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Over the last decade, conflicting values of the hypertriton 3
ΛH lifetime τ(3ΛH) were extracted

from relativistic heavy-ion (RHI) collision experiments, ranging from values compatible with the
free-Λ lifetime τΛ—as expected naively for a very weakly bound Λ in 3

ΛH—to lifetimes as short as
τ(3ΛH) ≈ (0.4− 0.7) τΛ. In a recent work [1] we studied this 3

ΛH lifetime puzzle theoretically using
realistic three-body 3

ΛH and 3He wave functions computed within the ab initio no-core shell model
approach with interactions derived from chiral effective field theory to calculate the partial decay rate
Γ(3ΛH → 3He+π−). Significant but opposing contributions were found from ΣNN admixtures in 3

ΛH
and from π− − 3He final-state interaction. In particular, τ(3ΛH) was found to be strongly correlated
with the Λ separation energy BΛ in 3

ΛH, the value of which is rather poorly known experimentally
and, in addition, is known to suffer from sizable theoretical uncertainties inherent in the employed
nuclear and hypernuclear interaction models. In the present work we find that these uncertainties
propagate into τ(3ΛH), and thus limit considerably the theoretical precision of its computed value.
Although none of the conflicting RHI measured τ(3ΛH) values can be excluded, but rather can be
attributed to a poor knowledge of BΛ, we note the good agreement between the lifetime value
τ(3ΛH) = 242(28) ps computed at the lowest value BΛ = 66 keV reached by us and the very recent
ALICE measured lifetime value τALICE(3ΛH) = 253(11)(6) ps associated with the ALICE measured
BΛ value BALICE

Λ = 102(63)(67) keV [2].

I. INTRODUCTION

The hypertriton (3ΛH) is the lightest bound hypernucleus,

with isospin T = 0 and spin-parity JP = 1
2

+
[3]. Together

with other s-shell light Λ hypernuclei, 4
ΛH–4ΛHe and 5

ΛHe,
it provides useful constraints on the poorly known YN
and YNN interactions [4] which are tested in heavier Λ
hypernuclei in the context of hyperon composition of dense
baryonic matter realized perhaps in the cores of neutron
stars [5–7]. Owing to the extremely small Λ separation
energy in 3

ΛH, BΛ = 164(43) keV [8], the structure of
3
ΛH should resemble to a good approximation that of a
Λ bound loosely to a deuteron (2H) core with a mean
distance of ≈ 10 fm. The lifetime of such a loosely bound
system is expected to be comparable to the lifetime of the
free Λ, τΛ = 263(2) ps [9], the decay of which to 99.7% is
driven by the Λ → N π nonleptonic weak transitions.

Yet, while the most recent ALICE Collaboration’s mea-
surement [2] reports a τ(3ΛH) closely agreeing with the
free-Λ lifetime τΛ, τ

ALICE(3ΛH) = 253(11)(6) ps ≈ 0.96 τΛ,
considerably shorter values τ(3ΛH) ≈ (0.5− 0.7) τΛ were
extracted in recent RHI collision experiments by the
STAR [10] and HypHI [11] Collaborations. We note that
the latest STAR Collaboration’s measurement [12], report-
ing a value of τSTAR(3ΛH) = 221(15)(19) ps, comes close
within its experimental uncertainties to τΛ, but its central
value is still about 15% shorter. It is to be noted that
a similarly large spread of τ(3ΛH) values, although with
larger uncertainties, had been reported in older nuclear-
emulsion and helium bubble-chamber (BC) hypernuclear
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measurements [13–18], as shown in Fig. 1. Also shown in
the figure are the τ(3ΛH) values from recent RHI collision
experiments [2, 10–12, 19–21], together with representa-
tive (post-1997) theoretical calculations [1, 22–24].

Several theoretical approaches with varying degree of
sophistication have been employed to study the decay
of the hypertriton [1, 22–24, 26, 27] by calculating π−

decay rates and using the ∆T = 1
2 rule (see Sec. IIA)

to add the corresponding π0 decay rates. In the first
calculation marked in Fig. 1, a value of τ(3ΛH) shorter
by only 6% than τΛ was obtained in a full Λnp Faddeev
calculation accounting for all 3

ΛH two-, three- and four-
body π− decay channels (3Heπ−, 2H p π−, and n p p π−,
all with plane-wave pions). However, the Nijmegen SC89
YN interaction [28] applied there to construct the 3

ΛH
wave function was shown to be problematic in hypernu-
clei, starting at A = 4 [29]. In the second calculation [23],
a value of τ(3ΛH) ≈ 0.8 τΛ was obtained within the clo-
sure approximation using three-body 3

ΛH wave functions
generated from Λnp Faddeev equations. Here, half of the
≈ 20% reduction in τ(3ΛH) resulted from the attractive
final-state interaction (FSI) of the outgoing pion. While
a fixed value of BΛ ≈ 135 keV was used in these two
τ(3ΛH) calculations, a range of BΛ values was tested in
the next two calculations. The τ(3ΛH) intervals shown in
the figure for these calculations [1, 24] correspond to the
central value BΛ = 102 keV reported by the most recent
ALICE measurement [2]. In the third calculation [1] we
established significant but opposing contributions from
pionic FSI and ΣNN admixtures in 3

ΛH, by using chi-
ral effective field theory (χEFT) nuclear and hypernu-
clear interactions to obtain realistic 3He and 3

ΛH three-
body wave functions within an ab initio no-core shell
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Figure 1. 3
ΛH lifetime values τ(3ΛH) obtained in selected [25]

past nuclear BC [15, 16, 18] and recent RHI collision [2, 10–
12, 19–21] experiments, together with a few (post-1997) micro-
scopic calculations [1, 22–24]; see text. Error bars and shaded
areas indicate the measurement statistical and systematical
errors, respectively, as well as the estimated theoretical uncer-
tainties (if available). The vertical dashed line corresponds to
the free-Λ lifetime value τΛ = 263(2) ps [9].

model (NCSM) approach for evaluating the two-body
3
ΛH → 3He+π− partial decay rate. The known branching
ratio Γ(3ΛH → 3He + π−)/Γ(3ΛH → all π− channels) was
then utilized to compute the inclusive π− decay rate. Fi-
nally, τ(3ΛH) ≈ τΛ was obtained in the last calculation
displayed in the figure [24], with relatively large uncer-
tainties of ≳ 15%, by applying pionless effective field
theory (EFT) and reducing the three-body 3

ΛH and 3H,
3He systems to loosely bound 2H−Λ and 2H−N two-body
systems, respectively. Adding pionic FSI was found in
a very recent application of this pionless EFT work to
enhance the 3

ΛH decay rate by about 18% [30]. The cen-
tral value of the τ(3ΛH) interval in Fig. 1 moves then from
about τΛ down to 84% of it, namely to 221 ps, in rough
agreement with our result [1].

In the present work, we extend and provide full details
of our recent 3

ΛH lifetime calculation [1]. More specifically,
we employ precise realistic three-body 3

ΛH and 3He wave
functions to evaluate the 3

ΛH two-body π− partial decay
rate and relate it to the inclusive pionic 3

ΛH decay rate
and τ(3ΛH). We account for the distortion of the outgoing
π− wave due to realistic π− − 3He interaction and take
into account contributions from Σ → N π transitions,
resulting from ΣNN admixtures in the 3

ΛH wave function.
The main focus of the present work, however, is to explore
the theoretical precision of calculating Γ(3ΛH → 3He+π−),

and thereby τ(3ΛH), due to systematic model uncertainties
in the YN and NN+NNN interactions. For this purpose
we employ four versions of the LO YN interaction regu-
larized at ΛYN = 550, 600, 650, and 700MeV together
with the NNLOsim family of 42 nuclear interactions.

The paper is organized as follows: In Sec. II we present
the formalism to calculate the hypertriton decay rate
and lifetime. In particular, in Sec. IIA we elaborate on
our approach to relate τ(3ΛH) to the partial two-body π−

decay rate Γ(3ΛH → 3He + π−) introduced in Sec. II B.
This partial decay rate is calculated starting from an ef-
fective weak-decay operator constructed in Sec. II C and
evaluating its matrix elements between π− (Sec. IID),
3
ΛH and 3He three-body wave functions (Sec. II E) gener-
ated within the NCSM approach using realistic YN and
NN+NNN interactions from χEFT described in Sec. II F.
In Sec. III, results for the two-body 3

ΛH → 3He + π−

decay rate are presented in Sec. III A, identifying its dom-
inant contributions in Sec. III B and studying in Sec. III C
its dependence on the 3

ΛH Λ separation energy BΛ. In
Sec. IIID we quantify the precision limits in predicting
theoretically Γ(3ΛH → 3He + π−), arising from the uncer-
tainties in the nuclear and hypernuclear three-body wave
functions. In Sec. III E, we present and discuss results
for the hypertriton lifetime, particularly in light of recent
τ(3ΛH) measurements. Our main findings are summarized
in Sec. IV.

II. METHOD

A. Hypertriton decay

The main decay channels which contribute to the total
decay rate rate of the hypertriton are the mesonic (nonlep-
tonic) decay modes due to the weak-interaction Λ → N π
transitions:

3
ΛH → 3He + π−, 3

ΛH → 3H+ π0,
3
ΛH → 2H+ p+ π−, 3

ΛH → 2H+ n+ π0,
3
ΛH → p+ p+ n+ π−, 3

ΛH → n+ n+ p+ π0.

(1)

This is in contrast with heavier hypernuclei where the
mesonic decays are Pauli blocked. In (1), only the four-
body deuteron-breakup channels are heavily suppressed
due to the limited phase space [22]. Apart from the
mesonic decays, there is also the nonmesonic decay branch
of 3

ΛH due to ΛN → NN :

3
ΛH → 2H+ n,
3
ΛH → n+ n+ p.

(2)

The nonmesonic modes, while being the major contrib-
utors in the decays of heavy hypernuclei, are known to
play a very small role in 3

ΛH [26, 31, 32].
The 3

ΛH partial decay rates corresponding to the
charged and neutral pion channels listed in (1) are not
independent. Since for the experimental ratio Γ(Λ →
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nπ0)/Γ(Λ → p π−) ≈ 0.5 holds to a good precision,
the isospin T = 0 → 3

2 (∆T = 3
2 ) components of the

Λ → p π−, n π0 amplitudes must be negligible in com-
parison with the ∆T = 1

2 amplitudes. This is known

as the “∆T = 1
2 rule” which implies that the transition

operators satisfy ÔΛ→pπ− =
√
2 ÔΛ→nπ0 and thus relates

the charged and neutral pionic rates by Γπ− = 2Γπ0 . In
addition, the measured world-average BC branching ratio
R3 ≡ Γ(3ΛH → 3He + π−)/Γπ−(3ΛH) = 0.35(4) [18] can
be used to relate the inclusive π− rate Γπ−(3ΛH) with the

two-body π− rate Γ
3He = Γ(3ΛH → 3He + π−).

To summarize, in this work we employ the following
strategy to evaluate the 3

ΛH lifetime: (i) Use the branching
ratio R3 to get the inclusive π− rate from the two-body
π− rate Γ(3ΛH → 3He + π−) as

Γπ−(3ΛH) = Γ(3ΛH → 3He + π−)

+ Γ(3ΛH → 2H+ p+ π−)

+ Γ(3ΛH → n+ p+ p+ π−)

=
1

R3
Γ(3ΛH → 3He + π−).

(3)

(ii) Include the π0 decay channels by employing the em-
pirical ∆T = 1

2 rule

Γπ = Γπ− + Γπ0 =
3

2
Γπ− = τ−1

π (3ΛH). (4)

(iii) Account for the nonmesonic ΛN → NN and pionic
true-absorption π + NN → NN contributions through
an increase of the 3

ΛH decay rate by 1.5% and 0.8% [26,
31, 32], respectively; τ(3ΛH) = 0.978 τπ(

3
ΛH).

B. Two-body decay rate Γ(3ΛH → 3He + π−)

We follow Ref. [22] which relates the 3
ΛH two-body π−

decay rate Γ(3ΛH → 3He + π−) in the total momentum
zero frame to the Λ → N π− free-Λ weak-decay vertex
operator Ô as

Γ
3He =

1

2

∑
m3

Λ
H

∑
m3He

∫
d3p3He

d3pπ
8π2Eπ

×
∣∣∣√3 ⟨Ψ3He;p⃗3He,m3He

ϕπ;p⃗π
|Ô|Ψ3

ΛH;m3
Λ

H
⟩
∣∣∣2

× δ(3)(p⃗3He + p⃗π)

× δ

(
M3

ΛH −M3He −
p⃗ 2

3He

2M3He
− Eπ

)
.

(5)

The expression involves averaging over the initial, m3
ΛH,

and summation over the final, m3He, spin projections
of the (hyper)nuclear states Ψ and the integration over
the two final 3He and π− momenta, p⃗3He and p⃗π, is
accompanied by the corresponding phase factor, with
Eπ =

√
m2

π + p⃗2π the relativistic energy of the pion. The
final π− − 3He scattering state |Ψ3Heϕπ⟩ is discussed in

detail in Sec. IID. The isospin factor
√
3 in Eq. (5) ac-

counts for the three final nucleons into which the Λ may
transition and the Dirac delta functions ensure momen-
tum and energy conservation by fixing the values of p⃗3He

and the modulus of the outgoing pion momentum p⃗π,
where M3

ΛH = 2991MeV and M3He = 2809MeV in the

argument are the 3
ΛH and 3He masses. Since there is no

preferred spatial direction, we choose the quantization z
axis in the direction of p⃗π and integrate out the remaining
angular dependence as

∫
dp̂π = 4π. Eq. (5) then becomes

Γ
3He =

3

4π

M3He qπ
M3He + Eπ

×
∑
m3

Λ
H

∑
m3He

∣∣∣⟨Ψ3Heϕπ|Ô|Ψ3
ΛH⟩
∣∣∣2 , (6)

where the pion momentum is kinematically fixed by

qπ =
√
2M3He

×
√
M3

ΛH −
√
m2

π + 2M3HeM3
ΛH −M2

3He

= 114.4MeV

(7)

for average pion mass mπ = 138.04MeV and corresponds
to pion energy Eπ =

√
m2

π + q2π = 179.3MeV.

C. Weak-decay operator

The transition operator in Eq. (6) originates from an effec-
tive Lagrangian density for the weak Λ → N π transitions

LΛNπ = GFm
2
π ψ̄N (AΛ + BΛγ5)(τ⃗ · π⃗)ψΛ, (8)

where GFm
2
π = 2.21 × 10−7; τ⃗ are the isospin Pauli

matrices; and ψΛ, ψN , and π⃗ are the Λ, nucleon, and
isovector pion fields, respectively. The AΛ = 1.024
and BΛ = −9.431 are the parity-violating (PV) spin-
dependent and parity-conserving (PC) spin-independent
Λ → N π amplitudes. Values of these amplitudes were
fixed by the lifetime of free Λ and the PC/PV decay rates
ratio, ΓPC/ΓPV = 0.203, determined from the BESIII
value of the Λ → p π− asymmetry parameter [33]. The
empirical ∆T = 1

2 rule, discussed in Sec. II A, is incorpo-
rated formally in Eq. (8) by adding τ⃗ at the ΛNπ vertex,
introducing a spurious | 12 ,− 1

2 ⟩ isospin to the Λ hyperon,
and assuming isospin conservation [22].
In its nonrelativistic form, the transition operator

Ô = i
√
2GFm

2
π

(
AΛ +

BΛ

2MΛN

σ⃗ · q⃗π
)
P̂

(Λ)
t12=0, (9)

derived from the Lagrangian density (8), acts on the A = 3
wave functions and is responsible for the transition of the Λ
hyperon in 3

ΛH to a proton in 3He. The factor
√
2 is due to

the spurious isospin of the Λ, and the projection operator

P̂
(Λ)
t12=0 selects the isospin t12 = 0, t3 = 0 ΛNN channels
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in the 3
ΛH wave functions. The σ⃗ are the Pauli matrices

in spin space, q⃗π = qπ ẑ is the pion (on-shell) momentum,
and MΛN = 1

2 (MΛ +MN ), calculated using the average
nucleon mass MN = 938.92MeV and MΛ = 1115.68MeV.

Considering the ΣNN admixtures in 3
ΛH induced by the

ΛN ↔ ΣN coupling in the hypernuclear Hamiltonian, new
Σ− → nπ− and Σ0 → p π− transitions become available
and contribute to Γ(3ΛH → 3He + π−). To account for
the Σ → N π contributions, we generalize the weak-decay
operator as

Ô → Ô + iGFm
2
π

(√
2

3
AΣ− +

1

3
AΣ0

)
P̂

(Σ)
t12=1. (10)

The factors
√
2
3 and 1

3 arise due to isospin Clebsh–Gordan

(CG) coefficients when embedding the Σ− and Σ0 ampli-

tudes within our A = 3 isospin states and P̂
(Σ)
t12=1 selects

the isospin t12 = 1, t3 = 1 ΣNN channels in the 3
ΛH

wave functions. In Eq. (10), we neglect the PC part
of Σ → N π amplitudes and fix the Σ− → nπ− PV
amplitude, AΣ− = 1.364, to satisfy the Σ− weak-decay
lifetime value τΣ− = 147.9 ps [34]. In the case of Σ0, the
main decay mode is the electromagnetic Σ0 → Λ γ tran-
sition, rendering the mesonic modes negligible. For the
Σ0 → p π− amplitude we thus use the chiral-Lagrangian
prediction to relate AΣ0 = 1√

2
AΣ− [34].

The explicit form of the transition operator (10) matrix
elements between 3

ΛH and 3He − π− wave functions in
Eq. (6) can be found in Appendix A.

D. Pion wave function

The distorted wave (DW) pion wave function ϕπ(q⃗π; r⃗) ≡
⟨r⃗ |ϕπ;q⃗π ⟩ input to the transition matrix element in Eq. (5)
was generated from a standard optical potential [35–37].
It evolves via FSI from a plane wave (PW) pion with
momentum q⃗ in the 3

ΛH rest frame, and its argument
r⃗ = 2

3 r⃗3 is identified with the coordinate of the third
“active” baryon with respect to the center of mass (CM)
of 3He.

As a first approximation, the pion wave function is con-
sidered to be a PW with on-shell momentum q⃗π in the z
direction, q⃗π = qπ ẑ. Accordingly, a state |qπ ẑ⟩ is inserted
in the matrix element and fixes the momentum difference,
p⃗ ′
3 − p⃗3, between the two active baryons. The next step
is to generate pion radial functions in the presence of a
realistic pion–nucleus optical model. As in our previous
publication [1], a natural starting point is provided by
optical potentials that reproduce the vast amount of ex-
perimental strong interaction level shifts and widths in
pionic atoms, essentially at zero energy.
Pion wave functions distorted by the pion-nucleus in-

teraction, are obtained by calculating pion-nucleus bound
states in standard complex optical potentials. In our pre-
vious publication [1] we used global fits to pionic atoms
derived from least-squares fits to 100 pionic atom data

from Ne to U. In the present work we have extended the
data base by including eight additional species below Ne,
including also 3He. The new potential parameters [38] are
consistent with those used in our previous publication and
the added χ2 for 16 points was 14.5. For 3He we found
χ2 = 1.8 for two points. Moving over to the true energy
of the pion in the present process is relatively simple as
described below.

The commonly accepted pion-nucleus optical potential
is made of an s-wave term and a p-wave term, each contain-
ing a real part linear in the nuclear density and a complex
part quadratic in density, representing pion absorption on
two nucleons. The real coefficients turned out to be close
to the corresponding spin- and isospin-dependent ampli-
tudes for the free pion-nucleon interaction at threshold
whereas the complex coefficients were phenomenological,
with poorly determined real parts. Consequently we could
set these real parts to zero without affecting the quality
of fits to experiment. Then the real coefficients could be
identified with the corresponding free pion-nucleon ampli-
tudes at threshold. To extrapolate from near threshold to
qπ = 114.4MeV in the π−−3He CM system we revised the
above πN linear-density terms using energy-dependent
scattering amplitudes from the SAID package [39]. For the
nonlinear terms, we extrapolated their threshold values
using as an additional point fits to π± elastic scattering
at TLab = 21.5MeV on Si, Ca, Ni, and Zr [40, 41]. This
resulted in a practically vanishing value of the s-wave
quadratic term and a 65% increase of the p-wave term.

Expanding ϕπ(q⃗π; r⃗) in our calculations in partial waves

lπ, and recalling the spin-parity JP = 1
2

+
of both 3He and

3
ΛH, it follows that the only values allowed are lπ = 0, 2.
Numerically we find a negligible lπ = 2 contribution of
order 0.1%, proceeding exclusively through the relatively
minor PC amplitude which in total contributes ≲ 3% to
Γ(3ΛH → 3He + π−).
To insert the DW, derived in position space, in the

transition matrix element, we first Fourier transform it
to momentum space using

ϕ̃lπ (k) = Y ∗
lπ0(ẑ)

2

π qπ

∫ ∞

0

dr rjlπ (kr)ϕlπ (qπ; r) (11)

and express the π− state |ϕπ⟩ in Eq. (5) in terms of
partial-wave basis states |k lπ⟩ as

|ϕπ⟩ =
∑
lπ

∫
dk k2 ϕ̃lπ (k) |k lπ⟩ . (12)

The state is normalized as

∑
lπ

∫
dk k2|ϕ̃lπ (k)|2 = 1. (13)

All details of the derivation and numerical implementation
are given in Appendix B.
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E. Nuclear and hypernuclear wave functions

The initial- and final-state wave functions of 3
ΛH and 3He

in Eq. (5) were computed within the ab initio no-core
shell model (NCSM) [42, 43]. In this approach, nuclei
and hypernuclei are described as systems of A nonrel-
ativistic point-like particles interacting through realis-
tic nucleon–nucleon (NN), three-nucleon (NNN), and
hyperon-nucleon (YN) interactions. In NCSM, the many-
body wave function is expanded in a complete set of
harmonic oscillator (HO) basis states characterized by
the HO frequency ℏω and truncated by the maximum
number Nmax of HO excitations above the lowest config-
uration allowed by Pauli principle,

|ΨJπT ⟩ =
Nmax∑
N=0

∑
λ

cJ
πT

Nλ |NλJT ⟩ . (14)

Here, N is the total number of HO excitations of all
particles and JπT are the total angular momentum, parity,
and isospin. The quantum number λ labels all additional
quantum numbers and the sum over N is restricted by
parity to an even or odd sequence. The energy eigenstates
are obtained by solving the Schrödinger equation.

In this work we employed a version of NCSM formulated
in translationally invariant relative Jacobi-coordinate HO
basis, which is suitable for dealing with few-body systems.
Different sets of Jacobi coordinates can be employed, one
of which is particularly convenient for the construction of
HO basis states antisymmetric with respect to all nucleons
and evaluation of the matrix element in (5). For A = 3
(hyper)nuclear systems, we introduce

p⃗CM = p⃗1 + p⃗2 + p⃗3,

p⃗12 =
1

m1 +m2
(m2 p⃗1 −m1 p⃗2) ,

p⃗3 =
1∑3

i=1mi

[m3(p⃗1 + p⃗2)− (m1 +m2) p⃗3] ,

(15)

where mi and p⃗i are the mass and momentum of particle
i = 1, 2, 3. In (15), p⃗CM is the CM momentum, p⃗12 is
the relative momentum of two nucleons, and p⃗3 is the
momentum of the third particle (nucleon or hyperon) with
respect to the CM of the nucleon pair.
The use of relative coordinates allows us to separate

out and omit the CM degrees of freedom. Consequently,
the HO basis states in (14) for 3

ΛH can be constructed as

|NλJT ⟩3
ΛH = |(λ12, λ3)JT ⟩ , (16)

where |λ12⟩ ≡ |n12(l12s12)j12t12⟩ are two-nucleon HO
states, depending on the coordinate p⃗12, with radial
n12, orbital l12, spin s12, angular momentum j12, and
isospin t12 quantum numbers. Antisymmetry of the NN
states with respect to the nucleon interchange is achieved
by imposing (−1)l12+s12+t12 = −1. Similarly, the HO
states |λ3⟩ ≡ |n3(l3s3)j3t3⟩ depending on the coordinate
p⃗3 describe the relative motion of the hyperon (Λ or

Σ for t3 = 0, 1) with respect to the CM of the NN
pair. The number of HO excitations in the state (16)
is N = 2n12 + l12 + 2n3 + l3 and the parentheses denote
angular momentum and isospin coupling. In the case
of 3He, the HO states in (14) have to be antisymmetric
with respect to exchanges of all nucleons. The antisym-
metrization procedure, when relative Jacobi coordinates
are employed, is discussed in detail, e.g., in Ref. [44].
The fully antisymmetric HO states are obtained as lin-
ear combinations of HO states with a lower degree of
antisymmetry,

|NλJT ⟩3He =
∑
λ̃

CNJT
λλ̃

|(λ̃12, λ̃3)JT ⟩ , (17)

where the expansion coefficients CNJT
λλ̃

are the coefficients

of fractional parentage. Here, analogously to Eq. (16),

|λ̃12⟩ depending on p⃗12 is an antisymmetric HO state

describing the relative motion of the NN pair, and |λ̃3⟩
depending on p⃗3 is associated with the relative motion of
the third nucleon with respect to the CM of the NN pair.

To evaluate the matrix elements of the weak-decay oper-
ator between the initial and final states, we project the 3

ΛH
and 3He NCSM wave functions (14) onto a momentum-
space partial-wave basis as

|ΨJπT ⟩ =
∑
α

∫
dp12 p

2
12 dp3 p

2
3 ψα(p12, p3)

× |p12 p3 α⟩ .
(18)

Here, p12(3) = |p⃗12(3)|, and α labels the JT -coupled three-
particle channels,

|α⟩ ≡ |((l12s12)j12(l3s3)j3) JM⟩ |(t12t3)TMT ⟩ , (19)

where M and MT are the projections of the total angular
momentum and isospin. The labeling of momenta and two-
and one-particle spin, isospin, and angular momentum
quantum numbers follows the same scheme as in the case
of HO basis states in Eqs. (16) and (17). The coefficient
functions ψα in Eq. (18) are combinations of the expansion
coefficients in (14), (17), and momentum-space radial HO
functions. They are normalized as∑

α

∫
dp12 p

2
12 dp3 p

2
3|ψα(p12, p3)|2 = 1. (20)

F. Input nuclear and hypernuclear interactions

In this work, we utilized realistic NN+NNN and YN
interactions derived from χEFT. We did not apply any
renormalization, such as the similarity renormalization
group or Lee–Suzuki transformation, to either of the
interactions. In particular, we employed the NNLOsim

nuclear forces constructed at next-to-next-to-leading or-
der (NNLO) [45] which were optimized to simultane-
ously reproduce NN as well as πN scattering data, the
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Figure 2. Dependence of 2H and 3He g.s. energies Eg.s. on the
NCSM model-space truncation 10 ≤ Nmax ≤ 40 for several
values of the HO frequency, ℏω = 10, 14, and 18MeV, calcu-
lated using the NNLOsim(ΛNN= 500MeV, Tmax

Lab = 290MeV)
interaction. Indicated by the gray horizontal lines are the
corresponding experimental values.

binding energies and charge radii of 2,3H and 3He, the
quadrupole moment of 2H, and the β-decay half-life of
3H. The NNLOsim is a family of 42 different interac-
tions where each potential is associated with one of seven
regulator cutoffs, ΛNN = 450, 475, . . . , 575, 600MeV, to-
gether with six different maximum scattering energies in
the laboratory frame, Tmax

Lab = 125, 158, . . . , 257, 290MeV,
truncating the experimental NN cross sections used to
constrain the respective interaction. We note that the 42
parametrizations of the nuclear force give equally good
descriptions of the calibration data. Using all of them
allows us to expose the magnitude of systematic nuclear-
model uncertainties resulting from the incomplete knowl-
edge of the nuclear interaction. In this work we are
mainly interested in the wave function of 3He and the
“core nucleus” 2H. Since certain low-energy properties
of 2H and 3He were included in the pool of fit data,
their energies are accurately described for all these in-

teractions: E2H,3He = −2.224
(+0)
(−1),−7.717

(+17)
(−21) MeV [45].

For NNLOsim, the NCSM-calculated ground-state (g.s.)
energies of 2H and 3He exhibit a weak dependence on
the model-space truncation Nmax and the HO frequency
ℏω, as shown in Fig. 2 for NN+NNN interaction with
ΛNN = 500MeV and Tmax

Lab = 290MeV. The g.s. energies
are converged within few keV already at Nmax ≈ 30 for a
wide range of HO frequencies ℏω.

For the YN interaction we employed the Bonn–Jülich
coupled-channel flavor-SU(3)-based χEFT model [46].
This potential is constructed at leading order (LO) and
regularized by a smooth momentum cutoff ΛYN ranging
from 550 to 700MeV. Its parameters were determined
from fits to the measured YN scattering cross sections,

additionally constrained by allowing for a bound Jπ = 1
2

+

3
ΛH state. This interaction was found to be consistent
with the experimental value of the Λ separation energy in
3
ΛH, employing the NCSM [43] as well as Faddeev [47] ap-
proaches. NCSM calculations of 3

ΛH g.s. energy exhibit a
stronger, undesired dependence on the model-space trun-
cation Nmax and the HO frequency ℏω [48, 49]. The slow
convergence can be attributed to the small Λ separation
energy and, accordingly, the long tail of the 3

ΛH wave func-
tion in position space. The truncation of the HO basis in
terms of Nmax and ℏω can be translated into associated
infrared (IR) and ultraviolet (UV) scales. For NCSM, the
corresponding IR and UV scales, LIR and ΛUV, can be
extracted by studying the kinetic energy spectrum and
used to extrapolate results obtained in truncated model
spaces to infinite model space (LIR → ∞) [49, 50]. The
LO correction for energies and the expected magnitude
of subleading corrections σIR [51] are

E(LIR) = E∞ + a0 e
−2k∞LIR ,

σIR ∝ e−2k∞LIR

k∞LIR
.

(21)

The extrapolated energy E∞, together with a0 and
k∞, are parameters determined from fits to the NCSM-
calculated energies with weights proportional to the in-
verse of σIR. Here we apply an iterative procedure
with the weights fixed in each optimization until self-
consistency for k∞ in Eq. (21) is reached. Note that
this prescription for IR extrapolation slightly differs and
thus results in marginal discrepancies in comparison with
the one previously employed by us in Ref. [1]. In ad-
dition, UV corrections to Eq. (21) can be significant
and depend on details of the nuclear and YN interac-
tions [52]. For interactions with non-local momentum
regulators, like those used in this work, ΛUV should sig-
nificantly exceed ΛNN and ΛYN . A large-enough ΛUV

scale can be identified by performing calculations at a
fixed ΛUV—by choosing appropriate (Nmax, ℏω) model-
space parameters [51]—and monitoring the dependence
of results, such as the extrapolated energy E∞(ΛUV)
in Eq. (21), on the selected ΛUV scale. We find that
ΛUV = 1200MeV is sufficient to achieve UV convergence;
see also Ref. [49]. This is demonstrated in Fig. 3 where
the 3

ΛH g.s. energy E(3ΛH)UV is shown as a function of
the IR length LIR for several fixed values of the UV scale
800 ≤ ΛUV ≤ 1400MeV (empty and filled symbols). The
NCSM calculations were performed with model space
truncation up to Nmax = 68 using the NNLOsim(ΛNN=
500MeV, Tmax

Lab = 290MeV) and LO YN (ΛYN= 600MeV)
interactions. The energy is clearly converging with in-
creasing the size of the model space. The extrapolated
values, EUV

∞ , exhibit a marginal dependence on the UV
scale of the HO basis for ΛUV ≳ 1000MeV; see Ta-
ble I in Sec. IIIA. In fact, for E(3ΛH) no extrapolation
is necessary since the NCSM calculations performed at
Nmax ≈ 68 are converged with a precision of few keV.
For example, by fixing ΛUV = 1000, 1200MeV, which
implies ℏω = 7.299, 10.510MeV for Nmax = 68, we obtain
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Figure 3. NCSM 3
ΛH g.s. energies EUV(3ΛH) (empty and

filled symbols) as functions of the IR length LIR (up to
Nmax = 68) calculated using the NNLOsim(ΛNN= 500MeV,
Tmax
Lab = 290MeV) and LO YN (ΛYN= 600MeV) interactions

for several fixed values of the UV cutoff ΛUV, together with
their extrapolations (solid lines). Only the points marked
by filled symbols, corresponding to particle-stable 3

ΛH con-
figurations, E(3ΛH) < E(2H), are included in the fits. The
world-average value of the measured 3

ΛH energy Eexp.(3ΛH) =
−2.389(43)MeV [8] is indicated by the gray band.

E1000,1200(3ΛH) = −2.3807,−2.3814MeV, while the ex-
trapolated infinite-space result estimated using Eq. (21) is
E1000,1200

∞ = −2.385,−2.391MeV. However, an adapted
version of the IR-extrapolation scheme (21) will be ap-
plied in Sec. IIIA to the 3

ΛH two-body π− decay rate in
Eq. (5) which is found to have slightly different NCSM
model-space convergence properties.
Most of the NCSM calculations in this work are per-

formed for a particular (hyper)nuclear Hamiltonian with
fixed values of ΛNN = 500MeV, Tmax

Lab = 290MeV, and
ΛYN = 600MeV cutoffs. A detailed analysis of theoretical
uncertainties associated with these cutoffs for relevant
observables is presented in Sec. IIID.

III. RESULTS

A. Two-body π− decay rate Γ(3ΛH → 3He + π−)

Employing the NCSM 3He and 3
ΛH wave functions cal-

culated using the NNLOsim(ΛNN= 500MeV, Tmax
Lab =

290MeV) and LO YN (ΛYN= 600MeV) interactions, we
now proceed to calculate the two-body π− decay rate
Γ(3ΛH → 3He + π−) in Eq. (5). While for 3He the NCSM
model-space parameters were fixed at Nmax = 36 and
ℏω = 14MeV, corresponding to a well-converged wave
function, for 3

ΛH we employ wave functions generated up
to Nmax = 68 and HO frequencies ℏω which correspond
to several fixed UV cutoffs ΛUV, in order to examine the
IR and UV convergence of Γ(3ΛH → 3He + π−). The

10 20 30 40
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1.25

1.50
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→

3
H

e
+
π
−

)
(G

H
z) ΛUV = 800 MeV
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Figure 4. NCSM 3
ΛH two-body π− rates Γ(3ΛH → 3He + π−)

(empty and filled symbols) as functions of the IR length LIR (up
to Nmax = 68) calculated using the NNLOsim(ΛNN= 500MeV,
Tmax
Lab = 290MeV) and LO YN (ΛYN= 600MeV) interactions

for several fixed values of the UV cutoff ΛUV, together with
their extrapolations (solid lines). The rates are evaluated
using pion DW and considering the ΣNN contributions. Only
the points marked by filled symbols, corresponding to particle-
stable 3

ΛH configurations, are included in the fits. The NCSM
model-space parameters for 3He are fixed at Nmax = 36 and
ℏω = 14MeV, corresponding to a well-converged wave func-
tion.

calculated two-body rates Γ(3ΛH → 3He + π−) are shown
in Fig. 4 as functions of the IR HO basis length scale
LIR for ΛUV=800, 900, 1000, 1200, and 1400MeV. The
rates include the effect of the distortion of the outgo-
ing pion wave, as well as contributions of the Σ → N π
transitions due to ΣNN admixtures in 3

ΛH. They exhibit
an exponential decrease with LIR similar to, although
slower than, the 3

ΛH g.s. energies in Fig. 3. The solid
lines in Fig. 4 correspond to the IR extrapolations into
infinite NCSM model space. The extrapolations were per-
formed using an adapted version of Eq. (21) and included
only the points marked by filled symbols, corresponding
to particle-stable 3

ΛH configurations. The extrapolated
(LIR → ∞) two-body π− rates Γ∞, as well as the 3

ΛH g.s.
energies E∞, are listed in Table I. Both the extrapolated
energies and rates exhibit a rather small dependence on
the UV cutoff for 1000 ≲ ΛUV ≲ 1200MeV. Also listed in
Table I are the (extrapolated) Λ separation energies in 3

ΛH
calculated using E∞ and IR converged 2H g.s. energies
E(2H) at the corresponding cutoff values ΛUV. As demon-
strated in Fig. 4 and Table I, working at a fixed value of
ΛUV = 1200MeV provides a good compromise between
minimization of the UV corrections and reliable IR extrap-
olation. The small increase in E∞ for ΛUV = 1400MeV
indicates that higher-order IR corrections to Eq. (21)
become relevant for ΛUV ≳ 1400MeV.



8

Table I. Extrapolated 3
ΛH g.s. energies E∞ and two-body

π− decay rates Γ∞ for several values of the HO basis UV
scale, calculated using the NNLOsim(ΛNN= 500MeV, Tmax

Lab =
290MeV) and LO YN (ΛYN= 600MeV) interactions. The
rates are evaluated using pion DW and considering the ΣNN
contributions. The values of the (extrapolated) Λ separation
energies, BΛ ≡ E(2H) − E∞, are obtained using converged
deuteron g.s. energies E(2H) at the corresponding ΛUV scale.

ΛUV (MeV) 800 900 1000 1200 1400
E∞ (MeV) −2.287 −2.359 −2.385 −2.391 −2.388
E(2H) (MeV) −2.221 −2.224 −2.224 −2.224 −2.224
BΛ (MeV) 0.066 0.135 0.161 0.167 0.164
Γ∞ (GHz) 0.944 1.180 1.253 1.276 1.289

B. Main contributions to Γ(3ΛH → 3He + π−)

Out of all three-body channels α in Eq. (19), only few con-
tribute significantly to the wave functions of 3He and 3

ΛH.
The dominant component of the hypertriton wave function
is a deuteron-like core with l12 = t12 = 0, s12 = j12 = 1
coupled to a Λ hyperon (t3 = 0) s-wave state. It con-
tributes by ≈ 96% to the square of the norm of the
3
ΛH wave function. The analogous channel in 3He ac-
counts for ≈ 47%, with additional ≈ 47% originat-
ing from the l12 = s12 = l3 = 0 component with
isospin t12 = 1. Consequently, the largest contribu-
tion to the decay rate Γ(3ΛH → 3He + π−) is generated

by the (2t12+1)(2s12+1)l12j12 = 13S1, l3 = 0 components
in the wave functions. By constraining the decay rate
to only these two components, ψ13S1,l3=t3=0(

3
ΛH) and

ψ′
13S1,l3=0(

3He), and considering π− PW, Eq. (6) reduces
to a simpler expression,

Γ
3He
13S1

=
3

4π

(GFm
2
π)

2M3He qπ
M3He + Eπ

(
A2

Λ +
1

36

B2
Λ q

2
π

M
2

ΛN

)

×
∣∣∣ ∫ dp′12 p

′2
12

∫
dp′3 p

′2
3

∫
d cos θp′

3

× ψ13S1,l3=t3=0(p
′
12, |p′3p̂′3 + 2

3 q⃗π|)

× ψ′
13S1,l3=0(p

′
12, p

′
3)
∣∣∣2.

(22)

For ΛUV = 1200MeV, Eq. (22) yields Γ
3He
13S1

= 1.152GHz
after extrapolation, as listed in Table II. This PW value
differs merely by ≈ 4% from 1.108GHz in the full calcu-
lation, partly due to cancellations discussed below.
Subleading contributions to Γ(3ΛH → 3He + π−) for

both π− PW and DW are summarized in Table II. The
remaining channel transitions due to Λ → p π− increase

the rate only by ≈ 8%, to Γ
3He = 1.243GHz in PW.

This increase originates mainly from the 13D1, l3 = 0
components of the wave functions. In contrast, includ-
ing also the ΣNN components in the 3

ΛH wave function
and allowing for the Σ− → nπ− and Σ0 → p π− tran-
sitions reduces the decay rate by ≈ 11% from 1.243 to
1.108GHz, thus over-canceling the ≈ 8% increase from

Table II. Extrapolated partial decay rates ΓUV
∞ (3ΛH → 3He +

π−) (in GHz) at ΛUV = 1200MeV calculated using only the
dominant 3He and 3

ΛH wave function components (first row)
and considering only the ΛNN channels in 3

ΛH (second row).
Total rates including also the ΣNN components in 3

ΛH are in
the last row. Probabilities are listed in percents and the rates
in the third and fourth columns correspond to π− PW and
DW, respectively.

Channel restrictions P (3He) P (3ΛH) ΓUV
PW ΓUV

DW

as in Eq. (22) 46.81 95.83 1.152
t3(

3
ΛH) = 0 100.00 99.59 1.243 1.426

none 100.00 100.00 1.108 1.276

1.152 to 1.243GHz owing to the non-13S1 Λ amplitudes.
Furthermore, replacing the outgoing π− − 3He PW by
realistic π− − 3He DW increases each of the listed PW
rates by ≈ 15%. However, despite providing substantial
individual contributions, the combined effect of account-
ing for the two new mechanisms considered in this work,
namely (i) including ΣNN components of 3

ΛH and (ii)
introducing π−−3He DW, is that they largely cancel each
other with barely 3% net increase of Γ(3ΛH → 3He + π−)
from 1.243 to 1.276GHz.

The ≈ 11% contribution to Γ(3ΛH → 3He + π−) in-
duced by a tiny ≈ 0.4% probability ΣNN component of
3
ΛH is a bit unexpected, particularly when compared to
the ≈ 8% comparable contribution of the considerably
stronger 13D1 tensor component of order 3% probabil-
ity in the initial 3

ΛH hypernucleus. However, recall that
whereas the 13D1 NN component in the final 3He that
supports the Λ → Nπ transition is of the same order
as in 3

ΛH, the 31S0 NN component in 3He that supports
the Σ → Nπ transition is almost of 50% probability.
More importantly, since the two PV Λ and Σ weak de-
cay amplitudes of Eq. (10) interfere upon forming their
summed absolute value squared, even as small a ΣNN
admixture probability as 0.4% in 3

ΛH may affect consid-
erably the calculated Γ(3ΛH → 3He + π−), which was
found here to be reduced by ≈ 11% from that evaluated
disregarding the ΣNN admixture. This effect is further
assisted by the overlap of the relevant ΣNN 3

ΛH and
3He wave-function components. Shown in Fig. 5 are the
probability densities pα(p3) ≡

∫
dp12 p

2
12 p

2
3 |ψα(p12, p3)|2

of the active baryon (N or Σ) relative momentum p3
for the α = 31S0, l3=0 3He and the dominant ΣNN
α = 31S0, l3=0, t3=1 3

ΛH wave-function components, to-
gether with the associated NN relative momentum p12
distributions pα(p12) ≡

∫
dp3 p

2
3 p

2
12 |ψα(p12, p3)|2. The Σ

momentum distribution in 3
ΛH is localized around a higher

value of p3, closer to the peak of the active-nucleon mo-
mentum distribution in 3He compared to the 13S1, l3 = 0
Λ and N momentum distributions shown in Fig. 6.
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Figure 5. Probability densities pα(p3) ≡∫
dp12 p

2
12 p

2
3 |ψα(p12, p3)|2 of the active baryon (N or

Σ) relative momentum p3 for the α = 31S0, l3=0 3He and
the dominant ΣNN α = 31S0, l3=0, t3=1 3

ΛH wave-function
components (top panel), together with the corresponding
distributions pα(p12) ≡

∫
dp3 p

2
3 p

2
12 |ψα(p12, p3)|2 of the

NN relative momentum p12 (bottom panel). The densities
are calculated using the NNLOsim(ΛNN= 500MeV, Tmax

Lab =
290MeV) and LO YN (ΛYN= 600MeV) interactions. For
3
ΛH, each band corresponds to a particular value of the
ΛUV cutoff, while its width shows the variation with the
model-space truncation Nmax for 60 ≤ Nmax ≤ 68. For 3He,
the NCSM model-space parameters are fixed at Nmax = 36
and ℏω = 14MeV, corresponding to a well-converged wave
function. The pα(p12) and pα(p3) distributions in 3He are
scaled by a factor of 1/250.

C. Dependence of Γ(3ΛH → 3He + π−) on BΛ

While the UV convergence of extrapolated separa-
tion energies E∞(3ΛH) and two-body decay rates
Γ∞(3ΛH → 3He + π−) for ΛUV ≲ 1200MeV was not fully
achieved (see Table I), it is evident from their LIR de-
pendence, shown in Figs. 2 and 3, that the calculations
still give meaningful, sufficiently IR-converged results.
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Figure 6. Probability densities pα(p3) as in Fig. 5 of the
dominant α = 13S1, l3 = 0 3He and α = 13S1, l3 = t3 = 0 3

ΛH
wave-function components as functions of the active baryon (N
or Λ) relative momentum p3. Note that

∫
dp3 pα(p3) ≈ 47%

and 96% for 3He and 3
ΛH, respectively.

The missing UV corrections to Eq. (21) depend only on
short-range details of the employed interactions which are
truncated by the ΛUV cutoff. Nevertheless, the correlation
between E∞ and Γ∞ appear to be robust, and their depen-
dence on ΛUV can thus be exploited to study the relation-
ship of BΛ and its associated Γ(3ΛH → 3He+ π−). In par-
ticular values of 800 ≲ ΛUV ≲ 1000MeV provide mean-
ingfully converged rates calculated using well-converged
3
ΛH wave functions at lower values of BΛ. Indeed, it will
be shown in the following section that the relationship
between the separation energy and the two-body rate
at a particular value of ΛUV is consistent with the one
obtained by varying the parameters of the underlying
nuclear and hypernuclear interactions.
The robust correlation between BΛ and Γ(3ΛH →

3He+π−) can be understood by means of the approximate
expression for the two-body decay rate in Eq. (22). In par-
ticular, it can be traced back to the overlap between the
ψ31S0,l3=t3=0(p

′
12, |p′3p̂′3+ 2

3 q⃗π|) 3
ΛH and ψ′

31S0,l3=0(p
′
12, p

′
3)

3He wave-function components. The 3
ΛH squared ampli-

tude (probability distribution), pα(p12) (see Sec. III B),
with α = 13S1, l3 = t3 = 0, is almost independent of ΛUV

and peaked at p12 ≈ 0.25 fm−1, very close to the peak
in the corresponding amplitude of the 13S1 component
of the deuteron wave function. On the other hand, the
analogous 3

ΛH squared amplitude pα(p3) as a function of
the relative momentum of the loosely bound Λ peaks at
p3 ≈ 0.1 fm−1, a value much lower than the corresponding
momentum p′3 of the active nucleon in 3He. As larger
ΛUV cutoffs are considered, pα(p3) peaks at larger mo-
menta p3, the Λ hyperon becomes more bound, and the
overlap integral in Eq. (22) becomes larger. The density
distributions pα(p3) of the dominant components α of
the 3He and 3

ΛH wave functions are shown in Fig. 6 for
ΛUV = 800, 1000, and 1200MeV.
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Figure 7. Variation of the extrapolated Λ separation energies
in 3

ΛH and decay rates Γ(3ΛH → 3He + π−) with the ΛNN ,
Tmax
Lab and ΛYN cutoffs applied in the nuclear NNLOsim and

LO YN hypernuclear interactions. The rates are calculated
including contributions from π− DW and ΣNN contributions
for ΛUV = 1200MeV. The energies and rates are computed for
a fixed value of ΛYN = 600MeV and all 42 NNLOsim Hamil-
tonians (circles); and all cutoffs ΛYN = 550, 600, 650, 700MeV
for fixed values of (ΛNN , T

max
Lab ) = (600, 125) MeV (squares),

(500, 290) MeV (triangles), and (400, 290) MeV (diamonds).
Results obtained for different values of the HO basis UV
scale 800 ≤ ΛUV ≤ 1200MeV with (ΛNN , T

max
Lab ,ΛYN ) =

(500, 290, 600) MeV are marked by black crosses. See text
for details.

D. Theoretical (hyper)nuclear-structure
uncertainties in Γ(3ΛH → 3He + π−)

The nuclear and hypernuclear wave functions entering
the two-body π− decay rate Γ(3ΛH → 3He + π−) are
associated with systematic uncertainties resulting from
the selection of calibration data, the truncation of the
chiral expansion, and possible regulator artifacts of the
employed NN+NNN and YN interaction models.
In order to estimate the limits of theoretical precision

of relevant hypernuclear observables resulting from the
nuclear model uncertainty, we employ the whole NNLOsim

family of 42 nuclear potentials; see Sec. II F. In addition,
we also quantify variation of the observables related to
the momentum regulator cutoff dependence of the LO
YN potential. In particular, we focus on the spread of
the predicted Λ separation energies BΛ in 3

ΛH and the
two-body 3

ΛH decay rates Γ(3ΛH → 3He + π−). Results
of this analysis are summarized in Fig. 7 where the ex-
trapolated values of BΛ and Γ(3ΛH → 3He + π−) are
obtained from NCSM calculations at ΛUV = 1200MeV
for Nmax up to 68. The rates are computed including
the contributions from π− DW and Σ → N π modes.
Results for a fixed value of the YN interaction regu-
lator cutoff momentum ΛYN = 600MeV and all 42
NNLOsim NN+NNN potentials are presented by blue
filled circles. The predicted Λ separation energy varies

strongly, 100 ≲ BΛ ≲ 180 keV, and decreases with in-
creasing the regulator cutoff ΛNN and increases with
increasing Tmax

Lab [48, 49]. The two-body π− rate is
strongly correlated with BΛ and varies in the range
1.1 ≲ Γ(3ΛH → 3He + π−) ≲ 1.3GHz. Surprisingly, this
correlation is perfectly in line with the results obtained for
different values of the HO basis UV scale listed in Table I
and included in Fig. 7 for 800 ≤ ΛUV ≤ 1200MeV (black
crosses). Also shown in Fig. 7 is the variation of BΛ and
Γ(3ΛH → 3He+ π−) with the YN regulator cutoff momen-
tum ΛYN . We selected only 3 NNLOsim Hamiltonians,
two of which give the lowest and highest separation ener-
gies and rates, together with NNLOsim(ΛNN= 500MeV,
Tmax
Lab = 290MeV). The energies and rates are calculated

for ΛYN = 550, 600, 650, and 700MeV and fixed values
of (ΛNN , T

max
Lab ) = 600, 125MeV (squares), (500, 290)MeV

(triangles), and (400, 290)MeV (diamonds). In each
group, the largest separation energy always occurs for
ΛYN = 550MeV, decreases monotonically with ΛYN

for 550 ≤ ΛYN ≤ 650MeV, and increases for 650 ≤
ΛYN ≤ 700MeV. Note that the resulting combined spread
of binding energies for all considered (ΛNN , T

max
Lab ,ΛYN )

cutoff combinations ∆BΛ ≈ 100 keV is essentially of
the same order as the experimental uncertainty, while
∆Γ(3ΛH → 3He + π−) ≈ 0.4GHz.

Very recently, a comparable, although smaller, variation
of BΛ in 3

ΛH with the ΛNN regulator cutoff momentum
using higher-order χEFT NN interactions and LO YN
(ΛYN= 600MeV) was reported in [4]. In addition, the
sensitivity of BΛ to the employed nuclear interactions was
also found there to decrease considerably when higher-
order YN potentials were employed.

E. Hypertriton lifetime

To evaluate the total 3ΛH decay rate and lifetime we employ
the strategy described in detail in Sec. II A. Using the IR-
extrapolated two-body π− decay rate Γ1200

∞ = 1.276GHz,
associated with B1200

Λ = 167 keV, we evaluate the inclu-
sive π− 3

ΛH decay rate Γπ−(3ΛH) by means of the measured
world-average BC branching ratio R3 = Γ(3ΛH → 3He +
π−)/Γπ−(3ΛH) = 0.35(4) [18]. By multiplying Γπ−(3ΛH)
by the ∆T = 1

2 factor of 3
2 to include the neutral pion 3

ΛH

decay channels, Γπ(
3
ΛH) =

3
2 Γ

−
π (

3
ΛH), we derive the hyper-

triton lifetime corresponding to all pionic decay modes as
τπ(

3
ΛH) = 1/Γπ(

3
ΛH) = 183(21) ps. Here and in what fol-

lows, the quoted lifetime uncertainty is purely statistical,
arising from that of R3. The nonmesonic ΛN → NN and
pion true-absorption π+NN → NN contributions to the
rate of 1.5% and 0.8%, respectively, further shorten the
3
ΛH lifetime. Accounting for their 2.3% combined increase
of the rate, we obtain τ(3ΛH) = 179(20) ps. This value is
considerably shorter, by ≈ 32(8)%, than the Λ lifetime in
free space, τΛ = 263(2) ps. However, significantly longer
3
ΛH lifetime values, listed in Table III, are obtained by
repeating the same procedure for the two-body π− decay
rates from Table I calculated at lower values of HO basis
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Table III. Extrapolated Λ separation energies in 3
ΛH and associ-

ated lifetimes τ(3ΛH) (both in ps and τΛ, with their R3-induced
uncertainties) calculated using the NNLOsim(ΛNN= 500MeV,
Tmax
Lab = 290MeV) and LO YN (ΛYN= 600MeV) interactions

for several values of the HO basis UV scale, and extrapolated
to the STAR Collaboration [53] reported value of BΛ. The
lifetimes are evaluated using R3 = 0.35(4) [18], the ∆T = 1

2
rule, and include a 2.3% correction from nonmesonic decay
rate.

ΛUV (MeV) 800 900 1000 1200
BΛ (keV) 66 135 161 167 410
τ(3ΛH) (ps) 242(28) 193(22) 182(21) 179(20) 158(18)
τ(3ΛH) (τΛ) 0.92(10) 0.73(8) 0.69(8) 0.68(8) 0.60(7)

UV scale, ΛUV = 800, 900, and 1000MeV. As argued
in Secs. III C and IIID, these rates are associated with
smaller values of Λ separation energies BΛ. It should
be pointed out that for each of the derived τ(3ΛH) listed
in Table III we have tacitly assumed the same value of
branching ratio R3, taken from experiment [18]. Note that
we obtain for the least-bound 3

ΛH case at ΛUV = 800MeV,
a τ(3ΛH) value which is shorter than τΛ only by less than
≈ 10%.
Remarkably, this value, τ800(3ΛH) = 242(28) ps, is con-

sistent with the most recent ALICE Collaboration’s [2] re-
ported lifetime τALICE(3ΛH) = 253(11)(6) ps while its cor-
responding Λ separation energy B800

Λ = 66 keV falls com-
fortably within the ALICE reported separation energy in-
terval BALICE

Λ = 102(63)(67) keV. Within its R3-induced
uncertainty, τ800(3ΛH) is also consistent with lifetime value
derived in a fully three-body calculation in Ref. [22]. Sim-
ilarly, the lifetime for ΛUV = 1000MeV listed in Ta-
ble III agrees well within measurement uncertainties with
the HypHI Collaboration’s lifetime value τHypHI(3ΛH) =

183+42
−32(37) ps. In order to compare with STAR Collabora-

tion’s reported lifetime 142+24
−21(29) ps [10] and their own

value of Λ separation energy BΛ = 0.41(12)(12)MeV [53],
we expand Γ(3ΛH → 3He + π−) in powers of

√
BΛ as

a
√
BΛ+ bBΛ and fix the two expansion coefficients by fit-

ting to the BUV
Λ and ΓUV

∞ from Table I for 800 ≤ ΛUV ≤
1200MeV. When extrapolated to BΛ = 410 keV, we
obtain τ(3ΛH) = 158(18) ps. Had we considered STAR
Collaboration’s own value of RSTAR

3 = 0.32(5)(8) [10], the
estimated central value of τ(3ΛH) = 145(51)GHz is almost
coincident with STAR Collaboration’s τ(3ΛH) central value.
Moreover, the most recent STAR Collaboration’s reported
lifetime 221(15)(19) ps [12] is consistent with lower Λ sep-
aration energies BΛ ≈ 90 keV using R3 = 0.35(4), which
are also plausible given the large measurement uncertainty
in BΛ.
Altogether, given the strong dependence of τ(3ΛH) on

BΛ and considering the large experimental uncertainty in
BΛ, none of the recent RHI reported τ(3ΛH) values can
be excluded, but rather can be associated with its own
underlying value of BΛ.

IV. CONCLUSIONS

We performed a new microscopic calculation of the hy-
pertriton π− two-body decay rate Γ(3ΛH → 3He + π−)
employing 3

ΛH and 3He three-body wave functions gen-
erated by the ab initio NCSM approach using realistic
chiral YN and NN+NNN interactions as the only input.
Employing the ∆T = 1

2 rule and the experimental value

of branching ratio R3 = Γ(3ΛH → 3He + π−)/Γπ−(3ΛH) to
include the remaining π0 and three- plus four-body 3

ΛH
decay channels, we were able to deduce the 3

ΛH lifetime
τ(3ΛH).

The following are the main findings and conclusions of
this study:

(i) Pionic FSI. Considering the distortion of the emit-
ted pion wave due to its strong-interaction attractive
final-state interaction with the 3He nucleus increases
Γ(3ΛH → 3He+π−) by ≈ 15%. A somewhat stronger
enhancement of ≈ 18% was found very recently in
a pionless EFT calculation [30].

(ii) Effect of ΣNN admixtures. Despite the negligi-
ble ΣNN -component admixture (≲ 0.5%) in the
3
ΛH wave function, the Σ → N π transitions reduce
Γ(3ΛH → 3He + π−) by ≈ 11% due to interference
effects. It would be interesting to evaluate this effect
using other χEFT YN potential versions than the
LO version used here, thus adding the measured
value of τ(3ΛH) as a useful constraint on such YN
potentials.

(iii) Relationship of BΛ and Γ(3ΛH → 3He + π−). The
two-body π− decay rate is found to be very sensitive
to the Λ separation energy BΛ in 3

ΛH, the value of
which is rather poorly known experimentally and
also suffers from large theoretical uncertainties.

(iv) Hypertriton lifetime. Using the NNLOsim(ΛNN=
500MeV, Tmax

Lab = 290MeV) and LO YN (ΛYN=
600MeV) nuclear and hypernuclear interactions
which yield Bth

Λ (3ΛH) = 167 keV—consistent with
the the world-average measured Bexp.

Λ (3ΛH) =
164(43) keV [8]—to calculate Γ(3ΛH → 3He + π−)
and employing the branching ratio R3 = 0.35(4) [18],
together with the empirical ∆T = 1

2 rule, we ob-

tained the hypertriton lifetime τ(3ΛH) = 179(20) ps ≈
0.7(1) τΛ.

(v) Magnitude of theoretical nuclear and hypernuclear
structure uncertainties. The combined spread of
Λ separation energies resulting from variation of
the (ΛNN , T

max
Lab ,ΛYN ) χEFT interaction cutoffs is

found to be 90 ≲ BΛ ≲ 190 keV, while the spread in
calculated two-body π− rates 1.0 ≲ Γ(3ΛH → 3He +
π−) ≲ 1.4GHz. This implies 160(20) ≲ τ(3ΛH) ≲
230(30) ps for R3 = 0.35(4).

(vi) Comparison with recent RHI measurements. The
lifetime τ(3ΛH) varies strongly with BΛ. It is then
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not possible to exclude any of the distinct RHI τ(3ΛH)
measured values, but rather relate the lifetime with
its own underlying value of BΛ. We note the good
agreement between the very recent ALICE mea-
sured lifetime value τALICE(3ΛH) = 253(11)(6) ps
associated with the ALICE measured BΛ value
BALICE

Λ = 102(63)(67) keV [2] and the lifetime value
τ(3ΛH) = 242(28) ps computed at the lowest value
BΛ = 66keV reached by us. Nevertheless, only fu-
ture experiments expected at MAMI, JLab, J-PARC,
and CERN will hopefully pin down BΛ with a better
precision than 50 keV and lead to a resolution of the
3
ΛH lifetime puzzle.
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Appendix A: Weak-decay operator matrix elements

In order to evaluate the matrix element of the transition
operator (10) in Eq. (6) between the nuclear, hypernu-
clear (18), and pionic (12) wave functions we proceed by

decoupling the spin and isospin states as

〈
Ψ3He ϕπ

∣∣∣ Ô ∣∣∣Ψ3
ΛH

〉
=
∑
α′

∫
dp′12 p

′
12

2
dp′3 p

′
3
2
ψα′(p′12, p

′
3)

×
∑
α

∑
mj12

,m′
l3
,ml3

δl12l′12δs12s′12δj12j′12δmj12
m′

j12

× δM ′Mδms3m
′
s3
C

M ′−mj12
;M ′

j12,j′3;J
′,mj12

C
M−mj12

;M

j12,j3;J,mj12

× C
M ′−mj12−m′

l3
;M ′−mj12

l′3,s
′
3;j

′
3,m

′
l3

C
M−mj12

−ml3
;M−mj12

l3,s3;j3,ml3

×
√
2GFm

2
π

[(
AΛ +

BΛ qπ

2MΛN

(−1)m
′
s3

− 1
2

)
δt30

+
1

2
AΣ−nπ−δt31

] ∫
dp3 p

2
3 ψα(p

′
12, p3) r

−3

×
∑
lπ

∫
dp̂′3 dp̂3Y

∗
l′3m

′
l3

(p̂′3)Yl3ml3
(p̂3)

× Y ∗
lπ0(⃗̂p3 − p⃗ ′

3) ϕ̃lπ0
(
3
2 |p⃗3 − p⃗ ′

3|
)
,

(A1)

where ms3 = M −mj12 −ml3 , m
′
s3 = M ′ −m′

j12
−m′

l3
,

Cm2;m3

j1,j2;j3,m1
≡ ⟨j1m1j2m2|j3m3⟩ are the CG coefficients,

and the spin matrix element was evaluated using

〈
m′

s3

∣∣ σ⃗ · qπ ẑ
∣∣ms3

〉
= (−1)m

′
s3

− 1
2 δms3

m′
s3
qπ.

The nonprimed and primed quantities are associated with
the initial and final states, respectively. Note that we
assume the pion momentum q⃗π in the ẑ direction and the
expansion of the pion wave in spherical harmonics has con-
tributions only from mπ = 0. Consequently, ml3 = ml′3
and the matrix element only depends on the difference
of azimuthal angles θp3

− θp′
3
of p̂3 and p̂′3. We can inte-

grate out one of them, for example by fixing θp3
= 0 and

replacing

∫
dp̂′3 → 2π

∫
d cos θp′

3
. (A2)

The matrix element (A1) simplifies considerably when
the π− wave function is approximated by a PW,

ϕ̃π;q⃗π(k⃗) = ⟨k⃗|qπ ẑ⟩ = 1/k2δ(3)(k⃗ − qπ ẑ). In this case,
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the matrix element evaluates to〈
Ψ3He ϕπ

∣∣∣ Ô ∣∣∣Ψ3
ΛH

〉
=
∑
α′

∫
dp′12 p

′
12

2
dp′3 p

′
3
2
ψ′
α(p

′
12, p

′
3)
∑
α

∑
mj12 ,ml3

× δl12l′12δs12s′12δj12j′12δmj12m
′
j12
δM ′,Mδms3

m′
s3

× δml3
m′

l3
C

M ′−mj12 ;M
′

j12,j′3;J
′,mj12

C
M−mj12 ;M

j12,j3;J,mj12

× C
M ′−mj12−m′

l3
;M ′−mj12

l′3,s
′
3;j

′
3,m

′
l3

C
M−mj12

−ml3
;M−mj12

l3,s3;j3,ml3

×
√
2GFm

2
π

[(
AΛ +

BΛ qπ

2MΛN

(−1)m
′
s3

− 1
2

)
δt30

+
1

2
AΣ−nπ−δt31

]
2π

∫
d cos θp′

3
Y ∗
l′3m

′
l3

(p̂′3)

× Yl3ml3
( ̂p⃗3 ′ + 2

3 qπ ẑ)ψα(p
′
12, |p⃗3 ′ + 2

3 qπ ẑ|),

(A3)

where the nonprimed and primed quantities are again
associated with the initial and final states, respectively.
Here, the azimuthal part of p̂′3 has been fixed to zero since
there is no dependence on it and the factor 2π comes from
the replacement (A2).

Appendix B: Fourier transform of the distorted π−

wave function

The distorted pion wave function is typically obtained
by solving Schrödinger or Klein–Gordon equation with
π−–nuclear optical potentials in position space. The
momentum-space representation, entering the matrix ele-
ment in Eq. (5), is obtained by its Fourier transform.

For a function expanded in spherical harmonics Ylm(r̂)
as

f(r⃗) =
∑
l,m

Rlm(r)Ylm(r̂), (B1)

where the coefficients Rlm(r) contain its radial depen-
dence, we define the Fourier transform by

F [f(r⃗)] (k⃗) ≡ 1

(2π)3

∫
d3r e−ik⃗·r⃗f(r⃗)

=
1

2π2

∑
l,m

(−i)lYlm(k̂)

×
∫ ∞

0

drr2jl(kr)Rlm(r).

(B2)

Here, the exponential function was expanded in terms of
spherical harmonics and spherical Bessel functions jl(kr)

using

e−ik⃗·r⃗ = 4π
∑
l,m

(−i)ljl(kr)Y ∗
lm(k̂)Ylm(r̂). (B3)

Note that for a π− PW, f(r⃗) = eiq⃗π·r⃗, the coefficient
functions in Eq. (B1) become

R
(PW)
lm (r) = 4π ilY ∗

lm(q̂π)jl(qπr) (B4)
and we recover the momentum-space π− PW

F
[
eiq⃗π·r⃗

]
(k⃗) =

1

k qπ
δ(k̂ − q̂π) δ(k − qπ), (B5)

in line with our normalization, ⟨k⃗|q⃗π⟩ = 1/k2 δ(3)(k⃗ −
q⃗π). In case of π− DW, the spherical Bessel functions
in Eq. (B4) are replaced by the partial-wave components
ϕl(qπ; r)/(qπ r) of the coordinate-space π− wave function.
The Fourier transform of the DW can be expressed as

F
[∑

l,m

Ylm(r̂)R
(DW)
lm (r)

]
(k⃗)

=
∑
l,m

ϕ̃lm(k)Ylm(k̂), (B6)

where

R
(DW)
lm (r) = 4π il Y ∗

lm(q̂π)
1

qπ r
ϕl(qπ; r), (B7)

and the momentum-space π− partial waves

ϕ̃lm(k) = Y ∗
lm(q̂π)

× 2

π qπ

∫ Rmax

0

dr r jl(kr)ϕl(qπ; r)
(B8)

then enter the matrix elements of the weak-decay operator
in Eq. (A1). During evaluation of the matrix elements,
the pion momentum is assumed to point in the z-direction,
q⃗π = qπ ẑ, and the spherical harmonic in Eq. (B8) reduces
to Y ∗

l0(ẑ). Note that a finite value of Rmax in Eq. (B8)
introduces a certain limit on the momentum scale that
ϕ̃lm(k) can probe. The function ϕ̃lm(k) oscillates with
frequencies proportional toRmax. For example, in the case
when ϕl(qπ; r) is a PW and ϕ̃lm(k) is an approximation
to δ(k − qπ), the amplitude of these oscillations should
be small enough to suppress any structure of the wave
functions multiplying δ(k − qπ) in the matrix elements
at this scale. In the numerical implementation, the value
Rmax = 60 fm for the upper bound of the integral in
Eq. (B8) was found sufficiently large to capture the low-
momentum structure of the π− wave function. On the
other hand, the momentum grid used in computing the
matrix elements has been chosen fine enough, ∆k =
0.0025 fm−1, such that the oscillations in ϕ̃lm(k) are well
resolved. We verified that the calculated decay rates were
stable with increasing Rmax and decreasing ∆k.
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