
École Polytechnique Fédérale de Lausanne

Hierarchical Reinforcement Learning
to control the AWAKE Electron Beamline

by Borja Rodriguez Mateos

Master Thesis

Approved by the Examining Committee:

Prof. Dr. Sc. Mike Seidel

Thesis Advisor

Dr. Snuverink Jochem

External Expert

Dr. Verena Kain & Dr. Tatiana Pieloni

Thesis Supervisor

EPFL PH LPAP

BSP 610 (Cubotron)

Rte de la Sorge

CH-1015 Lausanne

September 19, 2023

C
ER

N
-T

H
ES

IS
-2

02
3-

33
3

19
/0

9/
20

23



If the first person at the table takes the napkin to their right, then there is no other choice but for

the others to take the right napkin. The same goes for the left. This is called a society.
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Abstract

New generation particle accelerators are increasingly more complex and have more stringent re-

quirements on parameter quality and efficiency. The current control algorithms for accelerators

mostly rely on linearization of accelerator dynamics and/or manual tuning of parameters. In order

to meet the expectations of future particle accelerators, control systems are evolving and increas-

ingly embrace machine learning techniques. Deep Reinforcement Learning (DRL) is a promising

approach to develop smart and efficient controllers that can potentially run particle accelerators

processes autonomously. In this thesis an autonomous controller based on Hierarchical Deep

Reinforcement Learning was developed and applied to learn how to correct the AWAKE electron

line trajectory. The proposed algorithm consists of a goal-based two level hierarchy of policies that

learn optimal control without model of the control problem. It uses so-called off-policy experience

replay to be sample-efficient. By abstracting decision making into two layers of policies, studies

have shown that the controller manages to solve more complex tasks with longer time horizons. The

algorithm, developed in the course of this master projected, is evaluated on the AWAKE electron line

steering task, popular for testing novel control methods due to its high repetition rate and low risk of

damage to the machine. The final implementation of the hierarchical controller manages to score an

average success rate of 99.85% for AWAKE electron line trajectory correction and is able to solve the

task in two steps on average. The possibility to use pretrained agents as part of a hierarchical control

structure is particularly appealing as it allows to re-use learned low-level "skills". When using a

classically pretrained controller for the lower-level agent, it turned out that resulting algorithm can

make good use of the available "skills". The success rate with this set-up was 80.3%.

This thesis gives a brief introduction of the concepts of Reinforcement Learning, before describ-

ing in detail the AWAKE trajectory steering problem. The implementation of the chosen Hierarchical

Reinforcement Learning HIRO for the AWAKE steering problem will also be summarised. The

achieved performance with this RL algorithm will be shown at the end of this thesis.
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Chapter 1

Introduction

In this chapter the evolution of charged particle accelerators, from their advent to their current

designs, will be summarised. Then, motivated by the increase in the accelerators’ complexity, the

future of the control systems of these machines will be discussed with a focus on model-based and

model-free control. The subject of this thesis is the development of a novel control algorithm which

will be tested on the task of trajectory steering at the AWAKE facility. The final part of this chapter

will therefore give an overview of the AWAKE trajectory steering problem.

1.1 History of particle accelerators

Particle accelerators were originally developed for particle physics, but in the course of time had

great beneficial impact on many other fields. Examples are medicine, biology and material sciences.

The first experiment that could be considered as linear accelerator was built by Wilhelm Röntgen

in 1896 to produce X-rays with an electron electrostatic accelerator for the first radiography. The

design of the linear accelerator was then much improved in 1924 by Gustav Ising when he made the

first proposal for a linear accelerator using repetitive application of voltages along the beam line

with RF fields instead of a simple anode. An accelerator based on this principle was built some years

later by Rolf Widerøe.

Cockcroft and Walton designed their eponymous electrostatic accelerator using a voltage diode

multiplier in 1932. It managed to accelerate protons up to 1 MeV and was considered as the first

"high energy" accelerator. It was used for break-through experiments for nuclear fission.

The idea of circular designs for accelerators was at first rejected as it was thought that the

particles would loose as much energy in a turn as they would gain in the accelerating cavity. Using

Maxwell-Faraday’s equation in its integral form
∫
ΓE ·ds = − ∂

∂t

∫
S B ·nd a which states that with a

time varying magnetic field, one could in theory accelerate particles in a closed loop. Widerøe used

the induction principle to make the first design of a circular accelerator with constant radius called

a Betatron. The idea relied on varying the magnetic flux through a core, which would induce an

accelerating longitudinal electrical field for the electrons residing in a vacuum chamber orthogonal

to the magnetic field. On paper this device could accelerate electrons up to a few tens of MeVs,
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much more than any electrostatic accelerator or any particle produced by a radioactive decay. A

machine accelerating electrons through magnetic induction was built successfully almost 20 years

afterwards by Kerst [32].

Reading about Widerøe’s discovery of the linac, Lawrence was prompted to invent the cyclotron

- an accelerator consisting of two half discs separated by an accelerating gap. Ions accelerated by

this device would be produced in the center of it and would spiral out of the machine horizontally

due to a constant vertical magnetic field. This accelerator has a constant revolution frequency in

the classical regime up to 50 MeV. The first concepts of transverse focusing, pulsed beam or phase

stability were developed when optimizing the performances of this machine to be operational in

the relativistic regime.

It was during a night shift supervising the industrial separation of Uranium isotopes that Oliphant

made the first proposal for a pulsed magnetic ring, fundamental to the synchrotron [76]. The

concept was inspired from the phase stability of the cyclotron where the frequency of the alternating

accelerating field was increased with the energy of the particle. A parallel would be drawn with the

bending magnetic field in order to keep the magnetic rigidity constant (Bρ∝ p) and the design of a

circular accelerator where the particles trajectory would assume a constant radius. Moreover, the

particles are accelerated with an RF voltage in cavities or gaps along their trajectory. It was then

formalized in 1945 by MacMillan and Veskler independently, stating the conditions for the magnetic

field and the accelerating frequency to maintain the orbital period in a cyclotron. This relation

would go on and be called phase stability and would be used in all RF accelerators except the fixed

frequency cyclotron.

The first electron synchrotron was built in 1946 by Goward and Barnes [20] modifying an old

betatron that was used for X-raying unexploded bombs in the streets of London. This accelerator

was able to accelerate the particles up to 8 MeV. The next year, Oliphant, Gooden and Hyde made

the first proposal for a proton synchrotron that could produce protons up to 1 GeV. Nevertheless, the

first team to complete the construction of their machine was the Brookhaven National Laboratory

in 1952, naming their 3 GeV accelerator the "Cosmotron" [8].

The transverse focusing on the early designs of synchrotrons relied on the mechanism of "weak

focusing", where the guide field in the magnets decreases slightly when the radius increases and its

gradient is constant at a fixed radius around the machine. This constrained the aperture of the beam

vacuum chambers to be large and correspondingly made the magnets bulky and costly. It was in the

development of the Cosmotron, that Courant, Livingston and Snyder, found that by alternating some

of the yokes of the bending magnets, the focusing of the beam would be improved. This enabled

them to propose the strong focusing mechanism, where consecutive focusing and defocusing

magnetic lenses are alternated in order to alternatively focus in one plane while defocusing in the

orthogonal one. With this mechanism, the synchrotron overshadowed the synchro-cyclotron and

betatron in the race for higher energies.

In order to obtain higher energies for particle production in physics experiments, the center-

of-mass energy is what needs to be maximized. In the quest for the energy frontier, Fixed target

experiments were gradually replaced by particle colliders as the amount of energy available follows
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the relation γF = 2γ2
C with γF and γC being respectively the amount of energy available in a fixed

target experiment and in a collision. The first collider built was a Princeton-Stanford e-e experiment

that stored its first beam in 1962. This experiment was still using weak focusing and had an energy of

500 MeV per beam, it was used for e-e scattering experiments. Storage ring colliders still dominate

the energy frontier in high energy physics nowadays.

The use of superconductive magnets in proton machines permitted to have higher magnetic

fields and thus being able to control hadron beams at the highest energies. These advancements

coupled with innovations in vacuum technology, RF cavities and control systems permitted to build

more and more powerful particle accelerators. The increase in beam energy so far was culminated

by the Large Hadron Collider (LHC) - a 27 km long circular hadron collider at CERN that performs

collisions of protons and Pb ions up to 7 and 1150 TeV respectively.

Since the advent of the first accelerators the increase of beam energy has been exponential. A

fragment of this rise is shown in Fig. 1.1 for both Hadron and Lepton colliders.

Figure 1.1: Livingstone chart [3] for colliders. It shows the maximum reach in center of mass energy
in GeV for the various accelerators as function of time.

With the accelerators becoming larger and larger with more and more components, the complex-

ity of the control system needs to increase as well to guarantee operability while keeping cost down.
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The control systems need to provide for more and more sophisticated operational scenarios with

parameters pushed to the limit and strict reproducibility requirements. Due to practical limitations

for maximum reachable magnetic fields, the race for higher beam energies goes through having

larger and thus more complex accelerators. The LHC at CERN for example has a circumference of 27

km and its potential successor, the FCC, might have a circumference of 100 km. The LHC consists

of approximately 8000 superconducting magnets alone, with many hundreds of control knobs. A

sophisticated control system with many abstraction layers is indispensable for its reliable operation.

1.2 Towards more efficient and autonomous accelerators

Similarly to the beam energy in accelerators, the computing power has been exponentially increasing

since the 1970s and the cost per transistor in a microchip has steadily dropped. Coupled with the

increasing complexity of novel particle accelerators and thus the need for increased abstraction or

automation through the control system to allow operability, the introduction of more advanced

control methods that incorporate artificial intelligence (AI) has become inevitable. In this new

control paradigm for particle accelerators, manual optimization and stabilisation of parameters is

increasingly replaced by sophisticated, autonomous optimisation algorithms [14]. These algorithms

are able to solve multi-parameter optimisation problems while adhering to safety constraints.

Together with classical control algorithms, AI for enhanced diagnostics, preventive maintenance

systems and other, they will eventually allow for autonomous accelerators and hence re-define the

operational model of the next generation particle accelerators.

In the past decade or so, a wide range of different AI algorithms have been applied to particle

accelerators. Genetic algorithms have been used to optimize the properties of particle beams

[79], Bayesian optimization with Gaussian Processes is used for machine tuning [33], artificial

neural networks are used for improving the prediction and optimization of the output radiation of

Free Electron Lasers[64] and better ML control policies for sub-systems of accelerators are being

developed[31].

1.3 Controlling CERN’s particle accelerators

Digitalisation and advances in information technology allowed to replace analog knobs, amperme-

ters and oscilloscopes with remote front-end interfaces and computer controls. Large accelerators

can possess up to tens of thousands of different components, from accelerating units and magnets

to vacuum pumps and gauges, power supplies as well as position, intensity and profile monitors.

Multi-tiered control systems together with timing and triggering systems are necessary to orchestrate

the various processes from injection to acceleration and finally extraction in a particle accelerator[2].

The CERN accelerators have increasingly adopted model-based control, where the settings of the

various systems are derived from accelerator physics considerations, which are then translated into

hardware parameters through transfer functions stored in a data base. In fact, the CERN accelerators

are typically controlled with abstract high level physics parameters that can be defined 1-to-1 with
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simulations [29]. As such, most accelerator settings nowadays are pre-calculated, or so-called "gen-

erated", for a given physics scenario and stored in a settings database. As long as the dynamics can

be simulated, inverted and written down in closed-form for one-shot corrections, the LHC software

architecture (LSA), that is used by almost all CERN accelerators today, has all the means to drive

and regulate the particle beams. The parameters and operational scenarios of the LHC have been

designed with great care to fall into this category (i.e. accurate simulations, analytical solutions for

control problems, . . . ), thus the success of this collider. Still, it cannot be run autonomously and this

is even more true for the older and lower energy CERN machines. The older accelerators often lack

sufficient modelling, are multi-cycling (the LHC is set up for only one acceleration program during

a given year) and frequently miss crucial beam instrumentation. Yet, also these machines have

increasingly more complex physics programs with more and more stringent stability requirements.

Model-based control has obvious advantages. Recently control algorithms have been proposed

that learn the dynamics or transition models from data either implicitly or even explicitly without

prior knowledge while trying to solve the control problem. They learn through reward and are called

reinforcement learning algorithms. Reinforcement learning (RL) algorithms will certainly be part

of the AI portfolio for future accelerator control. RL has already shown remarkable performance

in the domain of nuclear fusion, where it managed to find stable plasma configurations in the

Tokamak à Configuration Variable (TCV) [13]. Similarly to particle accelerators, fusion reactor

control requires high-dimensional and high-frequency closed-loop control. And it turned out that

autonomous controllers based on deep RL are advantageous [13]. While the problem of trajectory or

orbit correction for accelerators is completely solved for constant optics, it will be used as use case

in this study to implement Hierarchical Reinforcement Learning that bears the prospect of solving

more complex tasks with improved sample-efficiency.

1.3.1 Reinforcement learning for optimal control

Reinforcement learning deals with mapping situations (or so-called states) to optimal actions. It

finds these mappings by maximizing a numerical reward signal [71]. The untrained so-called agent

or controller does not know which actions are optimal at the start and must discover which actions

yield the highest reward. During the learning process it updates its so-called policy. The basic terms

and definitions of reinforcement learning will be presented in the following:

• Agent: Also called the "learner". It is one of the two main building blocks of the reinforcement

learning setting along with the so-called environment (see below for the definition), in which

the agent acts. The agent is the decision maker that learns what is the best action to take at

each time step.

• Environment: The other fundamental element in reinforcement learning. It represents the

problem definition or the "world" and the interactions in which the agent "lives". All problem

specific information is contained in the environment, none of it resides in the algorithm itself.

This allows for necessary modularity.
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• Action: The setting or optimisation parameter by which the agent interacts with the environ-

ment, it cannot influence the rules or dynamics of the environment by it.

• State: Or "observation". It is a representation of the current version of the environment that

the agent is in. Ideally, it has all the information that the agent needs in order to make the next

decision. It is modified through the actions of the latter.

• Reward signal: Defines the goal of a reinforcement learning problem. It is given to the agent by

the environment at every time step after applying the action as a single number called reward.

Through its value, the agent learns which actions are advantageous or disadvantageous in a

given state in the pursuit of its goal.

• Value function: Contrary to the reward which indicates what is good or bad immediately at

every time-step, the value function specifies what is beneficial in the long term. It is related to

the expected value of the cumulative reward starting at a given state.

• Policy: Map between the perceived states by the agent and a resulting action to be taken

in those states. Most of the time, policies are stochastic and output actions with a certain

probability. If the agent is fully trained it will know the "optimal policy", which at each state

will issue the action that maximises the cumulative reward.

• Model: The model is a surrogate of the dynamics of the environment. For example, the

model could predict the next state and next reward for a given state and action. It is used

for planning, that is deciding on a set of consecutive actions before they are experienced by

the environment. The types of algorithms to learn the policy observation-optimal action

mapping can be divided into model-based approaches and model-free ones. With the former

class of methods, the dynamics model is learned explicitly as part of the training and is used

for e.g. planning. In the latter case the model is not explicitly available and the agent can

only improve its policy by interacting with the environment. Both approaches will be briefly

introduced below.
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Figure 1.2: Schematic of the control loop for the agent-environment interactions that allows the
reinforcement learning agent to learn the optimal policy. The environment informs the agent at every
learning step about its current state St and the associated reward Rt . Based on this information, the
agent acts on the environment through the action At and modifies the environment. This process is
recursively performed until the agent performs the desired actions.

For obvious reasons it is extremely beneficial if the environment can be simulated and the

agent trained "off-line" and only the trained agent is then applied to the real environment [31]. If

the simulation is not accurate the "sim to real" transfer can be challenging, albeit techniques are

available to help under these conditions, particularly if it is roughly known what is typically different

without knowing exactly by how much [5].

1.3.2 Hierarchical Reinforcement learning for control

Hierarchical implementations in reinforcement learning subdivide a goal into several sub-tasks at

different levels of abstraction. The agents at the higher levels plan for longer time scales on more

abstract tasks, whereas in lower levels they plan at short time scales and interact directly with the

environment.

By subdividing the task and having several agents solving them, it is possible to create more

specialized learners that solve simpler tasks in cooperation with longer time horizons. It has been

shown [51] [52] that hierarchical architectures are a promising approach to solve complex problems.

The task that will be solved in this study will be autonomous steering of the electron line in the

AWAKE experiment using Hierarchical RL. The AWAKE electron source and beam line have been a

popular test bed to for many novel control algorithms in the past [31][73] [65].
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Chapter 2

Theoretical Background

This chapter will introduce the essential theoretical elements needed to understand and formulate

how autonomous controllers learn in the setting of reinforcement learning. As RL will be deployed

to solve a trajectory steering control problem later on, the classical trajectory steering algorithms

in particle accelerators based on SVD using the so-called response matrix will also be discussed. A

short excursion to Model Predictive Control (MPC) with data-driven models will follow the acceler-

ator physics part. For the remaining chapter the reinforcement learning formalism will be in the

center. The building blocs of Optimal Decision Making starting from Markov Decision Processes

will be introduced as well as the basics of deep learning as it is required for some of the modern RL

algorithms as in Deep Reinforcement Learning.

2.1 Classical model-based trajectory correction in particle accelerators

The classical model-based trajectory correction methods rely primarily on computing the beam

transport matrices via the Twiss parameters between Beam Position Monitors (BPMs) and corrector

dipole magnets. The transport matrix models the single particle phase-space coordinate transport

in the horizontal or vertical plane from one location to another as the beam travels through a storage

ring or a transport line. The β-function and other related Twiss parameters are defined by the

focusing properties of the lattice and can be calculated for circular machines or in case of having the

initial conditions in case of beam transfer by various accelerator modelling programs e.g. MAD-X

[57].

2.1.1 From the transport matrix to the response matrix

In order to correct for trajectory imperfections, the two lattice elements that are used are Beam

Position Monitors (BPMs) and corrector dipole magnets. BPMs are non-destructive diagnostics used

widely in all types of particle accelerators. A BPM measures the charges induced by the electric field

of the beam on two opposite insulated metal plates. The difference is used to determine the position

of its center of mass [16]. Corrector dipole magnets are used to adjust the trajectory of the charged
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particles in the vertical and horizontal plane wrt the design trajectory by providing "kicks" ∆θ of

typically mrad. To determine the deflection angle required to correct the position at a BPM by a

certain ∆x or ∆y , the relation between the beam position measured at the BPMs and the correction

angle at a corrector needs to be formulated. The transfer or transport matrix between the corrector

and the BPM linearly models the transport of phase-space coordinates from the corrector location

to the BPM, i.e. it linearly propagates x and x ′ from location (0) to location (1) and is a function of

the lattice.. It can be derived in several manners (e.g. using the Twiss parameters):(
x(1)

x ′(1)

)
=

(
R11 R12

R21 R22

)(
x(0)

x ′(0)

)
(2.1)

Our interest lies in describing the influence of a deflection angle ∆θ at the location of a corrector

magnet on the position ∆x measured at a BPM. By developing the first equation of (2.1) with initial

conditions (x(0), x ′(0)) = (0, ∆θ), the following relation is obtained:

∆x = R12∆θ (2.2)

For an arbitrary number of BPMs measuring the position and trajectory correctors inducing

deflection angles, the equation (2.2) can be extended to2.3. For a system of M BPMs and N trajectory

correctors, the resulting set of equations reads:
∆x(1)

...

∆x(M)

=


A00 . . . AN0

...
...

AM0 . . . AMN



∆θ(1)

...

∆θ(N)

 (2.3)

where ∆x(i) is the position change measured at the ith BPM and ∆θ(j) the induced deflection

angle of the jth trajectory corrector. The matrix A ∈RM×N is the so-called response matrix that relates

the measured positions to the deflection angles. Its coefficients Ai j can be derived from Twiss

parameters (see below) or data-driven methods. By measuring ∆x at a fixed BPM i as a function of a

varyingdeflection angles at a trajectory corrector j , linear regression allows to obtain the response

matrix coefficient Ai j .

2.1.2 SVD on response matrix

The most widely used linear control method for trajectory steering is based on Singular Value

Decomposition (SVD) of the response matrix. Let M be the number of BPMs in the accelerator and

N the number of correctors used for correction, the resulting elements of the response matrix A

∈RM×N based on the TWiss parameters are [44]:
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Ai j =
√
βiβ j

2 sin (πν)
cos (φi j −πν) In a ring (2.4)

Ai j =
√
βiβ j sin (φi j ) In a transfer line (2.5)

with βi and β j the beta functions of the i th corrector and j th BPM, ν the betatron tune and φi j =
|ψi −ψc j | the phase difference between location i and j . In the case of transport lines, the response

matrix is sparse (i.e. triangular) as the position at every BPM can only be influenced by upstream

correctors yielding Ai j = 0 for i < j .

In order to correct the trajectory to a reference trajectory (i.e. find ∆θ to correct by a given

∆x), equation 2.3 needs to be inverted. In the case where there are as many BPMs as trajectory

correctors, i.e. M=N, the response matrix is square, such that ∆θ = A−1∆x. In this case standard

matrix inversion algorithms can be used which have a complexity of approximately O(N 2.373) to

O(n3). When there are more BPMs than trajectory correctors, i.e. M > N, or for a non-full rank square

matrix, a "pseudo-inverse" needs to be determined to find the correct deflection angels∆θ. Singular

Value Decomposition of the response matrix A is used for that purpose. It is a generalization of

the eigen-decomposition of a square normal matrix into an orthonormal basis for any rectangular

matrix.

Theorem 1 (Singular Value Decomposition (SVD)). Let A be an (m × n) matrix with m≥n. Then there

exist orthogonal matrices U (m × n) and V (n × n) and a diagonal matrix Σ= diag(φ1, ...,φn) (m × n)

with σ1 ≥σ2 ≥ ... ≥σn ≥ 0 such that

A = UΣVT

If σr < 0 is the smallest singular value greater than zero, then rank(A) = r [70]. (Note that for orthogo-

nal matrices UUT = UT U = 1.)

According to theorem 1, the response matrix can be decomposed into two orthogonal matrices U

and V and its corresponding diagonal form Σ, yielding R = UΣVT . With the two orthogonal matrices,

the BPM space and corrector space vectors are projected onto the eigenbasis of the response matrix.

The transformed vectors are written as follows:

∆x∗ =U T∆x

∆θ∗ =V T∆θ

Equation (2.3) can be rewritten as ∆x∗ = Σ∆θ∗ with Σ ∈ Rm×n being a rectangular diagonal

representation of the response matrix, which can be easily inverted to define the corrector strengths

to correct to a certain reference trajectory. This method is particularly attractive for accelerator

control because SVD minimizes in addition the root mean square (RMS) value of the solution vector

∆θ, thus minimizing the current used in the corrector magnets.
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SVD is the state-of-art method for orbit correction and is widely used in the CERN accelerator

complex. For example, the LHC orbit feedback system is based on SVD. The LHC has 1150 BPMs

and 550 dipole correctors per plane, thus the response matrix of this system A ∈ R1150×550 is very

large [21]. This method is also available in the control system of the AWAKE electron line to correct

the trajectory [31]. There are 11 beam position monitors and 11 trajectory correctors along the line.

More on this topic will be discussed in section 3.1.

2.1.3 Model Predictive Control

Model Predictive control (MPC) is a powerful optimization strategy for feedback control. It uses a

dynamics model to forecast the system’s behaviour and optimize the control sequence to produce

the best decision at the current time step [62]. It relies on the availability of a sufficiently accurate

model - analytical or data-driven from simulation or the real environment. For the MPC formalism,

the dynamics or transition model has the following form :

ẋ = f (x,u, t )

y = h(x,u, t )

x(t0) = x0

where x ∈Rn is the state of the system, u ∈Rm the control input, y ∈Rp the output (often related

to loss, cost or objective) and t ∈R is time. The initial condition x0 is the initial state at t = t0 and f

can be any type of linear or non-linear function. In this setting, a solution to the differential equation

for time greater than t0 is sought. Most commonly, the model are linearised for the time varying and

time invariant case, such that the time derivative of state and output are linear transformations of

state and control input with coefficients that can either vary in time or not. These models can also

be discrete in time if the system of interest is sampled discretely.

The solution to this type of control problem is the control law with the best closed-loop properties

that solves an infinite horizon, constrained optimal control problem [62]. For this purpose the cost

(or value function) is defined as :

V∞(x,u(.)) =
∫ ∞

0
l (x(t ),u(t ))d t (2.6)

where x(t ) and u(t ) satisfy the dynamics ẋ = f (x,u) and l (.) being the stage cost function. This is

then used to formulate an optimization problem minu(.)V∞(x,u(.)) with the constraints ẋ = f (x,u)

and x(t0) = x0. The solution to it is then be optimal u0∞(., x) and a resulting optimal value function

V 0∞. In practice, directly finding an open-loop solution to the problem does not yield satisfying

results for complex problems as it cannot plan for inconveniences that the controller might stumble

upon. A feedback solution is usually the preferred way to solve these types of control problems,

where the control value of only the first time step in the optimal control sequence is applied for the

current measured value of state x and then another optimal control sequence is calculated for the

17



next time step. As the cost function V (x,u(.)) is usually not a convex function of u(.), the solution to

the above optimization problem is not easily found.

A practical example for a feedback solution using model predictive control for particle accelera-

tors with data-driven dynamics models was developed by N.Bruchon for the FERMI free electron

laser in Trieste [7]. The goal was to align the seed laser properly with the electron beam in the

modulator undulator and obtain an intensity greater than a given threshold. To do so, the system

was modelled in the following manner:

xk+1 = Ax(k) +Bu(k)

I(k) = f (x(k))

with x(k) being a concatenation of all the servo motors voltages controlling the angles of the mir-

rors for the laser at time k and u(k) being the the control input at that time measured in incremental

voltages. The output I(k) is the intensity that needs to be maximized above a given threshold. In

order to invert the dynamics and define the best control sequence, the iterative linear quadratic

regulator (iLQR) was used. By discretizing the system in time, the iterative process can be formulated

as :

x(k+1) = g
(
x(k),u(k+)

)
with g (., .) a non linear function. This process results in a locally-optimal state-feedback con-

trol law able to minimize, in a finite time horizon, a quadratic cost function. MPC has become

increasingly popular in controlling particle accelerators due to its ability to handle complex and

non-linear systems with multiple related variables. It also allows to easily integrate operational

constraints to ensure safe and stable operation. Furthermore, as shown in the example above, MPC

can be data-driven where the non-linear function f describing the mapping between the detected

intensity I and the state x is represented through a Neural Network trained on data collected before

launching the controller. As the function f can be learnt using past experience, it improved the

sample efficiency of the procedure. These concepts will be further explained in the subsection 2.4.1

and section 2.4.

2.2 Reinforcement Learning

Complex high dimensional control systems as the ones present in today’s particle accelerators

usually have to deal with non-linear processes where frequently the model of their dynamics cannot

be written in closed form. Very often these processes are manually tuned if needed, or theoretical

settings are applied which are (rarely) touched. Reinforcement learning could be a useful addition

in these cases. RL agents learn control policies model-free. The dynamics can be time-varying,

non-linear and multi-dimensional. In this section, the principals behind reinforcement learning i.e.

Markov Decision Processes (MDPs) will be introduced followed by the base algorithms to obtain
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optimal control.

2.2.1 Markov Decision processes

For reinforcement learning to solve the optimal control problem, it needs to be formulated as a

Markov Decision Process (MDP). Optimal control primarily deals with continuous MDPs. In this

setting the environment is called to be fully observable and an optimal policy will have all the

information from the state to define the optimal action. An MDP is a classical formalization of

sequential decision making, where actions influence not only the immediate reward at the end

of the time step, but also subsequent possible future states and rewards which arise from having

chosen said action [71]. Partially observable problems can be converted into MDPs or Bandits,

such that they are solvable with RL. MDPs can deal with delayed reward, which results in the need

to trade off between immediate and delayed reward during policy training. This is commonly

called the exploration versus exploitation dilemma. Through exploration it is possible to find more

information about the environment whereas with exploitation known information is straight away

exploited to maximize the reward.

As seen in subsection 1.3.1, reinforcement learning problems are composed of two elements:

an agent that is the decision maker and learns how to make better and better choices and an

environment that contains the MDP. The agent interacts with the environment. And the environment

models the system and its dynamics and adheres to the Markov property. Agent and environment

interact dynamically as described in the Fig. 1.2 with the agent selecting actions and the environment

judging them through the reward and presenting a new situation (a.k.a. state). These interactions are

discretized in time. At each time step t , the agent receives some representation of the environment

state st ∈S and with this observation it chooses an action at ∈A. At the next time step, the agent

receives a reward rt+1 ∈R⊂R and the resulting next state st+1 ∈S . S ,A and R are the State, Action

and Reward sets. This interaction can be described as a sequence or a trajectory in these spaces as :

S0, A0,R1,S1, A1,R2,S2, A2,R3, ...

Where At , Rt and St are respectively the observed state at time t , the action selected at that time

and its corresponding reward. (Note the difference with respect to their lower capital counterparts

which are the random variables and not the observed value.) In a finite MDP, the sets S ,A and R
have a finite number of elements. The remainder of this section will deal with finite MDPs. The

developed formalism can be extended to infinite or continuous MDPs. The following definition 2.2.1

is paramount to the forumulation of MDPs:

Definition 2.2.1. A state St is Markov if and only if

P[St+1|St ] =P[St+1|S1, ...,St ]

Being Markov means that all the relevant information from the history of the process is captured

by the current state, such that the next state only depends on the current state and action. This
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means that in the finite Markov case, St and Rt have well defined finite probability distributions

that only depend on the previous action and state. The probability of observing the state s′ and the

reward r at time t is fully described by these "transition" probabilities:

p(s′,r |s, a) =P(St = s′,Rt = r |St−1 = s, At−1 = a) (2.7)∑
s′∈S

∑
r∈R

p(s′,r |s, a) = 1, ∀s ∈S , a ∈A (2.8)

This is valid for all s, s′ ∈ S , r ∈R and a ∈ A. The deterministic function p : S ×R×S ×A→ [0,1]

fully describes the dynamics of the MDP which in turn describes the environment’s dynamics. The

state-transition probability can be computed by summing over all possible rewards as:

p(s′|s, a) =P(St = s′|St−1 = s, At−1 = a) = ∑
r∈R

p(s′,r |s, a) (2.9)

which describes the probability of being in state s′ at the time t in function of the previous state

and action. Other two useful functions are the expected reward function for state-action pair and

state-action-next state triplet:

r (s, a) = E [Rt |St−1 = s, At−1 = a] =
∑

r∈R
r

∑
s′∈S

p(s′,r |s, a) (2.10)

r (s, a, s′) = E[
Rt |St−1 = s, At−1 = a,St = s′

]= ∑
r∈R

r
p(s′,r |s, a)

p(s′|s, a)
(2.11)

In the case of a finite MDP, a transition matrix P as in equation (2.12) can be formulated. It defines

all the transition probabilities between states and their successor s, s′ ∈S for a fixed action a ∈A.

Pss′ =P
[
St+1 = s′

∣∣St = s, At = a
]

(2.12)

where the sum of each row of the matrix equals 1.

2.2.2 Discounts in Markov Decision Processes

The task that an RL agent needs to learn can either be to maximize its performance over a fixed

period or an indefinite amount of time steps, where a time limit is enforced in order to diversify its

experience [55]. The goal of the agent is formalized through the reward signal from the environment.

The optimal control sequence corresponds to maximizing the the cumulative reward in the long run

called the return at time t , Gt instead of the immediate reward. It is defined as:

Gt = Rt+1 +γRt+2 +γ2Rt+3 + ... =
∞∑

k=1
γk−1Rt+k (2.13)
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where γ is the so-called discount factor, 0 ≤ γ≤ 1. The discount factor enforces an exponential decay

of contributions of future rewards to the return and ensures in this way that it remains bounded 1.

This definition is also valid for fixed time episodes, where the discounted rewards are summed over

a finite number of episodes commonly noted as T . The discount rate determines the present value

of future rewards, as a reward obtained for example k steps into the future will only be worth γk−1

times what it would be worth if gained immediately. If γ= 0 the agent is considered "myopic" and

only considers immediate rewards. If γ→ 1 the agent becomes more farsighted.

With the addition of the discount factor, the definition of a finite Markov Decision Processes is

complete and can be written as:

Definition 2.2.2 (Finite Markov Decision Process). A Markov Decision Process is a tuple<S ,A,P,r,γ>
where :

• S is a finite set of states.

• A is a finite set of actions.

• Pa is a state transition probability matrix as defined in equation (2.12),

Pss′ =P
[
St+1 = s′

∣∣St = s, At = a
]
.

• r is the reward function as defined in equation (2.10),

r (s, a) = E [Rt |St−1 = s, At−1 = a] =∑
r∈R r

∑
s′∈S p(s′,r |s, a).

• γ is the discount factor γ ∈ [0,1]

2.2.3 Value functions, policies and Bellman equation

The sequence of states or state-action pairs which the agent follows, defines the cumulative reward

that it will obtain. The value function is a description of the long-term "value" of the present state

and as it depends on the sequence to of state-action pairs to become it depends on the agent’s policy

(i.e. which actions are chosen for a given state).

As defined in subsection 1.3.1, a policy describes the behaviour of an agent. Formally, it is a

mapping from states to probabilities of selecting possible actions. For an agent that follows a policy

π at time t , π(At = a|St = s) = π(a|s) is the probability that an action a is selected if in state s for

a ∈A and s ∈S . The state value and action-state value of respectively a state s and a state-action

pair (s, a) are the expected return when starting in s or (s, a) and following the policy π. It can be

1Consider a constant bounded reward Rt =α ∀t , the sum of infinite bounded terms is non zero and constant if γ< 1 :

Gt =
∞∑

k=1
αγk−1 = α

1−γ
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written formally as :

vπ(s) = Eπ [Gt |St = s] = Eπ
[ ∞∑

k=1
γk−1Rt+k

∣∣∣∣∣St = s

]
∀s ∈S (2.14)

qπ(s, a) = Eπ [Gt |St = s, At = a] = Eπ
[ ∞∑

k=1
γk−1Rt+k

∣∣∣∣∣St = s, At = a

]
∀(s, a) ∈ (S ,A) (2.15)

where Eπ[·] =∑
a π(a|s)

∑
s′

∑
r p(s′,r |s, a)[·] is the expected value of a random variable given that the

agent follows the policy π. The function vπ(s) and qπ(s, a) are called respectively the "state-value

function" and "action-value function" for the policy π. These value functions can be estimated

from past experience through classical Monte Carlo methods. Furthermore, they are widely used in

dynamical programming as they satisfy the following recursive equation :

vπ(s) = Eπ [Gt |St = s]

= Eπ
[
Rt+1 +γGt+1

∣∣St = s
]

= Eπ
[
Rt+1 +γvπ(St+1)

∣∣St = s
]

(2.16)

This relation is the Bellman equation for vπ and is valid for any state s and policy π. It is a

consistency condition between the state s and its successor s′. All actions a, states s and s′ and

rewards are sampled from their respective sets. A similar relation can also be derived for the state-

action value function qπ(s, a):

qπ(s, a) = Eπ
[
Rt+1 +γqπ(St+1, At+1)

∣∣St = s, At = a
]

(2.17)

It is important to note that the value function vπ(s) and state-value function qπ(s, a) are unique

solutions to their respective Bellman equations. With the transition matrix defined in equation

(2.12), the Bellman equation can be linearized into matrix form. So for a finite MDP with n states

s1, s2, . . . , sn ∈S and their respective rewards r1, r2, . . . , rn ∈R following the policy π, the Bellman

equation (2.16) can be rewritten as :
vπ(s1)

...

vπ(sn)

=


r1
...

rn

+γ


P11 . . . P1n

...

Pn1 . . . Pnn




vπ(s1)
...

vπ(sn)

 (2.18)

This system of equations has a unique solution ~v∗
π = (1−γP)−1~r and can be computed in O(n3)

operations (which makes it impractical for large MDPs). The Bellman equation is central to the

agent training procedure. In the following, methods will be presented to approximate its solution.
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2.2.4 Optimality in MDPs

Reinforcement learning is an optimization problem with the goal to find the optimal policy, which

maximizes the cumulative reward in the long run. Using the functions defined in subsection 2.2.3,

the optimal policy can be derived for finite Markov Decision Processes. The value function defines

a partial ordering between policies. That is, a policy π is defined as better or equal to a policy

π′ if its expected return is higher or equal for all possible states. Formally, π ≥ π′ if and only if

vπ(s) ≥ vπ(s′) ∀s ∈S . Theorem 2 defines the optimal value and action-value functions and asserts

the existence of the optimal policy:

Theorem 2 (Optimal policy). For any Markov Decision Process [71]:

• There exists an optimal policy π∗ that is better than or equal to all other policies, π∗ ≥π, ∀π

• All optimal policies achieve the optimal value function : vπ∗(s) = v∗(s) = max
π

vπ(s), ∀s ∈S

• All optimal policies achieve the optimal action-value function : qπ∗(s, a) = q∗(s, a) = max
π

qπ(s, a),

∀s ∈S , a ∈A

Theorem 2 defines the properties of the optimal state-value function and the optimal action-

value function. The optimal state-value function v∗ also satisfies the self-consistency condition

given in equation (2.16). (Note it is not needed to reference the policy, as the optimal one is

considered in case of the optimal state-value function.) This yields the Bellman optimality equation,

which is defined for both state and state-action value functions in equation (2.19).

v∗(s) = max
a

E
[
Rt+1 +γv∗(St+1)

∣∣St = s, At = a
]

(2.19)

q∗(s, a) = E
[

Rt+1 +γmax
a

q∗(St+1, a)
∣∣∣St = s, At = a

]
(2.20)

where E[·] =∑
s′,r p(s′,r |s, a)[·], the expectation value over possible states and rewards. The Bellman

optimality equation simply states that the value of a state under an optimal policy is equal to the

expected return for the best action starting from that state, i.e v∗(s) = max
a∈A

q∗(s, a). As this equation

(2.19) has a unique solution, it allows to solve the reinforcement learning problem and thus obtain

the optimal policy. Nevertheless, the solution is not usually easy to find as similarly to (2.18) it is

a system of equations of the size of the number of states with the same amount of unknowns, but

non-linear. Therefore explicitly solving the Bellman optimality equation is rarely directly useful. In

the following methods will be described that approach the optimal solution for reasonable compute

power (for reference, the game of Backgammon has already 1020 states).

2.3 Model-free Reinforcement Learning

As mentioned in the introduction, RL methods can be divided into model-based and model-free

algorithms. In both cases, the model is not available upfront. Model-based methods explicitly learn
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a dynamics model and have many advantages. Still, in the simplest form of RL, it is implemented

model-free and also for the test case of AWAKE electron line trajectory steering with hierarchical RL,

model-free agents were be deployed. Hence a summary of how to find the Bellman optimal state

or state-action value functions described in equation (2.19) with model-free RL algorithms will be

given. (Note methods based on Monte-Carlo sampling will not be introduced here. Details on these

methods can be found in [71])

The focus of this section will be on the estimation of the value function of an unknown Markov

Decision Process with so-called Temporal difference learning. How to apply it for control π∗ will be

introduced in subsection 2.3.2.

2.3.1 Model-free prediction

Temporal difference (TD) learning is a combination of Monte Carlo and dynamic programming ideas

to estimate the value function of an unknown Markov Decision process. Formally, it is equivalent

to the case where the transition probabilities p(s′,r |s, a) are unknown. It is similar to Monte Carlo

methods as TD methods can learn directly from raw experience without a model of the environment’s

dynamics. On the other hand, it is similar to dynamic programming as it does not need to wait for a

final outcome to update its estimates. Given some experience (i.e. tuples of (s, a, s′,r )) following a

policy π, temporal difference methods update their estimate V of vπ for the non-terminal state St

occurring in that experience as follows:

V (St ) ←V (St )+α[
Rt+1 +γV (St+1)−V (St )

]
(2.21)

with Rt+1 being the reward obtained at the state St+1 and α ∈ (0,1] the learning rate. Note that with

TD methods the approximation of the value function can be updated at every step. At time t +1 the

Rt+1 +γV (St+1) is used as "target" for the updated rule with Rt+1 as the observed reward and the

estimate V (St+1). The update rule in equation (2.21) is called "TD(0)". As TD(0) bases its update in

part on an existing estimate, it is also called a "bootstrapping" method. Algorithmically, for a tabular

situation method, V (s)∀s ∈S is initialized and iteratively updated using experienced rewards. The

quantity in the brackets of the TD update rule in (2.21) can also be seen as an "error", measuring the

difference between the estimated value at St and the better estimate Rt+1 +γV (St+1). This "error" is

called the TD error in literature :

δt = Rt+1 +γV (St+1)−V (St ) (2.22)

For any fixed policy π, it has been shown that TD(0) converges towards vπ provided that the constant

step size α is small enough2. This update rule can be used to learn the state value function. For

optimal control, it is however more useful to learn the state-action value function instead of the state

2Stochastic approximation theory yields the following conditions to assure convergence with probability 1 :

∞∑
t=1

αt (a) =∞ and
∞∑

t=1
α2

t (a) <∞

24



value function. This allows to not only know the value of visited states, but also those associated

with the chosen actions in a given state in order to yield the highest return.

2.3.2 Model-free control

Previously it has been shown how to estimate value functions V in a deterministic procedure with

a complexity in O(n) with n being the number of states. Nevertheless, for model-free control it is

particularly useful to estimate the values of state-action pairs, or commonly called action values.

With a model, state values alone are enough to determine a policy as one can simply look ahead one

step and choose whichever action leads to the best combination of reward and next state. Without a

model however state values alone are not sufficient. One must also explicitly estimate the value of

each action in order for the values to be useful in suggesting a policy. Thus our goal in model-free

control is to consider methods that estimate q∗ (see equation (2.20)). There are two approaches to

estimate q∗ in model-free reinforcement learning, on-policy and off-policy. Each of the approaches

has their advantages and disadvantages.

On and off-policy learning

Model-free algorithms have no guidance on which actions to choose, instead these algorithms need

to explore. A trade-off between exploration and exploitation must be struck and on and off-policy

methods solve this dilemma differently. The former one improves the policy directly during training

(i.e. uses the action obtained with the current state-value function for the function update and

continues also with that action), whereas off-policy methods improve a different policy than used to

generate the data (i.e. in the state-value function update a different action is used). The simplest

and most common methods for both of these approaches will be presented in the following.

On-policy TD learning : SARSA

SARSA is an on-policy RL algorithm that approximates the action-state value function Q. As it

is an on-policy method, qπ(s, a) is estimated and iteratively updated for the current behaviour

policy π for all actions a and states s. Instead of state transitions, state-action pair to state-action

pair are considered. TD learning is transferable from state to state-action pairs as both deal with

Markov chains with a reward process, using the the state-action value function leads to the same

convergence properties as TD(0). Equation 2.23 shows the update rule for the iterative update in the

case of on-policy SARSA:

Q(St , At ) ←Q(St , At )+α[
Rt+1 +γQ(St+1, At+1)−Q(St , At )

]
(2.23)

The update occurs after every transition from a non-terminal state St (if St+1 is terminal, then

Q(St+1, At+1) = 0). The convergence properties of the SARSA algorithm rely on the nature of the

policy’s dependence on Q. ε-greedy or ε-soft policies [18] [67] are used during training to enhance

exploration. SARSA converges with probability 1 to an optimal policy and state-action value function

if all state-action pairs are visited an infinite number of times. In practice, for simple cases a few
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iterations on every state-action pair are sufficient to yield a good approximation of qπ. For more

complex problems this poses a considerable challenge as the set of all possible state-action pairs can

be large. Note that SARSA, as most on-policy methods, does not necessarily converge to the optimal

state-action value function q∗ as it can be trapped in local minima. An off-policy counterpart to

SARSA will be presented next.

Off-policy TD : Q-learning

The state-value function is also often referred to as Q-function - and hence the name of the off-policy

TD algorithm Q-learning. The update rule in the case of Q-learning looks like:

Q(St , At ) ←Q(St , At )+α
[

Rt+1 +γ max
a

Q(St+1, a)−Q(St , At )
]

(2.24)

The learned state-action value function Q directly approximates the optimal one q∗ independently

of the policy being followed. The behavioural policy that is used to explore however still has an

effect in that it determines which state-action pairs are visited and updated. Nevertheless, all that

is required for correct convergence is a sufficient exploration of the state-action space. Off-policy

methods can be "misguided" specifically if they favour exploitation (on-policy methods are more

conservative and hence potentially safer). This bias in exploration can be minimized by learning

two Q-functions at the same time with random updates. A method adopting this approach will be

discussed in section 2.4. Q-learning is however a simple yet powerful method to learn an optimal

action-value function q∗ in a sample efficient manner.

The data driven learning methods for the controllers for AWAKE will be based on Q-learning as

Q-learning manages to learn with a relatively small amount of policy updates. After a short excursion

to Deep Learning, Q-learning will be adapted for large states, state-action spaces and specifically for

continuous actions. The section section 2.4 will merge the off-policy model-free control methods

shown here with Feedforward Neural Networks used for function approximation in order to derive a

control method that can be used for trajectory control at the AWAKE electron line.

2.4 Deep Reinforcement Learning

In this section the tabular methods for model-free off-policy reinforcement learning introduced

earlier will be extended to problems with large action and state spaces. Even with the computational

resources available nowadays, it is not possible to find an optimal policy or value function for most

real-world problems with simple tabular methods as discussed so far. The memory needed store

the action-state pairs and the computing time in order to fill the tables would be prohibitively large.

It is inevitable to come up with algorithms that are capable to output sensible actions for states

that have not been necessarily seen before. This generalization is achieved by non-linear function

approximation methods such as Artificial Neural Networks. Supervised learning methods from

Deep Learning will be combined for example with the update rules from above. The first part of this

section will therefore introduce the subject of "Deep Learning".
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After the introduction to "Deep Learning", some of the modern Deep Reinforcement Learning

algorithms will be presented with the focus on the methods applied to the AWAKE steering problem.

2.4.1 Deep learning

Deep Learning (DL) is a branch of machine learning aiming to learn abstract representations of the

input space through complex function approximators. This class of methods rely on the construction

of multiple hierarchical layers of representations. Each layer consists of simple non linear modules

that progressively transform the initial input into increasingly abstract representations at higher

levels. In this section a brief overview of deep learning methods will be given with an emphasis on

function approximation, for an extended overview the reader is referred to [19].

Artificial Neural Networks

The earliest learning algorithms recognized today were intended to be computational models

of biological learning, creating a model of the brain. The model of a single neuron, named a

"perceptron", is the building block of artificial neural networks. A neuron is supposed to be able

to extract critical information from an input signal and produce a meaningful output response. To

simulate this behaviour, the output response of the ith perceptron is given by equation (2.25). It

takes an input vector~x of n values and outputs a scalar y ∈R.

yi = f

(∑
j

wi j x j +bi

)
(2.25)

f is a non-linear function - historically a step function f (x) = 1, if x > 0 and 0 if not, and was used

for classification. Nowadays, there is a wide variety of used non-linear functions, as for example the

linear rectifier function f (x) = max(0, x) or the hyperbolic tangent. The intrinsic parameters of the

neuron ~wi ∈Rd and b j ∈R are called respectively the weights and the bias. They are the parameters

that are learnt in order to maximize the log likelihood of the training data distribution given the

input and function approximator.

x
1

x
2

x
3

x
d

w
i1

w
i2

w
i3

w
id

n

b
i

f y
i

Figure 2.1: Schematic of the perceptron.

Similarly to the brain, an Artificial Neural Network (ANN) consists of a set of interconnected

perceptrons arranged in layers. Neurons in the same layer are not connected between themselves
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but are connected to all the outputs of the neurons of the previous layer. In the next part, the most

common neural network used for function approximation will be presented.

(Vanilla) Feedforward Networks

Deep feedforward networks also called multilayer perceptrons (MLPs), are the quintessential deep

learning models. The goal of a feedforward network is to approximate some function f ∗. It defines

a mapping ~y = f (~x,~θ) and learns the value of the parameters~θ = ({w}, {b}) that result in the best

function approximation. The term "feedforward" comes from how the information flows in the

network. It flows from~x through the intermediate layers called "hidden layers" and finally to the

output~y . It does not possess any feedback connections in which outputs of the model are fed back

to the input layer.
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Figure 2.2: Schematic of a feedforward neural network with one hidden layer.

The general supervised learning procedure will be described in the next part of this section. It is

not specific to feedforward neural networks. Any model that needs to adjust its internal parameters

to match a known and desired output can use the following learning procedure.

Gradient based learning

When the desired output of the neural network is known for a finite number of samples, it is possible

to use so-called supervised learning for training. In most cases the training of a feedforward neural

network (FNN) is done in this fashion. The output function of the neural network f (~x,~θ), where θ are

the function approximator parameters, is compared to the desired observation~y = f ∗(x) through a

loss function l (~x,~θ) that needs to be minimized. For example, maximizing the log likelihood of the

labels ~y via the parameters of the FNN and the input~x and assuming a normal distribution with

standard deviationσσσ of the observation p(~y |~x) =N (~y | f (~x,~θ),σσσ) is equivalent to the minimization

of the mean squared error cost :

l ({~x},~θ) = 1

m

m∑
i=1

||~y (i ) − f (~x(i ),~θ)||2 (2.26)
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l ({~x},~θ) =− log
m∏

i=1
p(~y (i )|~x(i )) (2.27)

=
m∑

i=1
log p(~y (i )|~x(i )) (2.28)

∝||~y (i ) − f (~x(i ),~θ)||2 (2.29)

as N (~x|~µ,σσσ) = 1
|σσσ|p2π

e

(
~x−~µ
|σσσ|p2

)2

. Furthermore, m is the number of known samples where the ground

truth function f ∗ is evaluated. Note that by assuming other prior distributions on the observations

other loss functions are obtained. This minimization of the loss function or maximization of the

log likelihood is done by updating the parameters~θ of the neural network. And the update of the

parameters can be done in a plethora of different ways. The most popular is stochastic gradient

descent where the parameters are recursively updated as :

~θ←~θ−ε~g

with ε ∈ R being the learning rate and ~g = 1
m′∇θ

∑m′
i=1 ||~y (i ) − f (~x(i ),~θ)||2, where m′ < m a smaller

subset of the known samples. The gradient of the cost function for each sample ∇θ||~y (i )− f (~x(i ),~θ)||2
can be computed with the chain rule and software frameworks are available that offer efficient

implementations of this so-called back-propagation.

Universal approximation theorem

Formally, it is possible to describe the class of functions representable by a one-hidden layer neural

network from Rd to R as :

Fw1,w2,b(x) :=
{

fw1,w2,b = wT
1 σ(w2x +b) for w2 ∈RD×d ,b ∈RD , w1 ∈RD

}
(2.30)

here σ(·) is the activation function, i.e. the non-linear function of each perceptron of the same layer.

The parameters d and D are respectively the dimensions of the input and the number of hidden

neurons. x ∈ Rd is the input, w2 ∈ RD×d are the weights of the first layer, w1 ∈ RD are the weights

of the hidden layer and b ∈RD are the biases of the first layer. For this theorem there is no need of

biases in the hidden layer nor an activation function. The universal approximation theorem is as

follows :

Theorem 3 (Universal Approximation Theorem). Let f ∗ : R→ R be a continuous bounded target

function. It can be approximated by a 1-hidden layer feed forward fully connected neural network

fw1,w2,b ∈Fw1,w2,b with an activation function σ that is not a polynomial function, such that ∀ε> 0

[27]:

sup
X∈Rd

|| f ∗(X )− fw1,w2,b(x)|| < ε

With Fw1,w2,b as described in (2.30).
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The original proof of this theorem was done for a sigmoid non-linear function and can be found

in [12]. It has then been adapted to any non-polynomial function in [59]. This theorem only states

the existence of a good network that allows to approximate any continuous function f ∗ as precisely

as needed, but it does not mean that it can be found effectively. The optimization problem (i.e. the

loss function) for neural networks is usually non-convex, thus it is not guaranteed to always find the

optimal function approximation through stochastic gradient descent. Moreover, depending on the

function needed to approximate, the number of hidden neurons D can be exponentially large (it

usually scales exponentially with respect to the input dimensions d).

2.4.2 Value function approximation

On-policy value function approximation

In the case of on-policy methods vπ or qπ are approximated via experience generated following a

policy π. Instead of using a table where the value function is stored, a parameterized functional

form with a weight vector ~w ∈Rd is used as approximator. In the most common implementation,

feedforward neural network as described earlier play the role of these function approximators. The

parameterized value and state-value functions are hence written as v̂(s, ~w) ≈ vπ or q̂(s, a, ~w) ≈ qπ
with weight vector ~w . In the supervised learning framework the best ~w is found reducing the Mean

Squared Value Error noted V E of either the state or action-state value function with respect to their

true values :

V E v (~w) = ∑
s∈S

µ(s) [vπ(s)− v̂(s, ~w)]2 (2.31)

V E q (~w) = ∑
s∈S

µ(s)
[
qπ(s, a)− q̂(s, a, ~w)

]2 (2.32)

(2.33)

where µ(s) ≥ 0,
∑

s∈S µ(s) = 1 is the state distribution representing which states are visited more

frequently. The global optimum is reached for a weight vector ~w∗ where V E(~w∗) ≤ V E(~w), ∀~w .

Stochastic Gradient Descent (SGD) can be used to find the global optimum in an iterative manner.

The weight vector is adjusted after each observation by a small amount in the direction that reduces

the mean squared error V E according to:

~wt+1 = ~wt − 1

2
α∇~w [vπ(St )− v̂π(St , ~w)]2 (2.34)

~wt+1 = ~wt − 1

2
α∇~w

[
qπ(St , At )− q̂π(St , At ~w)

]2 (2.35)

In practice, the actual value functions vπ and qπ are not available. They are therefore replaced

by target outputs Ut ∈ R following very much the arguments before with the TD learning.(For

example for an equivalent of a TD(0) of state value function : Ut ← Rt+1 +γv̂(St+1, w̃)). Note that
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this procedure does not necessarily converge to ~w∗ as it can get trapped in local minima. This is a

frequent issue with on-policy methods.

Off-policy value function approximation

Applying function approximation to off-policy reinforcement learning is significantly more compli-

cated than it is for on-policy. If the tabular value functions are simply replaced by neural networks,

the resulting RL algorithms do not converge as robustly as if trained on-policy. The reason for

this issue comes from the fact that the algorithm seeks to learn the value function for an unkown

target policy π given data due to a different actual policy, often called the behaviour policy b and

hence subsequent actions.This needs to be taken into account for Stochastic Gradient Descent

when updating the weights for the neural networks approximating the value function v̂π or q̂π by

introducing importance sampling.

~wt+1 = ~wt − 1

2
αρt∇~w

[
U v

t − v̂π(St , ~w)
]2 (2.36)

~wt+1 = ~wt − 1

2
α∇~w

[
U q

t − q̂π(St , At ~w)
]2

(2.37)

where ρt is the importance sampling ratio. The update targets for the state and state-action value

functions U v
t and U t

q are:

U v
t = Rt+1 +γv̂(St+1, w̃) (2.38)

U q
t = Rt+1 +γ

∑
a
π(a|St+1)q̂(St+1, a, w̃t ) (2.39)

Importance sampling is a general technique for estimating expected values under one distribution

given samples from another:

ρt = π(At |St )

b(At |St )
(2.40)

As can be seen in equation 2.37, importance sampling is only required if learning the state value

function directly. For Q-learning where the state-action value function is approximated, it is not

needed. Still the fact that the behaviour policy does not equal the target policy makes off-policy

learning prone to divergence.

Sample-efficiency and promises with Off-policy learning

If the training is typically more unstable with off-policy methods when using function approximation,

why are many of the most performing RL algorithms relying on off-policy algorithms?

Off-policy methods free behaviour from the target policy and this allows to learn from or "replay"

past experience generated by humans, other optimisation or control algorithms or other historical

data. It also allows parallelization when it comes to training. This so-called "Experience replay"
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is what makes off-policy learning truly sample-efficient and so appealing. Some of the remaining

issues with off-policy Q-learning in DRL can be overcome by clever tricks. And some of these tricks

will be discussed next.

Double Q-learning with Experience Replay

The deep Q-network (DQN) agent proposed by Mnih. et al. [48] uses deep neural networks to

approximate state action values that are then updated off-policy by Q-learning. It uses Experience

Replay [43] to sample transitions with a mixture of past policies. However, the algorithm sufferd

from overestimating the action value function due to the maximisation steps in the updates (see

equation (2.24)). This issue was mitigated by Silver et al. by introducing Double Q-learning [24].

In the Double DQN (DDQN) algorithm two value functions are learned by assigning each

experience to randomly update one of the two of them, parameterized with weights ~w and ~w ′. For

each update, one set of weights is used to determine the greedy policy and the other to determine

its value. The targets in the DDQN algorithm are written as :

U Dq
t = Rt+1 +γQ(St+1, argmax

a
Q(St+1, a, w̃), w̃ ′) (2.41)

Greedy policy is used with the weights w̃ . The second set of weights w̃ ′ is used to evaluate the value

of the policy. The roles of the two value functions (i.e. networks) are switched periodically. DDQN

uses experience replay like the original DQN algorithm and stores the experience as (St , At , Rt+1,

St+1) in replay memory. For weight updates a random mini-batch of transitions is sampled from the

replay buffer to calculate the gradients.

This algorithm improved the state-of-the-art performance on Atari games when introduced and

has since been applied to a wide range of control problems. Some of the ideas in DDQN were also

used for the algorithm to solve the AWAKE trajectory steering problem. Still DDQN or Q-learning

in its simplest is restricted to discrete action space. The methods described next will allow also for

continuous action space.

2.4.3 Policy Gradient Methods

Instead of defining the policy through maximising a value function, the policy can be learned directly.

The following notation for the parametric policy will be used: π(a|s,~θ) = P
{

At = a
∣∣∣St = s,~θt =~θ

}
,

which corresponds to the probability of selecting an action a at time t given that the environment

is in state s. ~θ ∈ Rd ′
is the policy’s parameter vector. Policy gradient methods still need the value

function as performance measure in the parameter or weight update rule:

~θt+1 =~θt +α∇J (~θt ) (2.42)

where J (θt ) = Evπθt
(s). The gradient ∇J (θt ) can be estimated with the Policy Gradient Theorem:
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Theorem 4 (Policy Gradient Theorem). Let π(a|s,~θ) be a differentiable policy, then for any policy

performance measure J , the policy gradient is [71]:

∇~θ J (θ) = Eπ~θ
[
∇~θ logπ(a|s,~θ)qπ~θ (s, a)

]
Actor-Critic algorithms

Actor-Critic algorithms merge function approximation for value functions as in Q-learning with

policy gradient methods to approximate the policy. This class of algorithms was originally presented

by Konda and Tsitsiklis in 1999 [34]. The parameterized policy is called "actor" and the value function

approximation "critic". The actor π(a|s,~θ) learns its parameters ~θ by stochastic gradient ascent

as shown in (2.42). Following Theorem 4, .instead of using the true value function qπ~θ (s, a), the

value function q̂π~θ (s, a, ~w) approximated by the critic is used, see Fig. 2.3. Thus the policy gradient

becomes:

∇~θ J (θ) = Eπ~θ
[
∇~θ logπ(a|s,~θ)q̂π~θ (s, a, ~w)

]
(2.43)

The critic estimates the state-action value function and uses standard TD learning methods to

update its parameters.

s

s

a

Actor Critic

Policy gradient:

Figure 2.3: Actor-Critic structure.

As the Actor-Critic algorithm does not require the maximization step in the update rules or

for selection of the next action, it is also suitable for continuous action space. The TD method

for updating the state-value function is usually Q-learning and hence the training off-policy with

the additional advantage of experience replay, see [41, 74] for some of the famous Actor-Critic

algorithms. (Note depending on how the value function targets are defined it is also possible to train

on-policy.)

33



2.4.4 The Twin Delayed Deep Deterministic policy gradient algorithm (TD3)

The Twin Delayed Deep Deterministic Policy Gradient Algorithm (TD3) is an actor-critic method

that uses clipped double Q-learning to deal with the overestimation bias when approximating the

Q-function. It was developed by Fujimoto et al [17]. It also mitigates function approximation errors

by delaying policy updates to reduce the error generated by each update and improve the overall

performance.

Clipped Double Q-learning is similar to the standard double Q-learning presented in subsec-

tion 2.4.2, where two approximations of the action value function are alternatively learnt with two

sets of parameters w and w ′. However, instead of using one or the other q-function to choose an

optimal action, the two functions are compared to chose the smaller of the two for the update. In

clipped double Q-learning the target for the weight update becomes:

UC Dq
t = Rt+1 +γ min

φ=w̃ ,w̃ ′
q(St+1,πθ̃(St+1),φ) (2.44)

where θ̃, w̃ and w̃ ′ are the target parameters that differ from their counterparts θ, w and w ′ - the

parameters of the estimation of the policy and value functions. While the issue of overestimation

is removed, underestimation bias might occur. This is however preferable to overestimation as it

does not propagate through the policy update to subsequent targets. Another issue that vanilla

Actor-Critic methods encounter, that TD3 attempts to mitigate, is the high variance in its estimates.

High variance in estimates produce noisy gradients for policy updates which reduces learning speed.

The variance is inherent to the Temporal Difference learning and is due to the fact that in a function

approximation setting, the Bellman equation is not exactly satisfied and has a residual TD error

in every target (see (2.22)). In [17] it was shown that the variance can be reduced by delaying the

update through a "slow update" of the target network as :

w̃ ← τw + (1−τ)w̃ (2.45)

where w̃ are the new parameters of the target, w the parameters of the current network and τ ∈ [0,1].

Note that this update rule is used for all three sets of parameters, approximating the target actor

network and the two target critic networks. By delaying the policy updates, the likelihood of repeating

updates with respect to an unchanged critic is reduced. The resulting algorithm is given in Algorithm

1.
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Algorithm 1 TD3 algorithm

Initialize actor network πθ and critic networks qw and qw ′ with random parameters θ, w and w ′

Initialize target networks with current parameters of actor and critic networks θ̃← θ, w̃ ← w and
w̃ ′ ← w ′

Initialize replay buffer B
for t=1 to T do

Select action with exploration noise a ∼πθ(s)+ε,
ε∼N (0,σ) and observe reward R and new state s′

Store transition tuple (s, a, R, s′) in B
Sample mini-batch of N transitions (s, a, R, s′) from B
ã ←πθ̃(s′)+ε, clip(N (0,σ),−c,c)
UC Dq ← R +γ min

φ=w̃ ,w̃ ′
q(s′, ã,φ)

Update critics : φ← argmin
φ

1
N

∑
(UC Dq −q(s′, ã,φ))2, for φ= w̃ , w̃ ′

if t mod d = 0 then
Update θ by deterministic policy gradient : ∇θ J (θ) = 1

N

∑∇a q(s, a; w)|a=πθ(s)∇θπθ(s)
Update target networks :
θ̃← τθ+ (1−τ)θ̃
w̃ ← τw + (1−τ)w̃
w̃ ′ ← τw ′+ (1−τ)w̃ ′

end if
end for

In order to mitigate the deterministic policy to overfit narrow peaks in value estimate, clipped

noise ε= clip(N (0,σ),−c,c) is added to the action as ã ← a+ε. Where c is a symmetric action bound.

This noise smooths the target policy and promotes exploration. Furthermore, it can also improve

the resulting controller in stochastic domains.

The TD3 algorithm was used as the base algorithm to implement Hierarchical Reinforcement

Learning for AWAKE trajectory steering.

2.5 Hierarchical Reinforcement Learning

In this final section, the hierarchical reinforcement learning (HRL) will be briefly summarised. More

on the actual implementation will come in later chapters.

As mentioned already in the introduction chapter, the core idea of HRL is to subdivide a long

horizon reinforcement task into a hierarchy of subproblems and the result can be seen as learning or

approximating a hierarchy of policies. The long-horizon problem is divided into shorter tasks to be

solved by the lower policies, referred to as temporal abstraction. It was shown that this allows to solve

complex tasks that cannot be solved by simpler algorithms [28][4]. Several studies explained that the

improved performance comes from an improved exploration strategy induced by the higher-level

policy [52] [30].
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2.5.1 Formalism

The hierarchical structure can be implemented in several manners, but all of them contain one

agent per policy that learns an approximation of its optimal policy. Each agent attempts to maximize

the cumulative reward over its trajectories in state and action space. The expected length of these

trajectories is what is called commonly the "time-horizon". If the various trajectory spaces at

different levels are large with a long time horizons, then exploration can be difficult for methods

using the standard reinforcement learning approach with a single policy. A practical example of how

a long-term horizon task can be decomposed into simpler tasks will be given with the description

of tasks for baking a cake. The long-term horizon task would be "Bake a cake". This task can be

broken down into "Buy ingredients", "Bring them to the kitchen", "measure quantity needed" and

so on. The level of hierarchical decomposition is arbitrary and varies from problem to problem (for

example one could go to another abstraction level where moving each limb is a task).

To simplify the notation, only two levels of policy will be considered. (It can however easily

be extended to an arbitrarily large number of policies depending on the design of the problem.) A

higher-level policy noted hi directs one or more lower-level policies noted lo that directly interact

with the environment. In the most common and simplest framework, the higher-level policy chooses

a new high level action (i.e. new task) every c steps. The tunable hyperparameter c permits the

lower level agents to accomplish the task in this discrete amount of steps. There are two hierarchical

reinforcement learning frameworks, the option and the goal-conditioned framework. In the options

hierarchy, the high-level action is a discrete choice between lower policies that selects which of

the n trained lower-level policies is used for the next c steps. The goal-conditioned framework

trains a single goal-conditioned lower policy and the higher level action is a state of the lower-

level policy that the latter is incentivised to reach. The AWAKE electron line steering controller

was implemented with goal-conditioned hierarchy RL. Thus the rest of this introduction will only

consider the goal-conditioned framework.

The policies in HRL have a strong time dependence, formalised with Semi-Markov Decision

Processes (SMDP). SMDPs are similar to Markov Decision Processes as discussed in subsection 2.2.1

with the addition of the concept of time over which an action is executed. For an initial state st ∈S
at time t , the transition probabilities of the SMDP are joint distribution:

P(st+c ,c|st , a′
t ) =P(st+c |st , a′

t ,c)P(c|st , a′
t ) (2.46)

where c is the number of timesteps for which the action a′
t is executed. Note that for the AWAKE goal-

conditioned case c is fixed so P(c|st , a′
t ) = 1, but that is not necessarily the case for more complex

problems or other implementations of HRL. The higher and lower-level agents for the AWAKE case

are Actor-Critic agents, implemented as TD3. The training of both high and lower policies is done

by minimizing the TD error(2.22) for both the high and low policy simultaneously. The resulting

TD errors become (note that in reality Double Q-learning is used. For practical reasons only simple

Q-learning is shown below):
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δt (st , g t , at ,Rt , st+1, g t+1) = (
Qlo(st , g t , at )−Rt −γQlo(st+1, g t+1,πl o(st+1, g t+1))

)2 (2.47)

δt (st , g t ,Rt :t+c−1, st+c ) = (
Qhi (st , g t )−Rt :t+c−1 −γQhi (st+c ,πhi (st+c ))

)2 (2.48)

where Ql o(st , g t , at ) and Qhi (st , g t , at ) are respectively the lower and higher-level state-action value

functions. Here the goal g t is the output action of the higher-level policy g t =πhi (st ) and is part of

the state space g t ∈S of the lower-level agent. Furthermore, Rt :t+c−1 =∑c−1
i=0 Rt+i is the sum of the

environment rewards obtained by the lower-level policy over c steps.
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Chapter 3

Formulating Hierarchical Reinforcement
Learning for AWAKE trajectory steering

In this chapter a description of the real-world problem of automatic trajectory correction at the

AWAKE electron line with a data-driven hierarchical controller will be given with the focus on

involved equipment and layout. Specificities of how to formulate the AWAKE steering control

problem to fit into the Hierarchical Reinforcement Learning framework will also be discussed. The

obtainable performance with such a controller will follow in the next chapter.

3.1 Trajectory correction at the AWAKE electron line

AWAKE is a facility at CERN for proton-driven plasma wakefield acceleration experiments [22] [50]

[61]. It receives protons at 400~GeV from the CERN SPS. The AWAKE electrons are generated in a

photocathode RF gun that produces bunches of approximately 1.2 ·109 electrons at 5 MeV/c, which

are then accelerated up to 10-20 MeV/c by a linac booster and transported via a 12 m transfer line

to the accelerating plasma cell [66], where their trajectory joins the proton trajectory. The AWAKE

electron line, when run in standalone, offers an ideal set-up for testing advanced control algorithms

due to the high repetition rate of 10 Hz and the low damage potential in case of beam loss with the

low energy and intensity electron beams. HRL was introduced for electron trajectory control. An

overview of the electron line and its equipment is given in Fig. 3.1.
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Figure 3.1: Layout of the electron line of the AWAKE facility. It contains 11 Beam Position Monitors
and 11 trajectory correctors. An example trajectory measured at the BPMs (as relative position to
the design trajectory) is shown as well [65].

The horizontal and vertical electron beam position is measured by 11 Beam Position Monitors

(BPMs) along the electron line. These monitors are able to measure the position of a single electron

bunch with a charge of 0.1 to 1 nC and a resolution of less than 10 µm rms [45]. To compensate for

static errors such as field or alignment errors of the magnets along the line, trajectory correctors

are placed after every BPM. The corrector magnets can be used up to a strength of 4.34 ·10−4 Tm

corresponding to an angle maximum of 924.6 mrad per magnet [66]. The HRL controller was limited

to use maximum ±300 µrad per time step.

3.1.1 Description of the AWAKE environment

To fit with the most common RL frameworks, the control problem needs to be formulated as so-

called environment using e.g. the framework OpenAi Gym [6]. This framework defines an interface

between RL agents and RL problems. Implementing the methods of a Gym environment allows

full separation of problem specific information (e.g. state and reward definition and how to apply

the action) and algorithm logic. The main method in Gym that the defines the interaction between

agent and problem is the method step(a), which returns the next state and reward by applying the
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action a. For test purposes and specifically tuning of algorithms, a simulated environment for the

AWAKE trajectory steering problem is available. The simulated environment uses response matrices

calculated with MAD-X [57] based on a user-selected optics. Previous studies have demonstrated

that the agents trained in simulation with this particular environment transfer well to the real

hardware [31], testifying to the excellent status of the AWAKE model.

Adequate state or "observable" information needs to be provided. The state needs to have

the Markov property, i.e. be memoryless, as discussed inchapter 2 and section subsection 2.2.1.

The obvious multi-dimensional state for the task of trajectory steering is the horizontal or vertical

position measured at each BPM noted respectively {x(i )
t } or {y (i )

t }, where (i ) indicates the BPM index.

The goal of the control task is to steer the electrons such that their position at the various BPMs

matches a reference trajectory given by a user and which is written in a similar fashion {x(i )
ref,t } and

{y (i )
ref,t }. (Note the position and reference positions here are relative positions with respect to a design

trajectory in the horizontal and vertical plane) The multi-dimensional states are written as vectors:

sh
t = [x(0)

t , x(1)
t , . . . , x(9)

t , x(0)
ref,t , x(1)

ref,t , . . . , x(9)
ref,t ] (3.1)

sv
t = [y (0)

t , y (1)
t , . . . , y (9)

t , y (0)
ref,t , y (1)

ref,t , . . . , y (9)
ref,t ] (3.2)

Note that in the formulation of the state in (3.1) and (3.2) there are only 10 out of the 11 BPMs of the

transfer line. The missing BPM corresponds to the first one named "BPM.430028", which does not

have any upstream correctors.

The reward signals for horizontal and vertical trajectory steering tasks are simply the root mean

square (RMS) errors between the measured and the reference position times (-1). The factor (-1)

is coming from the fact that RL needs to maximise the reward, where in this task we would like to

minimise the RMS, i.e r (st ) → 0. The reward for trajectory steering for n BPMs is defined as:

r h
t (st ) =−

√√√√ 1

n

n−1∑
i=0

||x(i )
t −x(i )

ref,t ||2 (3.3)

r v
t (st ) =−

√√√√ 1

n

n−1∑
i=0

||y (i )
t − y (i )

ref,t ||2 (3.4)

where n = 10 in the AWAKE case. The actions are 10-dimensional vectors in the horizontal or vertical

plane with bounds on the relative deflection angle of ±300 µrad:

ah
t = [θh,(0)

t , . . . ,θh,(9)
t ] (3.5)

av
t = [θv,(0)

t , . . . ,θv,(9)
t ] (3.6)

The actions are relative settings, i.e. at each time step the actions defined by the agent are added to

the existing magnet settings.
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3.2 Hierarchical RL agent

The previous paragraphs introduced the set-up suitable for basic RL agents. The extensions to

hierarchical reinforcement learning (HRL) for the case of the AWAKE trajectory steering problem

will follow in this section. As introduced insection 2.5, HRL divides the main task into a hierarchy of

subtasks learned by different agents. The higher level task is more abstract and has a longer time

horizon. The policies of the higher and lower level agents interact with each other, as it is the higher

level policy that defines the subtasks or goals of the lower ones to solve. The chosen HRL algorithm

for the AWAKE agent was inspired by the implementation of O.Nachum, who proposed together

with others a data efficient off-policy hierarchical reinforcement learning algorithm called HIRO [51].

An important ingredient will be so-called off-policy correction to tackle the initially non-optimal

policies and associated rewards of the lower level agents for potentially correct goals from the higher

level agent. Off-policy correction and its implementation will be described in detail at the end of the

section.

3.2.1 HIRO architecture for AWAKE

The proposed hierarchical structure consists of a two layer architecture where two policies are learnt

at the same time. Only the lower level agent interacts with the AWAKE environment through the

actors. The higher level agent attempts to solve the problem of planning the optimal trajectory in

state space S , which the lower controller needs to go through via subtasks. In practice, the goals

given by the higher agent are reference trajectories, noted as {g (i )
t }, with i indicating the position at

the i th BPM. These goals are the output of the higher level policy or its actions. And these goals

become additional input of the lower level agent or a part of the observables. The 10 dimensional

goal vector replaces the original reference trajectory of the lower level agent as described above in

the state space. Effectively, it means that the lower agent has no information on the ultimate goal

(i.e. the user-defined reference trajectory). It only follows the goals indicated by the higher agent.

The states of the higher and lower agent are shown respectively in equations (3.7) and (3.8) (For

simplicity, only the horizontal steering problem will be considered in the text. It can however be

easily extended to the vertical plane):

sH
t = [x(0)

t , x(1)
t , . . . , x(9)

t , x(0)
ref,t , x(1)

ref,t , . . . , x(9)
ref,t ] (3.7)

sL
t = [x(0)

t , x(1)
t , . . . , x(9)

t , g (0)
t , g (1)

t , . . . , g (9)
t ] (3.8)

This behaviour of the lower level agent of not having the knowledge of the actual reference

trajectory and the higher agent not being able to act directly on the environment is what constitutes

the core of HRL. It permits that the higher level agent only focuses on longer time horizons without

needing to take care of how to operate the trajectory correctors, whereas the lower agent can

specialize on controlling the trajectory correctors.

The actions of the higher and lower level agent are written respectively in equations (3.9) and
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(3.10), where the θh,(i )
t is the deflection angle of the i th trajectory corrector as discussed in the

previous section:

aH
t = [g (0)

t , g (1)
t , . . . , g (9)

t ] (3.9)

aL
t = [θh,(0)

t , . . . ,θh,(9)
t ] (3.10)
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Figure 3.2: Temporal evolution during c steps of the architecture of the two level hierarchical policies
learning off-policy.

Not both agents operate at every timestep. The higher level agent outputs an action every c

timesteps only. This allows the lower agent to complete a subtask given by the higher agent between

two of its actions. As mentioned in the section 2.5, c is a hyperparameter that needs to be tuned. A

schematic of the interactions of the HIRO algorithm are given in Fig. 3.2.

3.2.2 Goal and transfer function

The higher level agent’s observation are the beam position at every BPM {x(i )
t } and the user-defined

reference trajectory x(i )
ref,t . Based on these observations, it outputs a goal every c steps ~g t ∈Rn , with

the dimension n corresponding to the number of BPMs. This goal can either be relative or absolute

depending on the design of the controller. A relative goal - most common in the field of robotics

control - corresponds to for example the relative position of the beam with respect to a target value

and is updated every time that the beam position changes. On the other hand, the absolute goal is a

"quasi-"reference trajectory in the same space as the measured beam position and does not change

as the position of the beam evolves in time. The relation between the relative goal at the i th BPM

g (i )
rel,t and his absolute counterpart noted g (i )

abs,t is as follows:
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g (i )
abs,t = x(i )

t + g (i )
rel,t (3.11)

Depending on the control task, either the relative or absolute goal is more suitable. For the AWAKE

trajectory steering case, the performance with both goal formulations is shown in section A.3. A

so-called transfer function h(x(i )
t , g (i )

t , x(i )
t+1) transforms the higher level goals from one time step to

the next such that also in the case of a relative goal the lower level agent does not have to deal with a

moving target while solving the tasks during c steps.

h(x(i )
t , g (i )

t , x(i )
t+1) = x(i )

t + g (i )
t −x(i )

t+1 = g i
t+1 (3.12)

When working with an absolute goal h becomes the identity function h(x(i )
t , g (i )

t , x(i )
t+1) = g (i )

t = g (i )
t+1.

In summary, every c steps a new goal is sampled from the higher level policy ~g t =πH(aH
t |sH

t ) that

is transmitted to the lower level policy. Then, during the c −1 remaining timesteps, this goal is

propagated in time by the transition function h(x(i )
t , g (i )

t , x(i )
t+1) = g (i )

t+1.

3.2.3 Reward signal

The reward formulation differs for the two agents as they specialize in different tasks. The lower

level reward is given in equation (3.14) and corresponds to the RMS error between the goal and the

next measured trajectory at the different BPMs in case of an absolute goal (with equation (3.12) it

can easily be formulated for relative goals).

r H
t (~xt ,~xref

t ) =
t+c−1∑

j=t
R j (3.13)

r L
t (~xt ,~g t ,~xt+1) =−

√√√√ 1

n

n−1∑
i=0

||g (i )
abs,t −x(i )

t+1||2 (3.14)

The higher level agent receives the reward feedback every c steps and it is simply the environment

reward accumulated during those c steps, see equation (3.13), where Rt is the environment reward

obtained at time t as shown in (3.3).

3.2.4 Experience replay

Both agents, the higher and lower level ones, are implemented as algorithms based on the state-of-

the-art RL off-policy actor-critic algorithm TD3 described in detail in subsection 2.4.4. The higher

and lower level agents have different transitions at different update frequencies and therefore also

need separate replay buffers. The experience for the lower agent is stored every timestep t and

consists of (~xt , ~g t , ~aL
t , r L

t ,~xt+1, h(~xt ,~g t ,~xt+1)), where aL
t is the action of the lower level agent (3.10).

For the higher level agent, the experience is stored every c steps and contains all the c transitions,

that is (~xt :t+c−1, ~g t :t+c−1, ~aL
t :t+c−1, Rt :t+c−1, st+c ). The lower level actions are needed in the high level

replay buffer for off-policy correction.
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3.2.5 Off policy correction

During training, the change in the behavioural policy of the lower level agent creates a non-stationary

problem for the higher level policy to solve. Old off-policy experience from the replay buffer might

not be consistent anymore with lower level transitions for the same goal but an updated policy

(e.g. the lower level agent’s untrained policy might not reach the high level goals initially and the

respective reward for the high level agent would not be representative for the goals it had issued).

To still profit from the replay buffer and solve the issue of non-stationarity, Nachum et al. [51] and

concurrently Levy et al. [40] proposed to relabel the goals~g t given by the higher agent when replaying

experience. The goal relabelling or off-policy correction method that gave the best performance for

the AWAKE case follows the approach by Nachum et al. [51].

The goals ~g t in the replay buffer of the higher level agent are relabelled every time a mini-batch

is sampled. The relabeled goal, noted g̃ t , is chosen to be the one that best fits the past low level

behaviour at :t+c−1 ∼µL(~xt :t+c−1,~g t :t+c−1)) but using the current low level policy. In other words, a

new goal g̃ t must be found that maximizes the likelyhood or log likelyhood of the played actions

following the probability function µL(at :t+c−1|~xt :t+c−1, g̃ t :t+c−1)). Once g̃ t is determined, it can

be propagated to c − 1 other learning steps with the transition function (3.12). Maximising the

log likelihood corresponds to maximising the negative MSE assuming a Normal distribution with

constant variance:

logµL(at :t+c−1|~xt :t+c−1, g̃ t :t+c−1)) ∝−1

2

t+c−1∑
i=t

||ai −µL(~xi , g̃i ))||22 + const (3.15)

In practice, (3.15) is maximised by computing it for a number of sampled candidate goals {g̃c,t }

and then choosing the goal maximizing the probability instead of truly optimising (3.15). Candidate

goals are intuitively situated near ~xt+c −~xt for a relative goal and around g t for an absolute one.

Thus, the candidate goals are sampled from a Normal distribution centred on these values. To

this list of candidates the goal g t of the past version of the lower behavioural policy is added. The

optimisation problem is formulated as:

g̃ t = arg max
g∈[g t ,{g̃c,t }]

− 1

2

t+c−1∑
i=t

||ai −µL(~xi , g ))||22

g̃c,t ∼N (~xt+c −~xt ,σ) if goal is relative

g̃c,t ∼N (g t ,σ) if goal is absolute

(3.16)

where g̃c,t are the sampled candidate goals. For the AWAKE problem, the number of candidates

sampled was limited to 9, in order to have a total of 10 candidates counting the past goal g t in

addition. The standard deviation σ was chosen to be half the action range of the higher level agent.
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Chapter 4

Results with Hierarchical Reinforcement
Learning for AWAKE Steering

This chapter will summarise the results achieved for AWAKE electron line steering with a Hierarchical

Reinforcement Learning algorithm implemented as part of this master project. The obtained

performance will also be compared to a standard RL algorithm not using hierarchical policies. The

code used to generate all the results can be found at https://gitlab.cern.ch/borodrig/hrl_

awake.

4.1 AWAKE electron line steering with TD3

The training of RL agents is episodic. An episode corresponds to new initial conditions and hence

a new problem to solve. An episode ends when either the maximal amount of steps is reached or

when the task is solved (i.e. the reward reaches a certain threshold).The maximum allowed number

of steps per episode for the AWAKE study was set to 50. An episode was considered completed

successfully if the reward signal reached the threshold value of negative RMS r h,v
t >−1.6 mm wrt a

reference trajectory. Throughout the training, the agent was evaluated every 2 episodes for 1000

episodes. During evaluation the action noise, that helps exploration during training, noted as ε in

Algorithm 1, is set to 0 and no policy parameter updates occur. The important performance metric

for the trained agent are success rate of reaching the target (i.e. obtaining a reward above threshold)

and number of steps the agent needs to reach the target. For the AWAKE electron line steering case,

the final agent is supposed to reach the reference trajectory within a tolerance window with a success

rate of ideally 100 % within one or maximum two iterations. During training itself, the number

of training steps or iterations to reach a "good-enough" agent are of importance. The number of

samples to train an agent should be as low as possible. The AWAKE trajectory steering problem can

be efficiently solved with TD3 (or similar) as shown in [31]. The achievable performance with TD3

will be the bench mark for HRL.
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4.1.1 Success rate with TD3 for AWAKE trajectory correction

The agent’s success rate is computed as :

Number of successful episodes

Total number of evaluation episodes

For the AWAKE case, the success rate corresponds to the ratio of episodes out of 1000 episodes where

the agent reaches a negative RMS error from the reference trajectory superior to −1.6 mm. Fig. 4.1

shows the results for the training of TD3 correcting the horizontal and vertical plane. After about 25

episodes the agents can correct to reference for any random initial trajectory.
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Figure 4.1: Success rate during training of TD3 for AWAKE electron line steering in the vertical and
horizontal plane with evaluation on 1000 episodes per data point.

4.1.2 Mean number of iterations with TD3 for trajectory correction

For the agent to be useful when controlling the trajectory of the AWAKE electron line it needs to

be able to complete the task in the minimum amount of time. The maximum possible is set to 50

iterations as defined in the environment. The evolution of number of iterations required to solve a

task during TD3 training noted nstep is shown as average for a 1000 evaluation episodes in Fig. 4.2.
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Figure 4.2: Mean number of steps during training of TD3 electron line steering in the vertical and
horizontal plane with evaluation on 1000 episodes per data point.

As training evolves, the number of steps that are needed in order to solve the task decreases

and reaches eventually nstep = 1, like the classical SVD method for the same problem introduced in

subsection 2.1.2. The advantage of this method compared to SVD is however that this algorithm can

also be used for non-linear systems.

4.2 Results with Hierarchical Reinforcement Learning

The same performance metrics as for TD3 will now be applied to HRL. For the following result

plots, the agents were trained 10 times to test reproducibility of the results. Thus the plots show

an average over 10 training runs. As mentioned before, the algorithms to implement the lower

and higher level RL agents are based on TD3. TD3 comes with its own set of hyperparameters.

The hyperparameters for the lower and higher level TD3 algorithms are the same as in the non-

hierarchical set-up described earlier. To help convergence, the action noise ε follows a schedule

such that is reduced during training as a function of the episode number. More information on the

action noise can be found in the appendix A.2. The sensitivity to the HIRO hyperparameter c and

the number of parameters for the actor and critic networks as well as the importance of off-policy

correction were studied. Finally also using pre-trained lower level agents was tested. The results in

the following are only shown for the vertical plane. HIRO behaves similarly on the horizontal plane.
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4.2.1 Performance of HRL for AWAKE trajectory steering

HIRO was implemented from scratch as part of this master thesis. The resulting algorithm could be

successfully tuned to learn trajectory steering for 10 degrees of freedom with acceptable performance.

Fig. 4.3 shows the training evolution for the most performing hyperparameters for an example

training run. The number of required iterations to reach the target as function of episode number

(which is hear the tolerance window of acceptable negative RMS value) is shown on the upper plot

and the initial and final negative RMS values per episode on the lower plot.
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Figure 4.3: Number of training steps and initial and final negative RMS at every episode.

Figure 4.4 shows a comparison between TD3 and HIRO for the training evolution of trajectory

correction at AWAKE. HRL successfully learns to correct the vertical plane of the AWAKE electron

line. Nevertheless, TD3 learns to correct the line faster and more reliably (i.e. for TD3 the success

rate remains at 100 % after the initial exploration phase). Also, the required number of iterations for

successful correction remains at nstep = 2, which is acceptable but not as good as TD3. Note that the

comparison between TD3 and HIRO was carried out with the optimum hyperparameters for HIRO.

Relative goals were used instead of absolute ones, see appendix A.3 for details on goal configuration.
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Figure 4.4: Performance during training of HIRO and TD3 on vertical trajectory correction at AWAKE.
The results are the average of 10 training runs. Both agents learn to correct the AWAKE electron line
trajectory successfully. TD3 is however faster and trains more consistently. Due to the hierarchical
set-up for HIRO with parameter c, the required number of iterations for successful correction
remains at minimum nstep = 2.

4.2.2 The HIRO hyperparameter c

As discussed previously, the lower level agent issues new actions at every environment time step,

whereas the higher level one only every c time steps. The optimal value for parameter c is task

dependent and, as will be seen, has a high impact on performance. The parameter c overrides to

some extend the episode length limit set in the environment and defines how long the lower level

agent is allowed to take to solve the task given by the higher level agent. Figures 4.5 and 4.6 show the

comparison of performance for different parameters c as training evolves. The highest performance

is achieved with c = 2, which intuitively fits with the observation of TD3 being able to correct the

line within 1 iteration after training. Figure 4.6 would suggest that potentially c = 1 would further

reduce the number of iterations per episode. However, the current implementation of HIRO does

not allow to set c = 1 to enforce different latencies between the lower and higher level interactions.

In a future release it will be possible to test also this configuration.
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Figure 4.5: Comparison of success rate for different values of c as training evolves for HIRO. The
results are an average over 10 training runs.
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Figure 4.6: Comparison of number of iterations during training to correct the AWAKE electron line
in the vertical plane for different values of c with HIRO. The results are an average over 10 training
runs.

4.2.3 Off Policy Correction

Off-policy correction presented in subsection 3.2.5 proposed a relabelling of past high level actions

~aH
t =~g t when sampled for experience replay. These relabelled goals g̃ t maximize the log likelihood

of the sequence of low level actions for the current behavioural policy µL(at :t+c−1|~xt :t+c−1, g̃ t :t+c−1)).

Fig. 4.7 shows the success rate during training for vertical AWAKE trajectory steering with and

without off-policy correction (OPC) and confirms the importance of relabelling past goals. Not only

does the training with OPC reach a higher overall performance (99.85 % instead of 94 %) it also trains

more consistently, indicated by the lower spread.
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Figure 4.7: Success rate during training with and without off-policy correction. The results are an
average over 10 training runs.

4.2.4 Pretraining Lower Level Agents

One of the appealing aspects that motivated the investigation of hierarchical reinforcement learning

for CERN accelerators was the potential to reuse pre-trained agents for very specific tasks and allow

for sophisticated hierarchies to run complicated accelerator systems. To test whether this could in

principle work with HIRO, a pre-trained lower level agent (trained with standard TD3) was joined

with an untrained higher level agent. Figures 4.8 and 4.9 show the performance evolution during

training. Surprisingly, the overall performance does not profit at all from pre-trained lower level

agents. Preliminary investigations suggest that the goals issued by the higher level agent do not

sufficiently well resemble the user-defined reference trajectories (which a stand-alone low level

agent would get as part of the state information), but the goals rather exaggerate the differences

of the current trajectory to the reference one. And hence the pre-tained mapping from state to

action in the lower level agent, does not bring any advantage rather the opposite. A future study will

investigate this further and potentially improve the algorithm to benefit from pre-trained agents.
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Figure 4.8: Success rate during training with and without pre-trained lower level agent for AWAKE
vertical trajectory correction in the electron line. The results are an average over 10 training runs.
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Figure 4.9: Mean number of iterations during training with HIRO to correct vertical AWAKE trajectory
with and without a pre-trained lower level agent. The performance with pre-training is significantly
poorer. The results are an average over 10 training runs.

4.2.5 Impact of Neural Network Size on HIRO performance

As final investigation and also for completeness, the impact of the number of neurons of actor and

critic networks in the higher and lower level agents was investigated. It has been suggested that the

neural network size should scale exponentially with respect to the dimension of the output in order

to reduce the generalization error [25] [63]. Fig. 4.10 shows the results for the success rate as function

of episode during training for number of neurons per hidden layer of nhw = 300, 900 and 1500.

Whereas the needed computing power for training the largest size agents increases significantly, the

performance rather degrades. All the results above were therefore obtained with 300 neurons per

hidden layer in the TD3 actor and critic networks with 2 hidden layers each.
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Figure 4.10: Success rate during training HIRO for AWAKE electron line steering with nhw = 300, 900
or 1500 neurons per hidden layer in the actor and critic networks. The results are an average over 10
training runs.

4.3 Discussion

The complex concepts of hierarchical reinforcement learning could be successfully implemented

and tested on a high dimensional use case of accelerator control. The test case was trajectory

steering of the AWAKE electron line. State-of-the-art techniques such as experience replay and off-

policy correction were used following the algorithm HIRO. Our HIRO derivative was implemented

as an agent, with specific adaptations of TD3, replay buffers etc. Another possibility could be to

implement the HIRO concepts as set of hierarchical wrapped Gym environments interacting with

two (or more) standard RL agents. Both approaches have their advantages and disadvantages. The

latter approach could have the benefit of rather easily swapping in and out new base off-policy RL

algorithms. Further development and potentially moving to hierarchical wrapped environments

will be part of a future study along with understanding the limitations and eventually boosting the

performance in case of pre-trained low-level agents.
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Chapter 5

Conclusion

The goal of this master project was to implement and test hierarchical reinforcement learning (HRL)

for AWAKE electron line trajectory steering. The concepts of HRL were introduced in the thesis with

the focus on the algorithm HIRO. With HRL, at least two control policies are learned at different

abstraction levels. The tasks that the two resulting RL agents have to solve also have different time

horizons. The higher level policy learns to plan in long time horizons and defines goals for the lower

policy. The lower level agent interacts with actual hardware at short time horizons. The main result

of the thesis is a fully functional HRL code based on HIRO that includes state-of-the-art techniques

such as off-policy correction to help convergence. In a series of bench mark tests its performance

was evaluated in comparison to standard RL algorithms (i.e. TD3). The HRL algorithm learns to

correct the AWAKE electron trajectory to reference within roughly 100 episodes and shows a success

rate of more than 99.8% when evaluated. The impact of a number of hyperparameters has been

studied and an optimal set-up could be found. The overall performance of the HRL algorithm

presented in this thesis is acceptable, but still poorer than standard state-of-the-art off-policy RL.

Using pre-trained lower level agents could be of particular interest to re-use agents, that were trained

previously on very specific tasks. This concept fits particularly well with HRL and could reduce the

number of training iterations in the control room considerably. However, the obtained performance

in the set-up with pre-trained agents did not meet expectations yet. Also of interest will be to test the

HRL algorithm with a more complicated control problem, where longer time horizons are involved

by design. A number of possible extensions or potential improvements are already planned and

will hopefully eventually unleash the full power of hierarchical reinforcement learning for CERN

accelerator controls.
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Appendix A

Numerical results

A.1 Response matrix of AWAKE electron line

The response matrix formalism in the control setting has already been shown in the subsection 2.1.2.

This matrix is actively used in the environment describing the AWAKE electron line trajectory

steering task described in section 3.1.

Figure A.1: Matrix coefficients of the AWAKE electron line response generated by the the MAD-X
simulation.
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In this study a surrogate model of the transfer line, this model is based on MAD-X simulations. It

is possible to see the response matrix in Fig. A.1. As mentioned in the subsection 2.1.2, the response

matrix of a transfer line is sparse as trajectory correctors further down the line have no influence on

positions measured at BPMs before them, i.e Ri j = 0 for i < j . This property is naturally verified for

the simulation of the AWAKE electron line shown in Fig. A.1.

A.2 Action Noise Scheduling

In order to reduce the stochasticity of the interaction between the higher and lower agent during

the learning of the two policies, the action noise ε (see Algorithm 1) is scheduled. By reducing the

action noise as the agents learns their respective policy it is possible to reduce variability in the

performances of said agents. Indeed, it is important for them to prioritize exploration in the initial

learning steps to be able to learn a mapping of what state-action pairs produces a better reward.

This exploration is further encouraged by the introduction additive noise to the action increasing the

variability of the controller’s behaviour. Nevertheless, an action noise with a magnitude wrongfully

calibrated can be detrimental to the learning of the optimal policy especially when the learning is

very stochastic.

Figure A.2: Temporal dependency of action noise’ standard deviation.

To reduce the stochasticity once the agent has already sufficiently learnt a good approximation of

the state-action mapping, the standard deviation of the normally distributed action noise is reduced

with respect to time, i.e. ε∼N (0,σ(t )). The time dependency of the standard deviation is pictured in

Fig. A.2. It can be seen that the function followed by the standard deviation is σ(t ) = 0.1(1− t )+0.01t
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for a normalized time. It is simply a linear decay from its initial value of σ(0) = 0.1 to its final value

σ(1) = 0.01.

A.3 Relative or absolute goal

As mentioned in subsection 3.2.2 the goals given by the higher agent to the lower one can be set in

an absolute or relative framework. These goals are related as described in equation (3.11).
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Figure A.3: Comparison of success rate for absolute or relative goals set by the higher behavioural
policy µH as training evolves for HIRO. The results are an average over 10 training runs.

To determine how the setting the goals in an absolute or relative manner impacts the perfor-

mances of the HIRO agent, their success rate is compared in Fig. A.3. It is possible to observe that

the lower agent manages to perform more efficiently with relative goals. The optimal hierarchical

agent in the AWAKE steering task should then use relative goals and not absolute ones.
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