaluate ’t Hooft’s result for the non-zero mode
integration (i.e., remove the factor of e0.292Nf from the instanton density in Eq. (C.15))
and treat the non-zero modes of the colored fields as perturbations around the instanton
background.

In summary, including extra powers of Yukawas from the interacting part of the action
forces us to consider terms mixing zero- and non-zero modes of the quarks. The contraction
of the flavor indices of the non-zero mode fermions in the Yukawa interactions is done
by Kronecker deltas as a result of flavorful propagators introduced in the perturbative
calculation (c.f. the calculation with the semi-leptonic operator in Section 3.4). This
results in the higher-order invariants introduced in Section 2.1, where the extra Yukawas
are contracted in a matrix product. The indices corresponding to non-zero modes remain
contracted in a determinant-like manner, i.e. via the ϵ symbol.

In addition, flavor invariants offer an explanation as to why operators invariant under
the flavor-diagonal U(1) quark rephasings (shown in Table 1) cannot enter through zero
mode contributions in instanton calculations. One example for such an operator is O(1)Hq ,
which is invariant underQ→ eiαQQ, where all flavors are rephased with the same parameter.
Because the operator is rephasing invariant, other flavorful objects besides the Wilson
coefficient are needed to counteract the rephasing of e−iθQCD that necessarily appears in
instanton calculations. Due to the linearity of the flavor invariants in the Wilson coefficient,
this object can only be constructed by SM Yukawa couplings. There are two options to
construct a flavor invariant given these constraints. The object counteracting the rephasing
of e−iθQCD can either be detYuYd with the Wilson coefficient appearing in a trace invariant
or a determinant-like invariant where, even at lowest order, the Wilson coefficient multiplies
one of the Yukawa couplings (c.f. Eq. (2.13)).6 As we have discussed previously, both traces
and matrix products can only appear through propagators in perturbative calculations of
the non-zero modes of quarks around the instanton background. Hence, the flavor invariants
imply a selection rule on all operators that are invariant under rephasings to only contribute
in instanton calculations when the non-zero modes of its fermions are considered.

As a more general statement, flavor invariants can be used to understand how the con-
tribution from any SMEFT operator will contract with the flavor structure of the theory

6These two types of invariants are equivalent as we show explicitly in Eq. (2.15) for the operator O(1)Hq

and all arguments presented here work for both forms.
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without explicitly doing the path integral computations, as we have anticipated in Sec-
tion 3.2. Furthermore, knowing how the non-vanishing contributions scale and connect
with an instanton diagram, allows to correctly account for the loop factors coming from
the zero modes and from the rest of the perturbative calculation; invariants can therefore
allow for a more refined NDA estimate of the instanton effects in the spirit of what was
done in Ref. [32].

4 Constraints on dimension-six CP-violating operators

The results derived in the previous sections can now be used to place bounds on the scale
Λ��CP associated with dimension-six CP violating operators. We will assume that QCD
is modified at a scale ΛSI where the one-instanton approximation remains valid and small
instantons induce a shift in θ̄ proportional to Λ2

SI/Λ2
��CP. Using the determinant-like invariants

arising from the one-instanton calculation, we will then obtain limits on the ratio ΛSI/Λ��CP,
under the assumption that this induced θ̄ in the small instanton background saturates the
experimental bound from the neutron EDM, θ̄ ≲ 10−10 [1].

The effects from small (UV) instantons are enhanced, provided the gauge coupling
becomes larger in the UV. In this limit, the one instanton calculation remains consistent
and the invariants derived in Section 2 can be directly used. As such, we can reliably
compute the effects of various dimension-six operators and compare them to the topological
susceptibility χ(0) shown in Eq. (3.11). There are two UV models that modify QCD UV
dynamics to enhance the topological susceptibility for which the instanton computation is
relevant and these will be briefly reviewed below:

Product group models A natural way to explicitly compute the instanton integrals
discussed in Section 3 is to Higgs an enlarged gauge group containing QCD color. This
modifies the instanton measure dN(ρ) by an exponential factor

dN(ρ)→ dN(ρ) e−2π
2ρ2∑ ∣⟨σ⟩∣2 , (4.1)

where the sum extends over all the scalars σ that Higgs the gauge group. This provides
a cutoff ∼ 1/∣⟨σ⟩∣ for the instanton integrals. In particular, we consider the product group
model introduced in Refs. [27, 28], where the gauge group SU(3)1 × SU(3)2 × ⋅ ⋅ ⋅ × SU(3)k
is Higgsed to the diagonal SU(3)c via bifundamental scalars σ. The gauge couplings of the
individual gauge groups at the UV scale can be chosen to be larger than the QCD coupling
while still in the perturbative regime so that small instantons are enhanced and instanton
computations are applicable.

5D Instantons Another model where small instantons provide a significant contribution
to the topological susceptibility was studied in Ref. [61]. This involves uplifting the BPST
instanton presented in Eq. (C.4) to a compact extra dimension of size R, which modifies
the running of the effective gauge coupling in Eq. (C.16) above the compactification scale
1/R. The effective action then becomes

Seff ≃
8π2

g2(1/R) −
R

ρ
+ b0 ln

R

ρ
, (4.2)
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where b0 is the β-function coefficient of the zero modes and the linear term R/ρ is due to
additional contributions in Eq. (C.11) from the Kaluza-Klein modes. As such, the instanton
measure becomes modified by an amount

dN(ρ)→ dN(ρ) eR/ρ . (4.3)

The dilute instanton gas approximation can then be used to compute the topological sus-
ceptibility in this model by imposing the 5D perturbativity condition

ΛSIR ≲
24π2

g2
, (4.4)

where ΛSI is identified with the cutoff scale of the 5D gauge theory.

4.1 Bounds from induced θ̄

As discussed in Section 3, new sources of CP violation in the SMEFT can induce a shift in
θ̄, which leads to observable effects such as the neutron EDM. In principle, all the invariants
discussed in Section 2.1 and Appendix B.1 will give contributions to θ̄. However, due to the
different flavor structures, there are only a few invariants that contribute to leading order.

In the following, we consider three different flavor scenarios to study their impact on
the bounds obtained from the induced θ̄-angle. We will briefly introduce them here.

1. The simplest is the anarchic flavor scenario, in which all Wilson coefficients have an
O(1) value. Compared to the SM, this will in particular lead to large flavor-changing
interactions.

2. A slightly more restrictive flavor assumption is the MFV [62–64] scenario. As we
have noted earlier, in the SM the only breaking of the U(3)5 flavor symmetry of
the fermion kinetic term is due to the SM Yukawa couplings. Taking the Yukawa
couplings to be spurions under this symmetry (c.f. Table 1), makes the Lagrangian
formally invariant under this approximate symmetry. In MFV we assume that the
non-renormalizable operators of the SMEFT follow the same symmetry scheme. Thus,
all SMEFT Wilson coefficients are polynomials in the Yukawa couplings dictated by
the spurious transformations of the Wilson coefficients under the flavor group.

3. Lastly, we consider a Froggatt–Nielsen (FN) scenario [65] that offers an explanation
for the size of the SM lepton and quark masses as well as the parameters in the CKM
matrix. In this scenario, the SM fields are extended by a complex scalar field ϕ which
is a singlet under the SM gauge group. The new scalar field has charge −1 under
a global U(1) symmetry. Constructing a Lagrangian invariant under the SM gauge
group and the newly postulated U(1) yields

L = −( ϕ
⋆

ΛFN
)
qQi
+quj

CuijQ̄iH̃uj − (
ϕ⋆

ΛFN
)
qQi
+qdj

CdijQ̄iHdj − (
ϕ⋆

ΛFN
)
qLi
+qej

CeijL̄iHej ,

(4.5)
where the FN charges of the left-handed fermionsQ, u†, d†, L, e† are denoted as qQ, qu,
qd, qL, qe, respectively, qH = 0, ΛFN is the effective scale where the Froggatt–Nielsen
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scenario is UV completed and the coefficients Cu,d,eij areO(1) complex numbers. Even-
tually, the global U(1) symmetry is broken by the VEV of the complex scalar, which
yields hierarchical Yukawa couplings as powers of λ = ⟨ϕ⟩

ΛFN
∼ 0.2 dictated by the FN

charges. One set of charge assignments that can reproduce the SM Yukawa couplings
to large accuracy is

qQ = {3,2,0}, qu = {5,2,0}, qd = {4,3,3} , (4.6)

for the quarks and
qL = {9,5,3}, qe = {0,0,0} , (4.7)

for the leptons. This construction can be extended to the effective operators of the
SMEFT [66], resulting in hierarchical entries for the Wilson coefficients.

We begin by identifying the leading order invariants amongst those given in Section 2.
This can be easily achieved by studying the FN scaling of the invariant with the least
number of Yukawa matrices for each operator. Consider the topological susceptibility of
QCD, χ(0) ∝ Kθ, e.g., which scales as ∝ λ27. This compares with the SMEFT invariants
in Section 2.1 which scale as

I0000(CuH), A0000
0000(C

(1,8)
quqd), B

0000
0000(C

(1,8)
quqd)∝ λ27 , (4.8)

I1100(C(1,3)Hq ), I
0
0000(C

(1,3)
lequ )∝ λ33 . (4.9)

This scaling helps to determine which invariants are important and hence phenomenolog-
ically the most interesting. For instance, Eqs. (4.8) and (4.9) indicate that the operators
OuH and O(1,8)quqd lead to larger effects compared to O(1,3)Hq or O(1,3)lequ , i.e. if the Wilson co-
efficients are assumed to be of the same order (up to the appropriate power of the FN
parameter λ), the contribution of the operator O(1,8)quqd (or OuH) to θind dominates over that

of O(1,3)lequ (or O(1,3)Hq ). This can also be understood from Fig. 1a and Fig. 1d – the latter
figure contains additional loops and Yukawa couplings, compared to the former figure and
the leading order contribution from χ(0).

Below, we study in more detail how these invariants contribute to the shift in the axion
potential minimum, θind, for two leading-order operators – O(1)quqd as well as the dipole

operator OdG, and the sub-leading semi-leptonic operator O(1)lequ.
For this analysis, the MFV (at leading order) and FN flavor scenarios result in the

same scaling for the Wilson coefficients, which occurs because we are only considering the
contribution from chirality-flipping operators to one observable. For instance, the scaling
of O(1)quqd is

C
(1)
quqd,ijkl

MFV∼ c1Yu,ijYd,kl +O(Y 3
u,d) , C

(1)
quqd,ijkl

FN∼ c1,ijklλqQi
+quj+qQk

+qdl , (4.10)

where c1 are O(1) coefficients. Since by the FN construction, Eq. (4.5), Yu ∼ λqQ+qu and
Yd ∼ λqQ+qd , we explicitly see the same scaling in both scenarios. Therefore, we will only
present constraints on Λ��CP (for a given ΛSI) under anarchic and MFV scenarios for the
considered operators in the following.
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4.1.1 Four-quark operators

For the four-quark operatorO(1)quqd, the topological susceptibility is computed in Appendix D.1
and the result is given in Eq. (D.6). Performing the integral over ρ in the product group
model SU(3)k → SU(3)c and assuming ∣⟨σ⟩∣ = ΛSI, we obtain

θind =
16π2

5(b0 − 6)Kθ
(A0000

0000 (C
(1)
quqd) + B

0000
0000 (C

(1)
quqd))

Λ2
SI

Λ2
��CP

, (4.11)

where b0 = 13/2 for SU(3)1 and b0 = 21/2 for SU(3)k . For SU(3)2, . . . SU(3)k−1 , b0 = 10
and we get an additional factor of 2 on the RHS of Eq (4.11). In the case of 5D instantons,
we obtain

θind =
2

5Kθ
(A0000

0000 (C
(1)
quqd) + B

0000
0000 (C

(1)
quqd))

Λ2
SI

Λ2
��CP

. (4.12)

Note that as a consequence of the Higgsed theory, the product group model has a smooth
cutoff on the instanton size ρ, which leads to a mild dependence on the β function coefficient,
b0 in Eq. (4.11).

In contrast, Eq. (4.3) implies that the integral over ρ is dominated by instantons of
size ρ ∼ 1/ΛSI. Therefore, all the susceptibilities for the 5D model only depend on ΛSI, up
to an overall factor. This factor cancels when taking the ratio of susceptibilities, implying
that θind is independent of the β function coefficient, b0.

The constraints arising from Eqs. (4.11) and (4.12) are shown in Fig. 2, where for the
product group model, we use b0 = 13/2 since it gives the most stringent constraints. Note
that the same value of b0 will be used in constraining the semi-leptonic and gluon dipole
operators. In the anarchic flavor scenario, we find that Λ��CP ≳ 1010(1011)ΛSI for the 5D
(product group) model. On the other hand, the MFV scenario provides a much weaker
constraint – Λ��CP ≳ 5×105(106)ΛSI for the 5D (product group) model, which differs exactly
by a factor of ∼√yu yd, as indicated by Eq (2.6). This matches the MFV scenario considered
in Ref. [19], up to an overall factor due to the Higgs doublet structure. In addition, the
invariants help us to easily incorporate off-diagonal Yukawa couplings which changes the
previous estimate of θind in Ref. [19] by ∼ 6%.

4.1.2 Semi-leptonic operator

For the four-fermion operator O(1)lequ, the susceptibility is given by Eq. (D.19). In the case
of the product group model, performing the integral over ρ gives

θind =
I00000(C

(1)
lequ)

(b0 − 6)Kθ
[11
25
+ 6

5
(log (Λ��CP

ΛSI
) + γE − log 4π) +

3

5
Ψ(b0

2
− 3)] Λ2

SI

Λ2
��CP

, (4.13)

where Ψ(z) is the digamma function, while in the 5D instanton model we obtain

θind =
I00000(C

(1)
lequ)

8π2Kθ
[11
25
+ 6

5
(log (Λ��CP

ΛSI
) + γE − log 2)]

Λ2
SI

Λ2
��CP

. (4.14)
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Figure 2: Limits on the UV scale Λ��CP of the four-quark operator O(1)quqd in different flavor scenarios as a
function of the small instanton scale ΛSI. The shaded regions are excluded by the non-observation of the
neutron EDM. The striped red region, which corresponds to scales above the Planck mass, is plotted for
reference.

We present the constraints arising from Eqs. (4.13) and (4.14) in Figure 3. As expected,
the constraints in this case are much weaker than the four quark operators. For the anarchic
and MFV cases, we obtain Λ��CP ≳ 106(107)ΛSI and Λ��CP ≳ 5× 103(104)ΛSI, respectively, for
the 5D (product group) model. From Eq. (2.12), we see that the largest term in I00000(C

(1)
lequ)

is approximately ∼Kθ yτ /yu for the anarchic case (C(1)lequ ∼ O(1)), and ∼Kθ y
2
τ for the MFV

scenario (C(1)lequ,NmLk ∼ Ye,NmYu,Lk). This results in a difference by a factor of ∼ √yu yτ
in the two flavor scenarios. In comparison to the result for the four-quark operator, the
difference can again be understood in terms of a loop factor and different Yukawa couplings
entering the invariants A0000

0000(C
(1)
quqd), B

0000
0000(C

(1)
quqd) and I00000(C

(1)
lequ) – for MFV, there is

a relative factor of ∼
√
y2τ /16π2 ≡

√
λ6/16π2 whereas for the anarchic case the factor is

∼
√
yτyd/16π2.

4.1.3 Gluon dipole operator

Next, we consider the gluon dipole operator OdG = (Q̄σµνTAd)HGAµν . This operator con-
tributes to the topological susceptibility at the same order as O(1,8)quqd, and has the same
functional form in terms of instanton parameters. The flavor structure of this operator is
similar to OuH presented in Eq. (2.10), and the leading order invariant is given by

I0000(CdG) ≡ Im [e−iθQCDϵIJKϵijkYd,IiYd,JjCdG,Kk detYu] , (4.15)
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Figure 3: Limits on the UV scale Λ��CP of the semi-leptonic operator O(1)lequ in different flavor scenarios as
a function of the small instanton scale ΛSI. The shaded regions are excluded by the non-observation of the
neutron EDM. The striped red region, which corresponds to scales above the Planck mass, is plotted for
reference.

The computation of the susceptibility for this operator is given in App. D.3 and the result
is presented in Eq. (D.26). In this case, the product group model gives the result

θind =
I0000 (CdG)

Kθ

144π2

5(b0 − 6)
Λ2
SI

Λ2
��CP

, (4.16)

where b0 and ∣⟨σ⟩∣ are similarly defined as in Eq. (4.11). In the case of the 5D instanton
model we obtain

θind =
I0000 (CdG)

Kθ

18

5

Λ2
SI

Λ2
��CP

. (4.17)

The constraints coming from θind in Eqs. (4.16) and (4.17) are presented in Figure 4.
In the anarchic scenario, the constraint is approximately, Λ��CP ≳ 5× 107(108)ΛSI for the 5D
(product group) model. It is worth noting that the constraints arising from both the leading
order operators O(1)quqd and OdG are similar in the MFV scenario, while those from O(1)lequ

are the weakest among the three, as expected. The anarchic and MFV flavor scenarios are
defined by CdG ∼ 1 and CdG ∼ Yd, respectively, resulting in bounds differing by a factor of
∼ √yd (see Eq. (4.15)). This is much less pronounced compared to O(1)quqd and O(1)lequ which
have multiple Yukawas.

Finally, note that for simplicity we have assumed the small-instanton induced θ provides
the entire contribution to the neutron EDM. However, in principle, there can be direct

– 26 –



Figure 4: Limits on the UV scale Λ��CP of the gluon dipole operator OdG in different flavor scenarios as a
function of the small instanton scale ΛSI. The shaded regions are excluded by the non-observation of the
neutron EDM. The striped red region, which corresponds to scales above the Planck mass, is plotted for
reference.

contributions to the neutron EDM from the SMEFT operators which should also be taken
into account. These contributions from parameters other than θ have been considered in
Refs. [52, 67–71].

5 Conclusion

The enhanced effect of small (UV) instantons due to new high-energy dynamics that modi-
fies QCD at a UV scale ΛSI can be used to increase the QCD axion mass while still solving
the strong CP problem [17, 21–23, 27, 28, 61]. However, in the presence of higher-dimension
CP-odd operators at a scale Λ��CP, an extra contribution to θ̄ can also be induced from these
small instantons which can misalign the axion potential and give rise to a large neutron
EDM, leading to stringent constraints on the ratio ΛSI/Λ��CP [19]. In this paper, we have
further explored these contributions for generic UV CP-violating scenarios parameterized
by SMEFT operators. In order to estimate the induced shift θind, the calculations have
been performed in the one-(anti-)-instanton (or dilute instanton gas) approximation, valid
when the instanton dynamics can be treated as perturbative. This assumes that the QCD
coupling near the scale ΛSI is large or semi-perturbative (in order to amplify the effect
of small instantons). The calculation is not applicable for non-perturbatively large QCD
couplings, where non-perturbative methods must be used.
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Given that the instanton calculations involve complicated integrals and are usually con-
sidered as estimations [32], a more accurate estimation can be obtained by including the
effect of flavorful couplings in the theory. However, since physical observable are flavor basis
independent, the flavorful couplings should be arranged into rephasing flavor invariants. In
particular, the topological susceptibility from small instantons can be described in terms of
SMEFT CP-odd invariants introduced in Ref. [39]. However, the basis of trace invariants
presented in Ref. [39] is not well-suited to characterize the results from the instanton cal-
culation of topological susceptibilities. The results, when projected into the basis of trace
invariants, yield complicated linear combinations of the invariants with coefficients that
may contain inverse powers of Yukawa couplings, therefore making the task of estimating
physical effects with these invariants impractical. Instead, in this work we have proposed a
new basis of CP-odd SMEFT invariants, built from determinant-like structures which are
much better suited to describe instanton computations. We have explicitly shown and ar-
gued that the instanton calculations give results that are directly proportional to elements
of our new basis with no extra powers of flavorful couplings. The flavor invariants derived in
this paper therefore allow a more refined estimation of the effects of including CP-violating
new physics in small-instanton calculations, complementing the instanton NDA estimates
in Ref. [32].

Furthermore, the new invariants directly imply selection rules on which kind of opera-
tors can appear at the leading order in the instanton calculation since they determine the
number of Yukawa couplings and loop factors. We have also shown that rephasing invariant
operators cannot contribute only via fermion zero modes which usually give the dominant
contribution. For example, we show in the case of the semi-leptonic operator contribution
how invariants encapsulate the expected lepton Yukawa dependence and extra loop sup-
pression. Performing the computations in a flavor-invariant fashion also allows us to easily
test different flavor assumptions for the SMEFT Wilson coefficients. For instance, we find
that for the four-quark operator O(1)quqd, the leading order invariant in the MFV scenario
contains an extra product of the up and down Yukawa couplings (or just the down Yukawa
coupling for the gluon dipole operator OdG) compared to the anarchic scenario. Using the
experimental bound on θ, we obtain constraints on the scale of the higher-dimension CP-
violating operators by assuming that the contribution to θ is entirely due to the calculated
effect of the small instantons. We also show that for the leading order operators O(1)quqd and
OdG the invariants are approximately ∼ sin θ̄ and result in similar bounds Λ��CP ≳ 106ΛSI for
the MFV scenario. However, for the anarchic scenario, the limits are operator dependent
and become much more stringent– for O(1)quqd, we obtain Λ��CP ≳ 1011ΛSI while for OdG, the
bound becomes Λ��CP ≳ 108ΛSI.

The cancellation of divergences appearing in the instanton loop integrals can be used as
a non-trivial cross-check of our calculations. The divergences in the correlation functions are
canceled by including the counterterms of the SMEFT in a Green’s basis. This cancellation
has been explicitly shown for the semi-leptonic operator O(1)lequ to obtain a divergence-free
result that is then used for a phenomenological study.

Our work can be extended in several directions. The most immediate one is to perform
similar calculations by including all relevant SMEFT operators systematically, explicitly
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verifying the appearance of the constructed invariants. In addition, considering higher or-
ders in the Yukawa couplings would also prove interesting. Another possible extension of
our work is to consider the effect of higher-dimensional effective operators (e.g. consider-
ing the double insertions of dimension-six SMEFT operators, or a single insertion of the
dimension-eight SMEFT operators). Since these operators could allow for different topolo-
gies than those of Fig. 1, their effect might not be in general trivially extrapolated from
our results. While we estimated that a higher-dimensional effect would be suppressed, as
expected, in the case of the double insertion of O(1)quqd in Appendix D.1, a more systematic
study of higher-dimensional operators could be relevant.

Furthermore, we have solely focused on contributions to the linear term in the axion
potential in this work. However, similar computations could be performed to estimate the
small instanton effects on the axion mass term using CP-even SMEFT invariants. Having
more reliable estimates of observables to probe SMEFT operators can help to better direct
experimental searches.
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A SMEFT conventions

In this work, we consider the SMEFT up to dimension-six terms and assume dimensionless
Wilson coefficients Ca, i1...in defined as

LSMEFT = LSM + 1

Λ2
��CP

∑
a

Ca, i1...inOi1...ina , (A.1)

where Λ��CP is the cutoff scale associated with the CP-violating operator, a labels the type of
dimension-six operator and i1...in correspond to the n flavor indices of fermionic operators.
Above the electroweak breaking scale, the SM Lagrangian is given by

LSM = −1
4
GAµνG

A,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν + θQCD
g2

32π2
GAµνG̃

A,µν

+ i(Q̄ /DQ + ū /Du + d̄ /Dd + L̄ /DL + ē /De) − (Q̄YuH̃u + Q̄YdHd + L̄YeHe + h.c.)

+ (DµH)†(DµH) +m2
H(H†H) − λ

2
(H†H)2 , (A.2)
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where Yu,d,e are the Yukawa coupling matrices and H̃ i = ϵijH∗j . Our sign convention for
covariant derivatives is mostly positive, e.g. the covariant derivative acting on a field ϕ

reads
Dµϕ = (∂µ + igTACGAµ + ig2T IW I

µ + ig1YϕBµ)ϕ , (A.3)

where g, g2, g1 are dimensionless gauge coupling constants and TAC , T
I are the SU(3) and

SU(2) generators in the representations of ϕ respectively; Yϕ stands for the hypercharge
of ϕ. Here, it is convenient to define the covariant derivatives acting to the field and its
Hermitian conjugate,

H†i
←→
DµH ≡H†(iDµH) − (iDµH

†)H , H†i
←→
DI
µH ≡H†τ I(iDµH) − (iDµH

†)τ IH , (A.4)

where τ I are the Pauli matrices. We adopt the Warsaw basis [47] conventions for the
definitions of the effective operators. The fermionic operators are given for completeness in
Tables 2 and 3. We only consider fermionic operators and neglect fully bosonic ones in our
analysis because only the former have zero modes projected out resulting in determinant-like
structures, as explored in detail in Section 3.

B Details on determinant-like invariants and their relation to trace in-
variants

B.1 Complete set of flavor invariants featuring θQCD for all SMEFT operators

In this Appendix, we present a complete set of flavor invariants, featuring θQCD and are
linear in the Wilson coefficient, for all dimension-six SMEFT operators, which were not
shown in the main text due to their length. We begin with the operators that are used as
examples in the main text. For the operator O(1,8)quqd, a complete set can be built with the
following 81 invariants

A0000
0000 (C

(1,8)
quqd) , A

0000
1000 (C

(1,8)
quqd) , A

1000
0000 (C

(1,8)
quqd) , A

1000
1000 (C

(1,8)
quqd) , A

0000
0100 (C

(1,8)
quqd) ,

A0100
0000 (C

(1,8)
quqd) , A

0000
1100 (C

(1,8)
quqd) , A

0000
0110 (C

(1,8)
quqd) , A

0100
1000 (C

(1,8)
quqd) , A

1000
0100 (C

(1,8)
quqd) ,

A1100
0000 (C

(1,8)
quqd) , A

0110
0000 (C

(1,8)
quqd) , A

1000
1100 (C

(1,8)
quqd) , A

1000
0110 (C

(1,8)
quqd) , A

1100
1000 (C

(1,8)
quqd) ,

A0100
0100 (C

(1,8)
quqd) , A

0100
1100 (C

(1,8)
quqd) , A

0100
0110 (C

(1,8)
quqd) , A

0110
0100 (C

(1,8)
quqd) , A

0000
2200 (C

(1,8)
quqd) ,

A0000
0220 (C

(1,8)
quqd) , A

0200
2000 (C

(1,8)
quqd) , A

1100
1100 (C

(1,8)
quqd) , A

1100
0110 (C

(1,8)
quqd) , A

2000
0200 (C

(1,8)
quqd) ,

A2100
0100 (C

(1,8)
quqd) , A

0110
1100 (C

(1,8)
quqd) , A

0110
0110 (C

(1,8)
quqd) , A

0210
1000 (C

(1,8)
quqd) , A

0000
1220 (C

(1,8)
quqd) ,

A1200
2000 (C

(1,8)
quqd) , A

0000
0122 (C

(1,8)
quqd) , A

0100
1220 (C

(1,8)
quqd) , A

1000
0122 (C

(1,8)
quqd) , A

1100
2200 (C

(1,8)
quqd) ,

A1100
0220 (C

(1,8)
quqd) , A

1200
2100 (C

(1,8)
quqd) , A

2100
1200 (C

(1,8)
quqd) , A

2100
0210 (C

(1,8)
quqd) , A

2200
0110 (C

(1,8)
quqd) ,

A0110
2200 (C

(1,8)
quqd) , A

0110
0220 (C

(1,8)
quqd) , A

0112
2000 (C

(1,8)
quqd) , A

1100
1220 (C

(1,8)
quqd) , A

2100
0112 (C

(1,8)
quqd) , (B.1)

A1200
1220 (C

(1,8)
quqd) , A

2200
2200 (C

(1,8)
quqd) , A

0110
1122 (C

(1,8)
quqd) , A

0122
2100 (C

(1,8)
quqd) , A

0220
0220 (C

(1,8)
quqd) ,

B00000000 (C
(1,8)
quqd) , B

0000
0100 (C

(1,8)
quqd) , B

0000
1000 (C

(1,8)
quqd) , B

0000
1100 (C

(1,8)
quqd) , B

0000
2200 (C

(1,8)
quqd) ,
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Label Operator # phases # primary phases

OeH (H†H)(L̄iejH) + h.c. 9 3

OuH (H†H)(Q̄iujH̃) + h.c. 9 9

OdH (H†H)(Q̄idjH) + h.c. 9 9

OeW (L̄iσµνej)τ IHW I
µν + h.c. 9 3

OeB (L̄iσµνej)HBµν + h.c. 9 3

OuG (Q̄iσµνTAuj)H̃ GAµν + h.c. 9 9

OuW (Q̄iσµνuj)τ IH̃ W I
µν + h.c. 9 9

OuB (Q̄iσµνuj)H̃ Bµν + h.c. 9 9

OdG (Q̄iσµνTAdj)HGAµν + h.c. 9 9

OdW (Q̄iσµνdj)τ IHW I
µν + h.c. 9 9

OdB (Q̄iσµνdj)HBµν + h.c. 9 9

O(1)Hl (H†i
←→
DµH)(L̄iγµLj) 3 0

O(3)Hl (H†i
←→
DI
µH)(L̄iτ IγµLj) 3 0

OHe (H†i
←→
DµH)(ēiγµej) 3 0

O(1)Hq (H†i
←→
DµH)(Q̄iγµQj) 3 3

O(3)Hq (H†i
←→
DI
µH)(Q̄iτ IγµQj) 3 3

OHu (H†i
←→
DµH)(ūiγµuj) 3 3

OHd (H†i
←→
DµH)(d̄iγµdj) 3 3

OHud (H̃†iDµH)(ūiγµdj) + h.c. 9 9

Table 2: Table of bilinear fermionic operators in the Warsaw basis [47]. For each operator, we also indicate
the number of phases and the number of primary phases [39], i.e. the number of flavor-invariant CP-odd
quantities capturing the interference with the SM. The lower-case indices i, j, k, l denote flavor indices, while
the uppercase indices I and A denote the indices of the adjoint representation of the SU(2)L and SU(3)c
gauge groups, respectively.

B00000110 (C
(1,8)
quqd) , B

0000
0122 (C

(1,8)
quqd) , B

0000
0220 (C

(1,8)
quqd) , B

0100
0000 (C

(1,8)
quqd) , B

0100
1000 (C

(1,8)
quqd) ,

B01001100 (C
(1,8)
quqd) , B

0100
2100 (C

(1,8)
quqd) , B

0100
0120 (C

(1,8)
quqd) , B

0100
1220 (C

(1,8)
quqd) , B

0200
1120 (C

(1,8)
quqd) ,

B10000000 (C
(1,8)
quqd) , B

1000
0100 (C

(1,8)
quqd) , B

1000
1200 (C

(1,8)
quqd) , B

1000
0110 (C

(1,8)
quqd) , B

1000
0122 (C

(1,8)
quqd) ,

B10000210 (C
(1,8)
quqd) , B

1100
0000 (C

(1,8)
quqd) , B

1100
1100 (C

(1,8)
quqd) , B

1100
2200 (C

(1,8)
quqd) , B

1100
0110 (C

(1,8)
quqd) ,

B11000220 (C
(1,8)
quqd) , B

1100
1122 (C

(1,8)
quqd) , B

1200
2100 (C

(1,8)
quqd) , B

2100
0122 (C

(1,8)
quqd) , B

2200
0000 (C

(1,8)
quqd) ,

A2200
1122 (C

(1,8)
quqd) ,

where the two structures A(C(1,8)quqd) and B(C(1,8)quqd) are defined in Eq. (2.11).

We have also used the operatorO(1,3)lequ in Section 2.1 for which the full list of 27 invariants
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Label Operator # phases # primary phases

Oll (L̄iγµLj)(L̄kγµLl) 18 0

O(1)qq (Q̄iγµQj)(Q̄kγµQl) 18 18

O(3)qq (Q̄iγµτ IQj)(Q̄kγµτ IQl) 18 18

O(1)lq (L̄iγµLj)(Q̄kγµQl) 36 9

O(3)lq (L̄iγµτ ILj)(Q̄kγµτ IQl) 36 9

Oee (ēiγµej)(ēkγµel) 15 0

Ouu (ūiγµuj)(ūkγµul) 18 18

Odd (d̄iγµdj)(d̄kγµdl) 18 18

Oeu (ēiγµej)(ūkγµul) 36 9

Oed (ēiγµej)(d̄kγµdl) 36 9

O(1)ud (ūiγµuj)(d̄kγµdl) 36 36

O(8)ud (ūiγµTAuj)(d̄kγµTAdl) 36 36

Ole (L̄iγµLj)(ēkγµel) 36 3

Olu (L̄iγµLj)(ūkγµul) 36 9

Old (L̄iγµLj)(d̄kγµdl) 36 9

Oqe (Q̄iγµQj)(ēkγµel) 36 9

O(1)qu (Q̄iγµQj)(ūkγµul) 36 36

O(8)qu (Q̄iγµTAQj)(ūkγµTAul) 36 36

O(1)qd (Q̄iγµQj)(d̄kγµdl) 36 36

O(8)qd (Q̄iγµTAQj)(d̄kγµTAdl) 36 36

Oledq (L̄ai ej)(d̄kQla) + h.c. 81 27

O(1)quqd (Q̄ai uj)(Q̄bkdl) + h.c. 81 81

O(8)quqd (Q̄ai TAuj)(Q̄bkTAdl) + h.c. 81 81

O(1)lequ (L̄ai ej)(Q̄bkul) + h.c. 81 27

O(3)lequ (L̄ai σµνej)(Q̄ksσµνut) + h.c. 81 27

Table 3: Table of four-fermion operators in the Warsaw basis [47]. For each operator, we also indicate
the number of phases and the number of primary phases [39], i.e. the number of flavor-invariant CP-odd
objects capturing the interference with the SM.

reads

I00000 (C
(1,3)
lequ ) , I

1
0000 (C

(1,3)
lequ ) , I

2
0000 (C

(1,3)
lequ ) , I

0
1000 (C

(1,3)
lequ ) , I

1
1000 (C

(1,3)
lequ ) ,

I21000 (C
(1,3)
lequ ) , I

0
0100 (C

(1,3)
lequ ) , I

1
0100 (C

(1,3)
lequ ) , I

2
0100 (C

(1,3)
lequ ) , I

0
1100 (C

(1,3)
lequ ) ,

I11100 (C
(1,3)
lequ ) , I

2
1100 (C

(1,3)
lequ ) , I

0
0110 (C

(1,3)
lequ ) , I

1
0110 (C

(1,3)
lequ ) , I

2
0110 (C

(1,3)
lequ ) ,

I02200 (C
(1,3)
lequ ) , I

1
2200 (C

(1,3)
lequ ) , I

2
2200 (C

(1,3)
lequ ) , I

0
0220 (C

(1,3)
lequ ) , I

1
0220 (C

(1,3)
lequ ) ,

I20220 (C
(1,3)
lequ ) , I

0
1220 (C

(1,3)
lequ ) , I

1
1220 (C

(1,3)
lequ ) , I

2
1220 (C

(1,3)
lequ ) , I

0
0122 (C

(1,3)
lequ ) ,

I10122 (C
(1,3)
lequ ) , I

2
0122 (C

(1,3)
lequ )

(B.2)
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where I(C(1,3)lequ ) is defined in Eq. (2.12).
We next continue with all other invariants in the Warsaw basis of the SMEFT. Only the

form of the invariants will be given and we refer to Ref. [39] for the index assignments that
are needed to obtain a complete set of invariants which will be exactly the same as those
that are needed for the determinant-like invariants. Consider first the fermion bilinears
where we have already defined the invariants for OuH in Eq. (2.10) and the invariant for
OdH can be defined in a similar way. Furthermore, the dipole operators OuB,OuW,OuG

and OdB,OdW,OdG, fall into the same class of operators and the invariants have exactly
the same form as those for OuH and OdH. For OeH, the form of the invariants is

Ia(CeH) ≡ Im [e−iθQCDTr (Xa
eCeH)det (YuYd)] , (B.3)

where the index assignments for a, for this operator and all other operators below, are the
same as for the trace invariants in Ref. [39]. OeB and OeW fall again into the same class of
operators.

For the bilinear current-current operators, the Hermitian leptonic operators O(1,3)Hl and
OHe do not have any phases interfering with the SM at the leading order and consequently
there exist no flavor invariants. For the operators containing quarks we have already defined
the invariants for O(1,3)Hq in Eq. (2.13). The phases introduced by the operators OHu and OHd

can be obtained from the invariants of O(1,3)Hq by replacing C
(1,3)
Hq → YuCHuY

†
u , YdCHdY

†
d ,

while the phases in OHud can be obtained from the invariants of OuH by replacing CuH →
CHudY

†
d .

Only the four-fermion operators remain to be treated. Again, for the purely leptonic
“Hermitian” four-fermion operators Oll and Oee, whose Wilson coefficients satisfy the iden-
tity C∗ijkl = Cjilk, no CP-odd invariants arise at leading order in the Wilson coefficients. For
Ole, we can define the following invariants

Ia(Cle) ≡ Im [e−iθQCD(Xa
e )ijY

†
e,klCle,jlmiYe,mk det (YuYd)] . (B.4)

The remaining semi-leptonic four-fermion operators can be divided into two classes. In the
first class Oqe,Oed,Oeu, can be captured by the following invariant forms

Ifabcd(Cqe) ≡ Im [e−iθQCD(Xa
uX

b
dX

c
uX

d
d)ij(X

f
e Ye)klCqe,jilmY

†
e,mk det (YuYd)] ,

Ifabcd(Ced) ≡ Im [e−iθQCD(Xf
e Ye)ij(X

a
uX

b
dX

c
uX

d
dYd)lmCed,jkmnY

†
e,kiY

†
d,nl det (YuYd)] ,

(B.5)

and the Oeu invariants are obtained by Yd,lmCed,jkmnY
†
d,nl → Yu,lmCeu,jkmnY

†
u,nl.

The second class O(1,3)lq ,Old,Olu is captured by the invariants of the following form

Ifabcd(C
(1,3)
lq ) ≡ Im [e−iθQCD(Xf

e )ij(X
a
uX

b
dX

c
uX

d
d)klC

(1,3)
lq,jilk det (YuYd)] ,

Ifabcd(Cld) ≡ Im [e−iθQCD(Xf
e )ij(X

a
uX

b
dX

c
uX

d
dYd)klCld,jilmY

†
d,mk det (YuYd)] ,

(B.6)

and the Olu invariants are obtained by Yd,klCld,jilmY
†
d,mk → Yu,klClu,jilmY

†
u,mk.
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The phases introduced by the operator Oledq are captured by the following invariant

Ifabcd(Cledq) ≡ Im [e−iθQCD(Y †
e X

f
e )ij(YdX

a
uX

b
dX

c
uX

d
d)klC

(1,3)
ledq,jilk det (YuYd)] . (B.7)

The operators O(1,3)qq ,Ouu,Odd can all be described by invariants of the form

Aa2b2c2d2a1b1c1d1
(C(1,3)qq ) ≡ Im [e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )klC

(1,3)
qq,jilk det (YuYd)] ,

Ba2b2c2d2a1b1c1d1
(C(1,3)qq ) ≡ Im [e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )klC

(1,3)
qq,lijk det (YuYd)] ,

(B.8)

where the following replacements have to be made for the latter two operators C(1,3)qq,ijkl →
Yu,imY

†
u,njCuu,mnopYu,koY

†
u,pl , Yd,imY

†
d,njCdd,mnopYd,koY

†
d,pl.

7

For the operators O(1,8)qu ,O(1,8)qd , a complete set of invariants can be found by considering
the following forms of invariants

Aa2b2c2d2a1b1c1d1
(C(1,8)qu ) ≡ Im [e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,lmC
(1,8)
qu,jimnY

†
u,nk det (YuYd)] ,

Ba2b2c2d2a1b1c1d1
(C(1,8)qu ) ≡ Im [e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,lmC
(1,8)
qu,mijnY

†
u,nk det (YuYd)] ,

(B.9)

where for O(1,8)qd the replacement Yu,lmC
(1,8)
qu,mijnY

†
u,nk → Yd,lmC

(1,8)
qd,mijnY

†
d,nk has to be made.

Finally, the CP violation introduced by the operator O(1,8)ud can be captured by invariants
of the form

Aa2b2c2d2a1b1c1d1
(C(1,8)ud ) ≡ Im [e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,jmYd,lnC
(1,8)
ud,monpY

†
u,oiY

†
d,pk det (YuYd)] ,

Ba2b2c2d2a1b1c1d1
(C(1,8)ud ) ≡ Im [e−iθQCD(Xa1

u Xb1
d X

c1
u X

d1
d )ij(X

a2
u Xb2

d X
c2
u X

d2
d )kl

×Yu,jmYd,lnC
(1,8)
ud,nompY

†
u,oiY

†
d,pk det (YuYd)] .

(B.10)

B.2 Conversion of invariants with negative powers of Yukawa couplings

In Section 2.1, all determinant-like invariants were related to the basis of trace invariants
of Ref. [39], except for invariants of the form I0bcd(CuH) which are mapped to the trace
invariants L(C) and R(C) defined below Eq. (2.15)

I0bcd(CuH) = 2 (JθR(−1)bcd(CuHY
†
u ) +Kθ L(−1)bcd(CuHY

†
u )) , (B.11)

7Note, that we have chosen the same form for all invariants here while Ref. [39] chooses a form with
fewer insertions of Yukawa couplings, whenever no insertions of Xu,d are made in one of the bilinears of
right-handed quarks. We chose to do this here to present the invariants in a more compact form. We will
also do this for the following four-fermion operators containing only quark fields.
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that contain inverse powers of Yukawa couplings, which is clearly not in the basis of Ref. [39].
To convert the right-hand side of Eq. (B.11) to the basis we will use the following relation

A−1 = 1

detA
[A2 −ATrA + 1

2
((TrA)2 −Tr(A2))1] , (B.12)

which directly follows from the Cayley–Hamilton theorem. Making use of this identity, we
can write

L(−1)bcd(CuHY
†
u ) = ImTr (X−1u Xb

dX
c
uX

d
dCuHY

†
u )

= 1

detXu
(L2bcd(CuHY

†
u ) −Tr(Xu)L1bcd(CuHY

†
u )

+1
2
((TrXu)2 −Tr(X2

u))L0bcd(CuHY
†
u )) ,

(B.13)

given that detXu ≠ 0. Repeating the same for R(−1)000(CuHY
†
u ) enables us to fully map all

determinant-like invariants of CuH to the trace invariants of Ref. [39]. The same procedure
can be followed for all other operators with chirality flipping currents where the same
problem occurs. In some cases further syzygies have to be imposed in order to map the
invariants appearing on the right-hand side of Eq. (B.13) to the basis of Ref. [39]. For
instance, the invariant I0100(CuH) is mapped to the CP-odd trace invariants L2100(CuHY

†
u ),

L1100(CuHY
†
u ) and L0100(CuHY

†
u ), out of which only the last two appear in the basis of

Ref. [39] without further manipulations. Therefore, more syzygies have to be applied to the
invariant L2100(CuHY

†
u ) in order to reduce it to the basis in Ref. [39].

C Basics of instanton calculations

In this Appendix, we briefly give an overview of instantons and their calculus. There is a
vast literature on instantons, and more details can be found in the standard lectures and
recent reviews of this topic such as Refs. [28, 32, 72–78].

C.1 Instanton calculations: technical preliminaries

The presence of instantons is necessary if the vacuum of the theory considered is degenerate
in the space of fields. Within the semi-classical approximation, instantons describe the
tunneling effects that connect the two distinct energy-degenerate states in the space of
fields. They are localized objects in Euclidean spacetime, satisfying the Euclidean equation
of motion with non-trivial topologies and therefore minimize the Euclidean action.

The instanton solutions for pure Yang–Mills theories were first discovered in 1975 by
Belavin, Polyakov, Schwarz and Tyupkin (usually refered as BPST instantons) [79]. These
solutions play a primary role in revealing the non-trivial vacuum structure of Yang–Mills
theories, i.e. the existence of the θ vacuum, as a superposition of the so-called “n−vacua”
which are degenerate but topologically distinct and characterized by the winding number
n of the gauge field at infinity [80].

We begin with the pure Yang–Mills part of the QCD Lagrangian, including the con-
tribution of the vacuum angle θQCD. From the Lagrangian formalism, we then write down
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the Euclidean action of this theory.8

SYM = ∫ d4x(1
4
GAµνG

A,µν + iθQCD
g2

32π2
GAµνG̃

A,µν) , (C.1)

where Gµν = GAµνTA with the gluon field strength tensor given by

GAµν = ∂µGAν − ∂νGAµ − gfABCGBµGCν . (C.2)

Here, A = 1, . . . ,8 are gauge indices, TA and fABC are SU(3) generators and structure
constant, respectively. The QCD gauge coupling is g. Our convention for the dual field
strength tensor is GAµν = 1

2ϵµνρσG
A,ρσ, with the choice ϵ0123 = +1. We define the topological

charge as

g2

32π2
∫ d4xGAµνG̃

A,µν(x)∣
inst.
= Q, where Q ∈ Z . (C.3)

Within the perturbative regime, we can fix the topological charge Q = ±1, because these
configurations will minimize the Euclidean action and dominate over all path integral tra-
jectories.9 Later on, the subscript ∣inst. will be replaced by ∣1-(a)-inst. for the background with
the one-(anti)-instanton solution.

For the Q = +1 configuration, using the regular Landau gauge, an explicit form of the
BPST instanton solutions for the SU(2) gauge theory is given by [79],

Gaµ(x)∣1−inst. = 2ηaµν
(x − x0)ν
(x − x0)2 + ρ2

, ηaµν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϵaµν , µ, ν ∈ {1,2,3}
−δaν , µ = 0
+δaµ, ν = 0
0, µ = ν = 0

, (C.4)

where a = 1,2,3 label the SU(2) gauge indices, µ, ν are the Euclidean spacetime indices
and ηaµν is the group-theoretic ’t Hooft η symbol defined in Eq. (C.4). The relations and
index contractions of the η symbols can be found in Ref. [46]. The instanton solution in
Eq. (C.4) depends on five parameters, the Euclidean four-vector xµ0 and ρ which describes
the instanton location and size, respectively.10

The anti-instanton solution has exactly the same form illustrated by Eq. (C.4), with
the replacement ηaµν → η̄aµν , where the symbols η̄aµν are defined by the modification
δaµ, δaν → −δaµ, δaν in Eq. (C.4). Since we usually work with field strength tensors instead

8When switching from Minkowski to Euclidean space, the field strength tensor components are related
by (GA

ij)M = (GA
ij)E , (GA

0j)M = i(GA
4j)E . For the Euclidean path integral, each trajectory is weighted by

the factor e−SYM .
9In the non-perturbative regime, all topological configurations contribute to the path integral equally.

Thus, one needs to consider multi-instanton solutions and the interactions between (anti-)instantons [81–86].
10For an SU(2) theory, Gµ = Ga

µT
a there are an additional three gauge parameters, for a total of eight

parameters. Different values of these parameters just lead to equivalent instanton solutions. In the language
of soliton physics, these parameters and the family of equivalent solutions given by Eq. (C.4) are referred
to as collective coordinates and zero modes, respectively.
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of gauge fields, it is convenient to give an explicit form of the field strength tensor in the
presence of a one-instanton background,

Gaµν ∣1-inst. = −4ηaµν
ρ2

[(x − x0)2 + ρ2]2
. (C.5)

Furthermore, note that the instanton solutions for the SU(N) gauge theory can be obtained
by embedding the SU(2) solutions into SU(N). Therefore, in this work, when contracting
the gauge index of GAµν ∣1-inst. with TA or fABC , only A,B,C ∈ {1,2,3} yields non-vanishing
results.

An important property of the one-(anti-)instanton solution is that it satisfies the (anti-)
self-dual equation

Gaµν = ± G̃aµν , (C.6)

and thus, due to the Bianchi identity, automatically solves the gluon equation of motion
DµGaµν = DµG̃aµν = 0. With all of these properties, the one-(anti)-instanton solution then
yields the finite QCD classical action

S1-inst.
YM = ∫ d4x(1

4
GAµνG

A,µν + iθQCD
g2

32π2
GAµνG̃

A,µν) ∣
1-(a.-)inst.

= 8π2

g2
± iθQCD . (C.7)

Fermion zero modes Next, we consider the SU(N) gauge theory with massless fermions
in the presence of an instanton background. The fermionic Euclidean action is given by

Sψ = ∫ d4x ψ̄f( − i /D)ψf , (C.8)

where Dµ = ∂µ+igGaµT a, and f is fermion flavor index. The spectrum of the Dirac operator
can be obtained by expanding the fermion fields into their eigenmodes,

ψf(x) =∑
k

ξ
(k)
f ψ(k)(x) ; ψ̄f(x) =∑

k

ξ̄
(k)
f ψ̄(k)(x) , (C.9)

where ξ(k)f and ξ̄
(k)
f are Grassmann variables. The crucial point is that the interaction of

fermion with the instanton background leads to the so-called fermion zero modes which
satisfy the massless Dirac equation, −i /D∣1-inst.ψ

(0)(x) = 0. For the SU(2) gauge theory, an
explicit form of ψ(0)(x) in the regular Landau gauge is given by [73, 74]

ψ(0)(x)∣
1-inst.

= (χL
χR
) = 1

π

ρ

[(x − x0)2 + ρ2]
3/2 (

0

φ
) , φαm = ϵαm , (C.10)

where α = 1,2 and m = 1,2 are spinor and SU(2) gauge indices and ϵ is the anti-symmetric
tensor in two dimensions. Here, the fermion zero modes given by Eq. (C.10) are normal-
ized by imposing the condition ∫ d4x [ψ(0)

†
ψ(0)](x) = 1. In the presence of an instanton

background, only χ†
L, χR Weyl components possess the zero mode solutions of the Dirac

equations and vice versa for the anti-instanton background. Also, notice that the zero
modes are independent of the flavor of the respective fermion.
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Vacuum-to-vacuum amplitude Within the semi-classical approximation, one can ex-
pand the fields around their classical configuration in the presence of the one-instanton
background, up to quadratic order in the quantum fluctuations, the Euclidean action reads

SE = S1-inst.
YM + ∫ d4x∑

i

δΦ†
i(MΦiΦi

)δΦi , (C.11)

where in QCD, S1-inst.
YM is given by Eq. (C.7), δΦ encapsulates all quantum fluctuations of

the gauge Aµ, ghost η, scalar ϕ and fermion ψ fields.11 We are interested in the vacuum-
to-vacuum amplitude, and, following Refs. [28, 46], we express this amplitude in terms of
path integral as follows,

⟨0∣0⟩ ∣1-inst. =
∫ DAµDηDη̄DϕDϕ†DψDψ̄ e−SE ∣1-inst.

∫ DAµDηDη̄DϕDϕ†DψDψ̄ e−SE ∣
Acl

µ=0
. (C.12)

The computation of this amplitude requires a lot of effort. First, one has to split the
path integral measure into an integration over zero modes and non-zero modes. The path
integral over zero modes can be replaced by an integration over collective coordinates and
the corresponding Jacobian must be computed properly. Second, the non-zero modes need
to be integrated out, their contributions can be viewed as the product of the infinite non-
vanishing eigenvalues of the operator MΦiΦi . This product is divergent due to many large
eigenvalues and needs to be regularized. The final result that will be used in our calculations
is given by [46]

⟨0∣0⟩ ∣1-inst. = e
−iθQCD ∫ d4x0∫

dρ

ρ5
dN(ρ)∫

Nf

∏
f=1
(ρdξ(0)f dξ̄

(0)
f ) e∫

d4x (−ψ̄Jψ+h.c.) , (C.13)

where J is a source term describing the interaction between fermions (charged under the
instanton gauge groups) and other quantum fields (unrelated to instanton dynamics). An
important quantity appearing in Eq. (C.13) is the instanton density in SU(N) theory,

dN(ρ) = C[N] (
8π2

g2
)
2N

e−8π
2/g2(1/ρ) . (C.14)

Notice that the gauge coupling g in the pre-factor (8π2/g2)2N is the bare coupling and only
receives radiative corrections beginning at two-loop order. Furthermore, the running gauge
coupling in the exponential factor, resulting from the contributions of non-zero modes, is
evaluated at one-loop order and the full expression can be found in Eq. (C.16). In presence
of scalars, σ, that are charged under the gauge group, the instanton density is modified as
in Eq. (4.1).

The coefficient C[N] includes the contributions of non-zero modes and the Jacobian
factor when transforming ∫ DA

(0)
µ to the integration over collective coordinates and it is

given by [28, 32, 46, 87]

C[N] = C1 e
−C2N

(N − 1)!(N − 2)! e
0.292Nf , (C.15)

11The fluctuations δΦ include both zero modes and non-zero modes.
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where C1 ≈ 0.466, C2 ≈ 1.678; the contribution of fermion non-zero modes yields the fac-
tor e0.292Nf where Nf is the number of fermions. Note that the coefficient C1 is just a
constant while C2 and e0.292Nf are scheme-dependent due to the renormalization of the
gauge coupling. Here, the coefficient C[N] is defined in the Pauli–Villars regularization
scheme. In this paper, we evaluate loop integrals using dimensional regularization and the
MS scheme, therefore dN(ρ) should be converted into MS scheme. The details of this step
will be discussed in Appendix C.2. Eventually, the running of the gauge coupling is given
by

8π2

g2(1/ρ) =
8π2

g20(ΛUV)
− b0 log ρΛUV , b0 =

11

3
N − 2

3
Nf . (C.16)

C.2 Divergences and scheme independence of the results

The calculation of the topological susceptibility, χO(0) defined in Eq. (3.6), induced by
effective operators can involve divergent loop integrals. Within the SMEFT, the standard
technique to regularize these divergences is to use dimensional regularization, supplemented
by the modified minimal subtraction (MS) renormalization scheme. Therefore, to consis-
tently evaluate χO(0), as well as the ratio χO(0)/χ(0) in Eq. (3.7), the instanton density
dN(ρ), defined in Pauli–Villars (PV) renormalization scheme, must be converted to the
MS renormalization scheme. The details of this conversion procedure can be found in the
Appendix B of Ref. [28].

It is clear that the computations of χO(0) and χ(0) are scheme dependent. However,
χO(0)/χ(0) does not depend on the renormalization scheme since it is the ratio of two
topological susceptibilities and both scale in the same fashion when converted to a different
renormalization scheme [28]

χMS
(O)(0) = e

(N−Nf )/6 χPV
(O)(0) , (C.17)

where the bracket notation in the subscript of χ(O)(0) indicates either the χ(0) or χO(0)
susceptibilities. To deal with the divergences arising from the insertion of SMEFT opera-
tors that will only affect χO , one has to consider the renormalized SMEFT, i.e. with the
appropriate counterterms calculated in the MS scheme.

As an example to illustrate this feature, in Appendix D.2, we explicitly calculate the
divergent part of the topological susceptibility χ(1)lequ(0) resulting from the insertion of the

semi-leptonic operator O(1)lequ. The divergences appearing in loop calculations are expected
to be canceled in renormalized perturbation theory by appropriate counterterms. To obtain
these counterterms we make use of the SMEFT RGEs12 [91–94] that are computed from
the SMEFT counterterms. It is important to note that we will require off-shell correlation
functions and therefore to observe the cancellation at the level of the correlation functions,
the counterterms will be calculated in an off-shell Green’s basis [95]. The details of this
computation will be given in Appendix D.2.

12Inspired by previous studies [88–90], the β-function of a given operator (related to instanton dynamics)
can also be computed in the instanton background instead of using the traditional diagrammatic approach.
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D Evaluating loop and collective coordinates integrals

D.1 Four-quark operator

With the insertion of the four-quark operator Oquqd, we have shown in Eq. (3.22) that
the two-point correlation function χ

(1)
quqd(0) is proportional to the determinant-like flavor

invariant. However, to complete the calculation of the topological susceptibility we still
need to evaluate the integral I and perform the final integral over the collective coordinate
x0 in Eq. (3.22).

The integral I has been previously calculated in the literature [19, 23, 28] and reads,

I = ϵIJϵIJ ∫ d4x1∫ d4x2 (ψ̄(0)PRψ(0))(x1)∆H(x1 − x2)(ψ̄(0)PRψ(0))(x2) ,

= ∫ d4x1∫ d4x2∫ d4k
ρ4

2π8
e−ikx1

(x21 + ρ2)
3

1

k2 +m2
H

eikx2

(x22 + ρ2)
3
= ρ2

8π4
∫ d4k

[kρK1(kρ)]
2

(kρ)2 + (mHρ)2
,

(D.1)

where we have substituted the zero mode profile in Eq. (C.10) and the (Euclidean) scalar
propagator into the first line of Eq. (D.1). The integrals over the Euclidean coordinates
x1, x2 are performed using the identity

∫ d4x
e−ikx

(x2 + ρ2)3 =
π2

2

k

ρ
K1(kρ) , (D.2)

where K1(kρ) is the modified Bessel function of the second kind. In the small instanton
limit, i.e., mHρ≪ 1, the integral in Eq. (D.1) can be evaluated to give

I(UV) ≃ 1

6π2ρ2
. (D.3)

Secondly, we can evaluate the integrals over the collective coordinate (x0 in Eq. (3.22))
resulting from the insertion of the four-quark operator:

∫ d4x0(ψ̄(0)PR(L)ψ(0) ψ̄(0)PR(L)ψ(0))(0)∣
1−(a)−inst.

= ∫ d4x0
4ρ4

π4
1

(x20 + ρ2)6
= 1

5π2ρ4
.

(D.4)

Finally, substituting the results derived in Eqs. (D.1) and (D.4) into Eq. (3.22), we obtain

χ
(1)
quqd(0) =

i

Λ2
��CP

(A0000
0000 (C

(1)
quqd) + B

0000
0000 (C

(1)
quqd))∫

dρ

ρ5
dN(ρ)ρ6 [

ρ2

8π4
∫ d4k

(kρ)2K2
1(kρ)

(kρ)2 + (mHρ)2
]
2

2

5π2ρ4
.

(D.5)

In the small instanton limit, mHρ ≪ 1, the topological susceptibility induced by the
operator O(1)quqd is then given by

χ
(1) (UV)
quqd (0) = i

Λ2
��CP

(A0000
0000 (C

(1)
quqd) + B

0000
0000 (C

(1)
quqd))∫

dρ

ρ5
dN(ρ)

2!

(6π2)2
2

5π2ρ2
. (D.6)
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The integration over the instanton size, ρ, can be performed once the details of the UV
dynamics at the small instanton scale are known. Some examples of UV models will be
explored in Section 4.

The results obtained in this Appendix also allow us to estimate the higher-order con-
tribution of having an insertion of the CP-odd phase from O(1)quqd and a CP-even parameter
from the same operator. This extra insertion of the SMEFT operator would result in one
less Higgs needed to close the fermion legs in Fig. 1. With this substitution, the final result
has one less power of the integral I, Eq. (D.3), which would then be substituted by one
more power of the result of Eq. (D.4). As such, the higher-dimensional contribution will be

suppressed by an additional factor of ( ΛSI

Λ��CP
)
2
.

D.2 Semi-leptonic operator

Evaluating the integral associated with the insertion of the semi-leptonic operator O(1)lequ

is analogous to previous computations, where we begin with Eq. (3.28) and then add the
anti-instanton contribution. The topological susceptibility, χ(1)lequ(0) reads

χ
(1)
lequ(0) =

i

Λ2
��CP

I00000 (C
(1)
lequ)∫

dρ

ρ5
dN(ρ) (3!ρ6I2)Ilequ , (D.7)

where the contribution of O(1)lequ is included inside the integral Ilequ, defined as

Ilequ = ϵOP ϵOP ∫ d4x0∫ d4x5∫ d4x6

× (ψ̄(0)PRψ(0))(x5)∆H(x5 − x6) tr (PR∆F (x6 − 0)PL∆F (0 − x6))(ψ̄(0)PRψ(0))(0) .
(D.8)

Evaluating the divergent part of Ilequ Next, we substitute the (Euclidean) scalar and
fermion propagators into Eq. (D.8) to give

Ilequ = 2∫ d4x0(ψ̄(0)PRψ(0))(0)

× ∫ d4x5∫
d4k

(2π)4 ∫
ddq

(2π)d tr [PR
/q
q2
PL

/q + /k
(q + k)2 ]

e−ikx5

k2 +m2
H

(ψ̄(0)PRψ(0))(x5) .

(D.9)

Here, to obtain Eq. (D.9), the integral representation of the four-dimensional Dirac delta dis-
tribution has been used to eliminate the ∫ d4x6 integration and simplify the four-momentum
variables. To regulate the divergences appearing in the integral in Eq. (D.9), we employ
dimensional regularization [96] in the MS scheme as well as the semi-naive procedure [97]
to deal with γ5 matrices in d = 4 − 2ϵ dimensions. Finally, we obtain the following for the
divergent part of the integral Ilequ,

I div.
lequ =

1

16π2ϵ
[2∫ d4x0d

4x5(ψ̄(0)PRψ(0))(0)∫
d4k

(2π)4
k2 e−ikx5

k2 +m2
H

(ψ̄(0)PRψ(0))(x5)] .

(D.10)
The crucial point is that Eq. (D.10) contains a UV divergence manifested as a 1

ϵ -pole, which
can be canceled by identifying the appropriate counterterms.
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Divergence cancellation and relation with SMEFT RGEs. Using the results in
Ref. [93] we can extract the appropriate counterterm needed to cancel the divergence in
χ
(1)
lequ(0). The SMEFT RGEs reveal that the only counterterm that can cancel the diver-

gence in χ
(1)
lequ(0) is the one responsible for the running of the on-shell operator O(1)quqd (all

other counterterms either yield the wrong flavor structure or require additional insertions of
gauge couplings). However, since we are requiring the divergence cancellation at the level
of correlation functions, which are not invariant under field redefinitions [98, 99], we need
to consider the counterterms in an enlarged Green’s basis instead. For this particular case,
we can verify that the contribution of O(1)lequ to the RGE of O(1)quqd is fully determined by a
Green’s basis operator. Considering the Green’s basis of Ref. [95], we find [93]

C
(1), c.t.
quqd,mnop ⊃ −Yd,opG

c.t.
uHD1,mn , G c.t.

uHD1,mn =
1

16π2 ϵ
C
(1)
lequ,stmn Y

†
e,ts , (D.11)

where G c.t.
uHD1,mn is the Wilson coefficient of the redundant operator OuHD1 = Q̄uD2H̃ that

is reduced to O(1)quqd via field redefinitions – or equivalently at this order, replacing D2H̃ by

the Higgs equation of motion. To cancel the 1
ϵ -pole in χ(1),div.lequ (0), we need to compute the

correlation function

χc.t.
uHD1(0)∣1−inst. = −i limk→0

∫ d4xeikx ⟨0 ∣T { 1

32π2
GG̃(x), G

c.t.
uHD1

Λ2
��CP

OuHD1(0)}∣0⟩
1−inst.

,

(D.12)
using similar steps to those used previously in Section D.1. Eventually, we obtain

χc.t.
uHD1(0) = −

i

Λ2
��CP

Im(IuHD1)∫
dρ

ρ5
dN(ρ)(3!ρ6I2)IuHD1 , (D.13)

where the invariant IuHD1, supplemented by the counterterm in Eq. (D.11), yields

Im(IuHD1) = Im [e−iθQCDϵi1i2mϵj1j2nYu,i1j1Yu,i2j2G
c.t.
uHD1,mn detYd] =

1

16π2 ϵ
I00000 (C

(1)
lequ) .
(D.14)

The explicit form of the integral IuHD1 reads

IuHD1 = 2∫ d4x0(ψ̄(0)PRψ(0))(0)∫ d4x5∫
d4k

(2π)4
k2 e−ikx5

k2 +m2
H

(ψ̄(0)PRψ(0))(x5) , (D.15)

where we have used the fact that the Green’s basis operator contains derivatives (in Eu-
clidean space) acting on the Higgs, hence the path integral over the Higgs fields yields

∫ DHDH†e−S0[H,H†]HI(x1)∂
2H†

J(x2) = ∂
2
x2∆H(x1 − x2)δIJ = −∫

d4k

(2π)4
k2e−ik(x1−x2)

k2 +m2
H

δIJ .

(D.16)

At this point, we have found that the integral IuHD1 in Eq. (D.15) obtained from including
the counterterm is the same as the integral I div.

lequ in Eq. (D.10) up to the overall factor
1/(16π2ϵ). Thus, substituting Eqs. (D.14) and (D.15) into Eq. (D.13), one can easily
observe that χc.t.

uHD1(0) precisely cancels the 1
ϵ -pole in χ(1)lequ(0).
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Evaluating the finite part of Ilequ Starting from Eq. (D.9), we can also extract the
finite contribution of the integration over the loop momentum q,

I(finite)lequ = 2∫ d4x0(ψ̄(0)PRψ(0))(0)

× ∫ d4x5∫
d4k

(2π)4
k2 e−ikx5

k2 +m2
H

[ 1

8π2
+ 1

16π2
log

µ2

k2
] (ψ̄(0)PRψ(0))(x5) , (D.17)

where µ is the renormalization scale. To evaluate Eq (D.17), we follow similar steps to the
previous computations by first substituting the fermion zero mode solutions in Eq. (C.10),
then integrating over all locations x5 and the collective coordinates x0. The final integral
over the momentum k can be performed in the limit of mH → 0, to explicitly give

I(finite,UV)
lequ ≃ ∫

d4k

(2π)4
1

4π2
[1 + 1

2
log

µ2

k2
] 4ρ

4

π4
∫ d4x0

e−ikx0

(x20 + ρ2)
3 ∫ d4x5

e−ik(x5−x0)

((x5 − x0)2 + ρ2)
3
,

= ∫
d4k

(2π)4
1

4π2
[1 + 1

2
log

µ2

k2
] [kρK1(kρ)]

2
,

= 1

20π4ρ4
(11
30
+ logµρ + γE − log 2) . (D.18)

Finally, substituting Eq. (D.3) and Eq. (D.18) into Eq. (D.7), the topological susceptibility
χ
(1)
lequ(0) induced by the operator O(1)lequ becomes

χ
(1)(finite,UV)
lequ (0) = i

Λ2
��CP

I00000 (C
(1)
lequ)∫

dρ

ρ5
dN(ρ)

3!

(6π2)2
11 + 30 (log (ρΛ��CP) + γE − log 2)

600π4ρ2
.

(D.19)

The dependence on the renormalization scale µ in Eq. (D.19) has already been removed
by performing the RG evolution induced by C

(1)
lequ, rendering the final result of θind inde-

pendent of the renormalization scale as expected. The result in Eq. (D.19) will be used in
Section 4.1.2 to place bounds on the scale Λ��CP.

D.3 Gluon dipole operator

The calculation for the insertion of the gluon dipole operator OdG = Q̄σµνTAdHGAµν in the
correlation function works similarly to those previously presented in Section 3.3. The field
strength tensor in OdG is set to its instanton background value, while the rest of the calcu-
lation proceeds in a similar fashion to the other effective operators: we assume all fermions
only contribute zero modes at leading order and subsequently contract all Higgses. As
discussed in Appendix B.1, the insertion of the gluon dipole operator yields a similar flavor
invariant structure as given in Eq. (2.10). Following the previous calculations, combining
both the instanton and anti-instanton contributions, the topological susceptibility χdG(0)
can be written as a flavor invariant times a complicated integral

χdG(0) =
i

Λ2
��CP

I0000(CdG)∫
dρ

ρ5
dN(ρ) 3!ρ6I2 IdG , (D.20)
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where the OdG operator is included inside the integral IdG, and defined as

IdG = ϵIJϵIJ ∫ d4x0∫ d4x3(ψ̄(0)PRψ(0))(x3)∆H(x3)(ψ̄(0)σµνTAPRψ(0)GAµν ∣1−inst.)(0) .
(D.21)

The computation of χdG(0) proceeds in the same way as the integral of χ(1)quqd(0). Since
most of the computations have already been performed in Appendix D.1, we only need to
evaluate the remaining integral IdG. Substituting the zero modes of fermions (C.10) and
gauge fields (C.5) into Eq. (D.21), then contracting spinor and color indices13, the integral
IdG becomes

IdG =
192ρ6

π4
∫

d4k

(2π)4 ∫ d4x0∫ d4x3
eikx3

(x23 + ρ2)3
1

k2 +m2
H

e−ikx0

(x20 + ρ2)5
,

= 96ρ6

π2
∫

d4k

(2π)4
kρ K1(kρ)

(kρ)2 + (mHρ)2 ∫
d4x0

e−ikx0

(x20 + ρ2)5
,

= 1

16π4
∫ d4k

(kρ)4K1(kρ)K3(kρ)
(kρ)2 + (mHρ)2

. (D.22)

Here, the only extra computation is to evaluate the integral over collective coordinate ∫ d4x0
and express the result in terms of the Bessel function, Kn. This step can be easily performed
by ρ differentiation and using the identity in Eq. (D.2), to give

∫ d4x0
e−ikx0

(x20 + ρ2)5
= 1

12
( ∂

∂ρ2
)
2

∫ d4x0
e−ikx0

(x20 + ρ2)3
= π

2

24
( ∂

∂ρ2
)
2

[k
ρ
K1(kρ)] ,

= π
2

96
(k
ρ
)
3

K3(kρ) , (D.23)

where differentiation of Kn satisfies the following identity

∂

∂ρ2
[ 1
ρn
Kn(kρ)] = −

k

2ρn+1
Kn+1(kρ) . (D.24)

Analogously to the previous section, the last integral in Eq. (D.22) can be evaluated in the
small instanton limit, i.e., mHρ≪ 1, to give

I(UV)
dG ≃ 6

5π2ρ4
. (D.25)

Substituting Eqs. (D.3) and (D.25) into Eq. (D.20), we obtain

χ
(UV)
dG (0) ≃ i

Λ2
��CP

I0000(CdG)∫
dρ

ρ5
dN(ρ)

3!

(6π2)2
6

5π2ρ2
. (D.26)

This result will be used in Section 4.1.3 to place bounds on Λ��CP for various UV models.

13As mentioned in Appendix C.1, TAGA
µν ∣1−inst. only receives contributions from A = 1,2,3.
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