
The Evolution of Software Technologies to
Support Large Distributed Data Acquisition

Systems

Robert John Jones

A thesis submitted in partial fulfillment of the requirements
of the University of Sunderland

for the degree of Doctor of Philosophy

September 1997

School of Computing and Information Systems
University of Sunderland

This research programme was carried out in collaboration with
CERN, European Laboratory for Particle Physics, Geneva

Switzerland

C
ER

N
-T

H
ES

IS
-9

7-
01

9
01

/0
9/

19
97

- 2 -

Abstract

Author: Robert John Jones

Title: The Evolution of Software Technologies to Support Large Distributed Data Acqui-

sition Systems

A study of software technologies for the control and configuration of data acquisition

systems for high energy physics experiments is presented.

Three key software technologies have been identified that impact the control and config-

uration tasks, namely, inter-process communication systems, configuration data storage

techniques and graphical user interface toolkits.

Investigations and developments of suitable software to meet the unique requirements of

large distributed data acquisition systems were carried out at CERN, the European labo-

ratory for particle physics. The research programme was applied to four successive data

acquisition system development projects from 1989 to 1997. The thesis describes the

evolution of the three software technologies over this period in terms of advances and

developments made within the framework of the data acquisition projects.

For inter-process communication systems, the use and relative merits of remote proce-

dure calls, publish/subscribe systems and object-oriented communications complying to

the Object Management Group’s Corba standard are described and compared. The work

on configuration data storage techniques compares a range of technologies from rela-

tional databases, to object managers and object databases. In terms of graphical user

interface toolkits, various custom-made and commercial software packages are described

that provide distributed windowing facilities in a local-area network on a variety of

devices including character-cell terminals and bit-mapped workstation screens. A com-

parison on windowing toolkits and associated graphical user interface builder CASE

tools is included.

The work and findings presented are supported by 13 published papers selected from a

total of 27 for their emphasis on the three software technologies.

- 3 -

Acknowledgments

The following people have helped the author during his work at CERN. Jean-Jacques

Blaising provided access to the material on the use of the MODEL data acquisition sys-

tem in the L3 experiment and Pierre Vande Vyvre explained many details of the State

Manager. I wish to thank Mike Sendall, Sandro Vascotto and Livio Mapelli as the

project and group leaders for the data acquisition systems that were the vehicles for this

study. Giuseppe Mornacchi has provided continuous technical guidance for many

aspects of the work.

I am indebted to Peter Smith and especially Norman Parrington for their support and

guidance during the writing of this thesis. I would also like to thank Nick Dyson for

proof-reading a draft edition.

Contents

- 4 -

Abstract . 2

Acknowledgments . . 3

Introduction .6

The MODEL Data Acquisition System 19

MODEL: A Software Suite For Data Acquisition 21

The MODEL Human Interface . 28

Application Development with XUI 34

The State Manager: A Tool to Control Large Data-Acquisition Systems 48

The RD13 Data Acquisition System 64

The RD13 Scalable Data Acquisition System 67

Using Motif in RD13 . 76

Building Distributed Run-Control in UNIX 88

Software Engineering Techniques and CASE Tools in RD13 99

The RD13 Data Acquisition System Upgrade 111

The RD13 Data Acquisition System 113

Experience Using a Distributed Object Oriented DataBase for a DAQ System . 121

Applications of an OO Methodology and CASE to a DAQ System 136

The ATLAS Data Acquisition System Prototype 148

The ATLAS DAQ and Event Filter Prototype “-1” Project 151

Software Technologies for a Prototype ATLAS DAQ 160

Discussion and Conclusions . 168

References . 180

- 5 -

- 6 -

chapter

Introduction

- 7 -

1 Intr oduction

This chapter defines the scope and purpose of the research programme undertaken and

outlines the structure of this thesis. The context and relevance of the published papers is

explained and an overview of high energy physics data acquisition systems is provide as

background information.

1.1 Scope and Purpose

The main objective of this research programme has been the study of software technolo-

gies for inter-process communication systems, configuration data storage techniques and

graphical user interface toolkits capable of supporting the ever increasing demands of high

energy physics (HEP) data acquisition (DAQ) systems.

These three software technologies have been identified as key components for the control

and configuration of large distributed DAQ systems. While other software technologies

are important to DAQ systems and are described in published papers referred to but not

included in this thesis, the three software technologies mentioned above were emphasised

in this research programme since their evolution proved indispensable in satisfying the

requirements of modern DAQ systems. Software technologies for the treatment of bulk

physics data in hard real-time environments is outside the scope of this research pro-

gramme.

This thesis is based on existing published work and the research programme is presented

via a series of 13 conference papers produced within the framework of four successive

DAQ development projects spanning the period from 1989 to 1997. The 13 conference

papers were selected from a total of 27 for their emphasis on the three software technolo-

gies. Figure 1 summarises the organisation of the published papers in terms of the software

technologies they address relative to the DAQ development projects and the timescale of

the research programme.

The research programme has been organised into several phases for each DAQ develop-

ment project:

• understand the essential requirements of HEP DAQ systems in general and the current

DAQ project in particular,

- 8 -

• survey existing available packages for each of the three software technologies capable

of meeting the above requirements,

• where the survey did not uncover suitable software packages, develop software to meet

the specific demands,

• apply the selected or developed software to the DAQ system and exploit it in test-beam

or full experimental activities,

• assess the suitability and performance of the software during its exploitation in order to

provide guidance for the HEP community at large and the next DAQ development

project.

All phases and activities of this research programme have been conducted in collaboration

with CERN, the European laboratory for particle physics in Geneva, Switzerland.

- 9 -

Figure 1 Organisation of published papers presented in this thesis

Graphical User Inter-Process Configuration
Interfaces Comm. Data Storage

Application of an OO methodology and CASE to a DAQ system

Experience Using a distributed Object
Oriented Database for a DAQ system

Software Engineering Techniques and CASE tools in RD13

Building Distributed run-control in UNIX

Use of Motif in RD13

The State Manager: A Tool to Control
Large Data-Acquisition Systems

Application development
with XUI

The MODEL
Human Interface

MODEL

RD13

1989

1991

1992

1993

1994

1997
Software Technologies for a Prototype ATLAS DAQ

ATLAS

MODEL: A Software Suite for
Data Acquisition

The ATLAS DAQ and Event Filter Prototype “-1” Project

The RD13 Scalable Data Acquisition System

The RD13 Data Acquisition system

1995

RD13 Upgrade

Systems

1996

ch
ap

te
r

3
ch

ap
te

r
2

ch
ap

te
r

4
ch

ap
te

r
5

- 10 -

1.2 Structur e of This Thesis

The body of this thesis is divided into four chapters corresponding to the DAQ develop-

ment projects, in chronological order, that provided the framework for investigations into

the software technologies, namely MODEL, RD13, RD13 upgrade and ATLAS. The

RD13 project has been divided into two projects to reflect the successive developments

that were made for each software technology and taking into account the longevity of the

project.

For each DAQ project, a published paper provides an overview of the DAQ system and

sets the scene for the discussion of the software technologies. The commentary text

describes the state of each software technology at the start and at the end of the DAQ

project as well as details not covered by the published papers. The software technology

published papers of each DAQ project discuss the advances made and outline their appli-

cation to components of the DAQ system.

The final chapter reviews this research programme and provides a summary of the

advances and developments made for each software technology from the start of the

MODEL project up to the on going work within ATLAS. It includes a section on contribu-

tion to knowledge and makes recommendations for possible future research work.

- 11 -

1.3 Data Acquisition Systems for High Energy Physics Experiments

This section provides, as background, an overview of HEP DAQ systems and the role

played by their on-line computer systems.

A high-energy physics experiment studies the properties of elementary particles via the

interactions of particle beams with stationary targets or with other beams. The acceleration

of the particles, and the production and transportation of beams, are specialized fields. Ide-

ally, an experiment would measure the mass, charge, and momentum of all particles but

this is impossible for reasons of physics, space, cost etc. and so only the most interesting

subset of this information is measured for a given experiment. Computers are used exten-

sively for control functions and data analysis in all major high energy physics experi-

ments.

1.3.1 The Experiment Set-up

A simplified block-diagram (Figure 2) shows the relation between the different parts of

the apparatus. The information from the various detectors described below is recorded on

permanent storage for later analysis “off-line” on a powerful computer system. The com-

puter system reconstructs particle trajectories, computes momenta and other quantities of

interest, distinguishes between different types of events, and produces the distributions of

quantities that the experiment was designed to measure. Such analysis can require enor-

mous computing resources, for example it is estimated that to reconstruct a single event

for the ATLAS experiment at the future Large Hadron Collider (LHC) accelerator will

need 7.5x103 SPECint951-seconds.

Figure 2 Typical data acquisition system of the early 1980s

1. SPECint95 is a processor benchmark used as a unit of processing power roughly equivalent to
40MIPS

Fast electronics

Detectors

Field bus

Mini-computer Magnetic-tape

Parallel detector read-out

- 12 -

1.3.1.1 Fast Electronics

The information coming out of the detectors is in the form of analogue pulses that must be

treated to give useful information, including:

• Standardization

Discriminators accept pulses from the detectors and for each one above a certain threshold

deliver a standard logic pulse of defined amplitude and width. This is an essential first step

to digital decision-making and data acquisition.

• Selection

The number of interactions in a beam is very large, and usually only a small fraction are of

interest. It is not practical to record everything and analyse it later so selections are made

using the fastest detectors. Standardized pulses from these detectors are fed into electronic

logic to indicate an event of potential interest has occurred. This procedure is known as the

formation of a trigger involving complex selection criteria based on groups of wires in

wire-chambers.

• Pulse-Height and Time Measurement

Pulse-height measurement is important since the signal from the detectors can give infor-

mation on the charge and the velocity of the particle. The signals are sent to analogue-to-

digital converters (ADCs) that digitize the pulse-height and store the result in a register.

Time measurements give the time-of-flight for a drift-chamber read-out using time-to-dig-

ital converters (TDCs) to measure the time between two standard input pulses and store

the result in a register.

• Buffering

Buffering smooths-out the random (Poisson) arrival of events and compensates for the

duty cycle of the accelerator. For example, CERN’s Super Proton Synchrotron (SPS) takes

about 10 seconds to accelerate particles, followed by a short burst (approximately 2 sec-

onds) when they are ejected to provide beams for experiments. The data must all be col-

lected during this short burst, but it cannot usually be processed or recorded in this time

and so the time between bursts is needed to deal with it.

- 13 -

• Performance Checking

Performance checking is required to verify the equipment during set-up and to monitor its

performance during data-taking. Modern experiments are very complex and accelerator

time is expensive and tightly scheduled. In addition the data recorded on permanent stor-

age is often taken away to other labs for analysis and so it is essential that everything is

working correctly and that the data does not contain any errors or malfunctions. An exam-

ple of performance checking is the monitoring of multi-wire chambers where information

per channel is gathered and used to construct histograms of wire hits to indicate dead or

noisy channels. Another technique is a graphical event display where the apparatus is

drawn on a screen and the hits in the various detectors marked. This provides information

at a glance about detector performance, beams, background etc.

1.3.1.2 Field Bus

The division between the fast electronics and field bus is often blurred. For example, the

trigger logic is usually performed in the fast electronics but the ADCs and TDCs are mod-

ules sitting on the field bus. The field bus consists of a number of modules arranged in

crates. Each crate has a controller either interfaced directly to the computer or connected

together to form a branch and interfaced to the computer via a branch driver. This provides

a simple means of exchanging information between the computer and the registers in the

modules.

1.3.1.3 Run Set-up and Control

Data taking is organised into runs, varying from a few minutes to several hours long

depending on the detectors, trigger conditions, magnet currents, beam energy and many

other parameters. The computer provides a convenient means of changing the run condi-

tions. Special hardware exists to provide computer control of the apparatus such as mod-

ules to set-up delays in fast electronics or program the trigger logic. Often the

experimental computer can communicate with the accelerator control computers via net-

work links allowing it to receive information about beam conditions or to request changes

directly. All these general control functions become more important as the experiments

become more complex.

1.3.1.4 Sending Data Samples for Remote Analysis

It is unlikely that the experimental computer has sufficient time to analyse all the recorded

events completely. Further software is run “off-line” analysing the recorded data more

- 14 -

profoundly. In some experiments, there may be a data-link from the experimental site to

the more powerful computer installation used for such off-line analysis. In this case the

data can be sent over the data-link to be recorded remotely after greater checking has been

performed.

1.3.1.5 Pre-processing the Data

Normally the experimental computer records the raw data on permanent storage and in

parallel checks a sample of it. In some applications, however, it may pre-process the data

before it is written. Two examples of this activity are data reduction and event filtering.

Data reduction involves compressing and re-formatting the data to leave out redundant

information resulting in important saving of space and time needed to record an event. In

on-line filtering the computer may decide whether or not a particular event is interesting; if

not it is thrown away and not recorded. It may be more economical and simpler to do this

on-line rather than later. This can be seen as an extension of the trigger logic; a final stage

of “software trigger” allows more complex (but slower) checks to be made than is possible

with hard-wired logic.

1.3.2 Data Acquisition Systems in the Early 1980s

This section describes the use of computers in HEP DAQ systems in the early 1980s, just

before the starting point of this thesis work and during the conception of the MODEL

project.

The important characteristics of a mini computer were that it was small, cheap and easily

interfaced to special equipment and could be built into an experiment. It could then be

regarded as a component of the overall data acquisition and monitoring system. Essen-

tially, the mini-computer added flexibility to the data handling since both the flow of data

and its treatment could be easily modified to meet changing circumstances. This made the

mini-computer an indispensable part of all high-energy physics experiments of the time.

The typical mini-computers of the period offered instruction times of around 1 micro-sec-

ond with memory sizes ranging from 16 to 128K 16-bit words. These machines were inter-

faced to a field bus such as CAMAC [Camac92] (seen as a special I/O device). Peripherals

included:

• a keyboard and display for control purposes and to provide visual displays of histo-

grams etc. on demand. It could also be used for software development,

- 15 -

• a printer to record results and error messages,

• a magnetic tape for data recording. Normally experimental data was written on tape and

analysed later but in simple test set-ups data recording might not have been needed,

• disks for storing software and large histograms.

A simple test set-up may have contained a small wire-chamber and a few counters, requir-

ing one CAMAC crate with a few modules. Larger experiments could have many cham-

bers with several thousands of wires and hence tens of CAMAC crates containing several

hundred modules. The amount of data collected varied with around 1Kbytes being a typi-

cal event size.

Fast electronics worked on the timescale of a few nanoseconds. The basic CAMAC opera-

tion cycle, and also that of typical computer memories, was about 1 microsecond. This

limited the speed data could flow into the computer since it would take a few microsec-

onds to read a full event. The rate at which events occurred depended on the experiment. It

could vary from one event every few seconds to far beyond that at which data could be

read.

These rates caused some mismatches of performance in the DAQ systems. The fundamen-

tal rates of the particle interactions, plus the low dead-time of modern detectors and the

speed of fast electronics produced data very quickly. However, it could not be moved into

the computer at such rates. Still less could it be processed or even recorded which shows

the importance of several levels of selection and reduction as the data flowed through the

system. At each stage of reduction more complicated tests were performed but on less

data.

The most essential task of the computer was simply to read the data from CAMAC, buffer

it suitably and write in to permanent storage. The computer responded to trigger signals

indicating an event had occurred and issued the appropriate CAMAC commands to read

data into memory. The data was written to permanent storage when a sufficient quantity

was accumulated.

Even in this simple activity the flexibility of the computer was useful since it was often

necessary to change the details of the read-out (adding new chambers etc.) or the format of

the information recorded. The physicists wanted to run the experiment in various ways to

- 16 -

test different parts of the apparatus, calibrate etc., as well as take real data. The computer

allowed the physicist to change operating conditions easily.

At the start of the 1980s there were about 100 mini-computers in use by the various exper-

iments at CERN. These minis were mainly Hewlett Packard 2100, PDP-11 or Nord-10

computers. At the computer centre, a CDC 7600 mainframe computer was used for per-

forming off-line analysis. The data acquisition software was normally written in BASIC or

FORTRAN.

1.3.3 Data Acquisition Systems in the Late 80s

This section describes the development of DAQ computer systems towards the end of the

1980s when the RD13 project began.

The experiments of the late 1980s were more complex in several ways mainly due to a

larger number of channels per detector. Each channel needed to be read out and hence the

time taken to transfer data to the computer became significant. More channels implied the

cost of electronics per channel needed to be kept low so expensive read-out logic had to be

shared between many channels. Checks for low-level malfunctions on the channels were

made in parallel by intelligent processors. More channels also implied more raw data was

produced per event causing serious problems of bandwidth for on-line data transfer and

high off-line processing costs. Thus every effort was made to reduce the number of events

recorded and the amount of data per event through complex trigger and filter schemes.

Some modern detectors have intrinsically complex read-out (requiring pulse-shape analy-

sis for instance) meaning the raw data needed to be pre-processed near the chamber before

transfer.

The complexity of the experiments raised new problems in the organisation and presenta-

tion of secondary data such as calibration data, histograms, status information etc. It was

necessary to present to the physicist on shift a meaningful picture of what was happening

and allow him to modify the configuration of the experiment and control it accordingly.

Many of the subsidiary tasks in the experiments (e.g. gas and voltage control subsystems,

control of fast trigger logic etc.) grew proportionately so they too needed programmable

processors.

- 17 -

In addition to these difficulties was the sheer size of the experiments and the number of

subsystems. The architecture and components of existing DAQ systems were not able to

face these increasing demands. The relatively slow speed at which the mini-computer

could execute instructions and so generate CAMAC commands, slowed down the read-out

and increased the deadtime of the apparatus. The limited parallelism of the read-out

reduced only the part of the deadtime caused by the digitisation process itself. The choice

of operating-system was a compromise between the real-time responsiveness required for

the event trigger and the subsequent CAMAC read-out against the need to run complicated

monitoring programs.

Fortunately, experiments were able to profit from advances in hardware to cope with the

extra channels as well as the extra information per channel, such as Flash ADCs, single

chip microprocessors with a full 32 bit architecture, Digital Signal Processors, customized

chipsets etc. New improved data acquisition buses (such as FASTBUS [Fastbus83] and

VMEbus [VMEbus85]) replaced CAMAC and high capacity storage devices became

available.

The development of Local Area Networks (LANs) provided a new fast, cheap method of

interconnecting processors complementing the bus systems described above. They could

be used to interconnect stand-alone computers for which the field bus approach was not

appropriate (e.g. due to distance) or to provide an alternative path to microprocessors

embedded in the bus systems avoiding contention or bandwidth problems. Personal work-

stations and specialized graphics devices combining powerful bitmap display subsystems

with conventional microprocessors in a single package became commercially available.

The central DAQ computer had several functions, the most important being the recording

of the data onto tape. It also provided higher-level monitoring functions since it was the

only general-purpose processor with access to the full event data. It had an important role

to play in the overall organisation of the experiment: maintaining various databases, mak-

ing information available to physicists, performing error reporting and status display. It

was responsible for the overall initialization and control of the apparatus.

The complexity of the data acquisition systems also placed major requirements on the soft-

ware needed to operate the experiments. Firstly, the use of distributed systems incorporat-

ing hundreds of microprocessors implied more functions and decisions were entrusted to

software. In addition the large volumes of data associated with calibration, detector

- 18 -

descriptions and book-keeping required sophisticated tools to manage the on-line data-

base. Facilities were also required to marshal access to all resources belonging to the

DAQ. This permitted independent teams to work on their equipment at the same time

without interference. The user interface needed to be easy to use and provided as many

automatic checking procedures as possible. Interactive graphics stations were used to

show event displays and other status information.

To give an example of the size of the problem at hand, some characteristics of the first

phase of the ALEPH experiment at LEP were:

• weight: 1500 tons

• volume: 1000m3

• read-out: 700,000 channels

• event size: 100 Kbytes

• event rate: 107 events per year

1.3.4 Summary

The needs of the future LHC experiments represent equivalent increases in detector size

and DAQ sophistication as those described between the experiments of early and late

1980s. To control, configure and monitor the operation of such DAQ systems requires

sophisticated software. This thesis shows the developments needed in three important

areas, namely inter-process communication software, configuration data storage tech-

niques and graphical user interface toolkits necessary to meet the needs of large experi-

ments from the mid 1980s up to the present day.

- 19 -

chapter

The MODEL Data Acquisition System

- 20 -

2 The MODEL Data Acquisition System

2.1 Intr oduction

This chapter marks the start of the studies into graphical user interface toolkits, inter-

process communication systems and configuration data storage techniques. It is set

within the context of the MODEL DAQ system and represents the period from Septem-

ber 1989 to April 1991. The author developed two packages while working on the

MODEL project: the Occurrence Signalling Package (OSP) for inter-process communi-

cation and several components of the human interface package (MHI). The first pub-

lished paper in this chapter gives an overview of the MODEL software suite and is

followed by two papers on graphical user interface toolkits and one on inter-process

communication systems. The status of configuration data storage techniques at the time

is described in the commentary text.

2.2 MODEL Ov erview

The MODEL software suite was a set of modules aimed at providing the basic compo-

nents for data acquisition purposes in HEP experiments. Originally intended for the

LEP (Large Electron Positron) collider experiments, MODEL was later used by a wide

range of other experiments. Work on MODEL started in 1985 and the software is still in

use today in several experiments. MODEL offered a range of software modules that

could be integrated into the data acquisition system of a large experiment to comple-

ment and extend the services available from the operating system of the experimental

computers and the lower-level software. The software suite was designed so that exper-

iments could select only those modules required. Facilities provided by MODEL

included data flow organisation, error reporting, man-machine interfaces, software con-

figuration control and run-control. MODEL initially ran under the VMS operating sys-

tem on computers from the Digital Equipment Corporation VAX family. The typical

environment was a set of VAXes, microVAXes or VAXstations linked by an ethernet

local area network running the DECNET protocol.

The following published paper, entitledMODEL: A Software Suite For Data Acquisi-

tion on page 21, marks the starting point of this thesis and sets the scene by describing

the software components of a typical data acquisition at the start of the LEP experi-

ments.

- 21 -

Published paper

MODEL: A Software Suite For Data
Acquisition

Computing for High-Energy Physics Conference 1989, Oxford,
U.K. Computer Physics Communications 57b (1989) 1-7,
North-Holland, ISSN 0010-4655

Published paper

- 22 -

Published paper

- 23 -

Published paper

- 24 -

Published paper

- 25 -

Published paper

- 26 -

- 27 -

2.3 MODEL Human Interface

The MODEL Human Interface (MHI) [Mornacchi87] was designed to provide man-

machine interfaces for the control and configuration of on-line systems within the

MODEL project. Such on-line systems were distributed in nature and composed of

many different display devices thus placing important requirements on the design of

MHI.

The MODEL Human Interface (MHI) provided a means of communication between

processes running in the on-line system and operators working at terminals and work-

stations. It offered a set of packages to help users write interactive, window-oriented

applications that were independent of the display device. It supported a distributed envi-

ronment where an application displays output and receives input from a window on any

workstation or terminal in a multi-computer system.

The basis of MHI was aWindow Managerthat could be used either directly by applica-

tions or via higher-levelMenu, PanelandDialoguepackages. Terminal emulation was

supported for Fortran input/output. A GKS (ISO 7942) graphics service allowed appli-

cations to use a graphics window on a remote machine. The KUIP [Brun89] interface

package was also supported to ease integration with software used for off-line analysis.

The following published paper entitledThe MODEL Human Interfaceon page 28

describes the rationale for the MHI package, its architecture and implementation.

- 28 -

Published paper

The MODEL Human Interface

Computing for High-Energy Physics Conference 1989, Oxford,
U.K. Computer Physics Communications 57b (1989) 1-7,
North-Holland, ISSN 0010-4655

Published paper

- 29 -

Published paper

- 30 -

Published paper

- 31 -

Published paper

- 32 -

- 33 -

2.4 Porting the MODEL Human Interface to the X Window System

The previous published paper described the architecture of the MODEL Human Inter-

face (MHI) and its various implementations. This section describes the issues involved

in porting MHI to a new graphics platform, namely the X Window System, via a second

published paper entitledApplication Development with XUIon page 34. This work pro-

vided the opportunity to verify as to whether the MHI architecture could be adapted to

this new environment by effectively replacing the communication layer between the

display device and the application.

In porting MHI to the X Window System, it was also necessary to confront a new pro-

gramming paradigm. Up until this point, typical DAQ graphical applications were block

structured and made discrete calls to windowing packages while retaining control of the

execution. The X Window System adopted an event-driven approach where applica-

tions submit control of the execution to the windowing package. In order to avoid

restructuring all existing MHI applications, it was necessary to find a means of hiding

the event-driven nature of X.

- 34 -

Published paper

Application Development with XUI

1989 DECUS Europe Symposium

The Hague, Holland, September 18-22, 1989

Published paper

- 35 -

Published paper

- 36 -

Published paper

- 37 -

Published paper

- 38 -

Published paper

- 39 -

Published paper

- 40 -

Published paper

- 41 -

- 42 -

2.5 Conclusions on MHI

An important feature of MHI was its support for various screen devices. MHI was

designed and implemented at a time when bit-mapped workstation screens were just

being introduced and no clear windowing graphics standard existed. MHI helped to

bridge the gap between radically different device types and allowed graphical applica-

tions their first possibility to exploit processing power in a distributed environment.

The effort required in porting MHI to new platforms could have been reduced by

restricting the functionality of the Window Manager layer that interfaces with the

device specific software. This would have meant moving more intelligence into the var-

ious packages layered on top of the Window Manager. In order to support character-cell

terminals in the UNIX environment, it would have been possible to port the Window

Manager to the Curses [Goodheart91] package which is similar to SMG.

Despite many advances in this field, MHI continues to be used for a subset of applica-

tions in various experiments [Balestra91], primarily because of its support for character-

cell and bit-mapped screens. Character-cell terminals are often preferred in certain

experimental areas subject to strong magnetic fields since workstations require special

shielding to protect screen images.

In order to provide a template for graphical applications in the L3 experiment, another

layer of software was developed on top of MHI by the experiment’s staff. This encom-

passed the facilities provided by the Window Manager and Panel Package and was later

rewritten [Wenaus89] to use the SMG and UIS packages directly with the intention of

simplifying the software.

Perhaps the strongest attribute of MHI was its basic architecture that combined a client-

server model with device independence. This allowed MHI to be ported to the X Win-

dow System.

There are many parallels between the development of MHI and the X Window System

that has become the standard for UNIX workstations. Both offer a client-server model

with RPC-based communication systems for providing networking capabilities and dur-

ing the porting of MHI to X Window it was possible to drop CERN’s RPC package for

communication and use the X Window System’s own communication protocol.

- 43 -

However, a fundamental difference between the X Window System and MHI is that X

is event based and so application code is only executed in response to signalled events.

In comparison, MHI was a passive library of routines where the application retained

control. This difference was partially related to the lack of asynchronous I/O facilities in

the UNIX environment where X was developed. A mainloop is required in UNIX to

receive and dispatch events whereas Asynchronous System Traps (ASTs) could be used

under VMS allowing the basic control flow to remain with the application.

The development of theExposureprocess in MHI’s X Window System port showed a

limitation the X Window System itself. The fact that applications are responsible for

repainting damaged screen contents is a means of easing the implementation of the X

server and insulating it from an exhaustible resource, namely storage capacity to hold

copies of window contents or display lists to replay and rebuild the contents.

The facilities provided by MHI also included those of X Window System window man-

agers. Such X Window System window managers are just like other clients except that

they usually re-parent windows created by others in order to decorate them with borders

and manipulation facilities. The X Window System’s manner of separating window

manager functions from basic windowing facilities simplifies the implementation of the

server but the act of re-parenting windows causes confusion when applications inquire

about the window hierarchy. Such facilities shows a limitation of MHI - it was ignorant

of non-MHI applications that used the same display device.

The facilities provided by the layered packages (i.e. menus, panels and dialogues) are

now supported by today’s most common toolkits namely Open Software Foundation’s

Motif and Microsoft Foundation Classes. The advent of graphical interface builder

CASE tools for the most common toolkits (e.g. X-Designer for Motif and Visual Basic

for MFC) has simplified the task of graphical interface development. But a commercial

market for such GUI builders can exist only when a common standard for graphical

toolkits has gained wide acceptance. This was not the case when MHI was designed and

implemented. It would have been possible to develop an interactive screen painter or

GUI builder for MHI, for example implemented in MHI itself and generating Fortran

code with embedded calls to the various MHI packages.

- 44 -

As described in the following chapters, support for graphical user interfaces has contin-

ued to improve in HEP DAQ systems. The following chapters include details of the

early application of advanced GUI packages to DAQ systems that have shown the direc-

tion for upgrades of applications of MHI and other packages. The work on GUIs pro-

gressed further when the opportunity arose for the author to develop a graphical

interface to the run-control system as described later in this chapter (Graphical User

Interface for the MODEL State Manager on page 57).

Recently, the Java programming language [Arnold96] together with the Abstract Win-

dow Toolkit (AWT), has become widely available on many platforms. Although Java is

not restricted to graphics applications, it offers many of the features of Motif and MFC

while retaining the networking capabilities of the X Window System. Technically, it

offers the possibility of making truly platform independent interfaces but more time is

required to determine if it will prove to be a reliable, widely-supported, long-term alter-

native to the combination of the X Window System and Motif toolkit.

- 45 -

2.6 Inter -Process Communication Systems

Every module of the software suite needed a means of communication between its inter-

nal elements, with other MODEL modules and experiment specific software. The most

popular means of communication within the MODEL suite was the Remote Procedure

Call [Berners-Lee87] (RPC) for point-to-point, client-server, synchronous connections.

However, for certain modules and applications it was found that RPCs were not the

most suitable form of communication. One particular example was the run-control sys-

tem as implemented by the State Manager.

2.6.1 The State Manager

The State Manager (SM) was the MODEL module for run-control. Run-control implies

the execution and synchronization of the various procedures needed to begin, maintain

and end a period of data taking under stable conditions. The requirements vary not only

from experiment to experiment, but may need to be substantially modified within a par-

ticular experiment as setting-up proceeds and experience is gained. Other aspects, such

as calibration or cold start of the apparatus, pose similar problems. In general any

change in working conditions requires interventions in various parts of the data acquisi-

tion system. These normally consist of lists of actions to be executed by the operators

running the experiment. An overview of SM is given in the following published paper

entitledThe State Manager: A Tool to Control Large Data-Acquisition Systemson page

48.

Initially SM used the RPC package for communication with associated processes. The

use of RPCs had to be abandoned because the RPC style of communication, as was

available at the time of implementation, did not satisfy the requirements for SM control

messages. These requirements are now discussed.

The SM’s associated processes (i.e. processes that control individual devices) might

connect and disconnect from the SM server at any time. Frequent reconnections by new

incarnations of associated processes posed problems for the RPC server. Also, RPC

server addresses had to be known at compile-time whereas SM was more dynamically

configurable implying that such information was not available until run-time. An SM

server process supported many SM objects implemented as individual Ada tasks. For

each object, a separate message queue was required to marshal incoming commands but

- 46 -

an RPC server needed to be a singleton and could not support multiple SM objects and

message queues.

In more general terms, the use of RPC was not quite as transparent when compared to

local procedure calls as one might hope. RPC systems usually put restrictions on the

procedures that can be invoked remotely by limiting the number, type and size of the

parameter list. For example, the use of pointers as parameters is severely limited since

they have no mapping into the address space of the remote procedure.

If in a complex RPC system based on single-threaded programs, a cycle formed where

client A calls server B which needed some service C that is also implemented by client

A then a deadlock occurred. In a local procedure call implementation, such deadlocks

need not occur since recursion could have been used.

2.6.2 The Occurrence Signalling Package

In order to implement the communication scheme required by the State Manager that

addressed the limitations of the RPC system, the author developed the Occurrence Sig-

nalling Package (OSP) [Jones86] as referred to in the published paper entitledThe State

Manager: A Tool to Control Large Data-Acquisition Systemson page 48 and described

below.

2.6.2.1 Overview

OSP offered a service to meet the needs identified for communication within the

MODEL software suite [Sendall86]. OSP allowed client programs to be notified of user

defined occurrences as they happened. An occurrence was a software event generated

by other clients. OSP allowed a client to signal an occurrence that was then distributed

by the OSP server to all the clients who had expressed an interest in the occurrence

(including the signalling client if this was the case). The occurrence name was a user

defined string passed to the interested clients. All clients had a unique identification

string. The string for identifying the client who produced the signal and a variable

length buffer of optional information (defined by the source client) were also sent with

the occurrence name.

Clients expressed an interest in an occurrence by either calling a function that allowed

them to wait for an occurrence or specify an action routine to be called when the occur-

- 47 -

rence was signalled. A wait call received notification of an occurrence once only but a

call that associated an action routine with the occurrence received a notification every

time the occurrence was signalled.

To allow clients to wait on or associate an action routine with several occurrences at the

same time, the concept of an occurrence group was introduced. The client declared an

occurrence group into which occurrences were inserted. Group-associate and group-

wait functions operated similarly to the individual occurrence-associate and wait func-

tions and returned the same information. Occurrence groups had only local significance

within the client program. Functions existed to allow the client to insert and delete

occurrences to and from groups.

The OSP Server

The OSP server was implemented as a continuously running network daemon process

that waited to receive network messages. It held information about clients and the

occurrences in which they had expressed interest. It informed the appropriate clients

when a matching occurrence was signalled and also handled the initialisation and termi-

nation of an OSP session for clients as well as exception conditions (e.g. collapse of a

client, network error codes, etc.)

The OSP Client

Clients linked their application programs to a library that contained all the OSP function

calls, handles all the communication with the server and maintained a local client data-

base of information about occurrences and occurrence groups. The client was continu-

ously listening for messages on its dedicated network channel and mailbox. OSP was

implemented in VAX-11 PASCAL V2.

The following published paper entitledThe State Manager: A Tool to Control Large

Data-Acquisition Systemson page 48 describes the MODEL State Manager and refers

to the OSP package.

- 48 -

Published paper

The State Manager: A Tool to Control
Large Data-Acquisition Systems

International conference on accelerator and large experimental
physics control systems, Tsukuba, Japan, KEK Proceedings 92-
15 (524-527).

Published paper

- 49 -

Published paper

- 50 -

Published paper

- 51 -

Published paper

- 52 -

- 53 -

2.6.3 Conclusions on OSP

Apart from the State Manager, OSP has been found useful in many other applications.

OSP applications have been developed by users to monitor and control on-line systems

in several experiments including DELPHI [Adam91], CPLEAR [Bee92] and L3

[Angelov91]. To simplify the interface between SM and OSP, an intermediate package

called ICT [Vascotto89] was developed. The architecture of the OSP package offered

several advantages over simple point-to-point RPC style connections:

• Each client needed only a single network connection to link it to the server. This

economized on machine resources when there were many clients wanting to commu-

nicate with each other. It was not unusual for a LEP experiment’s on-line system to

be composed of 200 or 300 processes running on 10 or more computers,

• A single server model implied synchronization issues were simplified. In contrast, if

OSP used multiple servers they would have needed some form of internal communi-

cation protocol and synchronization to ensure that the client databases in each server

were consistent and that occurrences were reported to all clients in the same order,

• The ability to partition the service either by using multiple, unrelated servers or sim-

ply using naming conventions for clients and occurrences (as was the case in the ICT

package) allowed OSP to be used to define disjoint name spaces,

• Group based communication offered the possibility to dynamically change the set of

receivers for an occurrence without any modification to the sender. This allowed eas-

ier reconfiguration of the application and the possibility of adding extra listeners for

debugging or monitoring purposes,

• The simple client-interface provided by OSP allowed it to be used in a diversity of

applications and ported to new environments such as UNIX and real-time kernels

including OS-9 [Microware97] [Microware96]. To ease portability issues, the OSP

implementation was translated from VAX-11 PASCAL into C. DECNET was

replaced with TCP/IP. This work showed some limitations of traditional UNIX

implementations. UNIX has no provision for asynchronous input/output operations

as provided by the ASTs under VMS. The lack of asynchronous I/O meant that the

UNIX implementation had to implement an event loop for handling and distributing

signals indicating incoming network messages. This fundamentally changed the

structure of an OSP client. TCP/IP, unlike DECNET, does not perform message

- 54 -

queuing so OSP had to provide a system of message queues that would be treated

whenever the package was given control of the process. OSP became less reliable as

a result of these changes. When a message queue became full OSP could either block

the application until the queue diminished or throw away excess messages.

OSP Limitations

It was stated earlier that the decision to use a single server model simplified the imple-

mentation of OSP and avoided many synchronization issues. But this model also intro-

duces certain limitations:

• A single server was a single point of failure. If the OSP server failed then all applica-

tions were immediately affected since no communication was possible between any

clients,

• There was no provision for restoring information about existing connections when

the server restarted,

• A single server limited the scalability of the system. Each OSP client had only one

network connection but the server needed one connection for each concurrent client.

The default limit on most operating systems is 64 or 128 connections per process but

this could normally be increased via a kernel parameter. As more clients connected,

the server needed more time to search its client database whenever an occurrence was

signalled hence degrading performance,

• DECNET (and traditional TCP/IP) does not offer true broadcast communication. The

OSP server simulated broadcasts of occurrences by serially sending asynchronous

messages to the list of receivers. Hence the time required by the server to signal an

occurrence increased in proportion with the number of receiving clients,

• All OSP messages were ASCII strings. The use of ASCII strings avoided conversion

problems when applications spanned computers of different architectures and operat-

ing systems. However, many applications also needed to send non-ASCII data which,

in the OSP model, required the data to be converted to ASCII by the sender (thereby

significantly increasing the space requirements) and unpacked by the receivers. This

was a serious limitation on the potential performance of OSP for sending bulk

numeric data. The conversion was the responsibility of the user’s code so the applica-

tions needed to adopt a convention for packing/unpacking messages.

- 55 -

Communication Styles

Within HEP software, the OSP package introduced a new style of communication in

distributed applications. The majority of HEP software used point-to-point RPC type

communication but OSP opened the possibility to develop another range of applications

that extended the functionality of data acquisition systems. OSP permitted three distinct

kinds of interactions to occur among applications:

• Request/Reply interactions, such as queries as transactions,

This is the only type of communication offered by traditional RPC systems. In request/

reply interactions data producers coordinate closely with data consumers. A producer

does not send data until a consumer makes a first request. Producers send replies specif-

ically to the client that requested the data. The requesting client listens until it receives

the reply, and then stops listening.

• Broadcast request/reply interactions, such as queries that may result in several replies

from one or more servers,

In broadcast request/reply interactions, as in point-to-point request/reply, producers do

not send data until a consumer makes a request. If a producer has the information the

consumer requested, the producer sends a reply specifically to the client. The requesting

client listens until it receivers one or more replies. The client stops listening when it has

received sufficient information.

• Publish/subscribe interactions, such as general distribution of information from many

sources to many consumers,

Publish/subscribe interactions are event-driven (rather than demand driven). In this par-

adigm data producing applications disseminate data to multiple data consuming applica-

tions. Publish/subscribe interactions are driven by events (usually the arrival or creation

of data) in the producer component. Communication is in one direction only, and is

often one-to-many. In publish/subscribe interactions data producers are decoupled from

data consumers since they do not coordinate data transmission with each other. Produc-

ers publish data to the network at large. Consumers can receive messages with any sub-

ject names. Any application can be both a producer and a consumer. This event-driven

paradigm is a more natural, more responsive, and more efficient style of computing for

many applications and is likely to emerge as the dominant paradigm.

- 56 -

2.6.4 Related and Further Work

In order to implement the OSP server it was necessary to develop a multi-client server

in DECNET. Such technology had not been used in the implementation of CERN’s

RPC package. On reflection it became apparent that if such technology were available

in the RPC system then it could be considered as the means of communication in MHI

to allow multiple programs to talk to the same screen server and in the process manager

(MPC) to make a shared database server. The author implemented the RPC multi-client

server on DECNET that became part of the standard product and allowed RPC to be

used in a wider context.

OSP proved extremely popular as a inter-process communication package in many

experiments both at CERN and other laboratories. As a consequence of its popularity,

experiments have developed new inter-process communication packages that take

advantage of their specific installations:

• The Cluster Process Communication package (CPC) [WenausT89] was designed for

the L3 on-line data acquisition system. The L3 on-line computer system consisted of

a single large mixed VAXcluster of about 30 nodes so CPC used the proprietary Dis-

tributed Lock Manager [Dec87] from Digital as a basis for communication,

• DELPHI’s Information Manager (DIM) [Gaspar93] was developed so that user inter-

faces, control and monitoring processes could have access to all the information pro-

duced in the on-line system.

2.6.5 Inter-Process Communication in the RD13 Project

The need for an inter-process communication facility similar to OSP was identified in

the RD13 project. Based on the advantages and limitations discussed above, a survey of

alternative technologies was made. As a result of this survey, it was decided to investi-

gate the ISIS fault-tolerant distributed communication package from Cornell University

as a replacement for OSP and some of its layered applications. This work is described in

the published paper entitledBuilding Distributed Run-Control in UNIXon page 88 in

the next chapter.

- 57 -

2.7 Graphical User Interface for the MODEL State Manager

As a means of linking together the studies of inter-process communication systems for

control purposes and graphical user interface toolkits, the author developed a Motif

based user interface to SM. The need for a general purpose graphical user interface dur-

ing the development, analysis and the control of SM applications was identified by the

experiments using the product for run-control purposes. Such an interface, called the

SM display program, had been developed at the DELPHI experiment based on MHI.

This program was written in Fortran and communicated with the SM server via a com-

mon block. This implied the display program had to run on the same machine as the SM

server and it was closely tied to the SM configuration in use at DELPHI. A display pro-

gram independent of the configuration yet capable of displaying the status of SM

objects, modifying them and providing debugging facilities was needed.

Having ported MHI to the X Window System, it became evident that the basic X toolkit

did not provide the high-level graphical objects required for such an interface. At this

point in time (1990), initial versions of higher-level windowing toolkits were becoming

available from workstation vendors, such as Digital Equipment Corporation [Dec88], of

what later evolved into the Open Software Foundation’s Motif toolkit [OSF93]. Digital

also made available an early version of a graphical interface builder CASE tool, called

VUIT [Dec91], that could be used to interactively paint screens and generate the corre-

sponding structure to an ASCII file according to the User Interface Language (UIL)

syntax. At run-time, the UIL definition could be combined with C code to make a com-

plete interface for the application.

The author used Digital’s toolkit and a beta release of the VUIT GUI builder to produce

the SM display program mentioned above and referred to in the published paper entitled

The State Manager: A Tool to Control Large Data-Acquisition Systemson page 48.

This work demonstrated convincingly the advantages, in terms of abstraction and

reduced source code size, of using a high-level windowing toolkit. The use of VUIT,

though only a beta release, allowed for rapid prototyping and an overall reduction in the

development time.

However, these tools were proprietary to Digital Equipment Corporation and the appli-

cation would require modification at the source code level to operate on alternative plat-

- 58 -

forms. This work, together with the development of MHI, lead to the selection of the X

/ Motif configuration and the X-Designer GUI builder for the interface work described

in the following chapter on the RD13 project.

- 59 -

2.8 Configuration Data Storage

This section gives an overview of the uses of configuration data in an experiment and

the DAQ in particular. It then goes on to describe the state of configuration data storage

within the MODEL project.

2.8.1 Configuration Data Storage Needs in a HEP Experiment

Within a HEP experiment, typical types of configuration data to be stored include:

• geometrical detector description

models of the geometrical structure of the detector are needed during construction, inte-

gration and by off-line reconstruction software.

• read-out electronics description

describes the structure, composition and internal functionality of the read-out electron-

ics and field bus for the detector. Such a database has been developed for FASTBUS

based read-out systems [Rimmer87]. An example query could be“An error has been

detected in read-out crate 21. Which part of the detector is affected?”

• electronics and material book-keeping

tracks all the electronics modules and materials used in an experiment. It contains infor-

mation such as module description, manufacturer, purchase details, inventory and loca-

tion. It is useful to have a link to the read-out electronics database. An example query

could be“Do we have any spare VME 8351 processors from the CES company avail-

able on-site?”

• experiment book-keeping

In a large experiment it is difficult to trace a single physics event through the various

phases of the off-line analysis. This data store keeps track of the physics data files, pro-

gram versions with which the data files are compatible as well as the media used for

their storage (e.g. disks and tapes). It must be accessible by the reconstruction software

in all the institutes of the collaboration. An example query could be“Give me all the Z0

events found between June 21 and August 2”.

- 60 -

• calibration constants

calibration constants are corrections to experimental data and represent a huge amount

of unstructured data. A link to the geometrical description of the detector is required. An

example query could be “What are the calibration constants for run number 4631?”

• experiment directory

contains all the administrative information necessary to permit communication between

all the members of the collaboration such as address, phone number, office, function,

responsibility, affiliation etc. An example query could be“Which members of the col-

laboration from the St. Petersburg Institute are participating in the development of the

calorimeter?”

2.8.2 Existing Data Stores Used in HEP

In the past, a number of techniques have been used in HEP experiments to handle the

large amount of data needed for the data acquisition (on-line) and reconstruction (off-

line) programs. These ranged from hard-coded DATA statements in Fortran programs

to the sophisticated usage of external files containing the necessary information

accessed by programs at execution time. But not even within one experiment could peo-

ple agree on a single access method. This scenario is no longer valid, given the size and

time-scale of present-day experiments.

As late as 1985, the subgroup of the ECFA Working Group on Data Processing Stan-

dards [Blobel83] stated that commercial database management systems (DBMS) were

not used in HEP experiments. The most commonly cited reasons for not adopting com-

mercial DBMS for scientific databases included specific additional requirements such

as the following:

• Scientific data processing tends to be based on large data sets or entire tables at a

time rather than transactions on individual records,

• Locking and security issues are normally of less importance than in commercial data

processing and scientific databases are frequently read-only without multi-user

updates,

• Scientific data types are normally not well supported (e.g. true floating point numbers

with adequate precision and vector and matrix formats),

- 61 -

• Procedural languages are preferred to SQL since it lacks support for scientific and

user-defined data types and user functions.

But the ad hoc systems designed to meet specific needs were not flexible enough to

cover all the requirements of an experiment and so this situation has since changed.

However, most experiments have found it necessary to develop their own software on

top of the basic DBMS to make it more friendly and overcome some of their database

deficiencies. A summary of the packages used by the LEP experiments is given in

[Rimmer90].

2.8.3 Configuration Data Storage Within MODEL

A number of components within the MODEL DAQ system needed some means of stor-

ing configuration information. Each component adopted its own techniques for storing

and accessing such information but these were generally incompatible. A study was per-

formed to understand how the introduction of a consistent data storage technique across

all the components could be used and suggested the following possibilities:

State Manager (SM)

Inside the experiments, a data store was already being used to configure the FASTBUS

read-out system [Rimmer87] and the users would have liked to extend this to include all

the hardware devices and all their software attributes, relationships and states. Analysis

of the application showed that it might have been possible to control SM object states

using a list of permitted states for the objects to draw on. An advantage of controlling

states is the resulting consistency, for example,run and error would have the same

meaning for a tape device and application program. Once held within the data store, the

definitions of all such objects could have been used as input to SM itself. A program

could scan the data store and generate an input file for the SM translator. As a second

step, SM could retrieve the information itself from the data store. SM accepted parame-

ters as VMS operating system literal or logical names to be translated. These parameters

could then be passed to SM objects. This scheme could be extended so that such param-

eters could also be the names of fields in the data store.

- 62 -

Process Manager (MPC)

MPC maintained its own data stores with information processes, machines, users and

terminals to provide its services but this information could not be shared with other

modules.

Buffer Manager (MBM)

The configuration of the ports, channels and buffer sizes could have been defined in the

data store.

- 63 -

2.9 Conclusions on the MODEL Project

The MODEL software suite made substantial contributions to the on-line systems of

three of the four LEP experiments. It has been widely used in other experiments both at

CERN and other laboratories.

The MODEL project marked the starting point for the author’s investigations in the area

of graphical user interface toolkits and inter-process communication systems and pro-

vided the occasion to survey the current usage of data stores in DAQ systems.

2.9.1 Graphical User Interfaces

For graphical user interfaces, The author learnt that it was important to provide a net-

work-enabled windowing facility since DAQ systems were becoming more distributed.

At the same time, the display devices and processors on which graphical applications

were to run diversified and hence it was important to find a vendor and device neutral

standard for basic windowing facilities. The X Window System offered such a standard

but was too low-level to provide all the facilities required by typical DAQ applications.

This work continued with the investigation of the Motif toolkit in the context of the

RD13 project.

2.9.2 Inter-Process Communication Systems

The limitations of the simple Remote Procedure Call approach became apparent via its

aborted use in the run-control system. As an alternative, the author investigated the pub-

lish/subscribe approach via the development of the Occurrence Signalling Package.

This work showed the basic principles were sound but that the implementation was too

closely tied to the operating system, networking services and programming language.

This work continued with the investigation of the ISIS system to develop the run-con-

trol and error message facilities in the context of the RD13 project.

2.9.3 Configuration Data Storage

No consistent approach had been adopted for configuration data storage in the MODEL

project. Each component had implemented a private technique for its own needs. An

investigation was made as to how the project could benefit from a configuration data

storage service.

- 64 -

chapter

The RD13 Data Acquisition System

- 65 -

3 The RD13 DAQ System

3.1 Intr oduction

This chapter describes the studies performed on the software technologies within the

context of the second DAQ system, called RD13 DAQ, during the period April 1991 to

December 1993.

The first published paper provides an overview of the RD13 DAQ project, followed by

papers on graphical user interface toolkits and inter-process communication systems. A

final paper explains the use of configuration data storage techniques and describes the

state of the research in all three software technologies at the end of the first phase of the

project.

3.2 RD13 DAQ Overview

The RD13 project was approved in 1991 to develop a scalable data taking system suita-

ble to host various studies for LHC experiments [Mapelli90]. At the outset of the RD13

project, it was possible to build on a number of principles established by the precedent

MODEL project.

For graphical user interface toolkits (GUIs), the layered structure of the MODEL

Human Interface (MHI) had proved successful and was confirmed by the large scale use

of the X Window System which has a similar architecture. The upper layers of MHI,

namely the forms, menu and dialogue packages, were the most appropriate for the

majority of applications and their equivalents were available as toolkits built on top of X

although there was still no clear standard. Access to early versions of the VUIT GUI

builder had shown that such CASE tools were useful for rapid prototyping and could

significantly reduce GUI development time.

For inter-process communication systems, the Remote Procedure Call (RPC) had been

used extensively but had proven inadequate for a class of data acquisition applications,

such as run-control. As a consequence, the author developed the Occurrence Signalling

Package which proved popular but its implementation showed limitations in terms of

portability, scalability and fault tolerance.

- 66 -

No clear policy had been established for configuration data storage in the MODEL

project. Various approaches had been explored but the majority consisted of application

specific data files. However, the need for a consistent data model representing informa-

tion of interest to several components of the DAQ had been recognised and limited tests

with the ORACLE relational database management system had been made.

The following published paper entitledThe RD13 Scalable Data Acquisition Systemon

page 67 describes the rationale for the RD13 project and gives an overview of the DAQ

architecture.

- 67 -

Published paper

The RD13 Scalable Data Acquisition
System

Computing for High-Energy Physics Conference 1992, Annecy,
France ISBN 92-9083-049-2.

Published paper

- 68 -

Published paper

- 69 -

Published paper

- 70 -

Published paper

- 71 -

- 72 -

3.3 Test-beam Activity

The first version of the RD13 DAQ was in a test-beam set-up for the SITP (RD-2)

detector R&D in November 1992 during 10 days when approximately 5 million events

were recorded [Mapelli92]. This system was based on VMEbus, using the VICbus (Ver-

tical Inter-Crate) to link VME crates and to integrate back-end workstations (sun

SPARCstations and HPs) with the front-end processors (MIPS 3000 based CES RAID

8235 boards) via the SVIC (Sbus to VIC interface). All the processors (front-end and

back-end) ran UNIX as the common operating system. A real-time version of UNIX

(EP/LX, a port of LynxOS to the MIPS architecture) proved suitable for use in the front-

end RISC processors. This implementation [Mapelli93] was used with the TRD (RD6)

detector during 1993 test-beam periods (Figure 3).

Figure 3 The RD13 DAQ hardware configuration 1993

3.4 Graphical User Interface Toolkits

At the outset of the RD13 DAQ project, the X Window System had established itself as

the most popular basic windowing facility but two higher-level GUI toolkits competed

heavily in the marketplace: Sun Microsystem’s OpenLook and OSF’s Motif. The fol-

lowing published paper entitledUsing Motif in RD13on page 76 describes the selection

criteria employed for choosing the X Window System and the Motif toolkit instead of

OpenLook. The practical difference between these two toolkits was that Motif gained

popularity because it was available on virtually every UNIX client platform (including

SUN

SVIC Ethernet

V
I
C

ETHERNET

R

VME bus

Workstation

Intercrate

RAID 8235
running a real-time UNIX

 (TC/IX version 1.1)

SUN

Ethernet

Workstation

V
M
D
I
SVertical

RS 232

Switching
Box

V
M
E
T
R
O

VT 220

A
I
D

RD13 DAQ busy
APB Enable

VSB Bus
to APB boardsSun to Vic

interface

interface

interface

C
O
R
B
O

Interrupt
Module

VME
display

Vme logic state
analyser

FRONT-ENDBACK-END

- 73 -

Sun workstations), while OpenLook remained a proprietary product from Sun. Motif

offers a set of general purpose graphical objects and specialised ones for performing

tasks like file selection. Such widgets were useful in the development of user interfaces

to components such as the run-control (Figure 8).

During the work a number of areas of interface design and implementation were found

to be not adequately addressed by the Motif toolkit. In all cases, it was possible for the

developer to work around the problems by either implementing the required functional-

ity using the toolkit or by acquiring it from other sources, be it commercial or share-

ware. The published paper entitledUsing Motif in RD13on page 76 explains these

limitations. For example, the graphical event dump (Figure 6) called for the use of spe-

cialised tree and table widgets whereas the status display (Figure 4) required frequent

updates of business style graphics.

Figure 4 DAQ status display built using X-Designer with Motif and DataViews widgets

3.4.1 Graphical User Interface Builder

Graphical user interface builders allow the developer to interactively design interfaces

then generate code for their implementation. Using an interface builder the developer

can implement an interface far more quickly than by hand coding calls to the toolkit.

- 74 -

Interfaces can be built in a more abstract manner and the developer need not have a deep

understanding of the toolkit itself.

For the development of the DAQ, a commercial graphical user interface builder called

X-Designer (Figure 5) (Imperial Software Technology, U.K.) was chosen and proved

invaluable in aiding the production of user interfaces. X-Designer offers a means of

incorporating 3rd party widgets (including the DataViews widgets) and allowing them

to be used along side the standard Motif widget set.

Figure 5 X-Designer graphical user interface builder with Motif and DataViews widgets

An example of a monitoring task with a graphical user interface was the event dump

(Figure 6) built using X-Designer. The event dump displays the contents of an event and

is a useful debugging tool allowing the physicist to verify the format of the data from

the detector without waiting for a tape to be written and analysed.

- 75 -

Figure 6 Event dump showing event decomposition and data block contents

The field of graphical user interfaces is evolving rapidly and has moved forward since

the paper entitledUsing Motif in RD13on page 76 was published. The paper contains

references to GUI builders and widgets available at the time. Eventhough the details of

the information are out-of-date, the selection criteria established in the paper are still

valid. Of the toolkits mentioned, Motif has developed into the most popular choice for

the UNIX platform while Sun’s support for OpenLook has declined and InterViews has

been superseded by another project called Fresco [Fresco94] that uses a standard object

model (OMG CORBA) for transparent distribution of user interface components.

As a further development of this work, it became clear that the design and implementa-

tion of the relationship between the GUI and the application itself needed better support.

This issue is addressed by the incorporation of a GUI builder in an integrated develop-

ment environment called the Object Management Workbench described in the next

chapter. The issue was further pursued by the adoption of the Model-Viewer-Controller

design technique for GUI interaction in the subsequent chapter on the ATLAS experi-

ment.

- 76 -

Published paper

Using Motif in RD13

Second International Workshop on Software Engineering, Arti-
ficial Intelligence and Expert Systems for High Energy and
Nuclear Physics (AIHEP’92) conference, La Londe-les-Maures,
France in January 1992. ISBN 981-02-1122-8.

Published paper

- 77 -

Published paper

- 78 -

Published paper

- 79 -

Published paper

- 80 -

Published paper

- 81 -

Published paper

- 82 -

Published paper

- 83 -

Published paper

- 84 -

- 85 -

3.5 Inter -Process Communication

During the preceding MODEL project, the author developed the OSP inter-process

communication package that was used by the SM run-control component and many

other applications. In the RD13 project, the author’s work on the run-control component

provided the means for continuing investigations into inter-process communication sys-

tems. Based on the limitations of the OSP package described earlier (seeConclusions

on OSPon page 53), a survey was made of available products which resulted in the

selection of the ISIS toolkit.

ISIS [Birman90] [Birman96] is a commercial toolkit for distributed and fault-tolerant

programming. The toolkit is a set of fault-tolerant software protocols that are accessed

by an application programmer interface. Support is included for groups of cooperating

processes, replicated data, distributed computation and fault tolerance. ISIS started life

as a research project at Cornell University but later become a commercial product dis-

tributed by Isis Distributed Systems, Inc. now a wholly owned subsidiary of Stratus

Computing Inc.[Stratus96]. ISIS has been used as the basis for inter-process communi-

cation in the components of the DAQ including the run-control system. For an overview

of ISIS see [Jones92].

3.5.1 Run-Control

As with the State Manager of the MODEL project, it was decided to model the behav-

iour of the various components in terms of finite state machines. Hence the run-control

system provided a way of defining and commands for interrogating and manipulating

finite-state automata. An application defined its state machine in a separate finite state

machine (FSM) file. The FSM file was translated in to a C module using a custom-made

LEX and YACC based translator. The C module was then compiled and linked with the

application’s code.

A state machine consisted of a list of states and commands that could be accepted in

each state. Each command consisted of a command name, the name of the new state to

which it would transfer if the command was executed successfully and the name of a

user routine to be called to perform the processing associated with the command:

command -> new_state (user routine)

- 86 -

The run-control facility (rcl) validated each request to execute a command based on

these definitions. Commands were executed when received by the target application.

They were also displayed in the command list of the rclCmd graphical user interface

program (Figure 8).

3.5.1.1 Hierarchy of Run-Control Programs

Given the size and distributed nature of the DAQ, it was decided to use a hierarchy of

run-control programs that co-operated to subdivide the domains of the experiment. At

the top of the hierarchy was the run-control program representing the state of the DAQ.

It interacted with sub-run-control programs that were responsible for domains such as

read-out or recording. The advantage of such a hierarchy was that the programming task

could be broken down in to smaller subtasks. The top-level run-control program could

be written in terms of the states provided by the sub-run-control programs which in turn

could handle the complexities of the individual applications under their control. The

hierarchy of run-control programs was mapped onto ISIS process groups as shown in

Figure 7.

Figure 7 run-control ISIS process group hierarchy

The process group,rcl, acted as the root to which all applications became members. The

separation into subgroupsxxxallowed multiple copies of the run-control component to

exist on a machine at the same time and support partitioned DAQ systems. TheState-

Changesubgroup was used to broadcast changes of state of applications. Theerror sub-

group was used by the Error Message Facility (EMF) [Ferrato93] to broadcast reported

error messages. EMF offered a service equivalent to that provided by the EMU compo-

nent of the MODEL project (see the published paper entitledMODEL: A Software Suite

For Data Acquisition on page 21).

3.5.1.2 Implementation

The facilities offered by the run-control and error message facility to application pro-

grams were packaged as a library containing a number of routines that could be invoked

/rcl/xxx/ /error
root

/StateChange

- 87 -

by the application via a C language programming interface. All inter-process communi-

cation and multi-tasking facilities were provided by ISIS.

3.5.2 User Interface

The rclCmd user interface (Figure 8) provided a means of monitoring and sending com-

mands to all controllers in the run-control facility. It was independent of the DAQ con-

figuration and a tool for investigating activity at the ISIS process-group level. It was

possible to run multiple copies of the user interface concurrently.

Figure 8 rclCmd user interface

The following published paper entitledBuilding Distributed Run-Control in UNIXon

page 88 provides an overview of the ISIS package and how it has been used in the RD13

DAQ system.

main window

command window for one application

list of rcl
applications

- 88 -

Published paper

Building Distributed Run-Control in UNIX

Computing for High Energy Physics Conference 1992, Annecy,
France ISBN 92-9083-049-2.

Published paper

- 89 -

Published paper

- 90 -

Published paper

- 91 -

Published paper

- 92 -

- 93 -

3.6 Conclusions on the Use of ISIS for Inter -Process Communication

The adoption of ISIS overcame many of the limitations of the OSP package developed

in the MODEL project (seeConclusions on OSP on page 53.), including:

• the possibility to run multiple co-operating servers avoided a single point of failure

and allowed scaling with the size of the experiment,

• broadcast communication was used where supported by the underlying TCP/IP

implementation,

• portability to more platforms (ISIS runs on most UNIXs, VMS and the author ported

it to the EP/LX real-time operating system used on the front-end processors),

• support for all basic data types as well as user defined structures,

• support for various styles of communication (seeCommunication Styleson page 55).

However, ISIS did have a few limitations of its own:

• the programming interface was quite low-level, requiring the programmer to pack

and unpack variables to and from messages,

• the thread facility provided by ISIS, while useful, did not use the native kernel

threads on all platforms and hence a single thread could block the whole process

when performing synchronous I/O.

3.6.1 Conclusions on the RD13 Run-Control Component

The RD13 run-control component offered a number of advantages when compared to

MODEL’s State Manager facility:

• the number and organisation of individual run-control programs could be defined in a

configuration data store and no re-compilation or re-linking was necessary to modify

a configuration,

• the integration of user written code for transition actions was simpler since they were

all implemented in the same language and could be combined in the same thread or

process,

- 94 -

• the rclCmd graphical user interface (Figure 8) was independent of the configuration,

the controllers’ FSMs and more flexible than the State Manager interface developed

during the MODEL project (seeGraphical User Interface for the MODEL State

Manager on page 57),

• its implementation was shown to be more portable,

• individual controllers could be distributed across the network rather than all held

within a single process.

However, the first version did have the following limitations:

• to make the FSMs inter-dependent it was necessary to write C code to monitor state

changes and components starting or stopping. This was a low-level way of express-

ing these dependencies,

• since the FSM was statically linked with the component it could not be changed

according to the DAQ configuration used,

• only one action (a call to a user routine) could be performed when a command was

received. Multiple actions including sending commands to other components (with-

out coding this in C) would have been more useful,

• it was assumed each command caused a state change - even if the new state was the

same as the current state,

• actions could not be executed asynchronously.

3.6.2 The Meta Toolkit

In an attempt to simplify the definition of inter-dependencies of the controllers in the

hierarchy, the author investigated the use of the Meta [Marzullo91] product built on top

of ISIS. Meta and this investigation are described in the published paper entitledBuild-

ing Distributed Run-Control in UNIXon page 88. Another paper [Jones92] explaining

the rationale for this work was published during the initial evaluation of Meta. In archi-

tecture and concept terms, Meta was shown to be suitable for the development of the

run-control system. Retrieving information about the state of the DAQ via sensors and

modifying it via actuators allowed one to concentrate on the domain specific issues of

the system. It also addressed some shortcomings of the ISIS package (seeConclusions

on the Use of ISIS for Inter-Process Communicationon page 93). Unfortunately, the

- 95 -

implementation of Meta was not as reliable or robust as the underlying ISIS toolkit. The

distributed rule interpreter was particularly fragile. As a consequence, the author

decided to add some of the features of Meta to the existing ISIS based run-control sys-

tem. In particular, the author wanted to make use of the sensor/actuator concept. In the

ISIS based run-control, events that caused state transitions to fire could be considered

equivalent to sensors and user defined action routines to be actuators. With this in mind,

the author extended the types of events sensed by the run-control via the FSM definition

language. This work is described in the following chapter on the upgraded RD13 DAQ

system.

3.7 Configuration Data Storage

Four distinct data stores were envisaged for the RD13 DAQ to store configuration infor-

mation: hardware configuration (described the layout of the hardware in terms of crates,

modules, processors and interconnects); software configuration (described the layout of

the software in terms of processes, services provided, connections and host machines);

run parameters (e.g. run number, recording device, level 2 trigger state etc.) and detec-

tor parameters (information pertaining to the detector and defined by the detector group

themselves within a fixed framework).

3.7.1 First Implementation: StP/ORACLE

The first implementation of the configuration data storage framework was made using

“traditional” (i.e. for which extensive expertise existed at CERN) technology: the

entity-relation (E-R) data model and relational database management (DBMS) technol-

ogy (as implemented by ORACLE). The E-R data model had already been used in sev-

eral experiments [Green89] and was shown to be adequate for the purpose. The

Software Through Pictures (StP) CASE tool supporting structured analysis and design

(SA/SD) techniques was used to design and develop the data model for the DAQ’s soft-

ware configuration. StP provided a graphical E-R editor capable of producing SQL code

to create ORACLE (and other relational DBMS) tables and C data structures defining

entities and relationships.

3.7.1.1 Real-Time Facilities and Distributed Access

ORACLE was not suited for real-time distributed access to the data [Mornacchi92] and

its interfaces were not available for the front-end processors. In order to use ORACLE,

- 96 -

for configuration data storage in the DAQ an architecture needed to be devised that

overcome this limitation.

For real-time access, a two-level scheme was adopted: an off-line level where the data

was created and maintained in ORACLE (creation, insertion, updates, etc.); and an on-

line level where, at run-time, the contents were extracted from ORACLE and read into

an application’s memory (i.e. ORACLE tables mapped onto arrays of data structures

representing database rows). The data was accessed by DAQ programs via a user

defined and implemented Data Access Library (DAL). The DAL provided an interface

to the queries and updates needed by the applications. The DAL hid the actual imple-

mentation of the data store from the application as well as the detailed data model. This

implied that the underlying data storage system could be replaced without affecting the

application programs.

3.7.1.2 User Interface

Graphical tools were needed to allow physicists to browse and update the data. Such

interactive programs performed all the operations allowed at run-time via the DAL.

Generic browsing and updates, assumed to be rare and performed by experts only, were

made using the commercial DBMS query language and facilities.

3.7.1.3 Intermediate File

The DAL navigated the in-memory tables to access the data. Initial loading of the data-

base was relatively slow. To provide access to the data from the front-end processors

the data was extracted from the ORACLE database and read into a workstation disk file

(NFS being available throughout the system). Applications running on the front-end

processors could read the disk file to fill their in-memory tables.

A major drawback of this scheme was the need to hand code the DAL directly in C, par-

ticularly the navigation of the data schema.

3.7.2 Second Implementation: QUID

An alternative to commercial relational DBMS are in-memory bank systems. They do

not have all the functionality of relational DBMS but do not have so many overheads in

terms of performance and demands on the underlying operating system. One such com-

- 97 -

mercial in-memory system is QUID (Artis S.r.l, Italy.) QUID is a data store develop-

ment environment targeted to real-time applications (i.e. where performance is needed

and the full functionality of a DBMS is not). An overview of QUID is included in the

published paper entitledSoftware Engineering Techniques and CASE Tools in RD13on

page 99. Figure 9 shows the graphical schema editor data browsing tool provided with

the QUID environment.

Figure 9 QUID editor and browser showing one view of the RD13 DAQ software configuration

QUID allows the modelling, storing and handling of the data but it is not a full database

management system since it relies on the host’s file system for storing data and does not

provide a multi-user environment. There is no provision for distributed transactions, nor

for the distribution of data among many processes. For read-only data stores this restric-

tion is easily overcome by having all participating processes access the disk files via

NFS. When writing is also needed, a special scheme has to be devised. It also has some

other important deficiencies:

• all the data is in the memory of the application which sets strict limitations on its

size,

• no referential integrity or concurrency control is provided,

- 98 -

• no schema evolution facilities are provided. If a schema change takes place then the

data that correspond to the old schema are no longer valid.

However, QUID was successfully used to implement all four RD13 DAQ configuration

data stores mentioned earlier. Figure 10 shows the custom-made Motif based user inter-

face to the detector parameters data store. This situation was satisfactory for most pur-

poses but the arrival of object database management systems (ODBMS) made it

possible to extend the functionality of the data stores. Other groups have also investi-

gated the use of ODBMS systems in other HEP applications such as physics event

recording [RD4596] [PASS94] [Le Goff95].

Figure 10 User interface to detector parameters data store

The migration from ORACLE to QUID data stores was simplified by the use of the

DAL that allowed applications to be ported by simple recompilation. QUID’s query lan-

guage was found to be easier to use and simpler to integrate than ORACLE SQL.

The following published paper, entitledSoftware Engineering Techniques and CASE

Tools in RD13on page 99 summarises the state of the graphical user interfaces and con-

figuration data storage in the RD13 DAQ system at the end of the project’s first phase.

It also proposes areas of research for each of the software technologies for the second

phase (described in the next chapter).

- 99 -

published paper

Software Engineering Techniques and
CASE Tools in RD13

Third International Workshop on Software Engineering, Artifi-
cial Intelligence and Expert Systems for High Energy and
Nuclear Physics (AIHEP’93) conference, Oberammergau in
October 1993. ISBN 981-02-1699-8.

Published paper

- 100 -

Published paper

- 101 -

Published paper

- 102 -

Published paper

- 103 -

Published paper

- 104 -

Published paper

- 105 -

Published paper

- 106 -

Published paper

- 107 -

Published paper

- 108 -

Published paper

- 109 -

- 110 -

3.8 Conclusions on RD13 DAQ

The first phase of the RD13 DAQ project successfully demonstrated that MIPS based

processors running a full multi-tasking real-time UNIX operating system in an VME

environment could accommodate LHC scale data rates. The project also showed that

UNIX was a suitable operating system for back-end DAQ activities and as a software

development environment. The conclusions on the use of ISIS for inter-process commu-

nication have already been stated (Conclusions on the Use of ISIS for Inter-Process

Communication on page 93).

3.8.1 Graphical User Interface Toolkits

The adoption of the X Window System and OSF’s Motif widget set provided adequate

support for basic graphical applications on multiple UNIX platforms in a local area net-

work. This combination allowed the replacement of custom-made packages, such as the

MHI package from the MODEL project, with commercial solutions. Business style

graphics widgets (such as Bell Corps. matrix widget or the DataViews kit) could be

used alongside Motif to extend the graphics facilities. The use of a graphical user inter-

face builder CASE tool simplified the development of interfaces and greatly reduced the

amount of hand-written software.

3.8.2 Configuration Data Storage Techniques

By adopting a common approach to configuration data storage on the RD13 DAQ it was

possible to share information more easily between the various software components.

The use of the entity-relationship approach, supported by ORACLE, provided the possi-

bility to specify the configuration data required using a well defined data model. By

replacing ORACLE with QUID, it was possible to provide easier access to the data

store from the front-end processors and improve the run-time performance of the whole

system. QUID’s graphical schema editor and browser provided a convenient means for

developers to design and populate the data stores but custom-made interfaces were

required for the DAQ operators. As the size of the DAQ system grew and modifications

were made to its structure, it became evident that the data size restrictions of QUID and

its lack of support for schema evolution would become a problem in the future. This sit-

uation encouraged the investigation of alternative techniques and led to the evaluations

of the object DBMS as described in the next chapter.

- 111 -

chapter

The RD13 Data Acquisition System
Upgrade

- 112 -

4 The RD13 Data Acquisition System Upgrade

4.1 Intr oduction

This chapter describes the studies performed on the software technologies within the

context of the third DAQ system. This DAQ system was an upgrade to the original

RD13 DAQ, described in the previous chapter, and covers the period from January 1994

to December 1995. A published paper defines the improvements made to the DAQ sys-

tem in this phase and is followed by a paper dedicated to configuration data storage

techniques. The third and final paper of this chapter gives the status of the three soft-

ware technologies at the end of the RD13 project.

4.2 RD13 DAQ Upgrade Overview

In order to cope with increasing requirements from the detectors and to further explore

the scalability issues of the read-out system, the RD13 DAQ was upgraded to cope with

multiple concurrent detectors. This provided the opportunity to upgrade some of the

software components [Mapelli94]. Upgrades were made to the inter-process communi-

cation system used by the run-control, various graphical user interfaces and alternative

configuration data storage techniques were explored. A combined run of several

ATLAS sub-detector prototypes including the tile calorimeter (TileCal), liquid argon

(LAr) calorimeter and transition radiation tracker (TRT) detectors in April 1996 demon-

strated the successful use of the upgraded hardware and software. This version of the

system [Mapelli95] was used in the H8 test beam area by ATLAS sub-detectors

throughout 1996 (Figure 11).

Figure 11 DAQ Hardware setup at ATLAS test-beam 1996

The following published paper entitledThe RD13 Data Acquisition Systemon page 113

describes the modifications made to the RD13 DAQ system during its upgrade.

Run-control

V
I
C

R
A
I
D

C
B
D

VME

CAMAC

V
I
C

R
A
I
D

C
B
D

VME

V
I
C

R
A
I
D

C
B
D

VME

CAMAC CAMAC

H
I
P
P
I

H
I
P
P
I

V
I
C

HP
V
I
C

HP
V
I
C

HP

V
I
C

R
A
I
D

VME

H
P

SUN SUN

Event Building

C
O
R
B
O

C
O
R
B
O

C
O
R
B
O

C
O
R
B
O

Trigger &
Busy Logic

TRTLAr

to CN

TriggerTileCal

VIC
ethernet

Monitoring

- 113 -

Published paper

The RD13 Data Acquisition System

Computing for High-Energy Physics Conference 1994,.San
Francisco, USA, Proceedings of CHEP94. Lawrence Berkeley
Laboratory LBL-35822; CONF-940492; UC-405

Published paper

- 114 -

Published paper

- 115 -

Published paper

- 116 -

Published paper

- 117 -

Published paper

- 118 -

- 119 -

4.3 Configuration Data Storage

The QUID data store had been successfully used to hold DAQ configuration informa-

tion in the original RD13 DAQ system. A number of limitations of the QUID system

had been identified, as described in the following published paper entitledExperience

Using a Distributed Object Oriented DataBase for a DAQ Systemon page 121, namely:

• the whole data store was loaded into the application’s memory at initialization thus

limiting the size of the store to that of the virtual memory assigned to a single proc-

ess,

• no facilities were provided for referential integrity, concurrency control, schema evo-

lution and versioning.

To overcome these limitations, investigations of the possible use of a commercial

ODBMS in 1993 were made, as mentioned in the published paper entitledSoftware

Engineering Techniques and CASE Tools in RD13on page 99. The initial investigations

were based on Ontos [Ontos92] but it was soon abandoned because the version availa-

ble at the time did not support heterogeneous client and server configurations. As an

alternative, the hardware configuration data store and an associated application

[Ambrosini94] were re-implemented using the GemStone [GemStone92] database.

GemStone client libraries were not available for the operating system on the front-end

processors and so the database could not used by applications running on these

machines.

A third commercial ODBMS, called ITASCA [Itasca92], was available at this time and

the company was prepared to port their client library to the front-end processors for test-

ing purposes. ITASCA was a commercial extension of the ORION-2 research prototype

from MCC (Microelectronics and Computer Technology Corporation).

Given that the client libraries were available on the front-end processors it was interest-

ing to understand how far the database could be integrated into the DAQ system. The

DAQ was modified to access the database in the data flow protocol transporting the

physics data. This provided measurements of the delay introduced by making a database

access on a per event basis. The results showed a minor degradation in the event rate

when the client-side object caching capability of ITASCA was used. Investigations into

- 120 -

the use of commercial ODBMS were continued in the ATLAS experiment as described

in the next chapter.

As an alternative to ODBMS, the published paper entitledApplications of an OO Meth-

odology and CASE to a DAQ Systemon page 136 describes investigations into the use

of the Kappa persistent object manager for configuration data storage purposes.

Kappa’s internal object persistence was used in the Error Message Facility (EMF)

server and on-line book-keeping applications. A single function call was needed to save

or restore a set of objects to or from disk. When used in this manner, the Object Dia-

grammer of the CASE tool became a graphical database schema editor. The system also

provided limited schema evolution allowing objects to be saved to disk, the schema

changed and the database re-read into memory. The facilities of the object persistence

could not be compared to a real database since it had no notion of transaction support,

concurrency control, versioning or distributed access but it was more akin to an object-

oriented version of QUID.

- 121 -

Published paper

Experience Using a Distributed Object
Oriented DataBase for a DAQ System

CHEP’95: Proceedings of the Internal Conference on Comput-
ing for High Energy Physics’95

18-22 September 1995. Rio de Janeiro, Brazil. ISBN 981-02-
2783-3.

Published paper

- 122 -

Published paper

- 123 -

Published paper

- 124 -

Published paper

- 125 -

Published paper

- 126 -

Published paper

- 127 -

- 128 -

4.4 Inter -Process Communication

The principle use of the inter-process communication system in the RD13 system was

the run-control system and error message facility as described in the previous chapter

(Inter-Process Communicationon page 85). The following revisions were made to the

run-control system taking into account the lessons learned from the investigations per-

formed with the Meta toolkit (seeThe Meta Toolkit on page 94).

4.4.1 Extended the Run-Control Transition Types

The finite state machine declaration notation (See “Run-Control” on page 85) was

revised to incorporate the concept of sensors as defined in the Meta toolkit by adding

more types of transitions:

• Error signal transitions executed when the corresponding EMF error message was

reported by any rcl application:

errorCode -> new_state (user routine)

• Rcl application startedtransitions executed when the given application (identified by

name or matching regular expression) connects to rcl:

appName started -> new_state (user routine)

• Rcl application stoppedtransitions executed when the given application (identified

by name or matching regular expression) disconnected from rcl or exited:

appName stopped -> new_state (user routine)

• Rcl application state change transitions executed when the given application (identi-

fied by name or matching regular expression) entered the given state (identified by

name or matching regular expression):

appName in some_state -> new_state (user routine)

When the new transition types were combined with the ability to use regular expres-

sions to identify the application in the start, stop and state change transitions, this

brought important improvements to the run-control component. When combined with

naming conventions for application names, regular expressions made FSMs independ-

ent of the DAQ system configuration.

- 129 -

For example, assuming the top-level controllers for each detector were named

Controller_<detector name>then a single transition could react to a state change of

any detector:

Controller_* in Error -> Error(handle_detector_error)

4.4.2 Configurable Finite State Machines

By storing the definition of the FSMs in a data store and retrieving them at run-time, it

became possible to select the appropriate FSMs according to the DAQ configuration

being used. Once a FSM had been loaded from the database, it was put in the initial state

and executed as before.

4.4.3 User Interface

The initial run-control user interface, rclCmd (seeUser Interfaceon page 96), was pro-

vided as a means of interacting with any controller in the hierarchy. A higher-level of

abstraction was more appropriate for the DAQ operators that restricted interaction to the

root of the control hierarchy and encompassed facilities for interacting with other parts

of the DAQ. The DAQ Main Window (DMW) (Figure 12) was thus defined and pro-

vided:

• selection of system configurations,

• initial DAQ startup and state change push-buttons,

• run state information (updated dynamically) and

• access to all DAQ utilities (e.g. status display, monitoring tasks, etc.) via pull-down

menus.

DMW integrated several commercial packages including Motif graphics, ISIS and the

QUID data store. This resulted in a number of integration problems since each tool pro-

moted a different style for steering and organising programs. A compromise was found

limiting the use of a tool’s functionality to that which could coexist with other products.

DMW was driven by the contents of the QUID data store and was hence independent of

the DAQ system configurations. Given its on-line requirements (i.e. it should respond

before the user becomes impatient) such a module would have benefited from maintain-

ing the DAQ status in a distributed data management system.

- 130 -

Figure 12 DAQ Main Window user interface

4.4.4 Run-Control Issues

The measures described above improved the run-control system but a number of issues

concerning the run-control had not been investigated or needed re-assessment:

• a better means of indicating to the operator the state of the run-control component

itself. The time taken to execute a transition was variable and it was sometimes diffi-

cult to know if the DAQ system was stable, trying to execute a command or engaged

in an automatically triggered transition,

• assess the relative merits of having the controller state coherency management dis-

tributed, as it is in the RD13 DAQ, or centralized as it was in MODEL’s State Man-

ager.

4.4.5 The Resource Manager

In distributed DAQ systems it is necessary to start and stop a plenitude of programs dur-

ing the initialization and shut-down phases on many processors within the LAN. In the

MODEL project, which was essentially running on a VAX/VMS cluster, the cluster

management facilities provided by the VMS operating system could be used to fulfil

this task and were encapsulated inside a dedicated component called MPC [Matheys89].

- 131 -

However, no such distributed process management facilities exist in the UNIX operat-

ing systems that hosted the RD13 project. Initially the UNIX’srsh facility was used but

it satisfied only a subset of the requirements. In particular, it had a poor interface and lit-

tle support for error handling. As an alternative the use of the Resource Manager, a

toolkit built on top of ISIS, was investigated as described in the published paper entitled

Building Distributed Run-Control in UNIXon page 88. The Resource Manager was

intended to provide job control and load-balancing services to sets of workstations.

Many alternative products existed both commercially and as freeware (e.g. Unison’s

Load Balancer [Unison97] or NASA’s NQS [Kaplan93]). The Resource Manager could

start processes but it lacked the necessary hooks to inform clients when a process died

and would instead try to reschedule the job on another host. Such products emphasise

maintaining a maximum through-put of jobs. In a DAQ system, the termination of an

individual process could have important consequences in components such as the run-

control that could not be resolved by simply starting another copy. As a result, the RD13

system reverted to the use of rsh but the issue is addressed again in the ATLAS proto-

type DAQ described in the next chapter.

4.4.6 Artifex

An alternative means of designing and implementing the run-control system was

explored during the revision of the RD13 DAQ system. As described in the published

paper entitledSoftware Engineering Techniques and CASE Tools in RD13on page 99, a

Petri Net based approach had been employed in the design and implementation of the

Data-Flow Protocol (DFP) component of the DAQ. This approach used PROTOB

[Bruno95], an object-oriented method based on an extended data flow model defined

using high level Petri Nets supported by a CASE toolset called Artifex (Artis S.r.l.,

Italy.) Artifex consisted of several tools supporting specification, modelling, prototyp-

ing and code generation activities within the framework of the software life cycle (sys-

tem analysis, design, simulation and implementation):

• the analysis and design phases were made using the graphical formal language for

the high level concurrent Petri Nets,

• during the simulation, generation and execution phases the user could simulate, set

break points and step through the concurrent task model,

- 132 -

• the emulation supported distributed code generation from the same model used for

analysis and simulation. During emulation, visual monitoring of the Petri Net was

possible using the same GUI as for the previous phases.

This work showed that although the performance of the resulting system was not satis-

factory for the processing of physics data [Khodabandeh93] it was adequate for other

components such as the run-control system. The Artifex toolkit offered many of the

facilities required for the development of the run-control system, including a means of

modelling dynamic behaviour in terms of Petri Nets and a transparent network based

communication between different parts of the model. The work on the DFP component

[Fumagalli93] had shown the advantages of an integrated design and implementation

environment with tools to simulate the model.

Hence a prototype of the RD13 run-control system was made with Artifex and a sum-

mary of the results is included in the published paper entitledThe RD13 Data Acquisi-

tion Systemon page 113 and further detailed in [Aguer94]. Unfortunately, some

problems were encountered during the development:

• integrating the code generated by Artifex with hand-written or third party code was

cumbersome [Artifex93]. In particular, combining the event loops required by ISIS

and the X Window System with that of Artifex required some programming gymnas-

tics that would be better avoided [Jones93],

• Artifex did not support dynamic configuration. Every instance that participated in the

model had to be explicitly drawn with the GUI and connected to other instances dur-

ing the modelling phase. This was acceptable during the initial modelling and valida-

tion, but it became a restriction in the final application where a degree of dynamism

was necessary [Jones94],

• the developers found modelling controllers with Petri Nets less obvious than with

finite state machines.

Based on the above points it was decided to abandon the use of Artifex for run-control

purposes. Nevertheless, the work with Artifex showed the benefit of using a transparent

network communication facility and using a simulator to test models before full code

generation as well as a CASE toolset to support most of the software lifecycle. These

principles were carried through to the work involving the Object Management Work-

- 133 -

bench (OMW) described below. The better support for the software lifecycle that code

generation provided was appreciated since it became possible to keep the design and

implementation in step (i.e. the code is generated from the design) over successive

releases of the software.

4.4.7 Kappa CommManager

As an alternative to ISIS and Artifex’s transparent network communication, the pub-

lished paper entitledApplications of an OO Methodology and CASE to a DAQ System

on page 136 describes the use of the OMW integrated CASE toolset that included an

inter-process communication package called the Kappa CommManager. OMW applica-

tions could be distributed between UNIX workstations and PCs running Microsoft Win-

dows by using the Kappa CommManager [Intellicorp93]. Kappa CommManager

provided transparent inter-process communication among distributed objects running

over TCP/IP networks and complied to the CORBA protocols defined by the Object

Management Group [OMG95]. Limited tests with the CommManager package for dis-

tributed applications were performed but it was not possible to incorporate its use in the

DAQ. It worked satisfactorily on a network of Sun workstations but it was not possible

to test it in a heterogeneous environment. The programming overhead of distributing an

application over several processes was minimal. Conceptually, it could be seen as an

object-oriented equivalent of remote procedure calls (RPCs) with the advantage than the

developer is not required to define the interfaces via a specialised language (e.g. as used

by RPC compilers). As with RPCs, an application could be developed as a single proc-

ess and distributed later with the minimum of disruption. Interest focused on combining

the CommManager with the object persistence and object monitors in order to provide a

distributed, reactive data store, whereby clients of a data server process could use moni-

tors to be informed of any changes to the objects managed by the server.

4.5 Graphical User Interface Toolkits

In the original RD13 DAQ system, the Data Views graphics library and editor were

used to develop sophisticated user interfaces such as the status display (Figure 4) and

later the Data Views widgets were integrated in the X-Designer GUI builder. During the

revision of the RD13 DAQ, the Data Views widgets were replaced with an alternative

widget set called XRT sold by the KL Group [KL94]. These widgets offered more

- 134 -

sophisticated graphics capabilities with a simpler programming interface and could also

be integrated with the X-Designer GUI builder (Figure 13).

Figure 13 X-Designer graphical user interface builder with Motif and XRT widgets

For the components of the DAQ developed with OMW, the integrated GUI builder

called the Interface Workbench was used (Figure 14). This tool provided similar func-

tionality to X-Designer but also rectified an important short-coming with the GUI

development technique at that point, namely the lack of support for modelling the rela-

tionship between the application and the interface. However, it was found that the inte-

gration of third party widgets was more complicated in the Interface Workbench than

with X-Designer. A comparison between the use of X-Designer and OMW’s Interface

Workbench in included in [Jones95].

Motif widget palette
Dialog under
construction

XRT widget palette

Widget hierarchy of dialog

- 135 -

Figure 14 OMW’s Interface Workbench and Data-Linkage Editor

The following published paper entitledApplications of an OO Methodology and CASE

to a DAQ Systemon page 136 gives an overview of the OMW CASE toolset and

describes how it was applied to various components of the RD13 DAQ system.

List of Dialogs created

Widget palette

Data linkage editor

Dialog under
construction

- 136 -

Published paper

Applications of an OO Methodology and
CASE to a DAQ System

CHEP’95: Proceedings of the Internal Conference on Comput-
ing for High Energy Physics’95

18-22 September 1995. Rio de Janeiro, Brazil. ISBN 981-02-
2783-3.

Published paper

- 137 -

Published paper

- 138 -

Published paper

- 139 -

Published paper

- 140 -

Published paper

- 141 -

Published paper

- 142 -

Published paper

- 143 -

Published paper

- 144 -

Published paper

- 145 -

- 146 -

3.9 Conclusions on the RD13 DAQ Upgrade

The RD13 DAQ was successfully upgraded to support data taking from multiple con-

current detectors and to host switch based event building studies. The DAQ was used in

test beams with several prototype ATLAS detectors and the project later became the

basis of the ATLAS DAQ system.

3.9.1 Configuration Data Storage

In order to overcome the limitations of the QUID system three successive ODBMS

(Ontos, GemStone and ITASCA) were evaluated as well as a persistent object manager

(Kappa object manager). The use of the ODBMS showed the importance of the installed

configuration on the performance of the applications. The ODBMS provided far more

control on the consistency and integrity of the data but implied a greater management

load. Their use of client-server based architectures solved the problem of simultaneous

distributed access to a consistent set of data by multiple applications but introduced

restrictions on how the applications could be implemented and was the source of inte-

gration problems with other software packages.

The Kappa object manager was similar to QUID but also provided limited schema evo-

lution facilities. The OMW CASE toolset provided better support for the development

of specialised graphical user interfaces for the DAQ operators.

3.9.2 Inter-Process Communication

ISIS continued to be the basis of all communication used in the DAQ control and con-

figuration components when the RD13 system was upgraded. Improvements were made

to the run-control system by extending the finite state machine definition notation using

more advanced ISIS features. Attempts were made to employ ISIS layered products

such as the Meta toolkit and the Resource Manager but their use had to be abandoned

due to limitations of their implementations.

Two alternatives to ISIS were investigated: Artifex and the Kappa CommManager. The

Artifex development environment provided transparent inter-process communication to

exchange Petri Net tokens but it proved too rigid for day-to-day use in a physics experi-

ment. The Kappa CommManager provided first access to OMG’s Corba based commu-

nication but its use was too closely linked to the Kappa programming environment

- 147 -

which was not available on all the platforms used by the DAQ. This work did encourage

the investigation of other Corba implementations as described in the next chapter.

3.9.3 Graphical User Interface Toolkits

The combination of the X Window System and OSF’s Motif toolkit with the X-

Designer GUI builder established during the first phase of the RD13 project continued

to be the basis of the interfaces in the upgraded DAQ. The DataViews business graphics

widgets were replaced with an alternative set called XRT that provided a simpler pro-

gramming interface and easier integration with X-Designer.

As an alternative to X-Designer, the OMW’s Interface Workbench was used to develop

interfaces to several DAQ components. This tool was more closely integrated with the

rest of the development environment and improved the connection between the applica-

tion and the graphical interface. By using the Data Linkage editor, it was no longer nec-

essary to write code by hand for many callback routines such as those to display data in

widgets. This tool could also generate code for interfaces using Microsoft’s MFC run-

ning on PCs as well as OSF’s Motif. The issue of the connection between the applica-

tion and its graphical interface is further developed in the next chapter.

- 148 -

chapter

The ATLAS Data Acquisition System
Prototype

- 149 -

5 The ATLAS Data Acquisition System Prototype

5.1 Intr oduction

This chapter presents the state of the ongoing studies performed on the three software

technologies. These studies were made within the context of the fourth and final DAQ

system, called ATLAS DAQ prototype -1, and covers the period from January 1996 to

the summer of 1997. The first published paper gives an overview of the ATLAS proto-

type DAQ and is followed by a paper describing the most recent studies in each soft-

ware technology.

5.2 ATLAS DAQ Prototype -1 Project

The goal of the ATLAS DAQ -1 project is to produce a fully functional prototype suita-

ble for evaluating candidate technologies and architectures for the final DAQ system of

the ATLAS experiment at CERN’s LHC future accelerator. The prototype consists of a

complete “vertical” slice of the ATLAS DAQ architecture, including all the hardware

and software elements of the data flow, its control and monitoring and all the other ele-

ments of a complete on-line system, from the detector read-out to data recording. For

further information on the ATLAS experiment see [ATLAS94] [ATLAS96].

5.3 Graphical User Interface Toolkits

At the end of the RD13 project, a satisfactory development environment had been estab-

lished for graphical user interfaces. This environment consisted of the X Window Sys-

tem and OSF’s Motif toolkit as the basic windowing packages. Two alternative means

of producing interfaces had been employed: The X-Designer GUI builder and the

Object Management Workbench’s (OMW) Interface Builder.

The X-Designer GUI builder had been successfully used to model interfaces using both

Motif and XRT widgets (including tables, 2-D graphs, pie charts and so on for more

sophisticated applications) then generate portable C code. The only apparent restrictions

were the lack of support for the relationship between the application and the GUI, and

the non-availability of the XRT run-time library on the front-end processors.

OMW’s Interface Builder had been successfully used to implement GUIs for various

DAQ components as part of the integrated OMW development environment. With its

Data Linkage editor, the Interface Builder was able to model the relationship between

- 150 -

the GUI and the application thereby reducing the effort required to integrate the two

domains. While the development was simplified, the deployment was more restrictive

since the OMW run-time library was available on fewer platforms than Motif and

required more resources to run.

At this point, PCs running Microsoft Windows NT became suitable platforms for DAQ

activities and their introduction put into question the validity of the choice of the X

Window System and the Motif toolkit. As a result, an evaluation of the Java program-

ming language and the Abstract Window Toolkit (AWT) was performed [Caprini96].

5.4 Inter -Process Communications

ISIS had been successfully used as the basis of inter-process communication in many

DAQ components. However, it was necessary to port the ISIS toolkit to the front-end

processors which was possible only because the product was distributed in source code

form. The commercial distributors of ISIS were not convinced of the business argument

for supporting such platforms and were considering distributing new versions of the

product in binary format.

The use of Object Management Group’s Corba communication system had been

explored through the tests made with the Kappa CommManager as part of the OMW

environment (see “Kappa CommManager” on page 133). At the same time, implemen-

tations of the Object Management Group’s Corba standard were becoming widely avail-

able. As a consequence, evaluations of freeware implementations of two emerging

standards namely Message Passing Interface (MPI) [Touchard96] and Corba [Kolos96]

were performed.

5.5 Configuration Data Storage

QUID was still the most widely used configuration data storage technique in the RD13

DAQ but prototype components had been made using the Itasca object database man-

agement system and OMW’s persistent object manager.

The following published paper entitledThe ATLAS DAQ and Event Filter Prototype “-

1” Project on page 151 gives an overview of the DAQ project in which the software

technology studies were carried out for the ATLAS experiment.

- 151 -

Published paper

The ATLAS DAQ and Event Filter
Prototype “-1” Project

CHEP’97: Proceedings of the Internal Conference on Comput-
ing for High Energy Physics’97,

7-11 April 1997. Berlin, Germany. (being printed).

Published paper

- 152 -

Published paper

- 153 -

Published paper

- 154 -

Published paper

- 155 -

Published paper

- 156 -

Published paper

- 157 -

Published paper

- 158 -

- 159 -

5.6 Software Technologies in the ATLAS Prototype DAQ Project

The following published paper entitledSoftware Technologies for a Prototype ATLAS

DAQ on page 160 describes the studies on inter-process communication, graphical user

interface toolkits, and configuration data storage techniques within the ATLAS proto-

type DAQ project. It is the final published paper included in this thesis and represents

the culmination of the investigation into the three software technologies at this point in

time. The architecture and requirements referred to in the paper benefit from the experi-

ence gained in the MODEL and both subsequent RD13 DAQ systems described in the

published papers of the preceding chapters. A general principle has been the consistent

application of a single implementation for each technology throughout all components

of the back-end DAQ. This approach simplifies the management of the DAQ software,

permits the sharing of information between different components and eases their inte-

gration.

- 160 -

Published paper

Software Technologies for a Prototype
ATLAS DAQ

CHEP’97: Proceedings of the Internal Conference on Comput-
ing for High Energy Physics’97,

7-11 April 1997. Berlin, Germany. (being printed).

Published paper

- 161 -

Published paper

- 162 -

Published paper

- 163 -

Published paper

- 164 -

Published paper

- 165 -

Published paper

- 166 -

Published paper

- 167 -

- 168 -

chapter

Discussion and Conclusions

- 169 -

6 Discussion and Conclusions

This chapter provides a summary of the activities and developments for each of the

three software technologies by tracing the work of this research programme through the

four successive DAQ development projects and suggests possible areas for future work.

6.1 Graphical User Interfaces

Within the MODEL project, studies of graphical user interfaces started with the devel-

opment by the author of various elements of the human interface package (MHI). MHI

provided distributed windowing facilities to DAQ software in a local-area network on a

variety of devices including character-cell terminals and bit-mapped workstation

screens. MHI was designed and implemented at a time when bit-mapped workstation

screens were just being introduced and no clear windowing graphics standard existed. It

helped to bridge the gap between radically different device types and at the same time

allowed graphical applications their first possibility to exploit processing power in a

distributed environment.

MHI was ported to the then emerging X Window System that provided support for a

greater number of vendors’ devices and also replaced the RPC based communication

system. The porting of MHI to X confirmed the advantages of MHI’s basic architecture

that combined a client-server model using RPC-based communication with device

independence. During the port it was necessary to marry the event-driven structure of X

applications with the discrete library application programming interface of MHI. The

facilities provided by the layered packages (i.e. menus, panels and dialogues) were later

supported by the most widely used commercial toolkits namely Microsoft Foundation

Classes (MFC) and Open Software Foundation’s (OSF) Motif built on top of X.

This port also provided initial access to high-level windowing toolkits and commercial

graphical user interface builder tools used to implement an interface to the State Man-

ager run-control component of the DAQ.

At conception of the RD13 project, an evaluation of several windowing toolkits (Motif,

InterViews and OpenLook) was made that led to the adoption of OSF’s Motif toolkit

and the X-Designer GUI builder. This combination was used to implement many user

interfaces for the RD13 DAQ including the data store editors and the run-control dis-

play. The advent of graphical interface builders for the most common toolkits (e.g. X-

- 170 -

Designer for Motif and Visual Basic for MFC) simplified the task of graphical interface

development. But a commercial market for such GUI builders could exist only when a

common standard for graphical toolkits had gained wide acceptance. This was not the

case when MHI was designed and implemented. To satisfy more sophisticated graphi-

cal needs than could be met by Motif, the DataViews graphics package was evaluated

and used to implement interfaces such as the DAQ status display.

The adoption of the X Window System and OSF’s Motif widget set provided adequate

support for basic graphical applications on multiple UNIX platforms in a local area net-

work. This combination allowed the replacement of custom-made packages, such as the

MHI package from the MODEL project, with commercial solutions. Business style

graphics widgets (such as Bell Corps. matrix widget or the DataViews kit) could be

used alongside Motif to extend the graphics facilities. The use of a graphical user inter-

face builder CASE tool simplified the development of interfaces and greatly reduced

the amount of hand-written software.

During the upgrade of the RD13 DAQ, the DataViews package was replaced with the

XRT widget set that integrated better with Motif and the X-Designer GUI builder.

Investigations into alternative development tools were made using Intellicorp’s Inter-

face Workbench that provided better support for application and graphics integration. It

was used to implement interfaces to the Error Message Facility and the Run Book-

keeper components. This tool had the advantage of being more closely integrated with

the rest of the development environment and improved the connection between the

application and the graphical interface. By using the Data Linkage editor, it was no

longer necessary to write code by hand for many callback routines such as those to dis-

play data in widgets. The tool could also generate code for interfaces using Microsoft’s

MFC running on PCs as well as OSF’s Motif on UNIX.

In the ATLAS prototype DAQ project, X-Designer has been re-evaluated for cross-

platform development purposes and Motif has been compared to the facilities provided

by the Java AWT toolkit. It is likely that Motif and X-Designer will continue to be used

in the immediate future and the use of Java and AWT will be restricted to applications

that require access to information from a wide area (e.g. world-wide access to the run

book-keeper information and possibly the DAQ status display).

- 171 -

6.2 Inter -Process Communication Systems

The study of inter-process communication systems started with the use of RPCs to sup-

port distributed user interfaces in the MHI package of the MODEL project. In order to

satisfy the needs of certain DAQ applications, the Occurrence Signalling Package

(OSP) offering publish/subscribe style interfaces, was developed and used as a basis of

communication in the run-control component and many other areas. The architecture of

the OSP package offered several advantages over simple point-to-point RPC style con-

nections, namely:

• single network connection per client,

• single server architecture to avoid synchronization issues,

• partitioned name space for support of multiple concurrent data taking activities,

• group based communication implying no modifications were needed when the

sender-receiver configuration changed,

• simple client-interface for diverse applications.

But this architecture introduced certain limitations, namely:

• a single server was a single point of failure,

• no provision was made for restoring information for existing connections when the

server restarted,

• a single server limited the scalability of the system,

• broadcasting was simulated and hence the performance degraded as the number of

clients increased,

• the implementation relied on message buffering and asynchronous I/O features of

the underlying DECNET network protocol,

• all information was transferred in ASCII format.

Within HEP software, the OSP package introduced a new style of communication in

distributed applications. The majority of HEP software used point-to-point RPC type

communication but OSP opened the possibility to develop another range of applications

that extended the functionality of DAQ systems. OSP permitted three distinct kinds of

- 172 -

interactions to occur among applications: request/reply, broadcast request/reply and

publish/subscribe.

At the time of the RD13 project, the limitations of OSP’s implementation became clear

and the ISIS toolkit was evaluated as an alternative. ISIS was used in several compo-

nents of the DAQ including the run-control and error message facility. The adoption of

ISIS overcame many of the limitations of the OSP package developed in the MODEL

project, namely:

• multiple cooperating servers avoided a single point of failure and could scale with

the size of the experiment,

• true broadcast communication was used where supported by the underlying TCP/IP

implementation,

• portability to more platforms,

• support for all basic data types as well as user defined structures,

• support for various styles of communication.

However, ISIS did have a few limitations of its own, namely:

• low-level programming interface,

• the thread facility did not use the native kernel threads on all platforms.

To simplify the run-control component, a layered product called Meta was evaluated

that provided many interesting facilities but lacked robustness. The Resource Manager

package was also evaluated for job control purposes.

When the RD13 DAQ was upgraded, an investigation of the Petri Net based Artifex

toolset including inter-process communication facilities was made and a prototype of

- 173 -

the RD13 run-control system was produced. Unfortunately, some problems were

encountered during the development, namely:

• integrating the code generated by Artifex with hand-written or third party code was

cumbersome,

• Artifex did not support dynamic configuration,

• the developers found modelling controllers with Petri Nets less obvious than with

finite state machines.

Based on the above points it was decided to abandon the use of Artifex for run-control

purposes. Nevertheless, the work with Artifex did show the benefit of using a transpar-

ent network communication facility and having a simulator to test models before full

code generation. The CASE toolset support for most of the software lifecycle was also

appreciated. Its code generation facilities encouraged the investigation of Intellicorp’s

Object Management Workbench that included transparent inter-object communication

via the Corba based CommManager. This evaluation lead to further investigation of

Corba implementations within the ATLAS project and the adoption of Xerox Parc’s

ILU package.

6.3 Configuration Data Storage

The issue of configuration data storage was not addressed in a consistent manner by the

components of the MODEL project but an investigation into the potential use of a com-

mercial relational database was made. In the RD13 DAQ, an initial implementation was

made using ORACLE with Software Thru Pictures as a modelling and SQL generation

tool. ORACLE was not suited for real-time distributed access to the data and its inter-

faces were not available on the front-end processors. In order to use ORACLE, an

architecture needed to be devised that avoided this limitation. For real-time access, a

two-level scheme was adopted: an off-line level where the data was created and main-

tained in ORACLE (creation, insertion, updates, etc.); and an on-line level where, at

run-time, the contents were extracted from ORACLE and read into an application’s

memory (ORACLE tables were mapped onto arrays of data structures representing

database rows). A drawback of this scheme was the need to hand code the user-defined

data access library (DAL) directly in C, especially the navigation of the data schema.

This implementation proved inadequate for real-time access and was replaced by the

QUID in-memory data manager.

- 174 -

QUID allowed the modelling, storing and handling of the data but it was not a full data-

base management system since it relied on the host’s file system for storing data and

did not provide a multi-user environment. There was no provision for distributed trans-

actions, nor for the distribution of data among many processes. For read-only data

stores this restriction was overcome by having all participating processes access the

disk files via NFS. When writing was also needed, a special scheme had to be devised.

QUID also had some other important deficiencies:

• the whole data store was loaded into the application’s memory at initialization thus

limiting the size of the store to that of the virtual memory assigned to a single proc-

ess,

• no facilities were provided for referential integrity, concurrency control, schema evo-

lution and versioning.

The migration from ORACLE to QUID based data stores was simplified by the defini-

tion of the DAL that allowed applications to be ported by simple re-compilation. It was

also found that QUID’s query language was easier to use and simpler to integrate than

ORACLE’s SQL.

Later, when the data management facilities of QUID were surpassed, investigations

were made of a number of ODBMS namely, Ontos, GemStone and Itasca. The ODBMS

provided far more control on the consistency and integrity of the data but implied a

greater management load. Their use of client-server based architectures solved the

problem of simultaneous distributed access to a consistent set of data by multiple appli-

cations but introduced restrictions on how the applications could be implemented and

was the source of integration problems with other software packages.

Intellicorp’s persistent object manager was also evaluated and used to implement the

data stores for the Error Message Facility and Run Book-keeper components. A single

function call was needed to save or restore a set of objects to or from disk. When used

in this manner, the Object Diagrammer of the CASE tool became a graphical database

schema editor. The system also had the advantage of providing limited schema evolu-

tion - that is to say, objects could be saved to disk, the schema changed and the database

re-read into memory. The facilities of the object persistence could not be compared to a

real database since it had no notion of transaction support, concurrency control, ver-

- 175 -

sioning or distributed access but it was more akin to an object-oriented version of

QUID.

This work led to the acceptance of a two-tier approach to configuration data storage in

the ATLAS prototype DAQ, combining a persistent object manager with a full

ODBMS. For the persistent object manager, Rogue Wave’s Tools.h++ C++ class

library was evaluated and used as the basis of the OKS facility. Objectivity has been

evaluated and selected as the ODBMS in accordance with data storage activities of

other groups within the experiment.

6.4 Contrib ution to Knowledge

This research programme has addressed three key software technologies for HEP DAQ

systems, namely inter-process communication systems, data storage techniques and

graphical user interface toolkits for control and configuration purposes. Advances in

these areas were necessary to cope with the increasing size, distribution and complexity

of DAQ systems. This work consisted of understanding the requirements in each area,

conducting a survey of existing available software (commercial or otherwise) then

selecting and applying the most appropriate choice. Due to the scale and complexity of

HEP DAQ systems, the survey has often showed that suitable software packages were

not readily available. This lack of suitable existing software packages has lead the

author to develop several packages described in this thesis, including MHI, OSP and

the RD13 run-control system. Eventually the custom-made packages have been

replaced with more widely used software when it has become available. This confirms

the uniquely demanding nature of HEP DAQ systems that require specialised software

several years ahead of other application domains.

Many of the applications within DAQ systems, such as the run-control system, show

that these three software technologies cannot be treated in isolation. The coexistence of

software packages to support inter-process communication, data storage and graphical

user interfaces in the same application, often running in embedded processors, places

extra restrictions on the design and implementation of such packages.

6.4.1 Graphical User Interface Toolkits

MHI provided the first device independent distributed windowing facility to HEP DAQ

systems. The investigation of the X Window System and Motif toolkit defined a clear

- 176 -

strategy for the migration of windowing applications from MHI and other custom-made

graphical toolkits to a main-stream commercial alternative.

The author’s evaluation of OpenLook, Motif and Interviews, and the resulting recom-

mendation of Motif helped guide the HEP community towards the most prevalent

graphical toolkit for UNIX workstations of the 1990s. The author’s early experiments

with graphical user interface builder CASE tools demonstrated their advantages in

terms of design abstraction and developer productivity.

6.4.2 Inter-Process Communication Systems

OSP provided the first documented opportunity for HEP DAQ systems to use publish/

subscribe style inter-process communication. This extended the functionality of DAQ

systems to areas where the more traditional client-server approach of Remote Proce-

dure Call systems was not applicable. The use of OSP in various DAQ systems has led

to the development of second generation publish/subscribe facilities such as DELPHI’s

DIM [Gaspar93] and L3’s CPC [WenausT89]. As a continuation of the investigations

started with OSP, the author evaluated and developed the first documented application

of a commercial publish/subscribe facility in HEP DAQ systems [Birman90]. The tran-

sition towards more higher-level communication systems (as shown by the author’s

continuing investigations into the use of Corba) has helped DAQ developers concen-

trate on the design issues of their applications rather than the programming aspects of

their implementation. This succession of investigations into progressively more sophis-

ticated inter-process communication systems has helped to bridge the gap between the

front-end processors and back-end workstations of DAQ systems.

6.4.3 Configuration Data Storage Techniques

The author’s investigations into configuration data storage techniques has helped to

make HEP DAQ systems more flexible and independent of particular detector configu-

rations. The work has extended the use of data stores to more parts of DAQ systems.

The investigations into the specific technologies has helped to show the advantages of

using firstly the entity-relationship model and more recently object-oriented models

over ad hoc solutions. The investigations show the first documented application of

commercial ODBMS to configuration data storage and has helped convince the HEP

community of the benefits of ODBMS and commercial products in general.

- 177 -

In all the investigations concerning the three software technologies, the author has pro-

moted the use of documented software engineering techniques and CASE tools. This

approach has helped to advance the use of software engineering techniques and CASE

tools in the development of DAQ systems and HEP software in general to the point that

the filed is now considered important by the laboratory directorate.

6.4.4 Author's Personal Contribution

The author was directly responsible for the following aspects of the studies described in

this thesis.

• MODEL

As one of the major contributors to the Model Human Interface package, the author was

responsible for the window manager layer including its porting to the X Window Sys-

tem, the layered dialog package and the graphical user interface for the State Manager

tool. The author was the sole contributor to the design and implementation of the origi-

nal version of the Occurrence Signalling Package and the DECNET multi-client exten-

sion of the RPC server.

• RD13

The author personally evaluated the OpenLook, Motif and InterViews graphical

toolkits and various GUI builders including VUIT and X-Designer. Using the Motif

toolkit and X-Designer GUI builder, the author developed many user interfaces for the

DAQ including the status display, graphical event dump, rclCmd run control interface

and various browsers and editors for the data stores. As the person responsible for the

original run control system, the author evaluated the ISIS toolkit, ported it to the EP/LX

operating system and implemented the layered rcl package including the FSM language

and translator. He also designed the Error Message Facility and evaluated the Meta

product. For the data stores, the author developed several data access libraries on top of

QUID.

• RD13 Upgrade

The author evaluated the Ontos ODBMS, the Object Management Workbench CASE

tool and developed the error message data store, server and graphical editor. The author

was responsible for the extension to the FSM language for the run control system and

- 178 -

the evaluation of the Artifex CASE tool for run control purposes. He re-designed and

implemented the DAQ status display using the XRT widget set.

• ATLAS

In the on-going ATLAS Prototype -1 project the author is the coordinator for the group

of developers working on the back-end software components. He made the initial feasi-

bility studies for several of the selected packages including ILU, Objectivity, CHSM

and the Tools.h++ class library.

6.5 Recommendations for Further W ork

The increase in size and complexity of HEP DAQ systems is continuing as the physi-

cists prepare for the LHC accelerator. As a consequence, the needs in terms of the soft-

ware technologies discussed in this research programme will continue to grow and

hence provide a fruitful area of research. Given the economical and social situation of

the funding member states of laboratories such as CERN, there is a drive to use more

commercial off the shelf (COTS) software with the intention of reducing costs of devel-

oping and maintaining custom-made software. Due to the nature of DAQ systems, they

are likely to remain one of the most demanding application domains and hence the

choice of suitable COTS software is expected to be limited. Taking into account the

long timescales of HEP projects such as the experiments on the LHC accelerator, it is

necessary to insulate the software systems from the vagaries of the commercial market.

One of the most appropriate means of meeting this requirement is to adopt relevant

international standards and select conforming software. However, it may be necessary

to influence new standards to take into account specific HEP DAQ requirements. Cur-

rently there are two evolving standards that appear to be appropriate for the software

technologies discussed in this thesis: The Object Database Standard [Cattell93] for data

storage techniques and the Common Request Broker (Corba) [OMG95] for inter-proc-

ess communication systems. Unfortunately, there appears to be no similar emerging

standard for graphical user interfaces where the market is divided along operating sys-

tem alliances. The facilities provide by Java and AWT appear promising, but it is too

early to indicate if it will prove a lasting alternative.

The Object Database Standard is being tracked and actively influenced by the RD45

research project at CERN [RD4596]. However, the project’s goals are to provide per-

sistent data storage for bulk physics data during the analysis and reconstruction phases

- 179 -

that are performed off-line. The use of ODBMS for DAQ configuration data storage is

outside the scope of the RD45 project and this is one of the reasons that the ATLAS

prototype DAQ project adopted a two-tier approach. However, there are many advan-

tages (in terms of software and programmer portability) in using the same programming

interface to the ODBMS and in-memory object manager that constitute the two tiers.

The development of such an object manager and a means of migrating data to and from

the ODBMS appear to be areas for future research.

For the ATLAS DAQ prototype, the Corba standard for inter-process communication

has been adopted. Conceptually, it can be seen as the object-oriented equivalent of

remote procedure calls (RPCs) and hence does not support the publish/subscribe facili-

ties required for DAQ components such as the run-control system. However, in the

recent Corba 2 standard a number of layered services have been introduced. One such

service is the Event Service [OMG96] that provides publish/subscribe facilities. It is

expected that the Event Service, along with other services defined by the standard,

could be used to meet many of the communication needs within a DAQ system and thus

their application could be areas for future research.

- 180 -

References

ATLAS94 . ATLAS Technical Proposal, The ATLAS Collaboration, CERN/LHCC/94-43,
LHCC/P2, December 1994.

ATLAS96. ATLAS Computing Technical Proposal, The ATLAS Collaboration, CERN/
LHCC/96-42, 15 December 1996, ISBN 92-9083-092-1.

Ada83.Ada Joint Program Office, United States Department of Defence, Reference Manual
for the Ada Programming Language, ANSI/MIL-STD-1815A, Washington D.C.: Govern-
ment Printing Office, 1983.

Adam91.Architecture and Performance of the DELPHI Data Acquisiton and Control System.
DELPHI DAQ Group, W. Adam et al., Computing for High-Energy Physics Conference
1991, Tsukuba, Japan. ISBN 4-946443-09-6.

Aguer94.Software Engineering Techniques and CASE Tools in RD13, Aguer M et al., 3rd
International Conference on Accelerator and Large Experimental Physics Control Systems -
ICALEPCS '93 Berlin, Germany ; 18 - 23 Oct 1993 . Publ. in: Proceedings, W Busse and M
C Crowley-Milling Nucl. Instrum. Methods Phys. Res., A : 352 (1994) (383-385)

Ambrosini94. OODBMS for a DAQ system, G. Ambrosini et al., Proceedings of the Confer-
ence on Computing in High Energy Physics' 94. San francisco, USA, 21-27 April 1994.
LBL-35822,CONF-940492, UC-405.

Angelov91.Performances of the central L3 Data Acqusition system, T. Angelov et al., Nuclear
Instrments and Methods in Physics Research A306 (1991) 536-539, North-Holland.

Arnold96. The Java Programming Language, K.Arnold, J.Gosling, Addison-Wesley Publish-
ing, ISBN: 0201634554 (1996).

Artifex93. Known Problems in Using Artifex, A. Khodabandeh, RD13 technical note #57,
CERN, 1993, http://rd13doc.cern.ch/public/doc/Note57/Note57.html

Balestra91.The Obelix On-line Monitor and Display, F.Balestra et al. Proceedings of the Con-
ference Computing for High-Energy Physics Conference 1991, Tsukuba, Japan. ISBN 4-
946443-09-6,(539-544)..

Bee92.The CPLEAR Data Acqusition and Control System, C.P.Bee et. al., Proceedings of the
Internation Conference on Computing in High-Energy Physics '92, Annecy, France 21-25
Sepetmber 1992, ISBN 92-9083-049-2

Berners-Lee87.Experience with Remote Procedure Call in Data Acquisition and Control,
T.J.Berners-Lee, 5th Conference on Real-Time Computer Applications in Nuclear Particle
and Plasma Physics, San Francisco, 12-14 May 1987.

Birman90. The ISIS project: Real experience with a fault tolerant programming system.
K.P.Birman and Robert Cooper, European SIGOPS Workshop, September 1990; also avail-
able as Cornell Univ. Computer Science Dept. Tecn. Report TR90-1138.

- 181 -

Birman96. Building secure and reliable network applications, Kenneth P. Birman, Man-
ning,1996, ISBN 1-884777-29-5

Blobel83.Databases and bookkeeping for HEP experiments, ECFA - V. Blobel et al., Ruther-
ford report RL-83-085 (1983).

Brun89. PAW, a general purpose software tool for data analysis and presentation, R. Brun et
al, Proceedings of the Conference on Computing in High-Energy Physics, Oxford 1989
(North Holland, 1989).

Bruno95. Model Based Software Engineering, G. Bruno, Chapman & Hall, 1995. ISBN 0 412
48670 9.

Camac92.CAMAC Instrumentation and Interface Standards, IEEE, Inc., 1992.

Caprini96. Java language evaluation for DAQ status display, Mihai Caprini, Zuxuan Qian, 16
September 1996, ATLAS DAQ and Event Filter Prototype "-1" Project Technical Note 10,
http://atddoc.cern.ch/Atlas/Notes/010/Note010-1.html

Cattell93. The Object Database Standard, ODBMG-93, Edited by R.G.G. Cattell, ISBN 1-
55860-302-6, Morgan Kaufmann.

Dec87.VAX/VMS Introduction to System Services, chapter 12. Digital Equipment Corp.
(1987)

Dec88.DECwindows - DEC, VMS DECwindows Technical Summary, order number ZK4727
(DEC 1988).

Dec91.DECWindows Digital Equipment Corporation. VMS DECWindows Motif Guide to
Application Programming, August 1991.

Fastbus83.FASTBUS modular high speed data acquisition and control system, DOE/ER -
0189. U.S.Dept. of Energy, Washington, DC (1983); published as IEEE Std. 960.

Ferrato93. Error Message Facility for RD13, Daniele Ferrato, Bob Jones, RD13 Technical
Note 6, 16 April 1993, http://rd13doc.cern.ch/public/doc/Note6/Note6.html.

Fresco94.C++ Report Magazine, Fresco Column October 1994.

Fumagalli93.User's Guide to the Artifex DAQ in the RD13 Laboratory, A. Khodabandeh, G.
Fumagalli, RD13 technical note #51, CERN, 20-Jan-93, http://rd13doc.cern.ch/public/doc/
Note51/Note51.html

Gaspar93.A Distributed Information Management System for DELPHI Experiment at
CERN, C.Gaspar, M.Donszelmann, Proceedings of the IEEE Eight Conference REAL
TIME `93 on Computer Applications in Nuclear, Particle and Plasma Physics, Vancouver,
June 8-11, 1993.

GemStone92.An Introduction to GemStone V3.0. Servio Corporation 1992. 20575 N.W. von
Neumann Drive Beaverton, OR 97006, USA. http://www.gemstone.com/

- 182 -

Goodheart91.UNIX Curses Explained. Goodheart, B., Prentice Hall, 1991.

Green89.The ADAMO Data System, M.G. Green, RHBNC 88-01, Royal Holloway and Bed-
ford College, Egham (1989).

Intellicorp93. Kappa CommManager System Guide, Version 3.0 Beta-2, Publication Number:
K3.0b2-KMSS-2, August 1993, Intellicorp Inc.1975 El Camino Real West, Mountain View,
CA 94040, USA. http://www.intellicorp.com/

Itasca92.ITASCA Distributed Object Database Management System. Technical Summary for
Release 2.1. Itasca Systems, Inc. 1992. IBEX Object Systems, SA International Business
Park, 4ème blvd, bât Héra, F-74160 Archamps, France http://w3.iprolink.ch/ibexcom/

Jones86.OSP Users' Guide, R.Jones DD/OC CERN Geneva, 17 December 1986.

Jones92.Use of ISIS and Meta, R.Jones et al., Second International Workshop on Software
Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Phys-
ics (AIHEP'92) conference, La Londe-les-Maures, France in January 1992. ISBN 981-02-
1122-8.

Jones93.Testing the interface between Artifex and non-Artifex applications, R Jones, E.
Sanchez-Corral, RD13 technical note #62, CERN, March 22, 1993, http://rd13doc.cern.ch/
public/doc/Note62/Note62.html

Jones94.Improvements in the Artifex based RD13 Run Control system, R. Jones, E.Sanchez-
Corral, RD13 technical note #103, CERN, January 1994, http://rd13doc.cern.ch/public/doc/
Note103/Note103.html

Jones95.The RD13 DAQ System and the Object Management Workbench, Bob Jones, Pro-
ceedings of the 1995 CERN School of Computing, Arles, France, 20 August - 2 September
1995, CERN 95-05 25 October 1995.

KL94. XRT Builder Guide & Reference Manual, Ref No. BLGDE-GRAPH/M/240-07/94. KL
Group. 260 King Street East, Toronto, Ontario, Canada M5A 1K3. http://www.klg.com

Kaplan93. A comparison of queueing, cluster and distributed computing systems, Kaplan,
Joseph A. Nelson, Michael L., Oct 01, 1993, NASA Langley Research Center (Hampton,
VA, United States), NASA-TM-109025

Khodabandeh93.Performance Study of the Artifex based DFP, A. Khodabandeh, G. Mornac-
chi, RD13 technical note #50, CERN, 20-Jan-93, http://rd13doc.cern.ch/public/doc/Note50/
Note50.html

Kolos96.Inter-component communication in the ATLAS DAQ back-end software (evaluation
of the ILU multi-language object interface system), Kolos Sergue, 21 June 1996, ATLAS
DAQ and Event Filter Prototype "-1" Project Technical Note 3, http://atddoc.cern.ch/Atlas/
Notes/003/Note003-1.html

Le Goff95.CICERO: Control information system concepts based on encapsulated real-time
objects. J.M. Le Goff et al. CERN/DRDC/93-50,CERN/LHCC/95-15.

- 183 -

Mapelli90. A Scalable Data Taking System at a Test Beam for LHC, L.Mapelli et al., CERN/
DRDC/90-64/P16, CERN/DRDC/90-64/P16 Add.1, CERN/DRDC/90-64/P16 Add.2
(1990).

Mapelli92. RD13 Status Report, L.Mapelli et al., CERN/DRDC/92-13, 13 March 1992.

Mapelli93. RD13 Status Report, L.Mapelli et al., CERN/DRDC 93-25, 5 May 1993.

Mapelli94. RD13 Status Report, L.Mapelli et al., CERN/DRDC 94-24, 9 May 1994.

Mapelli95. RD13 Status Report, L.Mapelli et al., CERN/LHCC 95-4, LCRB Status Report/
RD13, 1 August 1995.

Marzullo91. Tools for Constructing Distributed Reactive Systems, Marzullo, K., and M.
Wood, Technical Report TR91-1193. Department of Computer Science, Cornell University,
February 1991.

Matheys89.Model Process Control User Manual, Jean-Pol Matheys, Version 3.1, CERN DD-
OC, 19-07-1989.

Microware96. OS-9 for 68K Technical Overview, white paper, Microware Systems Corpora-
tion 1900 NW 114th Street Des Moines, IA 50325, USA. http://www.microware.com
(1996).

Microware97. OS9 - Microware Systems Corporation, OS-9/68000 Operating System Techni-
cal Manual, order number PMN-OST68. http://www.microware.com (1997).

Mornacchi87. Architecture of the Model Project Human Interface, G. Mornacchi, CERN DD/
87/14 (1987).

Mornacchi92. RD13 DataBase FrameWork, G. Mornacchi, RD13 Technical note 11, 1 May
1992, http://rd13doc.cern.ch/public/doc/Note11/Note11.html.

OMG95. Object Management Group. The Common Object Request Broker: Architecture and
Specification. OMG, Inc., Jul. 1995. Version 2.0 (Revision 96-08-04).

OMG96. Object Management Group. CORBA services: Common Object Services Specifica-
tion. OMG, Inc., Mar. 1995. Revised Edition Nov. 1996.

OSF93.Open Software Foundation. OSF/Motif Programmer's Guide, 1.1 edition. ISBN 0-13-
643115-1 (1993).

Ontos92.Ontos, Inc. Ontos reference manual. 1992.

PASS94.Petabyte Access Storage Solutions. The PASS Project Architectural Model. Proceed-
ings of CHEP94. Lawrence Berkeley Laboratory LBL-35822; CONF-940492; UC-405.

RD4596.RD45 - A Persistent Object Manager for HEP, The RD45 collaboration, CERN/
LHCC 96-15, LCRB Status Report /RD45, 22 February 1996.

- 184 -

Rimmer87. A Database for FASTBUS, E.M. Rimmer, preprint CERN/DD/8723 (1987).

Rimmer90. Databases for Large Detector Systems - Experiences at LEP and Future needs,
E.M. Rimmer, CERN CN/90/7, April 1990.

Sendall86.Some notes on the signalling of occurrences, D.M Sendall, MODEL/Design 23,
CERN/DD, 27 Feb 1986.

Stratus96.Stratus Computer, Inc.55 Fairbanks Boulevard Marlboro, Massachusetts, U.S.A.
(1996). http://www.stratus.com/

Touchard96.Evaluation of the Message Passing Interface Standard for the Atlas Backend
Software, F. Touchard, October 7, 1996, ATLAS DAQ and Event Filter Prototype "-1"
Project Technical Note 11, http://atddoc.cern.ch/Atlas/Notes/011/Note011-1.html

Unison97.Unison Load Balancer, Mardall House, Grnd Flr, Vaughan Road, Harpenden, Hert-
fordshire AL5 4HU, United Kingdom http://www.unison.com/index.html (1997).

VMEbus85. VMEbus Specification Manual Rev.C, VMEbus Intl. Trade Assoc., Scotsdale,
Ariz. (1985).

Vascotto89.Inter-process control transactions, A. Vascotto, CERN DD-OC-OS, 14 June 1989.

Wenaus89.The L3 Online Window Manager Facility (WM), Torre Wenaus, June 9 1989, L3
Online Note 807.

WenausT89.The L3 Cluster Process Communication Facility (CPC), Torre Wenaus, L3 docu-
ment note #806 (1989).

	Robert John Jones
	A thesis submitted in partial fulfillment of the requirements
	of the University of Sunderland
	for the degree of Doctor of Philosophy
	September 1997
	School of Computing and Information Systems
	University of Sunderland
	This research programme was carried out in collaboration with CERN, European Laboratory for Parti...
	Abstract
	Author: Robert John Jones
	Title: The Evolution of Software Technologies to Support Large Distributed Data Acquisition Systems
	A study of software technologies for the control and configuration of data acquisition systems fo...
	Three key software technologies have been identified that impact the control and configuration ta...
	Investigations and developments of suitable software to meet the unique requirements of large dis...
	For inter-process communication systems, the use and relative merits of remote procedure calls, p...
	The work and findings presented are supported by 13 published papers selected from a total of 27 ...

	Acknowledgments
	The following people have helped the author during his work at CERN. Jean-Jacques Blaising provid...
	I am indebted to Peter Smith and especially Norman Parrington for their support and guidance duri...

	Introduction
	1 Introduction
	This chapter defines the scope and purpose of the research programme undertaken and outlines the ...
	1.1 Scope and Purpose
	The main objective of this research programme has been the study of software technologies for int...
	These three software technologies have been identified as key components for the control and conf...
	This thesis is based on existing published work and the research programme is presented via a ser...
	The research programme has been organised into several phases for each DAQ development project:
	• understand the essential requirements of HEP DAQ systems in general and the current DAQ project...
	• survey existing available packages for each of the three software technologies capable of meeti...
	• where the survey did not uncover suitable software packages, develop software to meet the speci...
	• apply the selected or developed software to the DAQ system and exploit it in test-beam or full ...
	• assess the suitability and performance of the software during its exploitation in order to prov...

	All phases and activities of this research programme have been conducted in collaboration with CE...
	Figure 1 Organisation of published papers presented in this thesis

	1.2 Structure of This Thesis
	The body of this thesis is divided into four chapters corresponding to the DAQ development projec...
	For each DAQ project, a published paper provides an overview of the DAQ system and sets the scene...
	The final chapter reviews this research programme and provides a summary of the advances and deve...

	1.3 Data Acquisition Systems for High Energy Physics Experiments
	This section provides, as background, an overview of HEP DAQ systems and the role played by their...
	A high-energy physics experiment studies the properties of elementary particles via the interacti...
	1.3.1 The Experiment Set-up
	A simplified block-diagram (Figure 2) shows the relation between the different parts of the appar...
	Figure 2 Typical data acquisition system of the early 1980s
	1.3.1.1 Fast Electronics
	The information coming out of the detectors is in the form of analogue pulses that must be treate...
	• Standardization

	Discriminators accept pulses from the detectors and for each one above a certain threshold delive...
	• Selection

	The number of interactions in a beam is very large, and usually only a small fraction are of inte...
	• Pulse-Height and Time Measurement

	Pulse-height measurement is important since the signal from the detectors can give information on...
	• Buffering

	Buffering smooths-out the random (Poisson) arrival of events and compensates for the duty cycle o...
	• Performance Checking

	Performance checking is required to verify the equipment during set-up and to monitor its perform...

	1.3.1.2 Field Bus
	The division between the fast electronics and field bus is often blurred. For example, the trigge...

	1.3.1.3 Run Set-up and Control
	Data taking is organised into runs, varying from a few minutes to several hours long depending on...

	1.3.1.4 Sending Data Samples for Remote Analysis
	It is unlikely that the experimental computer has sufficient time to analyse all the recorded eve...

	1.3.1.5 Pre-processing the Data
	Normally the experimental computer records the raw data on permanent storage and in parallel chec...

	1.3.2 Data Acquisition Systems in the Early 1980s
	This section describes the use of computers in HEP DAQ systems in the early 1980s, just before th...
	The important characteristics of a mini computer were that it was small, cheap and easily interfa...
	The typical mini-computers of the period offered instruction times of around 1 micro-second with ...
	• a keyboard and display for control purposes and to provide visual displays of histograms etc. o...
	• a printer to record results and error messages,
	• a magnetic tape for data recording. Normally experimental data was written on tape and analysed...
	• disks for storing software and large histograms.

	A simple test set-up may have contained a small wire-chamber and a few counters, requiring one CA...
	Fast electronics worked on the timescale of a few nanoseconds. The basic CAMAC operation cycle, a...
	These rates caused some mismatches of performance in the DAQ systems. The fundamental rates of th...
	The most essential task of the computer was simply to read the data from CAMAC, buffer it suitabl...
	Even in this simple activity the flexibility of the computer was useful since it was often necess...
	At the start of the 1980s there were about 100 mini-computers in use by the various experiments a...

	1.3.3 Data Acquisition Systems in the Late 80s
	This section describes the development of DAQ computer systems towards the end of the 1980s when ...
	The experiments of the late 1980s were more complex in several ways mainly due to a larger number...
	Some modern detectors have intrinsically complex read-out (requiring pulse-shape analysis for ins...
	The complexity of the experiments raised new problems in the organisation and presentation of sec...
	Many of the subsidiary tasks in the experiments (e.g. gas and voltage control subsystems, control...
	In addition to these difficulties was the sheer size of the experiments and the number of subsyst...
	Fortunately, experiments were able to profit from advances in hardware to cope with the extra cha...
	The development of Local Area Networks (LANs) provided a new fast, cheap method of interconnectin...
	The central DAQ computer had several functions, the most important being the recording of the dat...
	The complexity of the data acquisition systems also placed major requirements on the software nee...
	To give an example of the size of the problem at hand, some characteristics of the first phase of...
	• weight: 1500 tons
	• volume: 1000m3
	• read-out: 700,000 channels
	• event size: 100 Kbytes
	• event rate: 107 events per year

	1.3.4 Summary
	The needs of the future LHC experiments represent equivalent increases in detector size and DAQ s...

	chapter
	The MODEL Data Acquisition System

	2 The MODEL Data Acquisition System
	2.1 Introduction
	This chapter marks the start of the studies into graphical user interface toolkits, inter- proces...

	2.2 MODEL Overview
	The MODEL software suite was a set of modules aimed at providing the basic components for data ac...
	The following published paper, entitled MODEL: A Software Suite For Data Acquisition on page 21, ...

	Published paper
	MODEL: A Software Suite For Data Acquisition
	2.3 MODEL Human Interface
	The MODEL Human Interface (MHI) [Mornacchi87] was designed to provide man- machine interfaces for...
	The MODEL Human Interface (MHI) provided a means of communication between processes running in th...
	The basis of MHI was a Window Manager that could be used either directly by applications or via h...
	The following published paper entitled The MODEL Human Interface on page 28 describes the rationa...

	Published paper
	The MODEL Human Interface
	2.4 Porting the MODEL Human Interface to the X Window System
	The previous published paper described the architecture of the MODEL Human Interface (MHI) and it...
	In porting MHI to the X Window System, it was also necessary to confront a new programming paradi...

	Published paper
	Application Development with XUI
	2.5 Conclusions on MHI
	An important feature of MHI was its support for various screen devices. MHI was designed and impl...
	The effort required in porting MHI to new platforms could have been reduced by restricting the fu...
	Despite many advances in this field, MHI continues to be used for a subset of applications in var...
	In order to provide a template for graphical applications in the L3 experiment, another layer of ...
	Perhaps the strongest attribute of MHI was its basic architecture that combined a client- server ...
	There are many parallels between the development of MHI and the X Window System that has become t...
	However, a fundamental difference between the X Window System and MHI is that X is event based an...
	The development of the Exposure process in MHI’s X Window System port showed a limitation the X W...
	The facilities provided by MHI also included those of X Window System window managers. Such X Win...
	The facilities provided by the layered packages (i.e. menus, panels and dialogues) are now suppor...
	As described in the following chapters, support for graphical user interfaces has continued to im...
	Recently, the Java programming language [Arnold96] together with the Abstract Window Toolkit (AWT...

	2.6 Inter-Process Communication Systems
	Every module of the software suite needed a means of communication between its internal elements,...
	2.6.1 The State Manager
	The State Manager (SM) was the MODEL module for run-control. Run-control implies the execution an...
	Initially SM used the RPC package for communication with associated processes. The use of RPCs ha...
	The SM’s associated processes (i.e. processes that control individual devices) might connect and ...
	In more general terms, the use of RPC was not quite as transparent when compared to local procedu...
	If in a complex RPC system based on single-threaded programs, a cycle formed where client A calls...

	2.6.2 The Occurrence Signalling Package
	In order to implement the communication scheme required by the State Manager that addressed the l...
	2.6.2.1 Overview
	OSP offered a service to meet the needs identified for communication within the MODEL software su...
	Clients expressed an interest in an occurrence by either calling a function that allowed them to ...
	To allow clients to wait on or associate an action routine with several occurrences at the same t...
	The OSP Server
	The OSP server was implemented as a continuously running network daemon process that waited to re...

	The OSP Client
	Clients linked their application programs to a library that contained all the OSP function calls,...
	The following published paper entitled The State Manager: A Tool to Control Large Data-Acquisitio...

	Published paper
	The State Manager: A Tool to Control Large Data-Acquisition Systems
	2.6.3 Conclusions on OSP
	Apart from the State Manager, OSP has been found useful in many other applications. OSP applicati...
	• Each client needed only a single network connection to link it to the server. This economized o...
	• A single server model implied synchronization issues were simplified. In contrast, if OSP used ...
	• The ability to partition the service either by using multiple, unrelated servers or simply usin...
	• Group based communication offered the possibility to dynamically change the set of receivers fo...
	• The simple client-interface provided by OSP allowed it to be used in a diversity of application...

	OSP Limitations
	It was stated earlier that the decision to use a single server model simplified the implementatio...
	• A single server was a single point of failure. If the OSP server failed then all applications w...
	• There was no provision for restoring information about existing connections when the server res...
	• A single server limited the scalability of the system. Each OSP client had only one network con...
	• DECNET (and traditional TCP/IP) does not offer true broadcast communication. The OSP server sim...
	• All OSP messages were ASCII strings. The use of ASCII strings avoided conversion problems when ...

	Communication Styles
	Within HEP software, the OSP package introduced a new style of communication in distributed appli...
	• Request/Reply interactions, such as queries as transactions,

	This is the only type of communication offered by traditional RPC systems. In request/ reply inte...
	• Broadcast request/reply interactions, such as queries that may result in several replies from o...

	In broadcast request/reply interactions, as in point-to-point request/reply, producers do not sen...
	• Publish/subscribe interactions, such as general distribution of information from many sources t...

	Publish/subscribe interactions are event-driven (rather than demand driven). In this paradigm dat...

	2.6.4 Related and Further Work
	In order to implement the OSP server it was necessary to develop a multi-client server in DECNET....
	OSP proved extremely popular as a inter-process communication package in many experiments both at...
	• The Cluster Process Communication package (CPC) [WenausT89] was designed for the L3 on-line dat...
	• DELPHI’s Information Manager (DIM) [Gaspar93] was developed so that user interfaces, control an...

	2.6.5 Inter-Process Communication in the RD13 Project
	The need for an inter-process communication facility similar to OSP was identified in the RD13 pr...

	2.7 Graphical User Interface for the MODEL State Manager
	As a means of linking together the studies of inter-process communication systems for control pur...
	Having ported MHI to the X Window System, it became evident that the basic X toolkit did not prov...
	The author used Digital’s toolkit and a beta release of the VUIT GUI builder to produce the SM di...
	However, these tools were proprietary to Digital Equipment Corporation and the application would ...

	2.8 Configuration Data Storage
	This section gives an overview of the uses of configuration data in an experiment and the DAQ in ...
	2.8.1 Configuration Data Storage Needs in a HEP Experiment
	Within a HEP experiment, typical types of configuration data to be stored include:
	• geometrical detector description

	models of the geometrical structure of the detector are needed during construction, integration a...
	• read-out electronics description

	describes the structure, composition and internal functionality of the read-out electronics and f...
	• electronics and material book-keeping

	tracks all the electronics modules and materials used in an experiment. It contains information s...
	• experiment book-keeping

	In a large experiment it is difficult to trace a single physics event through the various phases ...
	• calibration constants

	calibration constants are corrections to experimental data and represent a huge amount of unstruc...
	• experiment directory

	contains all the administrative information necessary to permit communication between all the mem...

	2.8.2 Existing Data Stores Used in HEP
	In the past, a number of techniques have been used in HEP experiments to handle the large amount ...
	As late as 1985, the subgroup of the ECFA Working Group on Data Processing Standards [Blobel83] s...
	• Scientific data processing tends to be based on large data sets or entire tables at a time rath...
	• Locking and security issues are normally of less importance than in commercial data processing ...
	• Scientific data types are normally not well supported (e.g. true floating point numbers with ad...
	• Procedural languages are preferred to SQL since it lacks support for scientific and user-define...

	But the ad hoc systems designed to meet specific needs were not flexible enough to cover all the ...

	2.8.3 Configuration Data Storage Within MODEL
	A number of components within the MODEL DAQ system needed some means of storing configuration inf...
	State Manager (SM)
	Inside the experiments, a data store was already being used to configure the FASTBUS read-out sys...

	Process Manager (MPC)
	MPC maintained its own data stores with information processes, machines, users and terminals to p...

	Buffer Manager (MBM)
	The configuration of the ports, channels and buffer sizes could have been defined in the data store.

	2.9 Conclusions on the MODEL Project
	The MODEL software suite made substantial contributions to the on-line systems of three of the fo...
	The MODEL project marked the starting point for the author’s investigations in the area of graphi...
	2.9.1 Graphical User Interfaces
	For graphical user interfaces, The author learnt that it was important to provide a network-enabl...

	2.9.2 Inter-Process Communication Systems
	The limitations of the simple Remote Procedure Call approach became apparent via its aborted use ...

	2.9.3 Configuration Data Storage
	No consistent approach had been adopted for configuration data storage in the MODEL project. Each...

	The RD13 Data Acquisition System

	3 The RD13 DAQ System
	3.1 Introduction
	This chapter describes the studies performed on the software technologies within the context of t...
	The first published paper provides an overview of the RD13 DAQ project, followed by papers on gra...

	3.2 RD13 DAQ Overview
	The RD13 project was approved in 1991 to develop a scalable data taking system suitable to host v...
	For graphical user interface toolkits (GUIs), the layered structure of the MODEL Human Interface ...
	For inter-process communication systems, the Remote Procedure Call (RPC) had been used extensivel...
	No clear policy had been established for configuration data storage in the MODEL project. Various...
	The following published paper entitled The RD13 Scalable Data Acquisition System on page 67 descr...

	The RD13 Scalable Data Acquisition System
	3.3 Test-beam Activity
	The first version of the RD13 DAQ was in a test-beam set-up for the SITP (RD-2) detector R&D in N...
	Figure 3 The RD13 DAQ hardware configuration 1993

	3.4 Graphical User Interface Toolkits
	At the outset of the RD13 DAQ project, the X Window System had established itself as the most pop...
	During the work a number of areas of interface design and implementation were found to be not ade...
	Figure 4 DAQ status display built using X-Designer with Motif and DataViews widgets
	3.4.1 Graphical User Interface Builder
	Graphical user interface builders allow the developer to interactively design interfaces then gen...
	For the development of the DAQ, a commercial graphical user interface builder called X-Designer (...
	Figure 5 X-Designer graphical user interface builder with Motif and DataViews widgets
	An example of a monitoring task with a graphical user interface was the event dump (Figure 6) bui...

	Figure 6 Event dump showing event decomposition and data block contents
	The field of graphical user interfaces is evolving rapidly and has moved forward since the paper ...
	As a further development of this work, it became clear that the design and implementation of the ...

	Using Motif in RD13
	3.5 Inter-Process Communication
	During the preceding MODEL project, the author developed the OSP inter-process communication pack...
	ISIS [Birman90] [Birman96] is a commercial toolkit for distributed and fault-tolerant programming...
	3.5.1 Run-Control
	As with the State Manager of the MODEL project, it was decided to model the behaviour of the vari...
	A state machine consisted of a list of states and commands that could be accepted in each state. ...
	The run-control facility (rcl) validated each request to execute a command based on these definit...
	3.5.1.1 Hierarchy of Run-Control Programs
	Given the size and distributed nature of the DAQ, it was decided to use a hierarchy of run-contro...
	Figure 7 run-control ISIS process group hierarchy
	The process group, rcl, acted as the root to which all applications became members. The separatio...

	3.5.1.2 Implementation
	The facilities offered by the run-control and error message facility to application programs were...

	3.5.2 User Interface
	The rclCmd user interface (Figure 8) provided a means of monitoring and sending commands to all c...
	Figure 8 rclCmd user interface
	The following published paper entitled Building Distributed Run-Control in UNIX on page 88 provid...

	Building Distributed Run-Control in UNIX
	3.6 Conclusions on the Use of ISIS for Inter-Process Communication
	The adoption of ISIS overcame many of the limitations of the OSP package developed in the MODEL p...
	• the possibility to run multiple co-operating servers avoided a single point of failure and allo...
	• broadcast communication was used where supported by the underlying TCP/IP implementation,
	• portability to more platforms (ISIS runs on most UNIXs, VMS and the author ported it to the EP/...
	• support for all basic data types as well as user defined structures,
	• support for various styles of communication (see Communication Styles on page 55).

	However, ISIS did have a few limitations of its own:
	• the programming interface was quite low-level, requiring the programmer to pack and unpack vari...
	• the thread facility provided by ISIS, while useful, did not use the native kernel threads on al...

	3.6.1 Conclusions on the RD13 Run-Control Component
	The RD13 run-control component offered a number of advantages when compared to MODEL’s State Mana...
	• the number and organisation of individual run-control programs could be defined in a configurat...
	• the integration of user written code for transition actions was simpler since they were all imp...
	• the rclCmd graphical user interface (Figure 8) was independent of the configuration, the contro...
	• its implementation was shown to be more portable,
	• individual controllers could be distributed across the network rather than all held within a si...

	However, the first version did have the following limitations:
	• to make the FSMs inter-dependent it was necessary to write C code to monitor state changes and ...
	• since the FSM was statically linked with the component it could not be changed according to the...
	• only one action (a call to a user routine) could be performed when a command was received. Mult...
	• it was assumed each command caused a state change - even if the new state was the same as the c...
	• actions could not be executed asynchronously.

	3.6.2 The Meta Toolkit
	In an attempt to simplify the definition of inter-dependencies of the controllers in the hierarch...

	3.7 Configuration Data Storage
	Four distinct data stores were envisaged for the RD13 DAQ to store configuration information: har...
	3.7.1 First Implementation: StP/ORACLE
	The first implementation of the configuration data storage framework was made using “traditional”...
	3.7.1.1 Real-Time Facilities and Distributed Access
	ORACLE was not suited for real-time distributed access to the data [Mornacchi92] and its interfac...
	For real-time access, a two-level scheme was adopted: an off-line level where the data was create...

	3.7.1.2 User Interface
	Graphical tools were needed to allow physicists to browse and update the data. Such interactive p...

	3.7.1.3 Intermediate File
	The DAL navigated the in-memory tables to access the data. Initial loading of the database was re...
	A major drawback of this scheme was the need to hand code the DAL directly in C, particularly the...

	3.7.2 Second Implementation: QUID
	An alternative to commercial relational DBMS are in-memory bank systems. They do not have all the...
	Figure 9 QUID editor and browser showing one view of the RD13 DAQ software configuration
	QUID allows the modelling, storing and handling of the data but it is not a full database managem...
	• all the data is in the memory of the application which sets strict limitations on its size,
	• no referential integrity or concurrency control is provided,
	• no schema evolution facilities are provided. If a schema change takes place then the data that ...

	However, QUID was successfully used to implement all four RD13 DAQ configuration data stores ment...

	Figure 10 User interface to detector parameters data store
	The migration from ORACLE to QUID data stores was simplified by the use of the DAL that allowed a...
	The following published paper, entitled Software Engineering Techniques and CASE Tools in RD13 on...

	Software Engineering Techniques and CASE Tools in RD13
	3.8 Conclusions on RD13 DAQ
	The first phase of the RD13 DAQ project successfully demonstrated that MIPS based processors runn...
	3.8.1 Graphical User Interface Toolkits
	The adoption of the X Window System and OSF’s Motif widget set provided adequate support for basi...

	3.8.2 Configuration Data Storage Techniques
	By adopting a common approach to configuration data storage on the RD13 DAQ it was possible to sh...

	The RD13 Data Acquisition System Upgrade

	4 The RD13 Data Acquisition System Upgrade
	4.1 Introduction
	This chapter describes the studies performed on the software technologies within the context of t...

	4.2 RD13 DAQ Upgrade Overview
	In order to cope with increasing requirements from the detectors and to further explore the scala...
	Figure 11 DAQ Hardware setup at ATLAS test-beam 1996
	The following published paper entitled The RD13 Data Acquisition System on page 113 describes the...

	The RD13 Data Acquisition System
	4.3 Configuration Data Storage
	The QUID data store had been successfully used to hold DAQ configuration information in the origi...
	• the whole data store was loaded into the application’s memory at initialization thus limiting t...
	• no facilities were provided for referential integrity, concurrency control, schema evolution an...

	To overcome these limitations, investigations of the possible use of a commercial ODBMS in 1993 w...
	A third commercial ODBMS, called ITASCA [Itasca92], was available at this time and the company wa...
	Given that the client libraries were available on the front-end processors it was interesting to ...
	As an alternative to ODBMS, the published paper entitled Applications of an OO Methodology and CA...

	Experience Using a Distributed Object Oriented DataBase for a DAQ System
	4.4 Inter-Process Communication
	The principle use of the inter-process communication system in the RD13 system was the run-contro...
	4.4.1 Extended the Run-Control Transition Types
	The finite state machine declaration notation (See “Run-Control” on page�85) was revised to incor...
	• Error signal transitions executed when the corresponding EMF error message was reported by any ...
	• Rcl application started transitions executed when the given application (identified by name or ...
	• Rcl application stopped transitions executed when the given application (identified by name or ...
	• Rcl application state change transitions executed when the given application (identified by nam...

	When the new transition types were combined with the ability to use regular expressions to identi...
	For example, assuming the top-level controllers for each detector were named Controller_<detector...

	4.4.2 Configurable Finite State Machines
	By storing the definition of the FSMs in a data store and retrieving them at run-time, it became ...

	4.4.3 User Interface
	The initial run-control user interface, rclCmd (see User Interface on page 96), was provided as a...
	• selection of system configurations,
	• initial DAQ startup and state change push-buttons,
	• run state information (updated dynamically) and
	• access to all DAQ utilities (e.g. status display, monitoring tasks, etc.) via pull-down menus.

	DMW integrated several commercial packages including Motif graphics, ISIS and the QUID data store...
	Figure 12 DAQ Main Window user interface

	4.4.4 Run-Control Issues
	The measures described above improved the run-control system but a number of issues concerning th...
	• a better means of indicating to the operator the state of the run-control component itself. The...
	• assess the relative merits of having the controller state coherency management distributed, as ...

	4.4.5 The Resource Manager
	In distributed DAQ systems it is necessary to start and stop a plenitude of programs during the i...

	4.4.6 Artifex
	An alternative means of designing and implementing the run-control system was explored during the...
	• the analysis and design phases were made using the graphical formal language for the high level...
	• during the simulation, generation and execution phases the user could simulate, set break point...
	• the emulation supported distributed code generation from the same model used for analysis and s...

	This work showed that although the performance of the resulting system was not satisfactory for t...
	Hence a prototype of the RD13 run-control system was made with Artifex and a summary of the resul...
	• integrating the code generated by Artifex with hand-written or third party code was cumbersome ...
	• Artifex did not support dynamic configuration. Every instance that participated in the model ha...
	• the developers found modelling controllers with Petri Nets less obvious than with finite state ...

	Based on the above points it was decided to abandon the use of Artifex for run-control purposes. ...

	4.4.7 Kappa CommManager
	As an alternative to ISIS and Artifex’s transparent network communication, the published paper en...

	4.5 Graphical User Interface Toolkits
	In the original RD13 DAQ system, the Data Views graphics library and editor were used to develop ...
	Figure 13 X-Designer graphical user interface builder with Motif and XRT widgets
	For the components of the DAQ developed with OMW, the integrated GUI builder called the Interface...

	Figure 14 OMW’s Interface Workbench and Data-Linkage Editor
	The following published paper entitled Applications of an OO Methodology and CASE to a DAQ System...

	Applications of an OO Methodology and CASE to a DAQ System
	3.9 Conclusions on the RD13 DAQ Upgrade
	The RD13 DAQ was successfully upgraded to support data taking from multiple concurrent detectors ...
	3.9.1 Configuration Data Storage
	In order to overcome the limitations of the QUID system three successive ODBMS (Ontos, GemStone a...
	The Kappa object manager was similar to QUID but also provided limited schema evolution facilitie...

	3.9.2 Inter-Process Communication
	ISIS continued to be the basis of all communication used in the DAQ control and configuration com...
	Two alternatives to ISIS were investigated: Artifex and the Kappa CommManager. The Artifex develo...

	3.9.3 Graphical User Interface Toolkits
	The combination of the X Window System and OSF’s Motif toolkit with the X- Designer GUI builder e...
	As an alternative to X-Designer, the OMW’s Interface Workbench was used to develop interfaces to ...

	The ATLAS Data Acquisition System Prototype
	5 The ATLAS Data Acquisition System Prototype
	5.1 Introduction
	This chapter presents the state of the ongoing studies performed on the three software technologi...

	5.2 ATLAS DAQ Prototype -1 Project
	The goal of the ATLAS DAQ -1 project is to produce a fully functional prototype suitable for eval...

	5.3 Graphical User Interface Toolkits
	At the end of the RD13 project, a satisfactory development environment had been established for g...
	The X-Designer GUI builder had been successfully used to model interfaces using both Motif and XR...
	OMW’s Interface Builder had been successfully used to implement GUIs for various DAQ components a...
	At this point, PCs running Microsoft Windows NT became suitable platforms for DAQ activities and ...

	5.4 Inter-Process Communications
	ISIS had been successfully used as the basis of inter-process communication in many DAQ component...
	The use of Object Management Group’s Corba communication system had been explored through the tes...

	5.5 Configuration Data Storage
	QUID was still the most widely used configuration data storage technique in the RD13 DAQ but prot...
	The following published paper entitled The ATLAS DAQ and Event Filter Prototype “- 1” Project on ...

	The ATLAS DAQ and Event Filter Prototype “-1” Project
	5.6 Software Technologies in the ATLAS Prototype DAQ Project
	The following published paper entitled Software Technologies for a Prototype ATLAS DAQ on page 16...

	Software Technologies for a Prototype ATLAS DAQ
	Discussion and Conclusions

	6 Discussion and Conclusions
	This chapter provides a summary of the activities and developments for each of the three software...
	6.1 Graphical User Interfaces
	Within the MODEL project, studies of graphical user interfaces started with the development by th...
	MHI was ported to the then emerging X Window System that provided support for a greater number of...
	This port also provided initial access to high-level windowing toolkits and commercial graphical ...
	At conception of the RD13 project, an evaluation of several windowing toolkits (Motif, InterViews...
	The adoption of the X Window System and OSF’s Motif widget set provided adequate support for basi...
	During the upgrade of the RD13 DAQ, the DataViews package was replaced with the XRT widget set th...
	In the ATLAS prototype DAQ project, X-Designer has been re-evaluated for cross- platform developm...

	6.2 Inter-Process Communication Systems
	The study of inter-process communication systems started with the use of RPCs to support distribu...
	• single network connection per client,
	• single server architecture to avoid synchronization issues,
	• partitioned name space for support of multiple concurrent data taking activities,
	• group based communication implying no modifications were needed when the sender-receiver config...
	• simple client-interface for diverse applications.

	But this architecture introduced certain limitations, namely:
	• a single server was a single point of failure,
	• no provision was made for restoring information for existing connections when the server restar...
	• a single server limited the scalability of the system,
	• broadcasting was simulated and hence the performance degraded as the number of clients increased,
	• the implementation relied on message buffering and asynchronous I/O features of the underlying ...
	• all information was transferred in ASCII format.

	Within HEP software, the OSP package introduced a new style of communication in distributed appli...
	At the time of the RD13 project, the limitations of OSP’s implementation became clear and the ISI...
	• multiple cooperating servers avoided a single point of failure and could scale with the size of...
	• true broadcast communication was used where supported by the underlying TCP/IP implementation,
	• portability to more platforms,
	• support for all basic data types as well as user defined structures,
	• support for various styles of communication.

	However, ISIS did have a few limitations of its own, namely:
	• low-level programming interface,
	• the thread facility did not use the native kernel threads on all platforms.

	To simplify the run-control component, a layered product called Meta was evaluated that provided ...
	When the RD13 DAQ was upgraded, an investigation of the Petri Net based Artifex toolset including...
	• integrating the code generated by Artifex with hand-written or third party code was cumbersome,
	• Artifex did not support dynamic configuration,
	• the developers found modelling controllers with Petri Nets less obvious than with finite state ...

	Based on the above points it was decided to abandon the use of Artifex for run-control purposes. ...

	6.3 Configuration Data Storage
	The issue of configuration data storage was not addressed in a consistent manner by the component...
	QUID allowed the modelling, storing and handling of the data but it was not a full database manag...
	• the whole data store was loaded into the application’s memory at initialization thus limiting t...
	• no facilities were provided for referential integrity, concurrency control, schema evolution an...

	The migration from ORACLE to QUID based data stores was simplified by the definition of the DAL t...
	Later, when the data management facilities of QUID were surpassed, investigations were made of a ...
	Intellicorp’s persistent object manager was also evaluated and used to implement the data stores ...
	This work led to the acceptance of a two-tier approach to configuration data storage in the ATLAS...

	6.4 Contribution to Knowledge
	This research programme has addressed three key software technologies for HEP DAQ systems, namely...
	Many of the applications within DAQ systems, such as the run-control system, show that these thre...
	6.4.1 Graphical User Interface Toolkits
	MHI provided the first device independent distributed windowing facility to HEP DAQ systems. The ...
	The author’s evaluation of OpenLook, Motif and Interviews, and the resulting recommendation of Mo...

	6.4.2 Inter-Process Communication Systems
	OSP provided the first documented opportunity for HEP DAQ systems to use publish/ subscribe style...

	6.4.3 Configuration Data Storage Techniques
	The author’s investigations into configuration data storage techniques has helped to make HEP DAQ...
	In all the investigations concerning the three software technologies, the author has promoted the...

	6.4.4 Author's Personal Contribution
	The author was directly responsible for the following aspects of the studies described in this th...
	• MODEL

	As one of the major contributors to the Model Human Interface package, the author was responsible...
	• RD13

	The author personally evaluated the OpenLook, Motif and InterViews graphical toolkits and various...
	• RD13 Upgrade

	The author evaluated the Ontos ODBMS, the Object Management Workbench CASE tool and developed the...
	• ATLAS

	In the on-going ATLAS Prototype -1 project the author is the coordinator for the group of develop...

	6.5 Recommendations for Further Work
	The increase in size and complexity of HEP DAQ systems is continuing as the physicists prepare fo...
	The Object Database Standard is being tracked and actively influenced by the RD45 research projec...
	For the ATLAS DAQ prototype, the Corba standard for inter-process communication has been adopted....
	References
	ATLAS94
	ATLAS Technical Proposal, The ATLAS Collaboration, CERN/LHCC/94-43, LHCC/P2, December 1994.
	ATLAS96

	ATLAS Computing Technical Proposal, The ATLAS Collaboration, CERN/ LHCC/96-42, 15 December 1996, ...
	Ada83

	Ada Joint Program Office, United States Department of Defence, Reference Manual for the Ada Progr...
	Adam91

	Architecture and Performance of the DELPHI Data Acquisiton and Control System. DELPHI DAQ Group, ...
	Aguer94

	Software Engineering Techniques and CASE Tools in RD13, Aguer M et al., 3rd International Confere...
	Ambrosini94

	OODBMS for a DAQ system, G. Ambrosini et al., Proceedings of the Conference on Computing in High ...
	Angelov91

	Performances of the central L3 Data Acqusition system, T. Angelov et al., Nuclear Instrments and ...
	Arnold96

	The Java Programming Language, K.Arnold, J.Gosling, Addison-Wesley Publishing, ISBN: 0201634554 (...
	Artifex93

	Known Problems in Using Artifex, A. Khodabandeh, RD13 technical note #57, CERN, 1993, http://rd13...
	Balestra91

	The Obelix On-line Monitor and Display, F.Balestra et al. Proceedings of the Conference Computing...
	Bee92

	The CPLEAR Data Acqusition and Control System, C.P.Bee et. al., Proceedings of the Internation Co...
	Berners-Lee87

	Experience with Remote Procedure Call in Data Acquisition and Control, T.J.Berners-Lee, 5th Confe...
	Birman90

	The ISIS project: Real experience with a fault tolerant programming system. K.P.Birman and Robert...
	Birman96

	Building secure and reliable network applications, Kenneth P. Birman, Manning,1996, ISBN 1-884777...
	Blobel83

	Databases and bookkeeping for HEP experiments, ECFA - V. Blobel et al., Rutherford report RL-83-0...
	Brun89

	PAW, a general purpose software tool for data analysis and presentation, R. Brun et al, Proceedin...
	Bruno95

	Model Based Software Engineering, G. Bruno, Chapman & Hall, 1995. ISBN 0 412 48670 9.
	Camac92

	CAMAC Instrumentation and Interface Standards, IEEE, Inc., 1992.
	Caprini96

	Java language evaluation for DAQ status display, Mihai Caprini, Zuxuan Qian, 16 September 1996, A...
	Cattell93

	The Object Database Standard, ODBMG-93, Edited by R.G.G. Cattell, ISBN 1- 55860-302-6, Morgan Kau...
	Dec87

	VAX/VMS Introduction to System Services, chapter 12. Digital Equipment Corp. (1987)
	Dec88

	DECwindows - DEC, VMS DECwindows Technical Summary, order number ZK4727 (DEC 1988).
	Dec91

	DECWindows Digital Equipment Corporation. VMS DECWindows Motif Guide to Application Programming, ...
	Fastbus83

	FASTBUS modular high speed data acquisition and control system, DOE/ER - 0189. U.S.Dept. of Energ...
	Ferrato93

	Error Message Facility for RD13, Daniele Ferrato, Bob Jones, RD13 Technical Note 6, 16 April 1993...
	Fresco94

	C++ Report Magazine, Fresco Column October 1994.
	Fumagalli93

	User's Guide to the Artifex DAQ in the RD13 Laboratory, A. Khodabandeh, G. Fumagalli, RD13 techni...
	Gaspar93

	A Distributed Information Management System for DELPHI Experiment at CERN, C.Gaspar, M.Donszelman...
	GemStone92

	An Introduction to GemStone V3.0. Servio Corporation 1992. 20575 N.W. von Neumann Drive Beaverton...
	Goodheart91

	UNIX Curses Explained. Goodheart, B., Prentice Hall, 1991.
	Green89

	The ADAMO Data System, M.G. Green, RHBNC 88-01, Royal Holloway and Bedford College, Egham (1989).
	Intellicorp93

	Kappa CommManager System Guide, Version 3.0 Beta-2, Publication Number: K3.0b2-KMSS-2, August 199...
	Itasca92

	ITASCA Distributed Object Database Management System. Technical Summary for Release 2.1. Itasca S...
	Jones86

	OSP Users' Guide, R.Jones DD/OC CERN Geneva, 17 December 1986.
	Jones92

	Use of ISIS and Meta, R.Jones et al., Second International Workshop on Software Engineering, Arti...
	Jones93

	Testing the interface between Artifex and non-Artifex applications, R Jones, E. Sanchez-Corral, R...
	Jones94

	Improvements in the Artifex based RD13 Run Control system, R. Jones, E.Sanchez- Corral, RD13 tech...
	Jones95

	The RD13 DAQ System and the Object Management Workbench, Bob Jones, Proceedings of the 1995 CERN ...
	KL94

	XRT Builder Guide & Reference Manual, Ref No. BLGDE-GRAPH/M/240-07/94. KL Group. 260 King Street ...
	Kaplan93

	A comparison of queueing, cluster and distributed computing systems, Kaplan, Joseph A. Nelson, Mi...
	Khodabandeh93

	Performance Study of the Artifex based DFP, A. Khodabandeh, G. Mornacchi, RD13 technical note #50...
	Kolos96

	Inter-component communication in the ATLAS DAQ back-end software (evaluation of the ILU multi-lan...
	Le Goff95

	CICERO: Control information system concepts based on encapsulated real-time objects. J.M. Le Goff...
	Mapelli90

	A Scalable Data Taking System at a Test Beam for LHC, L.Mapelli et al., CERN/ DRDC/90-64/P16, CER...
	Mapelli92

	RD13 Status Report, L.Mapelli et al., CERN/DRDC/92-13, 13 March 1992.
	Mapelli93

	RD13 Status Report, L.Mapelli et al., CERN/DRDC 93-25, 5 May 1993.
	Mapelli94

	RD13 Status Report, L.Mapelli et al., CERN/DRDC 94-24, 9 May 1994.
	Mapelli95

	RD13 Status Report, L.Mapelli et al., CERN/LHCC 95-4, LCRB Status Report/ RD13, 1 August 1995.
	Marzullo91

	Tools for Constructing Distributed Reactive Systems, Marzullo, K., and M. Wood, Technical Report ...
	Matheys89

	Model Process Control User Manual, Jean-Pol Matheys, Version 3.1, CERN DD- OC, 19-07-1989.
	Microware96

	OS-9 for 68K Technical Overview, white paper, Microware Systems Corporation 1900 NW 114th Street ...
	Microware97

	OS9 - Microware Systems Corporation, OS-9/68000 Operating System Technical Manual, order number P...
	Mornacchi87

	Architecture of the Model Project Human Interface, G. Mornacchi, CERN DD/ 87/14 (1987).
	Mornacchi92

	RD13 DataBase FrameWork, G. Mornacchi, RD13 Technical note 11, 1 May 1992, http://rd13doc.cern.ch...
	OMG95

	Object Management Group. The Common Object Request Broker: Architecture and Specification. OMG, I...
	OMG96

	Object Management Group. CORBA services: Common Object Services Specification. OMG, Inc., Mar. 19...
	OSF93

	Open Software Foundation. OSF/Motif Programmer's Guide, 1.1 edition. ISBN 0-13- 643115-1 (1993).
	Ontos92

	Ontos, Inc. Ontos reference manual. 1992.
	PASS94

	Petabyte Access Storage Solutions. The PASS Project Architectural Model. Proceedings of CHEP94. L...
	RD4596

	RD45 - A Persistent Object Manager for HEP, The RD45 collaboration, CERN/ LHCC 96-15, LCRB Status...
	Rimmer87

	A Database for FASTBUS, E.M. Rimmer, preprint CERN/DD/8723 (1987).
	Rimmer90

	Databases for Large Detector Systems - Experiences at LEP and Future needs, E.M. Rimmer, CERN CN/...
	Sendall86

	Some notes on the signalling of occurrences, D.M Sendall, MODEL/Design 23, CERN/DD, 27 Feb 1986.
	Stratus96

	Stratus Computer, Inc.55 Fairbanks Boulevard Marlboro, Massachusetts, U.S.A. (1996). http://www.s...
	Touchard96

	Evaluation of the Message Passing Interface Standard for the Atlas Backend Software, F. Touchard,...
	Unison97

	Unison Load Balancer, Mardall House, Grnd Flr, Vaughan Road, Harpenden, Hertfordshire AL5 4HU, Un...
	VMEbus85

	VMEbus Specification Manual Rev.C, VMEbus Intl. Trade Assoc., Scotsdale, Ariz. (1985).
	Vascotto89

	Inter-process control transactions, A. Vascotto, CERN DD-OC-OS, 14 June 1989.
	Wenaus89

	The L3 Online Window Manager Facility (WM), Torre Wenaus, June 9 1989, L3 Online Note 807.
	WenausT89

	The L3 Cluster Process Communication Facility (CPC), Torre Wenaus, L3 document note #806 (1989).

