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Abstract

We study the potential of lepton collisions with about 10 TeV center of mass energy to
probe Electroweak, Higgs and Top short-distance physics at the 100 TeV scale, pointing out
the interplay with the long-distance (100 GeV) phenomenon of Electroweak radiation. On
one hand, we find that sufficiently accurate theoretical predictions require the resummed in-
clusion of radiation effects, which we perform at the double logarithmic order. On the other
hand, we notice that short-distance physics does influence the emission of Electroweak radia-
tion. Therefore the investigation of the radiation pattern can enhance the sensitivity to new
short-distance physical laws. We illustrate these aspects by studying Effective Field The-
ory contact interactions in di-fermion and di-boson production, and comparing cross-section
measurements that require or that exclude the emission of massive Electroweak bosons. The
combination of the two types of measurements is found to enhance the sensitivity to the new
interactions. Based on these results, we perform sensitivity projections to Higgs and Top
Compositeness and to minimal Z ′ new physics scenarios at future muon colliders.
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1 Introduction

The perspective of a future muon collider with high energy and high luminosity [1], whose fea-
sibility is being investigated by the International Muon Collider Collaboration [2], has triggered
a growing interest in the physics potential of lepton colliders with a center of mass energy of
10 TeV or more [3–40]. Such a Very High Energy Lepton Collider (VHEL) could greatly ad-
vance the post-LHC knowledge of fundamental physics [1] by directly searching for new heavy
particles (see e.g. [3–6]), and by precise measurements of ElectroWeak (EW) scale processes
exploiting the high luminosity of virtual vector bosons pairs (see e.g. [6–8]). By these two search
modes, the VHEL reach on new physics is generally comparable to that of the most ambitious
future collider projects, in the corresponding domains of investigation. In particular it is com-
parable to the combined reach of the -ee and -hh stages of the FCC program. The sensitivity is
slightly weaker or slightly stronger depending on the specific new physics target and, obviously,
on the assumed VHEL energy and luminosity.

At a VHEL, however, there also exists a third strategy of investigation [1, 7], based on hard
processes with energy scale comparable to the collider energy Ecm ∼ 10 TeV. As the indirect
effects of new heavy particles are enhanced at high energy, these processes are extremely sensitive
probes of new physics. With the target integrated luminosity of 10 ab−1, 2 → 2 scattering
processes at Ecm = 10 TeV can be generically measured with percent or few-percent precision.
Such measurements are therefore sensitive to putative new physics at a scale Λ ∼ 100 TeV
when its effects, relative to the SM cross-section, scale like (Ecm/Λ)2. In an Effective Field
Theory (EFT) description of new physics, this corresponds to an enhanced sensitivity to those
dimension-6 operators that contribute to the 2 → 2 processes with a quadratically growing-
with-energy term. The VHEL sensitivity to new physics through this kind of “high-energy”
probes vastly and generically exceeds the potential of any other future project that is currently
under consideration [7]. In particular it exceeds the sensitivity of precision measurements of
EW-scale (∼ 100 GeV) processes at future Higgs factories, where new physics at Λ ∼ 100 TeV
produces effects at the unobservable level of one part per million. It also exceeds the potential
sensitivity of a 100 TeV proton collider, because the effective luminosity for partonic collisions
above 10 TeV is significantly lower than that of the VHEL. The possibility of probing new physics
at the 100 TeV scale, and in particular of probing new physics that is either flavor-universal or
endowed with a flavor protection mechanism, is thus a unique feature of the VHEL that deserves
an extensive investigation.1

The above mentioned high-energy strategy exploits simple 2 → 2 processes with extremely
low or negligible background, whose target accuracy is statistically limited to 1%. At a superfi-
cial look, it might thus seem that its implementation will not pose any specific challenge, neither
as concerns the feasibility of the measurements, nor as concerns the theoretical predictions that
are needed for their interpretation. However the situation is slightly more complex, both exper-
imentally and theoretically, owing to the phenomenon of EW radiation [41–61], which becomes
prominent at 10 TeV or above. This happens because of the existence of a large separation
between the hard scale E of the process and the vector boson mass scale mw, which acts as an
IR cutoff. As the hard scale is increased, large logarithms logE2/m2

w (squared) enhance both
virtual corrections and real emission, up to the point where fixed-order perturbation theory
becomes insufficient and resummation is needed. The experimental implications of the copious
emission of real EW massive vector bosons should be assessed. It particular it should be studied
if and how it impacts the accuracy of the relevant cross-section measurements. In this paper
we investigate the implications of EW radiation on the theoretical predictions and, assuming
purely statistical experimental errors, on the VHEL sensitivity to new physics.

EW radiation obviously displays some similarities with QCD radiation, but also remark-

1Hard processes are also useful to investigate flavor non-universal effects, as we will see in Section 3.3 for Top
Compositeness. See also Ref. [35] for a study of new physics potentially responsible for the g − 2 muon anomaly.
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able differences. First, EW scattering processes violate the KLN theorem assumptions [62, 63]
because the initial state particles are not EW singlets. Therefore no cancellation takes place
between virtual and real contributions, not even in “fully-inclusive” cross-sections [41, 42]. More-
over the observables that are fully inclusive in the sense of Ref. [41] are insufficient to characterize
new physics because they require summing over the “color” of the hard final-state particles. In
the EW context, color sum means, for instance, including transversely-polarized W and Z bosons
and photons (or, longitudinal W , Z and Higgs) in the same observable, while we need to keep
them separate for a comprehensive exploration of new physics. Unlike QCD (and QED), EW
radiation effects cannot be eliminated or systematically mitigated with a judicious choice of the
observables. They unavoidably play an important role in the predictions.

The second peculiarity of EW radiation is that the IR cutoff scale is physical, and the
theory is weakly-coupled at the IR scale. It should thus be possible to characterize the radiation
fully by first-principle suitably resummed perturbative calculations. Unlike QCD and QED,
one can consider observables with an arbitrary degree of radiation exclusiveness, among which
“exclusive” scattering cross-sections with a fixed number (2, in 2→ 2 processes) of hard partons
in the final state and no extra massive vector bosons.2 Fully-inclusive cross-sections can be also
considered, however they are not sufficiently informative on new physics as previously mentioned.
In this paper we employ “semi-inclusive” final states, consisting of 2 hard partons with fixed
EW color and flavor carrying a large fraction of the total available energy Ecm and accompanied
by an arbitrary number of massive vectors, photons and other light particles. Our resummed
predictions for semi-inclusive observables at the double logarithm (DL) accuracy are obtained by
extending the IR Evolution Equation (IREE) treatment of EW radiation developed in Ref. [43].
Similarly, we employ the IREE to compute the more standard exclusive cross-sections. Single-
logarithmic terms turn out to be relevant, and they are included at fixed one-loop order in the
exclusive cross-sections using the results of Ref. [64].

Finally, there is an interplay between EW radiation and short-distance physics that has no
analog in QED and QCD [7]. Based on a simplistic fixed order intuition, this interplay can be
exemplified by noticing that the emission of a soft W from one initial lepton changes the total
charge of the initial state of the hard 2 → 2 scattering process. By allowing for the charged
W emission one thus obtains a scattering cross-section that is sensitive to charged current new
physics interactions, while the exclusive process where no radiation is allowed is only sensitive to
neutral currents. 3 The combined measurement of the two types of cross-section thus enables a
more effective and complete exploration of new physics. In reality the situation is slightly more
complex, because the neutral and the charged current hard amplitudes both contribute to the
resummed expression of the neutral exclusive and of the charged and neutral semi-inclusive cross-
sections. However, since they appear in different combinations in the different cross-sections,
the conclusion is unchanged.

At a more quantitative level, we will see that the VHEL energy sits in an interestingly
“intermediate” regime for EW radiation. The energy is on one hand large enough for the
radiation effects to be important and require resummation. Accurate resummation techniques,
more accurate than the one considered in the present paper, will thus be needed to fully exploit
the potential of the machine. On the other hand, the energy is not yet in the asymptotic regime
where the Sudakov exponentials entail a strong suppression of the non-emission probability.
Therefore in this regime the exclusive cross-sections are still large, and comparable with the semi-
inclusive (and fully-inclusive) ones. Observables with a different degree of radiation inclusiveness
can thus be measured with comparable statistical accuracy and combined, potentially boosting,

2In order to cope with QED and QCD radiation, the observable must still be inclusive over the emission of
photons and other light particles. The cross-section we define as “exclusive” coincides with the “semi-inclusive”
cross-section of Ref. [43]. Correspondingly, the “semi-inclusive” cross-section we will readily introduce was not
considered in Ref. [43]. See Section 2 for details.

3More precisely, the charged and neutral current process depend on different linear combinations of the Wilson
coefficients of the operators parametrizing new physics.
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as previously explained, the indirect sensitivity to heavy new physics.
The rest of the paper is organized as follows. We start, in Section 2, by reviewing the IREE

approach to the DL resummation of exclusive cross-sections, extending it to semi-inclusive ones.
In this section we also present the calculation of the exclusive and semi-inclusive di-fermion
and di-boson production processes, to be employed in Section 3 to estimate the sensitivity to
dimension-6 EFT current-current contact interactions of muon colliders with a center of mass
energy ranging from 3 to 30 TeV. The estimates include experimental reconstruction efficiencies
at the level expected for the CLIC detector at 3 TeV, which we extract from Ref. [65]. Our results
do not depend on the nature of the colliding leptons. In particular they do not include the effect
of Beamstrahlung, which is expectedly small at muon colliders but large at e+e− colliders of the
same energy. Up to this caveat, our results thus also apply to hypothetical linear e+e− collider
based on plasma wake field acceleration [66].4 In Section 3 we also study the impact of the EFT
sensitivity projections on concrete scenarios for Beyond-the-SM (BSM) physics such as Higgs
and Top Compositeness and a minimal Z ′ extension of the EW sector. Our conclusions and an
outlook on future work are reported in Section 4. The first two appendices contain technicalities
about the the derivation of the IREE. The third one collects our sensitivity projections on EFT
operators relevant for the Top Compositeness scenario, while the fourth appendix extensively
summarizes the BSM sensitivity of muon colliders of different center of mass energies.

2 Theoretical predictions

Several approaches have been considered in the literature for the resummation of the effects of
EW radiation. Double logarithm (DL) contributions, of the form (α log2E2/m2

w)n with arbi-
trary n, have been resummed in fully-inclusive and exclusive cross-sections, using respectively
Asymptotic Dynamics [41, 42] and IREE [43, 44]. In Soft-Collinear Effective Theory (SCET)
the expansion is already organized in exponential form. In that case the resummation of double
logarithms [45] as well as its extension to leading (LL )5 and next-to-leading (NLL) logarithm
[49] has been studied. The study of EW parton distribution or fragmentation functions [52–56]
is obviously connected, but not directly relevant for very high energy processes, where the main
role is played by the emission of EW radiation that is both collinear and soft. Notice how-
ever that in some framework [52–56] soft effects are partially or completely included in parton
distributions and fragmentation functions.

In this paper we employ DL predictions based on the robust diagrammatic methodology of
the IREE [43], which we review and further develop in Section 2.1. We also supplement our
computations by the available virtual single logarithms (SL) at 1-loop [64, 67]. Based on these
results, we present in Sections 2.2 and 2.3 our theoretical predictions for the di-fermion and
di-boson production processes at the VHEL. While it will emerge that single logarithms are
potentially relevant, a systematic consideration of these effects goes beyond the scope of the
present paper. Our finding that electroweak radiation can be used to our own advantage in the
exploration of new physics, strongly motivates the systematic inclusion of subleading effects. A
first simple step would be to include in our predictions the single logarithms from real emissions
at tree level. A complete treatment including resummation would likely best be achieved by
using SCET.

2.1 IR Evolution Equations

The basic idea of the IREE is to introduce an unphysical IR regulator λ with dimension (energy)2

in the calculation of the observables and to write down a differential equation for the evolution

4Notice that Beamstrahlung potentially entails a strong depletion of the high-energy luminosity peak, which
is the part of the luminosity spectrum that is relevant for the high-energy probes.

5These include but do not coincide with the pure DL, as explained, for instance, in Ref. [49].
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with λ of the result. Denoting by “E2” the hardness of the observable under consideration, the
choice λ ∼ E2 eliminates all the IR enhancements and makes fixed-order perturbation theory
well-behaved. For λ ∼ E2, the Born level computation therefore offers a reliable approximation,
which can be used as the initial condition for the evolution equation to lower λ. The physical
predictions are obtained from the solution of the IREE in the limit λ→ 0.

In order to define the IR regulator, consider the 4-momenta ki of the external hard particles
that participate in the scattering process. They will correspond in our setup to the 4 legs of a
central energetic 2 → 2 processes. With the exception of the masses k2

i � E2, all the Lorentz
invariants constructed with the ki’s are therefore large and of order E2. Given a pair ij of
external hard particles and given a radiation particle with 4-momentum q we define its hardness
relative to the ij pair as

hij(q) ≡ 2

∣∣∣∣(ki · q)(kj · q)(ki · kj)

∣∣∣∣ . (1)

The IR regulator is provided by the lower bound λ

h(q) ≡ min
i 6=j

hij(q) > λ . (2)

on the “absolute” hardness h of the radiation. Notice that the bound is imposed on the 4-
momentum of each individual radiation particle, either virtual or real. Specifically, eq. (2)
applies to the off-shell loop momenta describing virtual radiation, as well as to the on-shell
momenta of real radiation particles in the final state of the process. The specific definition of the
radiation hardness in eq. (1) is convenient because it reflects the structure of the denominators
that appear in the calculation of the IR-enhanced diagrams, as we will readily see. At this stage,
it is enough to remark that the lower cut on h(q) in eq. (2) is a valid IR regulator as it eliminates
both the regions where q is soft and those where it is collinear to one of the hard partons.

The main peculiarity of the IREE formalism applied to EW radiation stems from the presence
of the physical scale mw ∼ 100 GeV associated to the masses of the EW bosons. We will see that
mw acts as a threshold that separates two different regimes, λ� m2

w and λ� m2
w. In the former

regime, the cut on the radiation hardness in eq. (2) is so strong that the mass of the radiation
particles can be safely neglected and the IREE computed in the unbroken SU(2)L×U(1)Y EW
gauge theory. Starting from the initial condition at λ ∼ E2, the evolution is thus performed
with the SU(2)L×U(1)Y evolution kernel down to λ ∼ m2

w. At λ � m2
w, the massive vector

bosons do not contribute to the evolution and the kernel is purely determined by the unbroken
U(1)Q group of electromagnetism.

Amplitude evolution

We start, following Ref. [43], from the IREE for the scattering amplitude with purely hard
external quanta and with regulator λ on the internal lines. While the discussion holds for an
arbitrary number of external legs, we focus for definiteness on 2 → 2 amplitudes, which we
indicate by

Mα
λ =Mλ

[
p1(k1, α1) p2(k2, α2)→ p3(k3, α3) p4(k4, α4)

]
, (3)

where αi denotes the gauge group index of the external state pi, which is taken to transform in an
irreducible representation of the group. The amplitude is labeled by the 4 indices α = α1α2α3α4,
and it is IR-regulated according to eq. (2). Since no real radiation is involved, the cut acts only
on the momenta of virtual vector bosons in loop diagrams. We aim at writing down the IREE
for Mα

λ and to solve it given the initial condition

Mα
E2 = Bα ≡ Born Amplitude . (4)

As we explained, for λ � m2
w the effects of EW symmetry breaking (EWSB) can be ig-

nored, and Mα
λ equals the (IR-regulated) amplitude of the unbroken EW gauge theory. More
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Figure 1: Left panel: the leading Sudakov diagrams topology. Right panel: a diagrammatic
representation of the contributions to the amplitude variation that are logarithmically enhanced.
The momentum q is integrated over the infinitesimal strip δσ (7).

precisely, EWSB gives negligible relative corrections of order mw/
√
λ (or powers thereof) to all

those amplitudes that are not forbidden by the SU(2)L×U(1)Y exact symmetry of the unbroken
theory. The other amplitudes are sensitive to EWSB at the leading order and therefore they
cannot be studied in the unbroken theory.6 However their contribution to the physical scatter-
ing process is negligible and they can be safely excluded from the discussion. Similarly, for the
allowed processes, up to negligible power corrections of order mw/E, the amplitude Mα

λ is an
SU(2)L×U(1)Y invariant tensor satisfying the charge conservation equation

(GA1c)
α
βM

β
λ + (GA2c)

α
βM

β
λ + (GA3 )αβM

β
λ + (GA4 )αβM

β
λ

λ�m2
w= 0 , ∀A, α . (5)

In the equation, GAi denotes the generators associated with the representation of each hard
particle “i” under the EW group, acting only on the corresponding index “αi” of the amplitude
tensor. For instance

(GA3 )αβ = δα1
β1
δα2
β2

(GA3 )α3
β3
δα4
β4
. (6)

Notice that, in our notation, (α3, α4) run in the representations of the outgoing states, while
(α1, α2) run in the conjugate representation of the incoming particles. Consequently in eq. (5),
G1c = −G∗1 and G2c = −G∗2.

The IREE is obtained by computing the variation of the amplitude under an infinitesimal
variation λ → λ + δλ of the IR cutoff in eq. (2). This computation dramatically simplifies in
the leading DL approximation as one can infer by inspecting diagrams involving a number n of
soft/collinear virtual vector bosons. Indeed the maximal logarithm power arises from the region
where momenta are hierarchically separated E2 � h(q1)� h(q2)� · · · � h(qn) with the softer
legs dressing the subdiagrams involving the harder legs, as shown in the left panel of Figure 1.
In this configuration only the outermost virtual vector can reach a virtuality h(qn) ∼ λ, the
inner ones being much harder in the dominant region of integration. The effect on Mα

λ of the
variation of λ is then computed by considering the variation of the endpoint of the integral over
the momentum of such outermost vector. More precisely we have that −δMα

λ ≡Mα
λ −Mα

λ+δλ
equals the integral over the outermost loop momentum in the infinitesimal strip

δσ = {q : h(q) ∈ [λ, λ+ δλ]} . (7)

The contribution to the variation from the vector that connects a given pair of hard external
legs can be depicted like on the right panel of Figure 1. The vector boson is represented with a
double line to indicate that its momentum q must be integrated only over the strip δσ.

6For instance the amplitude with 3 transversely- and one longitudinally-polarized W bosons is suppressed by
mw/E already at the Born level, owing to the fact that it is impossible to form an SU(2)L singlet with one doublet
(i.e., the representation of longitudinal W ’s owing to the Equivalence Theorem) and three triplets.
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As we already said the leading contribution comes from the integration region where q is
soft (and also collinear), in which the vector boson emission is described by the eikonal formula

αiM
A,µ

ki

q
'

kµi
ki · q

(GAi )αβMβ , αi M
A,µ

ki

q
'

kµi
ki · q

(GAic)
α
βMβ , (8)

with Gi the group generator acting on particle “i” as in eq. (6). In line with our conventions,
as explained above, the generators of the charge-conjugate representation Gic appear in the
eikonal formula for vector boson emission from an incoming particle. For brevity, we have
included the gauge coupling constants in the definition of the generators Gi. In terms of the
canonical SU(2)L×U(1)Y generators we then have

G1,2,3
i = g T 1,2,3

i , GYi = g′ Yi . (9)

The integration over the soft q momentum factorizes with respect to the integral over the
harder lines, represented as a blob in Figure 1. Indeed in the eikonal (q → 0) limit the virtual
vector boson momentum can be neglected and the sub-amplitude blob evaluated on the momenta
ki of the external legs before the virtual vector boson emission/absorption. Therefore the blob
gives us back the original amplitude, with one less loop but this is immaterial asMα

λ is the all-
loops amplitude. We can thus express the amplitude variation in terms of the amplitude itself,
eventually obtaining an evolution equation. In covariant gauges, the leading DL contributions
only arise from virtual vectors connecting two distinct external lines. Therefore, we have

δMα
λ =

−i
(2π)4

∑
j < i

∫
δσ
d4q

1

q2 + iε

ki · kj
(q · ki)(q · kj)

[∑
A

GAi ·GAj
]α
β
Mβ

λ , (10)

where the sum extends over the unordered ij pairs of distinct external legs and it is understood
that the conjugate generators must be employed for the incoming legs i, j = 1, 2, due to eq. (8).

The evaluation of the integral in eq. (10) is quite straightforward, and it is reported in
Appendix A for completeness. This gives

δMα
λ = − 1

8π2

δλ

λ
log

E2

λ

1

2

∑
A, i

(GAi )αβ
∑
j 6=i

(GAj )βγM
γ
λ , (11)

up to non logarithmically enhanced terms. Notice that in the equation we traded the sum over
unordered ij pairs for an ordered sum times 1/2. The sum over j 6= i can be performed using
charge conservation according to eq. (5), giving

δMα
λ =

1

16π2

δλ

λ
log

E2

λ

∑
i

[∑
A

GAi G
A
i

]α
β
Mβ

λ

=
1

16π2

δλ

λ
log

E2

λ

∑
i

[
g2ci + g′ 2y2

i

]
Mα

λ , (12)

where for any given external particle with weak isospin spin ti and hypercharge yi, the coeffi-
cients ci = ti(ti + 1) and y2

i are nothing but the Casimirs of respectively SU(2)L and U(1)Y .
We thus recovered the familiar result that, in DL accuracy, IR effects are universal for each
individual external particle and purely determined by the Casimir of the corresponding gauge
group representation.

We finally obtain an IREE

dMα
λ

d log2(E2/λ)
= −1

2
KMα

λ , where K λ�m2
w=

1

16π2

∑
i

[
g2ci + g′ 2y2

i

]
, (13)
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with, since the Casimir operators are proportional to the identity, an evolution kernel K that is
a mere multiplicative constant. Solving eq. (13) starting from the initial condition (4) gives the
amplitude evaluated with an IR cutoff scale λ = m2

w

Mα
m2

w
= exp

[
−
∑
i

g2ci + g′ 2y2
i

32π2
log2(E2/m2

w)

]
Bα . (14)

In order to continue the amplitude evolution to lower λ, we should now consider the regime
λ� m2

w, write the corresponding IREE and solve them using eq. (14) as initial condition. This
is straightforward, because we have seen that all that matters for the derivation of the IREE are
the loop integrals in a strip where the virtual radiation hardness is infinitesimally close to the
cutoff λ as in eq. (7). In this region, a logarithmic enhancement of the amplitude variation only
originates from photon exchange diagrams.7 The IREE evolution kernel is thus immediately
obtained by specifying the previous formulae to the U(1)Q gauge group of QED

K λ�m2
w=

1

16π2

∑
i

[
e2q2

i

]
. (15)

Notice that in order to derive the IREE in this regime, only conservation of electric charge must
be employed. The conservation of the full SU(2)L×U(1)Y charges of eq. (5) is not valid for
λ� m2

w, where the effects of electroweak symmetry breaking are important.
Solving eq. (15) produces the regular QED Sudakov factors, which go to zero in the physical

limit λ → 0 where the IR regulator is removed. Therefore the amplitude Mα
0 vanishes, and

so does the cross-section of the corresponding fully-exclusive scattering process, in which no
extra radiation is present in the final state. More inclusive observables need to be considered
for a non-vanishing result. One possibility is to allow for the presence of real photon radiation
up to an upper threshold of order m2

w on the hardness h. This defines a cross-section that we
denote as exclusive because it indeed excludes the radiation of massive EW bosons. In fact, it
is easy to check that h(q) > m2 for the emission of a real radiation quantum with q2 = m2.
An upper cut h(q) < m2

w then excludes the presence of massive EW bosons in the final state,
but allows for (sufficiently) soft photons. Ref. [43] considered this same observable (but calling
it “semi-inclusive”) showing that it stops evolving with λ below m2

w, due to the cancellation of
real and virtual IR effects in QED. Cross-sections that are exclusive according to our definition
can thus be computed at the DL accuracy by just squaring the λ = m2

w amplitude (14). At
the end of the next section we will re-derive the result of Ref. [43] for exclusive cross-sections
by a slightly different methodology, which is also suited for the calculation of the other type of
cross-sections we are interested in.

Density matrix evolution

It is possible to extend the IREE methodology to more complex quantities than the hard Feyn-
man amplitude. Specifically, we consider the hard “density matrix” 8

Dαᾱλ ≡Mα
λ(Mᾱ

λ)∗ +

∞∑
N=1

∫
dPhHN,λ

∑
ρ1...ρN

Mα;ρ
λ (Mᾱ;ρ

λ )∗ , (16)

which incorporates the emission of an arbitrary number N of radiation particles, with gauge
group indices denoted as ρ = ρ1 . . . ρN . In the equation, Mα

λ is the hard amplitude with no
extra emissions as in the previous section, whileMα;ρ

λ is the amplitude for the production of the

7The calculation of the loop integral in Appendix A shows explicitly that no enhancement emerges from the
exchange of vectors with mass mV much larger than λ.

8The same object was dubbed “overlap matrix” in Ref. [42].
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2 hard particles plus the radiation. The virtual radiation particles exchanged in the Feynman
diagrams for the amplitude are subject to the IR hardness cutoff λ as in eq. (2). The phase-space

volume element dPhHN,λ =
∏N
k=1 dPhHk,λ for the emission of real radiation is also constrained by

eq. (2). The H superscript refers to the possible presence of an upper cutoff on the radiation
hardness h(q) < H. In what follows we will first consider processes we define as semi-inclusive,
for which H ∼ E2. For these processes the upper radiation cut is effectively absent, and plays
no role in the discussion. The exclusive processes defined in the previous section instead simply
correspond to H = m2

w.
It should be noted that eq. (16) formally violates the conservation of the total energy and

momentum, because in the radiation terms we are employing the same hard 4-momenta that
obey energy and momentum conservation in the absence of radiation. It is understood that
this makes sense only in the presence of an upper cutoff on the total energy and momentum
of the radiation, say a one tenth of E. In this way, the radiation plays a minor role in the
total balance of energy and momentum conservation or, equivalently, the hard 4-momenta can
be readjusted to balance the radiation emission up to small corrections in the corresponding
Feynman amplitudes. In practice, the cutoff allows us to factorize the total phase-space into
that for radiation, on one hand, and that for the hard 2 → 2 process on the other, with the
latter also including the delta function of 4-momentum conservation. The density matrix (16)
can thus be related to the physical scattering cross-section.

An upper cut Erad < E/10 on the total radiation energy and momentum does not affect the
predictions at the double logarithm accuracy. Indeed a simple modification of the real radiation
integral (see the discussion around eq. (18) computation in Appendix A shows that the effect
of this cut on the q momentum of the radiated particle merely entails reduction of the double
logarithm from log2E2/λ to log2E2

rad/λ. The difference is then of order logE2/λ× logE2/E2
rad

and falls into the same class as single logarithms as long as E/Erad is not too small, with 1/10
qualifying.

The hard density matrix (16) is a simple generalization of the scattering cross-section in
which the conjugated amplitude indices ᾱ are not equal to the indices α of the non-conjugated
amplitude. It is a useful generalization because it obeys charge conservation equations similar
to eq. (5). Namely, in the regime λ� m2

w, we have∑
i=1c,2c,3,4

[
(GAi )αβD

βᾱ
λ + (GAic)

ᾱ
β̄D

αβ̄
λ

] λ�m2
w= 0 , ∀A, α, ᾱ , (17)

where the obvious relations [1c]c ≡ 1 [2c]c ≡ 2 should be understood. That way the generators
acting on the indices β̄ of the complex conjugated amplitude are those of the corresponding
charge conjugated representation. Eq. (17) holds only for λ� m2

w, because in this regime both
the virtual and the real emissions are nearly insensitive to EWSB effects as previously explained.
For λ� m2

w, only the electric charge generator is conserved.
The IREE can be obtained like in the previous section by computing the variation of Dλ

under λ→ λ+ δλ, taking now also into account also the effect of the IR cutoff on real emission.
The contribution of virtual loop momentum integrals is thus accompanied by that of integrals
over the momentum of real radiation. All integrals have to be performed over the infinitesimal
strip δσ defined in eq. (7). Logarithmically enhanced terms only arise from the exchange of
virtual or real gauge bosons between different external legs (i 6= j), like in Figure 2. The effects
and the corresponding diagrams can be divided into two classes. The first, in the left panel of
Figure 2, is given by primary radiation diagrams where vector bosons are exchanged between
the hard legs. The second, in the right panel, is given by secondary radiation diagrams where
vector bosons connect to at least one real radiation leg.

We will first consider the effects of primary radiation. The virtual radiation integral gives
the result already mentioned in eq. (11), and, as we show in Appendix A, the result is exactly
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Figure 2: Diagrammatic representation of the contributions to the density matrix variation from
primary (left panel) and secondary (right panel) radiation. The vector bosons are represented as
double lines to indicate that their momenta have to be integrated over the infinitesimal strip (7).

the same for the real radiation integral. The total variation from primary radiation is then

δDαᾱλ = − 1

16π2

δλ

λ
log

E2

λ

∑
i=1c,2c,3,4

∑
A

[
(GAi )αβ

∑
j 6=i

[
(GAj )βγD

γᾱ
λ + (GAjc)

ᾱ
β̄D

ββ̄
λ

]
+(GAic)

ᾱ
β̄

∑
j 6=i

[
(GAj )αβD

ββ̄
λ + (GAjc)

β̄
γ̄D

αγ̄
λ

]]
. (18)

The argument of the first sum, over the four external legs, collects the contributions of all the
radiation emitted from the leg “i” of the amplitude and of the conjugated amplitude. A factor
1/2 is included to avoid double-counting. Notice that both virtual and real radiation connecting
one leg with itself is excluded from the sum, because, as we already mentioned, no enhancement
arises from those diagrams.

We can now proceed as in the previous section, and use the charge conservation in eq. (17)
to perform the sum over j in eq. (18). We find the IREE

dDαᾱλ
d log2(E2/λ)

= −Kαᾱββ̄ D
ββ̄
λ , (19)

with an evolution kernel that is the direct sum of universal terms for each external leg

Kαᾱββ̄
λ�m2

w=
1

32π2

∑
i

[[∑
A

GAi G
A
i

]α
β
δᾱβ̄ + δαβ

[∑
A

GAicG
A
ic
]ᾱ
β̄

+ 2
∑
A

(GAi )αβ(GAic)
ᾱ
β̄

]

=
g2

16π2

∑
i

[
ci δ

αi
βi
δᾱi

β̄i
+

∑
A=1,2,3

(TAi )αi
βi

(TAic )ᾱi

β̄i

][∏
j 6=i

δ
αj

βj
δ
ᾱj

β̄j

]
=

g2

16π2

∑
i

[
Ki

]αiᾱi

βiβ̄i

[∏
j 6=i

δ
αj

βj
δ
ᾱj

β̄j

]
. (20)

The kernel contains one term, provided by the SU(2)L Casimir ci = ti(ti + 1), which is propor-
tional to the identity in the color indices of the density matrix tensor, plus a non-diagonal term
constructed with the SU(2)L group generators matrices TAi of the external legs. Notice that the
contribution of the U(1)Y hypercharge generator cancels.

There is one peculiarity of eq. (20) that is worth emphasizing. The semi-inclusive cross-
sections we are interested in are the diagonal entries (α = ᾱ) of the density matrix, with no
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sum performed over the gauge group index α of the scattering particles.9 However one can also
consider inclusive cross-sections, where the sum over the gauge index αi is performed for one or
several external legs. By setting ᾱi = αi and summing over αi, the SU(2)L generators in eq. (20)
recombine to form the Casimir operator, and the contribution to the evolution kernel from leg
“i” cancels. We thus find that, at DL accuracy, the cancellation between real and virtual IR
effects in inclusive cross-sections occurs on a leg-by-leg basis. Namely, the effects of soft/collinear
emissions associated to each individual leg cancel in the cross-section (and in the entire density
matrix) for processes that are inclusive over the color of the corresponding particle. This result
is stronger than the KLN theorem, which foresees a cancellation only when summing over the
color of all legs. The reason for the added strength is that we are here considering radiation that
is both soft and collinear. Notice however that fully inclusive observables of practical relevance
can only involve summation on the color of the final state particles. This retains the IR effects
associated with the colliding particles in the initial state (e.g., two left-handed leptons `+L`

−
L )

which are not SU(2)L singlets. The resulting non-cancellation of IR effects in “fully-inclusive”
cross-sections, coincides with the result of Ref. [42].

So far we have ignored the secondary radiation diagrams, depicted in the right panel of
Figure 2. We show now that their contribution vanishes, giving full justification to eq. (20).
Secondary radiation diagrams correspond to the effect of the λ cutoff variation on virtual or
real vector bosons attached to one of the intermediate “ρ” particles in the definition of the
density matrix (16). Clearly these effects are potentially enhanced only if the intermediate
particle is relatively hard, such that a significant separation is present between the IR cutoff λ
and the scalar product between the intermediate particle and the external leg momenta. We
thus start considering vector bosons attached to the hardest intermediate particle, with gauge
index “ρ1” as in the figure. The density matrix is inclusive over the color of the intermediate
particle. However we can momentarily define an “extended” density matrix Dα ;ρ1 ᾱ ;ρ̄1

λ with
labels ρ1 and ρ̄1 for the gauge indices of the amplitude and of the conjugate amplitude, as in
the figure. The actual density matrix is eventually obtained by first setting ρ1 = ρ̄1 and then
summing. The effect on the extended density matrix variation of all the radiation emitted from
ρ1 and ρ̄1 can be written in a form similar to eq. (18) and then simplified using the analog of
eq. (17) for the extended density matrix. The resulting contribution to the evolution kernel
from the intermediate ρ1 leg is the analog of that from the hard external legs in eq. (20). But
this contribution cancels out in the evolution of the actual density matrix, which is inclusive
over the ρ1 leg, because of the previously explained leg-by-leg cancellation mechanism. The
argument can of course be repeated for the diagrams involving the second hardest intermediate
particle, showing, as anticipated, that all the secondary radiation diagrams can be ignored in
the calculation of the evolution kernel.

It is straightforward to adapt the previous results to the regime λ� m2
w, in which only the

exchange of photons contributes to the evolution, as discussed in the previous section. By spec-
ifying eq. (20) to the Abelian U(1)Q group we immediately find that the kernel vanishes, owing
to the well-known cancellation between real and virtual IR effects in QED. For the calculation
of the physical (λ→ 0) density matrix, and in turn of the semi-inclusive cross-section, we thus
only need to solve the IREE with the λ� m2

w kernel (20), down to λ = m2
w.

For λ = E2 the hard density matrix (16) is well-approximated by its tree-level expression,
which serves as the initial condition for the evolution

DαᾱE2 = Bα(Bᾱ)∗ . (21)

The kernel is the direct sum of tensors, denoted as Ki in eq. (20), each acting on the pair αi, ᾱi

9This is true only in a basis where the gauge indices αi label the on-shell SM particles, while for the calculation
of di-boson cross-sections we work in a different basis. See Section 2.3 and Appendix B for details.
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associated to the i-th external particle. Therefore the solution of the IREE reads

Dαᾱsi ≡ Dαᾱm2
w

=

{∏
i

[
exp

[
− g2

16π2
Ki log2(E2/m2

w)
]]αiᾱi

βiβ̄i

}
Bβ(Bβ̄)∗ , (22)

where the “si” subscript denotes the density matrix of the semi-inclusive process, with no upper
cut on the real radiation hardness. The explicit form of the Ki exponentials in the above
equation is reported in eq.s (82) and (83) for external legs in the doublet and triplet SU(2)L
representations. Applications of eq. (22) to specific processes are shown in Sections 2.2 and 2.3.

We have defined the density matrix (16) allowing for the presence of an upper cutoff H on the
real radiation, but this played no role in the previous discussion because this cutoff is effectively
absent (H ∼ E2) in our definition of semi-inclusive processes. In exclusive processes we instead
set H = m2

w, namely we veto real radiation particles with hardness above m2
w. Obviously, for

λ� m2
w this upper cut is in contradiction with the IR cutoff in eq. (2) on the radiation phase-

space. Therefore in the density matrix for the exclusive process no real radiation is present and
in the λ � m2

w regime the result simply equals the square of the hard amplitude in eq. (3).
The evolution up to λ = m2

w can thus be obtained from the hard amplitude evolution (14) we
obtained in the previous section, or easily re-derived by dropping the terms in eq. (18) (namely,
the second and the third) that are due to real radiation. The contribution of real radiation is
instead restored for λ� m2

w and the evolution stops due to the cancellation between virtual and
real QED radiation as previously explained. The physical (λ→ 0) density matrix for exclusive
processes can thus be written in a simple closed form as

Dαᾱex = exp

[
−
∑
i

g2ci + g′ 2y2
i

16π2
log2(E2/m2

w)

]
Bα(Bᾱ)∗ . (23)

In Sections 2.2 and 2.3 we employ this formula to compute exclusive di-fermion and di-boson
production cross-sections, and discuss the need of supplementing it with fixed-order single-
logarithmic terms, from Ref. [64, 67].

Before concluding this section it is worth commenting on the experimental definition of the
semi-inclusive and exclusive processes, and on the perspectives for their actual experimental
detectability. The semi-inclusive process is characterized by two central (specifically, emitted
from 30 to 150 degrees from the beam line) energetic particles of specific EW color and flavor.
In particular we will require them to carry a total center of mass energy above 85% of the VHEL
Ecm, enforcing in this way the upper cut on the total radiation 4-momentum required for the
definition of the hard density matrix as discussed below eq. (16). The two particles can be
accompanied by the radiation of EW bosons, photons, or any other soft particle.

Notice that in our calculation at the DL order we could ignore all the effects of collinear
(rather than soft-collinear) radiation, which emerge at the single logarithm. On the other
hand, the single logarithms associated with low-virtuality (below mw) photon splittings are
much larger than logE2/m2

w. In particular, the emission of real photons that are energetic but
collinear to a light charged hard particle (e.g., an electron or a muon) with mass m` produces
terms proportional to logE2/m2

` . By the KLN theorem these terms will be canceled by the
corresponding virtual contributions, but only in suitably-defined observables that recombine
the emitted photons in the experimental definition of the hard particle 4-momentum. With a
lower threshold of order mw on the energy of the photons to be recombined, the net effect on
our prediction should be of the order of a single EW logarithm logE2/m2

w. A more detailed
assessment of this aspect, and of the possible interplay between the QED and the EW bosons
collinear emissions, requires the inclusion of single logarithms and goes beyond the scope of
the present paper. Similar considerations hold for the collinear emission of QCD gluons to be
collected into jets, in the case of colored final states.

Up to the caveats outlined above, there are good perspectives for the actual direct experi-
mental detectability of semi-inclusive cross-sections. The situation is arguably more problematic
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for the exclusive cross-section. In exclusive final states, we require the presence of the two hard
particles defined as above, plus the absence of any massive vector boson (since h(q) > q2 = m2,
as discussed at the end of the previous section), or photons above the hardness upper threshold
m2

w. However, it is experimentally impossible to impose this radiation veto strictly because the
limited coverage of the detector in the forward and backward regions will not allow to tag EW
bosons or photons that are collinear to the beam. Furthermore our definition of the exclusive
cross-section is problematic in the case of QCD-colored final states. Indeed if the upper cut
h(q) < m2

w had to be imposed also on gluon radiation, QCD effects should be included in the
exclusive density matrix evolution (but not in the semi-inclusive one, where they cancel because
of color inclusivity), resulting in a large QCD Sudakov suppression factor in eq. (23). This factor
is as small as exp[−αs/(4π)(8/3) log2E2

cm/m
2
w] ∼ 0.03 for di-quark final states at the highest

VHEL energy Ecm = 30 TeV, entailing a strong suppression of the cross-section. Avoiding this
suppression requires a definition of the exclusive cross-section with a higher threshold on the
QCD radiation. We will further comment in the Conclusions on the limitations of the exclusive
cross-section definition employed in this paper.

2.2 Di-fermion production

The first process we investigate is the production of a highly energetic pair of fermions

`+(k1) `−(k2)→ f̄(k3) g(k4) +X , (24)

where f and g can be one of the six quarks, a lepton `′ 6= ` or a neutrino ν`′ . We do not
discuss explicitly the final states with the same leptonic flavor as the initial state, `′ = `,
but these processes will be employed for the muon collider sensitivity projections in Section 3.
As previously discussed, the final state is characterized (both for exclusive and semi-inclusive
processes) by an invariant mass for the (f̄ , g) pair that is almost equal to the center of mass
energy Ecm of the colliding leptons and by central scattering angle θ∗ ∈ [30◦, 150◦]. Here θ∗ is
the angle between the incoming `+ and the final anti-fermion f̄ in the lab frame. Notice that
θ∗ almost coincides with the scattering angle in the center of mass frame of the hard process,
because of the tight cut on the invariant mass of the (f̄ , g) pair.

In order to resum the DL it is convenient to organize the calculation of the cross-section in
terms of amplitudes and density matrices whose external legs are canonical irreducible repre-
sentations of the EW group. This is trivial to achieve for the di-fermion process because the
helicity eigenstates of quarks and leptons in the massless limit do indeed transform as canonical
representations (doublets and singlets, with specific hypercharge), reported for completeness in
Appendix B. Furthermore, since we restrict our attention to inelastic processes `′ 6= `, the only
sizable helicity amplitudes are those with the same chirality χI (χO) for the two incoming (out-
going) fermions, corresponding to helicities ψ̄+1/2ψ−1/2 for χ = L and ψ̄−1/2ψ+1/2 for χ = R.
The dominance of such amplitudes holds in the SM because of the vector-like structure of gauge
interaction, and it will be preserved by the 4-fermions new physics contact interaction operators
we will study in Section 3. We thus have to deal with four polarized cross-sections for each
di-fermion production process, labeled by χIχO = LL,LR,RL,RR. Each such cross-section
will be obtained from the diagonal α = ᾱ entries of the density matrices of Section 2.1, times
the appropriate phase-space factors.

Exclusive processes

Exclusive cross-sections are readily obtained from eq. (23), and take the form

dσex

d cos θ∗
= eDL dσB

d cos θ∗
, (25)
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3 TeV 10 TeV 30 TeV

DL eDL−1 SL(π2 ) DL eDL−1 SL(π2 ) DL eDL−1 SL(π2 )

`L → `′L -0.46 -0.37 0.25 -0.82 -0.56 0.33 -1.23 -0.71 0.41

`L → qL -0.44 -0.36 0.25 -0.78 -0.54 0.34 -1.18 -0.69 0.42

`L → eR -0.32 -0.27 0.13 -0.56 -0.43 0.17 -0.85 -0.57 0.21

`L → uR -0.27 -0.24 0.11 -0.48 -0.38 0.15 -0.72 -0.51 0.18

`L → dR -0.24 -0.21 0.10 -0.43 -0.35 0.13 -0.64 -0.47 0.16

`R → `′L -0.32 -0.27 0.13 -0.56 -0.43 0.17 -0.85 -0.57 0.21

`R → qL -0.30 -0.26 0.12 -0.53 -0.41 0.16 -0.79 -0.55 0.21

`R → `′R -0.17 -0.16 0.07 -0.30 -0.26 0.09 -0.46 -0.37 0.12

`R → uR -0.12 -0.12 0.05 -0.22 -0.20 0.07 -0.33 -0.28 0.08

`R → dR -0.09 -0.09 0.04 -0.17 -0.16 0.05 -0.25 -0.22 0.06

Table 1: Double and single logarithmic corrections to the exclusive processes `+`− → f̄f . The
single-logarithmic corrections are evaluated at θ∗ = π/2.

in terms of the corresponding Born-level differential cross-sections. The Double Log exponent
DL is of order g2/16π2 log2(E2

cm/m
2
w), which ranges from 0.14 at Ecm = 3 TeV up to 0.25 (0.38)

for Ecm = 10(30) TeV, times the sum of the four SU(2) Casimir of the external legs. For LL
chirality processes this factor is as large as 4× 1/2(1/2 + 1) = 3, showing that DL resummation
is mandatory at VHEL energies Ecm ≥ 10 TeV, at least for this chirality. Double logs are still
considerable for LR and RL chirality, while they get smaller in the RR configuration because
g′ 2 ∼ g2/4. Resummation might instead not be necessary for Ecm = 3 TeV. However it will
still be needed to include the effects of radiation at fixed order since we aim, eventually, at
theoretical predictions with percent-level accuracy.

The DL Sudakov exponents in eq. (25) are listed in Table 1. The processes are labeled taking
into account that electric charge conservation enforces g = f in eq. (24), since a charge mismatch
cannot be compensated by the emission of charged W bosons, which is forbidden in exclusive
processes. The table also reports single logarithm (SL) contributions computed at the fixed one
loop order, which we extract from Ref.s [64].10 Specifically, we employ the general formulae
of Ref.s [64] to compute the 1-loop log-enhanced cross-section, we subtract the corresponding
DL and normalize to the Born cross-section. We also subtract the single logarithms from the
Renormalization Group evolution, because we decided to compute the Born amplitude with the
EW couplings at the hard scale Ecm.11 Notice that the threshold for photon recombination into
the hard final state particles matters at the single-logarithmic order. Here we assume a scale of
recombination of order mw, for which the SL terms can be easily obtained by adding a fictitious
photon mass mγ = mw to the calculations of Ref.s [64, 67]. The SL terms obtained in this way
can be used for “improved” theoretical predictions

dσSL1
ex

d cos θ∗
= eDL(1 + SL(θ∗))

dσB
d cos θ∗

, (26)

that include single logarithms at fixed 1-loop order. We see in Table 1 that the SL contributions
are relatively large. It is unclear whether they require resummation or if including them at fixed
order (definitely higher than 1-loop, if we target 1% accuracy) is sufficient.

Notice that, unlike double logarithms, the single logarithm contributions are not proportional
to the Born-level amplitude of the same scattering process. Namely the amplitudes of the

10Two loops NLL results for four-fermion processes are also available in [68, 69].
11The calculation is similar to the one performed by two of us in Ref. [70]. We refer the reader to Section 2.3

of [70] for additional details, concerning in particular the inclusion of non-log-enhanced angular-dependent terms.
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Figure 3: Impact of radiative corrections on the production of two up quarks at the VHEL. The
solid lines represent different predictions for the exclusive cross-section. The dashed lines are
double-logarithm semi-inclusive cross-sections resummed (in black) or at one loop (in orange).

neutral-current processes in Table 1 receive SL corrections that are proportional to Born charged-
current amplitudes. Therefore it should be kept in mind the SL terms in eq. (26), which we
normalized to the Born cross-section of the process, depend on the ratio between charged and
neutral current Born amplitudes. We evaluated the amplitude ratio within the SM to produce the
results in Table 1. However the amplitude ratio depends on the new physics contact interactions
we consider in Section 3, entailing a dependence of the SL terms on the new physics parameters.
This is not the case for the double logarithms, which are completely universal and insensitive
to short-distance physics. The single logarithms also carry a non-trivial dependence on the
scattering angle θ∗, as explicitly indicated in eq. (26). In Table 1 they are evaluated at central
angle θ∗ = π/2, where they are always positive. They can become negative, and typically increase
in magnitude, in the forward and backward scattering regions, which we however exclude with
the central cut θ∗ ∈ [30◦, 150◦]. Finally, notice that the SL terms are affected by the sizable
mass of the top quark, which we do include in the tt̄ production process.

The impact of EW radiation effects on the total (unpolarized) cross-section in the central
region, relative to the Born, is displayed in Figure 3 as a function of Ecm. The production of
two light up-type quarks is considered for illustration, but the results for the other final states
are similar. The blue line is the one-loop DL prediction without exponentiation, while in red we
report the resummed DL prediction in eq. (25). The green line (labeled DL1+SL1) represents
the fixed-order one loop DL plus SL, while in black we report the SL-improved prediction
in eq. (26). The dashed lines are semi-inclusive cross-sections computed below. We notice a
significant cancellation between double and single logarithmic terms. However this cancellation
is not expected to be structural and to survive at higher orders in perturbation theory.

We do not try to assign theoretical uncertainties to our predictions. However an upper
bound can be obtained by considering the orange line in the figure, in which the resummed
DL are combined additively with the SL (i.e., as eDL + SL), rather than multiplicatively. An
alternative estimate of the uncertainties could be obtained by varying the scale of the EW
couplings employed for the evaluation of the radiation terms DL and SL. Varying this scale from
mw (which we employ for our predictions) to Ecm, the relative change of the radiation effects is
rather small, typically at the 10% level or less.

Semi-inclusive processes

The semi-inclusive cross-sections are the diagonal α = ᾱ entries of the semi-inclusive density
matrix in eq. (22), with the appropriate Ki exponential factors for each external leg. The factors
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only depend on the SU(2)L quantum numbers of the legs and not of their hypercharge (and QCD
color). They are provided by eq. (82) for L-chirality external external legs (which transform
as doublets or conjugate-doublets) and they are trivial for the R-handed singlets. Notice that
eq. (82) (and the same is true for the triplet exponential factor (83)) does not mix diagonal with
off-diagonal entries of the density matrix. Namely if we set α = ᾱ we obtain a tensor that is
diagonal in β and β̄. Therefore the DL resummed cross-sections, collected in a vector d~σsi, are
linear combinations of the Born cross-sections d~σB. We express this relation as

d~σsi

d cos θ∗
= eDL · d~σB

d cos θ∗
, (27)

where the Double-Logarithm terms “DL” are now matrices connecting the Born cross-sections
of different processes unlike for exclusive processes (25).

For an explicit illustration of the semi-inclusive cross-section calculation, and of the main
features of the result, we consider the RL-chirality production processes. In this case, we have

d~σsi =


dσsi(`

+
R`
−
R→ ūLuL)

dσsi(`
+
R`
−
R→ ūLdL)

dσsi(`
+
R`
−
R→ d̄LuL)

dσsi(`
+
R`
−
R→ d̄LdL)

 , d~σB=


dσB(`+R`

−
R→ ūLuL)
0
0

dσB(`+R`
−
R→ d̄LdL)

=dσB(`+R`
−
R→ q̄LqL)


1
0
0
1

 , (28)

where “u” and “d” denote here the up and down components of a L-handed fermion doublet.
The exponentiated DL matrix reads

eDL =
1

4
e−L


4 cosh2(L/2) 2 sinh(L) 2 sinh(L) 4 sinh2(L/2)

2 sinh(L) 4 cosh2(L/2) 4 sinh2(L/2) 2 sinh(L)
2 sinh(L) 4 sinh2(L/2) 4 cosh2(L/2) 2 sinh(L)

4 sinh2(L/2) 2 sinh(L) 2 sinh(L) 4 cosh2(L/2)

 , (29)

where L = g2/16π2 log2(E2
cm/m

2
w).

We see that DL effects induce a non-vanishing cross-section for charged processes with g 6= f
in eq. (24), such as ūLdL and d̄LuL production. Clearly this stems from the emission of real soft
W -bosons, which is allowed in the semi-inclusive final state. Such charged cross-sections are
proportional to the Born cross-section for the corresponding neutral (ūLuL or d̄LdL) processes,
and they are not drastically smaller than those because the double-logarithm is sizable at VHEL
energies. Therefore they can be measured bringing additional sensitivity to the charge-preserving
Born amplitudes and to the corresponding short-distance new physics effects. The interplay with
short-distance physics is even more interesting for the LL-chirality process. In that case, ~σsi is
a 16-dimensional vector that contains 4 observable (`+`−-initiated) processes with final states
ūLuL, ūLdL, d̄LuL and d̄LdL. DL is a 16 × 16 matrix that relates the observable processes to
16 Born amplitudes, among which those (like, e.g., ν̄``

− → ūLdL) that are sensitive to new
charged current interactions. We can thus probe the latter interactions even with the neutral
`+`− VHEL collisions.

The black dashed lines in Figure 3 quantify the impact of the EW radiation effects on the
neutral semi-inclusive cross-sections relative to the Born predictions. The effects are smaller
than for exclusive cross-sections, as qualitatively expected owing to the partial cancellation
between virtual and real radiation. While this suggests that resummation might play a less
relevant role in semi-inclusive predictions, we point out that one-loop double logarithms are
insufficient for accurate predictions. This is shown in the purple dashed line in the figure, which
is obtained by truncating at the one-loop order the exponentiated DL matrix. It would be
interesting to study the impact of single logarithms on the predictions. This could be achieved
by combining the single radiative logs from Ref.s [64, 67] with the factorized formulas for real
emissions in Ref.s [57, 71] (which however would have to be extended to include also the soft
radiation region), but is left to future work.

16



As a final technical note, we remark that the DL matrix is negative semi-defined with a single
vanishing eigenvector that corresponds to the “fully-inclusive” cross-section, further averaged
over the SU(2)L color of the initial states. Specifically the vanishing eigenvector of eq. (29) is
(1, 1, 1, 1)t, which corresponds to the sum of the cross-sections over the SU(2)L gauge indices
of the final states. Therefore in this case the double logarithmic effects cancel on the “fully-
inclusive” cross-section, in accordance with the KLN theorem since the right-handed initial
leptons are SU(2)L singlets. Clearly this does not happen for the LL-chirality processes (nor for
LR-chirality) and the average over leptons and neutrinos in the initial states would be necessary
for the cancellation. The vanishing eigenvalue controls the behavior of the DL exponential at
asymptotically high energies. In the case of eq. (29), we have

eDL Ecm→∞−→ 1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , (30)

and all the semi-inclusive cross-section listed in eq (28) become equal. Notice however this only
holds at asymptotic energies, way above the VHEL energies. Cross-sections equality becomes a
reasonable (better than order-one) approximation only for if g2/16π2 log2(E2

cm/m
2
w) is as large

as ∼ 1.5, i.e. Ecm & 10000 TeV.

2.3 Di-boson production

We now turn to the production of two energetic vector or Higgs bosons. We are interested in
reactions that are not power-like suppressed at high energy, therefore we restrict our attention to
“longitudinal” processes entailing the production of zero-helicity W and Z bosons and Higgs, and
to “transverse” di-boson processes where the W and the Z (or, the photon) have ±1 helicities.
Indeed the “mixed” longitudinal/transverse production processes are suppressed by mw/Ecm at
the amplitude level, as readily understood (see e.g. [60, 71]) by combining the Goldstone Boson
Equivalence Theorem with the selection rules associated with the SU(2)L×U(1)Y SM group.

The new physics interactions we consider in Section 3 only affect longitudinal di-boson pro-
duction cross-sections, which thus play the role of the signal in our analysis. We nevertheless also
need the transverse cross-sections for an estimate of the background. We discuss the calculation
of the (exclusive and semi-inclusive) cross-sections for the two type of processes in turn.

Longitudinal di-boson

We consider the production, out of `+`−, of one of the following hard final states

W+
0 W

−
0 , Z0h , W±0 Z0 , W±0 h , (31)

where the subscript “0” refers to the helicity of the massive vectors, and “h” denotes the physical
Higgs particle. Obviously only the first two final states can be produced in an exclusive process,
while the latter ones require the emission of at least one charged W and therefore they only
occur at the semi-inclusive level. Notice that the ones listed above are the only hard final states
with longitudinal bosons and Higgs that can be produced by soft EW bosons radiation out
of sizable Born-level 2 → 2 cross-sections. Therefore they are the only longitudinal di-boson
processes that can be considered for precise VHEL measurements in the high-energy regime.

At energies much above mw, the adequate description of longitudinally-polarized massive
vectors is provided by the charged and neutral Goldstone boson scalars π± and π0 (see Ap-
pendix B). Together with the Higgs, they form a canonical SU(2)L×U(1)Y doublet H with 1/2
hypercharge, reported in eq. (78). We thus need to consider amplitudes and density matrices
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Figure 4: Same as Figure 3, but for di-boson production. As explained in Section 3.2, the
cross-sections for W+W− production are integrated in the angular region θ∗ ∈ [67◦, 150◦].

associated with the hard processes

`+−1/2(k1)`−+1/2(k1)→ H̄(k3, α
d̄
3)H(k4, α

d
4) ,

¯̀
+1/2(k1, α

d̄
1)`−1/2(k2, α

d
2)→ H̄(k3, α

d̄
3)H(k4, α

d
4) , (32)

for, respectively, L-handed and R-handed production.12 For the gauge group indices we employ
the same notation as in eq. (3), supplemented by the superscripts d (d̄) to indicate that the indices
belong to the doublet (conjugate-doublet) representation. With a slight abuse of notation we are
denoting as `−1/2 = (ν`,−1/2, `

−
−1/2)t the lepton doublet with −1/2 helicity and with `+1/2 the

conjugate-doublet with helicity +1/2. Notice that final states with two H or two H̄ need not to
be included because they are power-like suppressed at high energy by hypercharge conservation.

The relevant density matrices are obtained as a straightforward application of the results
in Section 2.1. The need for employing H and H̄ as external states does not pose any addi-
tional difficulty (relative to the di-fermion processes) in the evaluation of exclusive cross-sections.
That is because the double logs are mere multiplicative factors in front of the Born-level den-
sity matrix (23). Therefore the exclusive cross-sections still take the form of eq. (25) and are
proportional to the corresponding Born-level predictions. For the semi-inclusive cross-section,
we can proceed as for di-fermions in the determination of the Ki exponential factors, using in
particular eq. (82) which also holds in the present case because H and H̄ are doublets. However
in order to apply eq. (22) we must first express the Dαᾱsi density matrix, which is written in the
isospin basis (H and H̄), in the physical basis of the charge and CP eigenstates h, Z0 = π0 and
W±0 = π±. This is achieved by simply inverting eq. (78). The final result can again be expressed
in terms of the Born-level cross-sections in the form of eq. (27).

The results display the same qualitative features as di-fermions. In particular we observe
the same interplay between short-distance physics affecting the neutral- and the charged-current
Born amplitudes, which we investigate in Section 3 in details. Also at the quantitative level,
the relative impact of radiation radiation is similar, as expected because SU(2)L doublets are
involved also in these processes. This is shown in the left panel of Figure 4, where we show the
exclusive and semi-inclusive cross-section predictions for W+

0 W
−
0 . The different predictions are

obtained as explained in the previous section for the di-fermion processes. Notice in particular
the exclusive predictions that include one-loop single logarithms as in eq. (26). We employ these
predictions for exclusive cross-section in the phenomenological studies of Section 2.1.

12The production from opposite-chirality leptons is negligible, both in the SM and in the presence of the new
contact interactions we investigate in the following section.
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Transverse di-boson

Vector bosons (W , Z, or γ) with transverse helicity T = ±1 have zero hypercharge and they
decompose as a real triplet plus a singlet under the SM SU(2)L, as in eq. (79). Therefore three
non-power-suppressed hard processes have to be considered for L-handed production

µ̄+1/2(k1, α
d̄
1)`−1/2(k2, α

d
2)→ B(k3)B(k4) ,

µ̄+1/2(k1, α
d̄
1)`−1/2(k2, α

d
2)→W (k3, α

t
3)B(k4) , (33)

µ̄+1/2(k1, α
d̄
1)`−1/2(k2, α

d
2)→W (k3, α

t
3)W (k4, α

t
4) ,

while only one is relevant for the production initiated by R-handed leptons 13

`+−1/2(k1)`−+1/2(k2)→ B(k3)B(k4) , (34)

The “t” superscript in eq. (33) refers to the triplet nature of the W indices.
Unlike for di-fermion and longitudinal di-boson, the transverse di-boson cross-sections for L-

handed initial leptons are linear combinations of several distinct density matrices with different
SU(2)L quantum numbers. Therefore the exclusive cross-sections are not proportional, unlike in
eq. (25), to the corresponding Born cross-sections in general. For instance in the γγ cross-section
the contribution from the WW final state experiences a stronger Sudakov suppression (23) than
one from the BB (or WB) final state, owing to the higher SU(2)L Casimir of the final states.

The evaluation of the semi-inclusive cross-sections proceeds as for the longitudinal di-bosons.
Namely we derive the cross-sections for the physical states by inverting eq. (79) and we compute
the double-logarithm exponentials using eq. (83) on the SU(2) triplet subspace. Clearly the need
of combining different density matrices complicates the calculation, but it does not introduce any
novel conceptual aspect. At the quantitative level instead, the situation is significantly different
than for di-fermions and longitudinal di-bosons. As shown on the right panel of Figure 4, EW
radiation effects are much larger due to the larger Casimir ct = 2 of the triplet representation.
A sufficiently accurate modeling of these effects will probably require resummation even at the
lowest VHEL energy Ecm = 3 TeV.

The figure reports the cross-section of the W+
T W

−
T final state. This final state, together with

W+
T ZT, is the only transverse di-boson process we will consider in Section 3 (as a background to

the corresponding longitudinal processes). Notice however that there are many other transverse
di-boson processes (namely ZZ, Zγ, γγ, and Wγ) that can be measured at the VHEL. These
processes probe heavy new physics in the EW sector. In particular, as shown in Refs. [36, 37, 40],
they are sensitive (together with di-fermions) to minimal Dark Matter in large-multiplets. The
large effects of EW radiation might have a strong impact on these studies.

3 Sensitivity projections

As described in the Introduction, we target effects from short-distance new physics that grow
quadratically with the collision energy, to be probed in `+`− collisions at the highest available
energy E = Ecm. In this section we consider the dimension-6 EFT operators listed in Table 2,
and we estimate the sensitivity of muon colliders of energies Ecm = 3, 10, 14 or 30 TeV to their
Wilson coefficients. We assume a baseline integrated luminosity [1]

L̂ = 10 ab−1

(
ECM

10 TeV

)2

. (35)

Semi-quantitative comments on the impact of a reduced luminosity target are postponed to the
Conclusions. We base our projections on statistically-dominated measurements of exclusive and

13The Born process `+−1/2(k1)`−+1/2(k2)→W (k3, α
t
3)W (k4, α

t
4) is power-suppressed in the SM.
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semi-inclusive cross-sections for the processes listed in Table 3. In the table, for each process
we label with a check mark the operators that produce a quadratically growing-with-energy
correction to the SM cross-section.

The target EFT operators are selected to represent generic manifestations, at energies much
below the new physics scale, of the BSM scenarios we investigate in Section 3.3. These are
Composite Higgs, Composite Top and a minimal Z ′ model, which we select as concrete examples
of new physics in the Higgs, Top and EW-gauge sectors. Among the many operators that emerge
in these scenarios, we focused our attention on those that display energy growth in 2 → 2
scattering processes at the muon collider. We will see in Section 3.3 that other operators offer
a weaker sensitivity to the same BSM scenarios.

The phenomenological analysis of the various processes listed in Table 3 is described in Sec-
tions 3.1 and 3.2, focusing respectively on the effects of the “W&Y” and of the “Di-boson”
operators of Table 2. In an attempt to mimic realistic experimental results, we include recon-
struction (and, in some case, mistag) efficiencies at a level that is comparable with the CLIC
detector performances, which we extract, whenever possible, from Refs. [65, 72]. Table 3 displays
surprisingly low efficiencies for certain processes (e.g., tt̄), entailing a considerable degradation
of the measurement uncertainty. In Sections 3.1 and 3.2 we also present our results for the sen-
sitivity of muon colliders to the corresponding set of operators, with the main aim of outlining
the impact of the EW radiation effects on the analysis. The operators in the last class, dubbed
“3rd family” in Table 2, are not discussed explicitly but the sensitivity projection results are
reported in Appendix C. The relevant final states, tt, bb and tb are discussed in Section 3.1.

3.1 W&Y operators

The first two operators we consider are those associated with the W and Y parameters of LEP
EW precision tests [75], namely O2W and O2B defined as in Table 2. These operators arise in
the so-called universal scenarios [75, 76], that is new physics that couples dominantly to the
bosonic sector of the SM. Employing O2W and O2B is convenient in the low-energy context of
the LEP experiment, however for our purpose it is better to trade them for the current-current
operators O′2W and O′2B (see again Table 2), using the SM equations of motion. In doing so, we
neglect the contribution to the O′W and O′B operators, which are expected to have no impact
on the sensitivity. In what follows we parameterize the O′2W and O′2B operator coefficients

G′2W = −g
2W

2m2
w

, G′2B = − g
′2Y

2m2
w

, (36)

in terms of the dimensionless parameters W and Y.
The relevant scattering processes, listed in Table 3, are the production of two energetic

fermions in the central region of the detector. Specifically, as explained at the end of Section 2,
we have in mind the two hard particles whose invariant mass is higher than around 85% of the
total collider Ecm, and a scattering angle θ∗ ∈ [30◦, 150◦]. We assume perfect detector sensitivity
to massiveW and Z bosons of arbitrary low 3-momentum, enabling the measurement of exclusive
scattering cross-sections where the emission of massive vectors (and of photons with hardness
above m2

w) is vetoed. The exclusive cross-section measurements are combined with the semi-
inclusive cross-sections, where the emission of an arbitrary number (including zero) of massive
vectors or hard photons is allowed.

For each inclusive and semi-inclusive final state, we employ cross-section measurements in 10
equally-spaced bins of cos θ∗ in the range [−

√
3/2,
√

3/2]. In processes (e.g., jj, or bb̄) where the
two final states are effectively indistinguishable, cos θ∗ is defined to be positive and 5 bins are
employed. We assume cross-section measurements with purely statistical uncertainties, which
we estimate based on the number of events that are expected in the SM.

Of course in order to combine the exclusive and semi-inclusive cross-sections for the same
(neutral) hard final state we must take into account that the exclusive events are also counted
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SILH basis Warsaw-like basis

W&Y
O2W = (DµW

µν,a)2 O′2W = Ja,µL JaL,µ Ja,µL = 1
2

∑
f f̄γ

µσaf

O2B = (∂µB
µν)2 O′2B = JµY JY,µ JµY =

∑
f Yf f̄γ

µf

Di-boson

OW =
ig

2
(H†σa

←→
D µH)DνW a

µν O′W =
g2

4
(H†i
←→
Dµσ

aH)(L̄Lγ
µσaLL)

OB =
ig′

2
(H†
←→
DµH)∂νBµν O′B=−g

′2

4
(H†i
←→
DµH)(̄LLγ

µLL)

−g
′2

2
(H†i
←→
DµH)(l̄Rγ

µlR)

O
(3)
qD = (q̄γµσaq)

(
DνW a

µν

)
O
′(3)
qD = (q̄γµσaq) JaL,µ

3rd family O
(1)
qD = (q̄γµq) (∂νBµν) O

′(1)
qD = (q̄γµσaq) JY,µ

OtD = (t̄γµt) (∂νBµν) O′tD = (t̄γµσat) JY,µ

Table 2: The operators under consideration in their “SILH” [73] form and, after using the
equations of motion, expressed as a linear combination of Warsaw [74] operators. Yf is the
hypercharge of the fermionic field f . In the operators involving the 3rd family the fields t and q
denote respectively the right-handed and left-handed top quark.

Process N (Ex) N (S-I) Eff. O′2W O′2B O′W O′B O
′(3)
qD O

′(1)
qD O′uD

e+ e− 6794 9088 100% X X

eνe — 2305 100% X X

µ+ µ− 206402 254388 100% X X

µ νµ — 93010 100% X X

τ+ τ− 6794 9088 25% X X

τντ — 2305 50% X X

jj (Nt) 19205 25725 100% X X

jj (Ch) — 5653 100% X X

c c̄ 9656 12775 25% X X

cj — 5653 50% X X

b b̄ 4573 6273 64% X X X X

t t̄ 9771 11891 5% X X X X X

b t — 5713 57% X X X X X

Z0h 680 858 26% X X

W+
0 W

−
0 1200 1456 44% X X

W+
T W

−
T 2775 5027 44%

W±h — 506 19% X X

W±0 Z0 — 399 23% X X

W±T ZT — 2345 23%

Table 3: The exclusive and semi-inclusive processes employed for the sensitivity projections.
The operators that give a growing-with-energy contribution to each operator are labeled with a
check mark. The expected number of events (before efficiencies) is for Ecm = 10 TeV with the
integrated luminosity (35). 21



in the measurement of the semi-inclusive cross-section. It is thus convenient to consider a cross-
section with radiation, defined as the difference between the semi-inclusive and the exclusive
cross-sections

σrad ≡ σsi − σex . (37)

The measurement of σrad can be combined with the one of σex since they are statistically in-
dependent. For charged hard final states there is instead only one type of cross-section, which
necessarily involves EW radiation emission by charge conservation. We will refer to the charged
cross-section as “semi-inclusive” or “with radiation” interchangeably.

We now discuss the di-fermion processes individually.

• e+e−, µ+µ− and τ+τ−: We assume 100% reconstruction efficiency for muon and elec-
trons, and an efficiency of 50% [65] for each τ lepton. Notice that the cross-section for
muons is around 30 times larger than for the other leptons. This is mostly due to the
t-channel enhancement of the elastic µ+µ− scattering.

• cc and bb : We assume 50% and 80% efficiency for tagging respectively charm and bottom
quark jets [65]. We ignore the mis-tag of light jets, as well as c/b misidentification. No
information on the charge of the tagged quark is employed.

• jj : We consider the production of two light quarks u, d or s, which we suppose to be
reconstructed as jets with 100% efficiency. In Table 3 we report separately the production
of a neutral (Nt) and of a charged (Ch) quark/anti-quark pair, but the two processes are
collected into a single 2-jets final state. We also include the contribution from mistagged
b and c quarks.

• tt : Based on Ref.s [72, 77], we estimate as 5% the total efficiency for the reconstruction
of the tt̄ pair. This (somewhat low) efficiency estimate only includes the semi-leptonic tt̄
final states, in which the charge of the tagged top quarks can be measured.

• tb and cj : We use 50% and 80% tag efficiency for the charm and the bottom, respectively,
and

√
0.05 = 20% efficiency for the top. The charge of the top quark is assumed to be

reconstructed.

• eνe, µνµ and τντ : The efficiency is 100% for muons and electrons, and 50% for the τ . It
should be noted that, because of the invisible neutrino, the hard scattering region of this
final state can not be selected with a cut on the invariant mass of the two particles. The
selection will have instead to be performed on the energy and the transverse momentum
of the observed charged lepton.

The different dependence on W and Y of the neutral- and charged-current Born amplitudes
entails (see Section 2.2) a different dependence on these parameters of the exclusive and semi-
inclusive cross-sections. The statistical combination of the two types of cross-sections can thus
increase the sensitivity, as illustrated in Figure 5. The left panel displays the 95% CL sensitivity
of cc production to W and Y, comparing the impact of the exclusive cross-section (in green)
to that (in orange) of the cross-section with radiation. The two measurements probe different
regions of the W and Y parameter space, and a significant sensitivity gain is observed in their
combination (in blue). The green and blue lines on the right panel of Figure 5 display a similar
complementarity pattern for the e+e− final state. There also appears an even stronger comple-
mentarity with the measurement of the eν cross-section, reported as a gray dashed line. The
emergence of the eν process, as well as the other charged final states in Table 3, is entirely due
to EW radiation. Nevertheless its (semi-inclusive) cross-section is large, because EW radiation
is indeed a prominent phenomenon at Ecm ' 10 TeV. Furthermore the cross-section displays a
peculiar dependence on new physics, producing a sensitivity contour that is different from that
of the e+e− measurements. The statistical combination of the three measurements (in blue)
improves the sensitivity significantly.
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Figure 5: 95% CL sensitivities to the W and Y parameters of the 30 TeV muon collider. Exclusive
and “with radiation” (i.e., semi-inclusive minus exclusive) cross-section measurements of the cc
process are considered in the left panel. The right panel shows the impact of e+e− (exclusive
and “with radiation”) and eν (that only exists at the semi-inclusive level) final states.

The final results of our analysis including all channels are summarized in Figure 6 and
in Table 4. The figure displays the sensitivity contours of exclusive measurements as dotted
lines, and the combined impact of charged and of neutral “with radiation” cross-sections, in
dashed. The combination of all measurements is also shown. The table reports the results for
3, 10, 14 and 30 TeV, comparing the sensitivity of exclusive cross-sections alone with the total
combination.

At the High-Luminosity LHC (HL-LHC), it will be possible to probe the W and Y parameters
at the level of 4 · 10−5 and 8 · 10−5, respectively, at 95% CL [70, 78, 79]. Table 4 shows
that the 3 TeV muon collider would improve by one order of magnitude or more, and the
sensitivity improves quadratically with the muon collider energy. Among the other future collider
projects [80], CLIC at 3 TeV has the best sensitivity, of around 4 ·10−6 for both parameters [65].
This is of course comparable with the 3 TeV muon collider sensitivity, and a factor 10 worst
than that of the muon collider at 10 TeV. The comparison with FCC-hh projections is even
more favorable to the muon collider.

3.2 Diboson operators

The setup for this analysis is similar to that of Ref. [7]. Namely we consider the SILH operators
OW and OB, we convert them into the current-current interactions O′W and O′B as in Table 2,
and we study their effect on the production of high-energy vector bosons and Higgs. Notice
that, by the equivalence theorem, O′W and O′B only significantly affect the production of longi-
tudinally polarized vector bosons. We are therefore here studying the production of high-energy
longitudinally vector bosons and Higgs, with the production of transversely polarized vector
bosons playing merely the role of background. Since the effects are quadratically enhanced by
the energy, such high-energy di-boson processes are by far the best probe of these operators at
the muon collider [7].

We thus consider, among those in Table 3, the following final states

• Zh : Following Ref. [7], we consider an efficiency of 26% for tagging the two hard and
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Figure 6: 95% CL sensitivities to the W and Y at the 10 and 30 TeV muon collider.

Exclusive-only [95% CL] Combined [95% CL]
W×107 Y×107 ρW,Y W×107 Y×107 ρW,Y

3 TeV [−53, 53] [−48, 48] -0.72 [−41, 41] [−46, 46] -0.60

10 TeV [−5.71, 5.71] [−4.47, 4.47] -0.74 [−3.71, 3.71] [−4.16, 4.16] -0.54

14 TeV [−3.11, 3.11] [−2.31, 2.31] -0.74 [−1.90, 1.90] [−2.13, 2.13] -0.52

30 TeV [−0.80, 0.80] [−0.52, 0.52] -0.75 [−0.42, 0.42] [−0.47, 0.47] -0.48

Table 4: Single-operator 95% CL reach and correlation for the W&Y parameters at different
muon collider energies including only exclusive cross-sections and combining all measurements.
Since the likelihood is dominated by the linear terms in the new physics parameters, the single
parameter reach plus the correlation characterizes our results completely.

central final state particles, with a selection that reduces the background to a manageable
level. Notice that this final state is dominated by the longitudinal helicity channel Z0h.

• W+W−: Again like in [7], we assume a 44% efficiency for the detection of the two W
bosons in the semi-leptonic decay channel, where the charge of the W ’s can be recon-
structed. Transverse WW production plays here the role of background.

• Wh : We consider an efficiency of 19%, having in mind the leptonic W decay, and h→ bb.
Like for Zh, there is no relevant background from transverse production.

• WZ : We apply an efficiency of 23%, which corresponds to the leptonic W and the
hadronic Z decay. The background from transverse WZ production is considerable, and
is taken into account.

In our analysis we do not consider the possibility of employing the decay angles of the
bosons to extract information on their polarization. Therefore the transverse di-bosons processes
W+

T W
−
T and WTZT are effectively irreducible backgrounds to the corresponding longitudinal

processes, and the scattering angle θ∗ is the only discriminating variable. An increased lower
cut on θ∗ benefits the sensitivity, as it suppresses the t-channel enhancement of the transverse
background processes. After optimization we find, like in Ref. [7], that a good signal sensitivity
is obtained by the measurement of fiducial WW and WZ cross-sections in the range

θ∗ ∈ [67◦, 150◦] . (38)
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Figure 7: Left: 95% sensitivity contours in the (CB, CW ) plane at the 30 TeV muon collider. A
second allowed region, not shown in the figure, can be eliminated by other measurements [7].
Right: Zh and WW likelihood contours at tree-level. Notice that the ellipses for WW and Zh
are tangent in two points, one being the SM, the other being the point where the amplitudes
have the same magnitude as in the SM but opposite sign.

The possibility of binning θ∗ has been considered, but found not to improve the sensitivity.
Our analysis will thus be only based on the measurement of the fiducial WW and WZ cross-
sections in the above region, and of the Zh and Wh cross-sections for θ∗ ∈ [30◦, 150◦]. As in
the previous section, both exclusive and semi-inclusive cross-sections will be employed for the
neutral processes WW and Zh, plus the semi-inclusive charged cross-sections for Wh and WZ.

The results of our analysis are reported in Table 5 and on the left panel of Figure 7, in terms
of the dimensionful coefficients (CB and CW ) of the O′B and O′W operators of Table 2. Our
finding are quantitatively similar to the ones of Ref. [7]. We can thus refer to that article for
the (very favorable) assessment of the muon collider sensitivity to CB and CW in comparison
with current knowledge and with other future colliders. We devote the rest of this section to
discuss the approximate flat direction of the likelihood in the (CB, CW ) plane, which we observe
in Figure 7 (left panel).

The flat direction entails a strong degradation of the marginalized sensitivity, as in Table 5.
Furthermore this degradation brings the marginalized CB and CW limits to large values, in a
region where the likelihood is considerably affected by the contributions to the cross-sections of
the terms that are quadratic in the new physics parameters. In theories like Composite Higgs
where CB,W ∼ 1/m2

∗, this fact implies that the marginalized limits correspond to a new physics
scale m∗ not much above the collider energy. In fact, looking at Table 5 we notice that the
30 TeV CB reach corresponds to m∗ = 43 TeV. Thus, if new physics happened to sit along the
flat direction in Figure 7, diboson processes would fail to extend the muon collider sensitivity
well above the direct mass-reach. We do not have reasons to expect new physics to lie in
that direction. Actually in certain Composite Higgs models one expects it to lie in the nearly
orthogonal direction CB = CW [7]. However the presence of the flat direction is an obstruction
to the broad exploration of new physics and to the characterization of a putative discovery. It
is thus worth explaining its origin and discussing strategies to eliminate it.

The origin of the flat direction in the tree-level sensitivity contour (showed dashed, on the
left panel of Figure 7) is readily understood analytically, by considering the gradients “∇” of the
Born-level cross-sections in the (CB, CW ) plane, around the SM point (0, 0). Using the results
for WW and Zh shown in Figure 8 and rescaling the gradients by the common factor 2E2

cmσ0
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Single Operator (Exclusive-only) [95% CL]
CB[10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic

3 TeV [−170, 170] [−189, 157] [−77.4, 77.4] [−81, 74.4]

10 TeV [−15.3, 15.3] [−17, 14.2] [−8.18, 8.18] [−8.62, 7.82]

14 TeV [−7.86, 7.86] [−8.69, 7.25] [−4.40, 4.40] [−4.65, 4.20]

30 TeV [−1.73, 1.73] [−1.92, 1.6] [−1.1, 1.1] [−1.16, 1.04]

Single Operator (Combined) [95% CL]
CB[10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic

3 TeV [−153, 153] [−169, 142] [−65.8, 65.8] [−68.2, 63.6]

10 TeV [−12.8, 12.8] [−13.9, 11.9] [−6.14, 6.14] [−6.37, 5.93]

14 TeV [−6.40, 6.40] [−6.95, 5.99] [−3.17, 3.17] [−3.29, 3.06]

30 TeV [−1.34, 1.34] [−1.44, 1.25] [−0.71, 0.71] [−0.737, 0.686]

Marginalized (Exclusive-only) [95% CL]
CB[10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic

3 TeV [−478, 478] [−352, 596] [−217, 217] [−583, 125]

10 TeV [−53.2, 53.2] [−35.2, 50] [−28.4, 28.4] [−53.5, 14.2]

14 TeV [−29.4, 29.4] [−18.6, 25] [−16.5, 16.5] [−27.5, 7.82]

30 TeV [−7.98, 7.98] [−4.45, 5.19] [−5.04, 5.04] [−6.16, 2.05]

Marginalized (Combined) [95% CL]
CB[10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic

3 TeV [−442, 442] [−341, 535] [−189, 189] [−426, 115]

10 TeV [−44, 44] [−33.4, 43.4] [−21.1, 21.1] [−35.1, 12.3]

14 TeV [−23.1, 23.1] [−17.6, 21.6] [−11.4, 11.4] [−17.6, 6.6]

30 TeV [−5.24, 5.24] [−4.12, 4.43] [−2.79, 2.79] [−3.70, 1.62]

Table 5: Single operator and marginalized 95% reach on CB and CW , at different muon collider
energies. The sensitivity of exclusive cross-section measurements alone is shown separately
from the combination of all the measurements. The significant degradation of the marginalized
bounds relative to the single-operators ones, and the strong sensitivity to the quadratic terms
at the marginalized level, is due to the approximately flat direction displayed in Figure 7
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Process σB/σ0

(µµ)L → Zh
[
t2w(1 + E2

cmCB)− (1 + E2
cmCW )

]2
(µµ)L →WW

[
t2w(1 + E2

cmCB) + (1 + E2
cmCW )

]2
(µµ)R →WW/Zh

[
2t2w(1 + E2

cmCB)
]2

(µν)L →WZ/Wh
[√

2(1 + E2
cmCW )

]2
Figure 8: Left: Born-level cross-sections, with tw the tangent of the Weinberg angle, normalized
to a common σ0 (whose expression is irrelevant). Right: the angle between the ZH and WW
cross-section gradients as a function of the beam polarization fraction.

one finds

∇ZhL = (1− t2w){−t2w,+1} , ∇WW
L = (1 + t2w){+t2w,+1} , ∇ZhR = ∇WW

R = 4 t4w{1, 0} , (39)

where sup- and sub-scripts refer respectively to the final states and to the chirality of the
incoming fermions. Notice that the Zh and WW gradients for right-handed initial states are
perfectly aligned, so that this contribution to the cross sections has a flat direction (orthogonal
to the gradient). The degeneracy can only be lifted by the left-handed contribution to the cross
sections. However, given the small value of t2w ' 0.3, the gradients ∇ZhL and ∇WW

L also form a
relatively small angle, ∼ 30◦. They are thus not very effective in lifting the flat direction when
considering the total (L+R) contribution to the WW and Zh cross-section. Indeed, the angle
between ∇ZhL +∇ZhR and ∇WW

L +∇WW
R is in the end only ∼ 17◦ and thus the flat directions of

the two cross-section measurements essentially coincide, as the right panel of Figure 7 shows.
The combined likelihood is consequently also flat, in the same direction.

As evident in eq. (39), the L-gradients form a large angle with the R-gradient. Therefore, if
one could use polarized beams, the degeneracy would be eliminated by measuring the contribu-
tion of each chirality. Considering a polarization fraction −PL for the muon, and +PL for the
anti-muon beam, the cross-section gradients read (we indicate by ∇R the identical ∇ZhR , ∇WW

R )

∇ZhPL
=

(1 + PL)2

4
∇ZhL +

(1− PL)2

4
∇R , ∇WW

PL
=

(1 + PL)2

4
∇WW
L +

(1− PL)2

4
∇R . (40)

The angle between the two gradients steeply increases for positive PL, as indicated by the plot
in the right panel of Figure 8. Correspondingly, even a modest amount of polarization has
a considerable impact on the sensitivity. The left panel of Figure 9 displays our sensitivity
projections in a scheme where the VHEL integrated luminosity is equally split between positive
and negative PL = ±30%. The likelihood contour (in green) corresponding to PL = +30% is
significantly smaller than that (in blue) for PL = −30%, owing to the lifting of the flat direction
achieved for positive PL. On the other hand, the measurements at PL = −30% probe a direction
complementary to that probed at PL = +30%. The combination of the two measurements thus
benefits the sensitivity. The impact of beam polarization was emphasized already in Ref. [7].
Here we confirm that result, using more accurate predictions and including the entire set of
exclusive and semi-inclusive cross-section measurements previously described.

Up to this point, we discussed the flat direction in the un-polarized likelihood (left panel
of Figure 7) by employing the tree-level cross-sections. When considering also EW radiation,
the predictions are significantly affected, but the flat direction is not fully eliminated. For the
exclusive Zh and WW cross-sections this is easily understood, since virtual radiation suppresses
the L-processes more than the R ones, owing to the larger Sudakov for incoming left-handed
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Figure 9: Left Panel: 95% CL contours in for PL = ±30% beam polarization. Right Panel: the
impact of the ISR-inclusive Wh cross-section measurement.

muons. The exclusive Zh and WW cross-sections gradients are thus even more aligned than the
gradients of the corresponding tree-level predictions. The semi-inclusive cross-sections for Zh
and WW production are also quite aligned, among them and with the exclusive cross-sections.
This was expected because the partial cancellation between real and virtual logarithms make
semi-inclusive cross-sections not vastly different from the tree-level ones.

On the contrary, the measurement of the charged processes WZ and Wh could have been
expected to eliminate or mitigate the flat direction, because they are strongly sensitive to the
Born cross-section of the charged scattering (µν)L → WZ/Wh (see the left panel of Figure 8).
The associated gradient

∇ch
L = 2{0,+1} , (41)

points in a different direction than ∇ZhL , ∇WW
L and ∇R. Therefore the gradient of σWh/WZ

could in principle point in a direction that is completely different from that of the (nearly
parallel) gradients of the Zh and WW cross-sections. However, by expanding at the first order
in L = g2/16π2 log2(E2

cm/m
2
w), the unpolarized (longitudinal) WZ and Wh cross-sections are

approximately equal and read

σWZ ' σWh ' 1

4
L · (σZhB + σWW

B + σch
B ) , (42)

where σch
B is the charged Born cross-section reported on the left panel of Figure 8 (times 1/4,

from the polarization average) and σB
Zh,WW are the Born cross-sections of the neutral processes.

Therefore, the charged cross-section gradient ∇ch
L must compete with the (nearly parallel) gra-

dients of Zh and WW , and its size happens to be insufficient to produce a large misalignment
angle between the σWh/WZ and σZh/WW gradients.

The situation would be improved, if we could tailor an observable in which the σZhB and
σWW
B contributions in eq. (42) are eliminated or reduced. Notice, for that purpose, that the Zh

and WW terms in eq. (42) can be interpreted as due to one hard µµ neutral-current scattering,
followed by the radiation of one charged W boson from the final legs of the hard process.
The W is thus preferentially collinear to the final states. The σch

B term comes instead from
the radiation of a W from the initial state, collinear to the beam axis, followed by a hard µν
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scattering.14 This suggests to consider alternative Wh and WZ cross-sections that exclude final
state radiation (FSR) while being inclusive on initial state radiation (ISR). FSR consists of soft
radiation collinear to the hard particles in the final state, which is precisely the source of the first
two terms in eq. (42). Excluding FSR, the resulting “ISR-inclusive” cross-sections are expected
be roughly

σ
WZ/Wh
ISR−inc '

1

4
Lσch

B . (43)

This observable should thus be mostly sensitive to CW , and its measurement should produce a
nearly horizontal band in the (CB, CW ) plane, thus eliminating the flat direction.

Unfortunately we are unable to produce resummed predictions for the ISR-inclusive cross-
sections with the IREE methodology. We can however illustrate the impact of such measure-
ments using tree-level MadGraph [81] predictions with the SMEFT@NLO model [82], focusing in
particular on the Wh channel. Specifically, we simulate the process

µ+µ− →W+W−h , (44)

at Ecm = 30 TeV, with the following selection cuts. First, we identify as “hard” the W boson
that forms, together with the Higgs, the pair with the highest invariant mass. Secondly we ask
this mass to be above 0.85·Ecm = 25.5 TeV and the hard W and h to be within the central region
θ∗ ∈ [30◦, 150◦]. These selections enforce the occurrence of a hard scattering, and correspond
to our definition of a “semi-inclusive” process. We further restrict to the “ISR-inclusive” region
by asking the other (“soft”) W to be parallel to the beam, in a cone of 20◦. Since the emission
of at least one soft W is required for Wh production, the latter cut effectively corresponds to a
veto on central EW radiation.15

The above estimate of the ISR-inclusive cross-section produces the blue band on the right
panel of Figure 9. As expected, the band is nearly horizontal. In the figure we also display, in
green, the 95% CL contour of the likelihood including all the measurements discussed in the
present section, apart from the measurement of the semi-inclusive Wh cross-section which is
correlated with the ISR-inclusive measurement. The combination of the two contours, shown
in red, strongly mitigates the flat direction issue. Notice however that our tree-level estimate
of the ISR-inclusive cross-section could be subject to large errors, and resummed predictions
should be employed for a conclusive assessment of the sensitivity gain.

3.3 BSM sensitivity

Composite Higgs. As a first concrete scenario of new physics we consider Composite Higgs [84–
86]. In this scenario, the Higgs is a composite Pseudo-Nambu-Goldstone boson emerging from
some strong dynamics at a scale m∗. In principle the underlying dynamics could arise from gauge
interactions, like in QCD. However the only concrete realistic constructions, accounting for the
origin of both the fermion masses and the scale m∗ itself, have been obtained in the context of
warped compactifications. In these constructions, compositeness occurs in a holographic sense.
Within the Composite Higgs scenario, the size of the Wilson coefficients in the resulting low
energy EFT, can be estimated, under simple but robust dynamical assumptions, in terms of the
mass scale m∗ and overall coupling strength g∗ of the underlying strong dynamics [73]. Further-
more, simple considerations suggest g∗ ∼< 4π, while the existence of O(1) couplings within the
SM implies g∗ ∼> 1. The Composite Higgs power-counting rules predict the Wilson coefficients

14This interpretation would straightforwardly correspond to Feynman diagrams in a physical gauge, where DL’s
are associated to emissions from individual legs. We already remarked that in covariant gauges instead they arise
from the interference between emission from strictly different legs.

15The attempt made in Ref. [7] to exploit the WWh process did not impose the crucial angular cut that defines
the ISR-inclusive region.
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Figure 10: Left Panel: 95% exclusion reach on the Composite Higgs coupling-mass parameter
space. The reach for OH is taken from [7]. Right Panel: sensitivity projections for a Y -universal
Z ′ model. The gray band and the blue dash-dot line represent respectively the region probed by
the HL-LHC program and the sensitivity projections for all other future collider projects [83].

of the operators in the left column of Table 2 to scale as

C2W = −c2W

2

g2

g2
∗m

2
∗
, C2B = −c2B

2

g′2

g2
∗m

2
∗
, CW = cW

1

m2
∗
, CB = cB

1

m2
∗
, (45)

where the dimensionless coefficients c2W , c2B, cW , cB are expected to be of order 1. Even though
it does not affect the processes studied in this paper, an important role is also played by

OH = ∂µ(H†H)∂µ(H†H), CH =
cH
2

g2
∗

m2
∗
. (46)

In our sensitivity projections we will report the corresponding bounds, as obtained in [7] by
studying the process µ+µ− → hhνν at tree level. Other probes of CH at the muon collider, from
Higgs coupling measurements, are superior or competitive at the lower energy muon colliders [7],
but they are not considered in the sensitivity plots.

Using the above scalings, and setting all the c coefficients to 1, we can translate the bounds
of Section 3 for a 10 TeV muon collider into sensitivity estimates in the plane (m∗, g∗), as in
Figure 10. In the same plot we also report the HL-LHC sensitivity projections, the envelope
of the 95% CL sensitivity contours of all the future collider projects that have been considered
for the 2020 update of the European Strategy for Particle Physics [83]. The advantage of the
muon collider is evident. Results at muon colliders with different energies, with an integrated
luminosity scaling as in eq. (35), are reported in Appendix D.

Composite top. The results for purely bosonic operators we just discussed apply robustly
to basically all composite Higgs scenarios. Operators involving fermions are more sensitive to
the assumptions on the flavor dynamics, but one convenient option is offered by the mechanism
of partial compositeness [88], under which the elementary fermions mix linearly with heavy
partners in the strong sector. Due to its large Yukawa coupling, the top quark is expected to
have a large mixing with its partners and therefore precise measurements involving the third
family represent an appealing opportunity to probe new physics.

At the muon collider the most relevant effects are expected in tt̄ and bb̄ production.16 Indeed
the dimension-6 operators in the last block of Table 2 gives rise to contributions that grow with

16See [89] for a similar analysis for CLIC.
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Figure 11: 95% exclusion reach for the two partial compositeness scenarios under consideration.
The green shapes represent the combined bound from the flavor universal measurements, while
the red contours also includes the di-top and di-bottom constraints. The projected sensitivity
of other future collider projects and the gray band of HL-LHC are taken from Ref. [83]. The
right panel (εt = 1) also includes the stronger CLIC sensitivity estimated in Ref. [87].

Ecm and which can be exploited at the large energy of the muon collider. In a model-independent
approach one can parametrize the “amount of compositeness” of respectively the 3rd quark family
left-handed doublet and right-handed up-type singlet by εq and εt. These quantities range from
0 to 1. Given the universal coupling strength g∗ of the strong sector the resulting top Yukawa
coupling scale as [73]

yt ∼ εqεtg∗ . (47)

The relevant Wilson coefficients are then expected to scale as (see [77] for a short review)

C
(3)
qD = c

(3)
qD

g ε2q
m2
∗
, C

(1)
qD = c

(1)
qD

g′ε2q
m2
∗
, CtD = ctD

g′ε2t
m2
∗
, (48)

where the ci are, as usual, expected to be order 1 coefficient. For concreteness we focus on two
benchmark scenarios, where we fix εt and εq and leave g∗ and m∗ free. In the first scenario, the
right-handed top quark is assumed to be fully composite, corresponding to εt = 1 and εq = yt/g∗.

In the second, the two top chiralities are assumed equally composite, that is εq = εt =
√
yt/g∗.

Notice that the contribution of the operator

Ott ≡
1

2
(t̄Rγ

µtR)(t̄RγµtR) , (49)

to the Wilson coefficients of the OtD, through Renormalization Group (RG) evolution, is not
negligible in the scenario of total right-handed top quark compositeness [87]. Using the power-
counting estimate

Ctt = ε4t
g2
∗

m2
∗
ctt , (50)

we obtain a correction [87] to the CtD coefficient at a scale µ = Ecm

CtD(µ) = CtD(m∗) + Ctt(m∗)
32

9

g′

16π2
log

(
m2
∗

µ2

)
= ε2t

g′

m2
∗

(
ctD + ctt

32

9

ε2t g
2
∗

16π2
log

(
m2
∗

µ2

))
. (51)

This correction is sizable if εt ∼ 1, especially for large g∗, because the sensitivity of the muon
collider extends to a scale m∗ that is significantly larger than Ecm.
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There are in principle three more operators OHt, O
(1)
Hq and O

(3)
Hq

(defined as in the “Warsaw”
basis [74]) that mix significantly with those in eq. (48) through RG evolution. However, the
their effects can only be important in the case where εq ∼ 1, which we do not contemplate in
our analysis. We will therefore neglect the RG effects of the latter three operators and consider
only those of Ott.

Our results are summarized in Figure 11, where we report the projected exclusion reach in
the g∗ and m∗ plane in the two scenarios under consideration for Ecm = 10 TeV. Additional
results can be found in Appendix D. Starting from the scenario of equal compositeness (left
panel) we notice that at g∗ the additional hypothesis of top compositeness extends the muon
collider potential to probe the scale of Higgs compositeness m∗. The effect is even stronger
for fully composite tR (right panel), which shows that di-top measurements can cover up to
m∗ ∼ 150 TeV for g∗ & 8. We should point out, however, that this result depends on the exact
O(1) value of the ctt, ctD coefficients in eq. (51). This dependence is illustrated in Figure 16,
where we set ctD = 1 and we vary the value of ctt.

Finally we remark that a detailed analysis of the composite Higgs scenario with partial com-
positeness would require specific hypotheses on the flavor dynamics and a detailed inspection of
the flavor observables. Depending on those hypotheses, principally the maximality or minimal-
ity of the underling flavor symmetry, the resulting flavor constraints on the new physics scale
m∗ can vary dramatically. While a comprehensive analysis clearly exceeds the purposes of this
work, a perspective can be gained by considering available studies. As shown in Ref. [90], under
the strongest assumptions, that is for a symmetry structure offering the best protection from
unwanted effects, flavour and CP observables could start exploring the range m∗ = O(10) TeV
in the next decade or so, given the availability of better measurements and assuming better
theoretical predictions. This is roughly the same range explored by a 3 TeV muon collider.
Moreover the m∗ ∼ 50 TeV reach of a 10 TeV muon collider vastly surpasses any conceivable
improvement of flavour constraints, and competes with the more stringent flavour bounds ob-
tained by making more generic assumptions on the flavor dynamics. Notice also that the present
lepton flavor universality anomalies in B-decays, at least the seemingly more prominent ones in
neutral currents, suggest a new physics scale in the ∼ 30 TeV range, which could be explored
both directly and indirectly by the muon collider.

Y -Universal Z ′ model The Y -universal Z ′ model represents a simple extension of the SM,
featuring an additional heavy gauge boson, of mass MZ′ , on top of the SM particles.17 In this
benchmark scenario the new vector charges are aligned with the SM hypercharge with coupling
gZ′ . Requiring the width of the Z ′ to not exceed 0.3MZ′ sets the perturbative limit on the
coupling to be gZ′ . 1.5. At energies below MZ′ , integrating out the Z ′ only generates the O′2B
operator of Table 2. The Wilson coefficient of the operators corresponds, by eq. (36), to

Y =

(
gZ′mW

g′MZ′

)2

. (52)

The sensitivity projections are reported in the right panel of Figure 10. The orange and
green regions are the ones probed by muon colliders at 3 and 10 TeV energy, respectively. The
gray band represents the expected exclusion reach from HL-LHC, while the blue line indicates
the combined sensitivity from other future collider projects (dominantly FCC, and the 3 TeV
stage of CLIC). The 3 TeV muon collider sensitivity is obviously similar to the one of CLIC.
A 10 TeV machine would greatly improve this result probing up to 500 TeV for large (but still
perturbative) coupling. The dashed lines represent the discovery reach, showing that already at
3 TeV there are vast opportunities for indirect discovery, well above the region that the HL-LHC
might exclude. Results at higher muon collider energies are reported in Figure 14.

17See [83] for details. Concrete BSM scenarios featuring additional Z′s can be found, for instance, in Ref. [91].
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Figure 12: Reach on the new physics scale at 2σ (continuous) and at 5σ (dashed), relative to the
collider energy, as a function of the integrated luminosity normalized to eq. (35). The red lines
are for Universal manifestations of Higgs compositeness, while the green ones include the effect
of Top compositeness in the εt = 1, εq = yt/g∗ scenario. The blue lines are for the Y -universal
Z ′ for a fixed coupling gZ′ = g.

4 Conclusions and outlook

We have studied the interplay between two classes of novel phenomena, which can be observed
at future lepton colliders with very large center of mass energy. The first class consists of hard
scattering processes induced by new physics at around 100 TeV. The second class consists of the
long-distance effects of EW radiation. Both phenomena play a relevant role at lepton colliders
with Ecm ∼ 10 TeV. In particular they are relevant at muon colliders, which are the main target
of the present work.

The interplay manifests itself in two ways. The first one is simply that EW radiation ef-
fects on the SM predictions are large (see Sections 2.2 and 2.3) and require to be included and
resummed with high accuracy in order to isolate the putative BSM contribution to the mea-
surements. EW radiation thus plays for muon colliders a similar role as QCD radiation for the
LHC, with the difference (discussed in the Introduction) that its effects can not be mitigated by
the choice of suitable (inclusive) observables. Therefore they are actually even more important
for muon colliders than QCD is for the LHC.

The second and possibly more interesting aspect of the interplay is given by the influence
on the pattern of EW radiation operated by the presence of new physics in the hard scattering
amplitude. This makes observables that require or that exclude the presence of radiation display
a different dependence on the new physics parameters, and the sensitivity profits from their
combined measurements as illustrated in Sections 3.1 and 3.2, and in Appendix C.

Our sensitivity projections rely on putative measurements of exclusive and semi-inclusive
cross-sections. Both classes of processes are characterized by the occurrence of a hard scattering,
with two particles in the final state carrying almost all the available energy. The emission of
additional EW bosons and hard photons is vetoed in the exclusive case and allowed in the semi-
inclusive one. We computed the resummed semi-inclusive cross-sections in double logarithm
(DL) approximation by extending the IREE methodology [43], as described in Section 2.1. The
exclusive cross-sections were computed at DL, but also including single logarithms at 1-loop,
which we found to be sizable.

The studies performed in this paper should be improved and extended in many directions.
Better predictions will be definitely needed in order to approach the percent-level accuracy tar-
get that is needed to fully exploit the statistical precision potential of a muon collider. Moreover,
given the magnitude of the radiation effects we observed, it is possible that more accurate pre-
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dictions will considerably affect some of our sensitivity projections. A first step in that direction,
which we leave for future work, is the inclusion of single logarithms at fixed leading order in the
semi-inclusive predictions. That could be achieved by combining one loop virtual logarithms
with a factorized treatment of real emission. That calculation, would possibly also help clarify
the connection between soft-collinear effects (studied in this paper) and the PDF/Fragmentation
Function treatment of EW radiation. It is not unconceivable that the same approach could be
extended at the two loop order. In parallel, the impact of resummation beyond DL should be
assessed. The SCET methodology currently offers the most promising approaches.

Another priority is to investigate further classes of cross-sections, sensitive to different EW
radiation patterns. Our results indicate that investigation should be done on the basis of the
structure of short distance new physics. At the end of Section 3.2 we took one step in that
direction, showing that the approximately flat direction in the (CB, CW ) likelihood contours is
mitigated, in the absence of polarized beams, by considering an “ISR-inclusive” cross-section.
This third cross-section type is inclusive on radiation collinear to the beam, but vetoes centrally
emitted radiation. We could not compute the ISR-inclusive cross-section at DL with our IREE
methodology and limited ourself to a tree-level estimate. A straightforward direction for progress
would be to perform that calculation and verify if and how it impacts our findings.

The definition and study of cross-sections should be also based on experimental consider-
ations. We already pointed out that exclusive cross-sections are problematic in that regard.
Indeed imposing the radiation veto requires experimental sensitivity to EW radiation that is
emitted in all directions, including the forward and backward regions along the beam line. The
angular coverage of the muon collider detector is still to be quantified, however we expect that
it will be insufficient for the measurement of exclusive cross-sections.

In view of the above, it is important to emphasize that our sensitivity projections have been
verified to not change radically when exclusive cross-section measurements are not available.
This conclusion is not in contradiction with (and cannot be inferred from) our sensitivity plots,
where (see e.g. Figure 6) we observe a strong complementarity between “exclusive” observables
and observables “with radiation”. Indeed for neutral processes the latter observables consists
of the difference between the semi-inclusive and the exclusive cross-sections. Therefore the
impact of eliminating the exclusive measurements can not be estimated by suppressing the
“exclusive” cross section measurement in the computation of the likelihood. The proper estimate
is obtained by employing the semi-inclusive neutral processes without subtraction, combined
with the charged measurements, produces a combined reach that is not much inferior to the one
that exploits the exclusive measurements. In essence, the main sensitivity gain due to radiation
stems from the emergence of the charged processes and from their complementarity with the
neutral ones. The complementarity between neutral measurements with different degrees of
radiation inclusiveness (e.g., exclusive versus semi-inclusive) plays instead a less relevant role
in our results. This same qualitative behavior can be observed in the comparison between the
neutral and charged lepton production processes on the right panel of Figure 5.

On the other hand, the complementarity between exclusive and semi-inclusive measurements
exists and can benefit the sensitivity as we illustrated on the left panel of Figure 5. It plays
a marginal role in the combined fit to the limited number of EFT operators we considered in
this paper. It could however be relevant in a more global exploration and characterization of
putative new physics. One way to recover sensitivity, if exclusive measurements were indeed
unavailable, could be to exploit the ISR-inclusive cross-sections. These are easier to measure
because they do not require sensitivity to radiation in the forward and backward regions. This
aspect should be investigated.

Our phenomenological results strengthen and extend previous estimates of the muon collider
sensitivity to heavy new physics. We have a considered a variety of BSM scenarios with new
physics coupled to the SM with electroweak strength. We found that a Ecm = 10 TeV muon
collider can probe up to a scale ranging from 50 to 200 TeV. The reach improves linearly with
Ecm. These figures are significantly above the potential (direct and indirect) sensitivity of other
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future collider projects, and above the direct sensitivity reach of the muon collider itself, which
is obviously bounded by the collider energy.

The indirect sensitivity to scales that are well above the direct reach is a great addition to the
physics case of a muon collider, whose relevance would not be diminished, but on the contrary
augmented, by the occurrence of a direct discovery. Indeed, direct hints for new particles
observed at the muon collider will turn into a full-fledged discovery of new physics only after
unveiling the underlying theoretical description of their dynamics. The possibility of probing this
dynamics well above the particle’s mass will play a decisive role in this context. Furthermore, the
direct manifestation of new physics might be hard to detect. Perhaps, indirect probes will provide
the first hint of its existence, to be eventually confirmed by targeted direct searches. Finally,
indirect searches for BSM phenomena based on precise measurements guarantee a sound output
of the project. The connection with the phenomenon of EW radiation, which is interesting per
se, adds scientific value to the program.

Before concluding, we discuss the impact of the integrated luminosity on our results. We
employed the baseline luminosity in eq. (35), which corresponds to 90 ab−1 for a 30 TeV muon
collider. Since the possibility of reducing the 90 ab−1 target is under discussion, it is worth
assessing the impact of a lower integrated luminosity on our conclusions. An important aspect
is associated with the actual experimental feasibility of the relevant measurements. While a
conclusive assessment will require dedicated studies, the expected number of events in Table 3 18

and the corresponding efficiencies show that, with a factor 10 reduction in luminosity, some of the
processes we employed would be left with a handful of observed events, possibly preventing the
corresponding measurements. If the reduction in luminosity were less extreme, the sensitivity
to the scale of new physics would simply deteriorate as the fourth root of the luminosity, as
shown in Figure 12 for some of the BSM scenarios we studied in Section 3.3. The figure displays
the exclusion and discovery reach on the new physics scale normalized to the collider energy
Ecm = 30 TeV. This is the right figure of merit, since the goal is to extend the muon collider
sensitivity above the direct reach. The reduction by a factor of 101/4 = 1.8 due to a factor
10 luminosity reduction partially undermines this goal, especially for what concerns the generic
manifestations of the Composite Higgs scenario.
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A Radiation integrals

The contribution of virtual radiation to the amplitude variation in eq. (10) is proportional to
the integral

I ≡ −i
(2π)4

∫
δσ
d4q

1

q2 −m2
V + iε

(ki · kj)
(q · ki)(q · kj)

, (53)

where we included a mass mV ∼ mw for the virtual vector in order to verify explicitly that the
integral is log-enhanced only in the λ� m2

w regime, where the IR cutoff is much above the EW
scale. We now proceed (following [92]) to the evaluation of I assuming, for simplicity, exactly
massless hard 4-momenta k2

i = k2
j = 0. The integral is Lorentz-invariant, therefore it can only

depend on the scalar product (ki · kj), that we set to

(ki · kj) =
1

2
(ki + kj)

2 =
1

2
E2 , (54)

in what follows.
The calculation is conveniently performed in Sudakov coordinates [93]. Namely we parametrize

the loop momentum q as
q = uki + vkj + q1

⊥ζ1 + q2
⊥ζ2 , (55)

where (ζ1)2 = (ζ2)2 = −1 and ζ1,2 · ki = ζ1,2 · kj = 0. In these coordinates

q2 = u v E2 − |q⊥|2 , (56)

and the infinitesimal strip δσ (7) that defines the integration region is expressed as

|u v|E2 ∈ [λ, λ+ δλ] . (57)

After the change of variables, the integral reads

I =
i

(2π)4

∫
δσ

dudv

uv

∫
d2q⊥

|q⊥|2 − uvE2 +m2
V − iε

. (58)

The d2q⊥ integral must be performed up to an upper cutoff that justifies the usage of the
Eikonal approximation formula in eq. (8) for the gauge boson vertices. In particular we notice
that the actual denominators of the virtual legs in the diagram are not (ki,j ·q) as in the Eikonal
formula, but rather (ki,j · q) ± q2/2, with plus or minus for incoming and outgoing particles,
respectively. Neglecting q2/2 is justified only if |q⊥|2/2 is not as large as to compete with the
minimum among |ki · q| = |u|E2/2 and |kj · q| = |v|E2/2. Therefore the q⊥ integral should be
cutoff at

|q⊥|2 < Λ2 , with Λ2 = E2 min
[
|u|, |v|

]
. (59)

Similarly, the term proportional to uv in q2 should not be large compared to (ki,j · q), therefore
the u and v integrals are also bounded, in the region

|u| < 1 , |v| < 1 , (60)

supplemented by eq. (57).
The integration boundaries of u and v are invariant under u→ −u and under v → −v reflec-

tions. We can thus perform the integral (58) in the first quadrant of the (u, v) plane, provided
we duly symmetrize the integrand. Furthermore we notice that first-quadrant integration region
(restricted to u < 1 and v < 1, owing to eq. (60)) is conveniently described by the coordinates
τ and y, defined by

u =
√
τey , v =

√
τe−y . (61)

36



Indeed in these coordinates the condition (57) merely sets the value of τ to

τ =
λ

E2
, with δτ =

δλ

E2
, (62)

while the upper bound (59) on the |q⊥| integral reads

Λ2 = E2√τe−|y| = E
√
λ e−|y| . (63)

We can thus express the integral as

I =
2 i

(2π)3

δλ

λ

∫ yM

0
dy

∫ E
√
λe−y

0
d|q⊥|2

[
1

|q⊥|2 − λ+m2
V − iε

− 1

|q⊥|2 + λ+m2
V − iε

]
. (64)

where, since Λ2 is symmetric under y → −y, we could take the y integral from 0 to

yM = −1

2
log τ = log

E√
λ
, (65)

and multiply by a factor 2.
The d|q⊥|2 integral in eq. (64) is readily performed. It is convenient to separate the terms that

emerge from the upper |q⊥|2 integration extreme from the one of the lower extreme |q⊥|2 = 0,
obtaining two contributions to I, IU and IL. We will readily see that fhe former contribution is
suppressed, therefore

I ' IL =
1

8π2

δλ

λ
log

E2

λ

i

π
log

[
λ+m2

V − i ε
−λ+m2

V − i ε

]
. (66)

The logarithm gives quite different results in the two regimes λ� m2
w ∼ m2

V and λ� m2
w ∼ m2

V .
In the second one, the argument of the logarithm has positive real part, almost equal to to 1
up to m2

V /λ power-corrections. In the first regime, the argument has negative real part and the
log equals +i π, plus λ/m2

V corrections. Namely

I
λ�m2

w= − 1

8π2

δλ

λ
log

E2

λ

[
1 +O(m2

V /λ)
]
, I

λ�m2
w= − 1

8π2

δλ

λ
log

E2

λ
· O(λ/m2

V ) , (67)

from which we recover eq. (11). More precisely, notice that the integral for each pair of external
legs ij is controlled by the specific scale E2 = 2(ki · kj). In eq. (11) we set all these scales equal
up to corrections that are not log enhanced, but of order one. This in turn corresponds to order
1/ log corrections to the evolution kernel and to single-logarithm corrections to the solutions of
the IREE.

The contribution to I from the upper |q⊥|2 integration extreme is suppressed. To see this it
is convenient to employ the integration variable ρ = exp(y − yM), obtaining

IU =
2 i

(2π)3

δλ

λ

∫ 1

√
λ/E
dρ

1

ρ
log

[
1− ρ(1−m2

V /λ)

1 + ρ(1 +m2
V /λ)

]
, (68)

where we could drop the −iε because the argument of the logarithm has positive real part in the
entire range of integration. The ρ integral is finite for

√
λ/E → 0, therefore it does not produce

log-enhanced contributions. In particular the integral gives −π2/4 for λ� m2
w ∼ m2

V and it is
power-suppressed in the opposite regime.

We now compute the contribution of real radiation to the density matrix variation, which
we employ in eq. (18). The relevant integral that controls the contribution from a real radiation
diagram like those in Figure 2, reads

IR ≡ −
1

(2π)3

∫
δσ

d3q

2q0

(ki · kj)
(ki · q)(kj · q)

= − 1

(2π)3

∫
δσ
d4q δ(q2 −m2

V ) θ(q0)
(ki · kj)

(ki · q)(kj · q)
, (69)
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where we employed the eikonal formula in eq. (8), but ignored the “G” factors that are included
separately in eq. (18). Notice the presence of a minus sign, which is due to three factors of −1.
The first minus is due to the fact that applying the eikonal formula to the conjugate amplitude
gives the complex conjugate of the generator matrix “Gi” of the corresponding leg, while eq. (18)
is expressed in terms of the generators Gic = −G∗i of the conjugate representation. The second
minus sign emerges from the sum over the polarizations of the real vector boson, which gives
−ηµν . The third minus is because the contribution to the variation is minus the integral over
the strip δσ, since the λ cutoff is a lower bound on the hardness.

In Sudakov coordinates (55), and setting (ki · kj) = E2/2, the integral becomes

IR = − 1

(2π)2

∫
δσ

dudv

uv
θ(u+ v)

∫
d|q⊥|2δ

(
uvE2 − |q⊥|2 −m2

V

)
. (70)

The integration extremes of all the variables are like those of the virtual integral, including the
condition (57) that defines the infinitesimal integration strip δσ. The delta function in eq. (70)
has support only if u v > 0, and the theta function further restricts the integral to the first
quadrant of the (u, v) plane. We can thus employ the τ and y coordinates in eq. (61) and
readily obtain

IR = − 1

8π2

δλ

λ
log

E2

λ
· θ(λ−m2

V ) . (71)

Evidently, the theta function condition is not satisfied for λ � m2
w ∼ m2

V , therefore the
integral vanishes in this regime. In the other regime

IR
λ�m2

w= = − 1

8π2

δλ

λ
log

E2

λ
, (72)

which is equal to the virtual radiation integral, as anticipated in the main text. Notice that the
pre-factor of eq. (18) contains an additional 1/2, due to the fact that the real radiation contri-
bution is effectively counted twice in the equation by the two terms proportional to (GAi )(GAjc)
and to (GAic)(G

A
j ) , which are equal after summing over i and j.

B High-energy EW multiplets

The EW symmetry is effectively unbroken at energies much above the EW scale. Therefore
in this regime it is convenient to describe the SM particles in terms of representations of the
(linearly-realized) SM group SU(2)L×U(1)Y , with generators

T A = {T a,Y} , a = 1, 2, 3 . (73)

The generators act on the single particle states as

T A|p(k, α)〉 = |p(k, β)〉(TAr )βα , (74)

with generator matrices TAr that define the representation “r” of the particle multiplet. The
field Φα

r that interpolates the multiplet from the vacuum, namely

〈0|Φα
r (0)|p(k, β)〉 ∝ δαβ , (75)

transforms with the same generator matrix, i.e.[
Φα

r (x), T A
]

= (TAr )αβΦα
r (x) . (76)

The SU(2)L representations of the SM particles and the corresponding U(1)Y charges are listed
in Table 6.
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Bosons SU(2)L Y
W t 0

B s 0

H d +1/2

H̄ d̄ −1/2

Leptons SU(2)L Y
(ν`,−1/2 , `

−
−1/2) d −1/2

(ν̄`,+1/2, `
+
+1/2)t d̄ −1/2

`−+1/2 s −1

`+−1/2 s +1

Quarks SU(2)L Y
(u−1/2, d−1/2)t d +1/6

(ū+1/2, d̄+1/2)t d̄ −1/6

u+1/2 s +2/3

ū−1/2 s −2/3

d+1/2 s −1/3

d̄−1/2 s +1/3

Table 6: SU(2)L×U(1)Y quantum numbers of the SM particles in the high-energy regime.

All the fermionic particles with helicity −1/2 transforms as doublets (i.e., r = d), the anti-
particles with helicity +1/2 transform in the conjugate (r = d̄) of the doublet representation,
while all the others are singlets. Obviously this is true only in the high energy limit where the
fermions are effectively massless and the helicity corresponds the chirality of the corresponding
interpolating fields. The doublet representation matrices are the standard

T ad =

{(
0 +1/2

+1/2 0

)
,

(
0 −i/2

+i/2 0

)
,

(
+1/2 0

0 −1/2

)}
, T ad̄ = −(T ad )∗ = −(T ad )t . (77)

The EW multiplets of bosonic particles are less well-known, but equally straightforward to
work out employing the standard Goldstone Boson Equivalence Theorem, or better its stronger
formulation in Ref.s [71, 94]. The point is that for massive W± and Z vector bosons with 0
(longitudinal) helicity one can employ interpolating fields that are a specific combination of
the regular gauge fields W±µ and Zµ and of the Goldstone boson scalar fields π± and πZ . The
longitudinal states are thus a linear combination of the quantum fluctuation modes associated
to this two different type of fields, and the scattering amplitudes with external longitudinal
states are a linear combination of Feynman diagrams where the external states are represented
either as gauge fields or as Goldstone fields. This is a convenient formalism in the high energy
limit because the polarization vector associated with gauge external lines vanishes as mw/E
(unlike the regular longitudinal polarization, that diverges as E/mw), and only the Goldstone
diagrams survive. In essence this means that the Goldstones, and not the gauge, are the adequate
interpolating fields for the longitudinal particles at high energy. Therefore the EW quantum
numbers of the longitudinal particles are the ones of the Goldstones, and not of the gauge fields.
The Goldstone bosons, together with the Higgs, form a doublet with +1/2 hypercharge, and
the corresponding conjugate doublet

H =

(
π+ ,

h+ iπZ√
2

)t
, H̄ =

(
π− ,

h− iπZ√
2

)t
. (78)

Vector bosons with transverse helicity T = ±1 are instead well-described by gauge fields
even at high energy. Therefore they decompose into a triplet plus a singlet EW multiplet, which
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are readily obtained by undoing the Weinberg rotation

W a =

(
W+

T +W−T√
2

, i
W+

T −W
−
T√

2
, cwZT + swγT

)t
, B = −swZT + cwγT . (79)

Explicitly, the triplet generator matrices are

T at =


0 0 0

0 0 −i
0 i 0

 ,

 0 0 i
0 0 0
−i 0 0

 ,

0 −i 0
i 0 0
0 0 0

 . (80)

We now proceed to the evaluation of the Ki exponentials in the explicit formula for the
semi-inclusive density matrix (22), for external legs in the doublet (or anti-doublet) or in the
triplet canonical representations defined by eq. (77) and (80). The K tensors in eq. (20) are[

Kd

]αᾱ
ββ̄

=
[
Kd̄

]αᾱ
ββ̄

= cd δ
α
β δ

ᾱ
β̄ +

∑
a

(T ad )αβ(T ad̄ )ᾱβ̄ = δαβ δ
ᾱ
β̄ −

1

2
δαᾱδββ̄ ,[

Kt

]αᾱ
ββ̄

= ct δ
α
β δ

ᾱ
β̄ +

∑
a

(T at )αβ(T at )ᾱβ̄ = 2 δαβ δ
ᾱ
β̄ + δαβ̄ δ

ᾱ
β − δαᾱδββ̄ . (81)

By exponentiating them, we readily obtain[
exp

(
−LKd

)]αᾱ
ββ̄

= e−Lδαβ δ
ᾱ
β̄ + e−L/2 sinh(L/2)δαᾱδββ̄ , (82)[

exp
(
−LKt

)]αᾱ
ββ̄

= e−2L
(

cosh(L)δαβ δ
ᾱ
β̄
− sinh(L)δα

β̄
δᾱβ

)
+ 2

3e
− 3

2
L sinh (3L/2) δαᾱδββ̄ , (83)

where we defined

L =
g2

16π2
log2(E2/m2

w) . (84)

C 3rd family operators

The sensitivity to the 3rd family operators in Table 2 are summarized in this section. In Figure 13
we report the two-dimensional contours in the (CtD, C

(3)
qD)and (C

(1)
qd , C

(3)
qD)planes, with the third

operator set to zero. We notice that the “with radiation” cross-section measurements (see the

main text) is mostly effective to probe C
(3)
qD producing a significant sensitivity improvement on

the combined bound in this direction. The effect is milder in the orthogonal directions. The
likelihood is dominated by the linear term in the new physics parameters so all our result can be
expressed in terms of the single operator reaches (at 95% CL) of and the correlations matrices
in Table 7. In the table we report the sensitivity of exclusive cross-section measurements alone,
and the combination of all the measurements.
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Ecm = 3 TeV Ecm = 10 TeV

Ecm = 14 TeV Ecm = 30 TeV

Exclusive-only [95% CL] Combined [95% CL]

CtD C
(1)
qD C

(3)
qD CtD C

(1)
qD C

(3)
qD

3 TeV [−24.4, 24.4] [−9.47, 9.47] [−6.68, 6.68] [−23.1, 23.1] [−8.59, 8.59] [−5.45, 5.45]

10 TeV [−2.24, 2.24] [−0.97, 0.97] [−0.71, 0.71] [−2.04, 2.04] [−0.81, 0.81] [−0.49, 0.49]

14 TeV [−1.15, 1.15] [−0.52, 0.52] [−0.38, 0.38] [−1.03, 1.03] [−0.42, 0.42] [−0.25, 0.25]

30 TeV [−0.26, 0.26] [−0.13, 0.13] [−0.10, 0.10] [−0.22, 0.22] [−0.10, 0.10] [−0.05, 0.05]

Table 7: Single-operator 95% CL reach and correlation matrices for the Wlison coefficient C
(3)
qD ,

C
(1)
qD and C

(3)
qD of the operators of Table 2 at different collider energies. All results include exclusive

cross-sections or combined measurements. The Wilson coefficient are expressed in 10−4 TeV−2.
Since the likelihood is dominated by the linear terms in the new physics parameters, the single
parameter reach and the correlation characterize our results completely.

D Summary plots

In this appendix we collect additional results skipped in the main text. In particular in Figure 14
we report the sensitivity projections for the Y -universal Z ′ model, in the (gZ′ ,MZ′) plane for the
different collider energies. In Figure 15 we collect the sensitivity projections for the composite
Higgs model in the (m∗, g∗) plane for Ecm = 3, 14, 30 TeV. Projections including composite top
measurements can be found in Figure 17. Finally, Figure 16 shows the dependence of the bound
on the value of the ctt coefficients, as explained in the main text.
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Figure 13: 95% CL contours in the (CtD, C
(3)
qD) (left) and (C

(1)
qd , C

(3)
qD) (right) planes at the 10

and 30 TeV muon colliders.

Figure 14: The same as the right panel of Figure 10 for various collider energies.
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Figure 15: The same as the left panel of Figure 10 for various collider energies.

Figure 16: The same as the right panel of Figure 11 for different values of ctt to show the model
dependence of the result.
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Figure 17: The same as Figure 11 for various collider energies. The blue line on the equally-
composite (left panels) projections are taken from [83], while on the right-handed composite top
scenario are take from [87].
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