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Abstract
Three machine learning models are used to perform jet origin classification. These models are
optimized for deployment on a field-programmable gate array device. In this context, we
demonstrate how latency and resource consumption scale with the input size and choice of
algorithm. Moreover, the models proposed here are designed to work on the type of data and
under the foreseen conditions at the CERN large hadron collider during its high-luminosity phase.
Through quantization-aware training and efficient synthetization for a specific field programmable
gate array, we show thatO(100) ns inference of complex architectures such as Deep Sets and
Interaction Networks is feasible at a relatively low computational resource cost.

1. Introduction

At the CERN large hadron collider (LHC), proton beams collide every 25 ns in each of the four particle
detectors located around the LHC ring. The collision events generate sprays of outgoing particles that are
detected by sensors, which amount to a data rate of tens of terabytes per second. For the ATLAS [1] and
CMS [2] general-purpose experiments, the data throughput is too large to record every single event.
Therefore, a subset of events are selected by a real-time event filtering system, called the trigger.

The current trigger system consists of two stages. First, the level-1 trigger (L1T) reduces the event rate
fromO(10)MHz toO(100) kHz, rejecting∼99.7% of all collisions. The frequency of collisions and limited
buffer size set the maximum L1T latency toO(1)µs. Thus, the L1T is hardware based, with its algorithms
running on field-programmable gate arrays (FPGAs). The second stage is represented by the high-level
trigger (HLT). The HLT consists of software executed on a dedicated CPU farm and further reduces the event
rate to 1 kHz. Only data accepted by the trigger system are saved entirely. Therefore, a high selection
efficiency is of great importance for any LHC measurement and will become even more so after the
high-luminosity upgrade.

The LHC will undergo the High-Luminosity (HL-LHC) upgrade between 2026–2028. The new HL-LHC
will provide ten times more data. This will be achieved by increasing the number of simultaneous interactions
per proton collision by a factor of three to four. To handle this upcoming increase in data complexity, the
particle detectors at the LHC will be upgraded to maintain their detection efficiency for interesting physics
processes. For the CMS experiment, this includes the addition of tracking information to the L1T, which will
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enable particle-level reconstruction and pileup mitigation as part of the L1T [3]. Consequently, particle-flow
(PF) reconstruction [4] will be performed for the first time at the L1T, correlating tracks from the muon and
tracking detectors with calorimeter energy clusters to identify each final-state particle in the jet [3].

Final-state particles originating from the decay and hadronization of initial massive particles, such as top
quarks,W bosons, or Z bosons, are clustered into jets [5, 6]. Knowing the particle type from which each jet
originated in a collision event could greatly improve the trigger selection algorithms. This is successfully
demonstrated in offline selection algorithms [7–10]. Thus, jet origin identification increases the detector
sensitivity for new physics and precision measurements.

Several obstacles must be overcome when designing and deploying such an algorithm. First, due to the
limited amount of resources and time at the L1T, only a small set of particles can be reconstructed and
subsequently clustered into jets. Therefore, there is a limited amount of information available. Second,
particles may arrive unordered, since sorting is a resource- and time-intensive operation. Hence, it would be
desirable for a deployed algorithm to be robust against any permutation of the input particles. Third,
individual algorithms must have a maximum latency ofO(100) ns to be suitable for L1T integration at the
HL-LHC. Furthermore, the system must be able to keep up with the rate of new events, i.e. one every 25 ns,
and process up to 10 jets per event; this last constraint is loosened by the use of time multiplexing (TM), in
which NTM processors run identical algorithms on different events [3]. Fourth, several algorithms run in
parallel on each FPGA board, meaning that resources are scarce and individual algorithms should take up
significantly less than the total resources available on one FPGA. Finally, the HL-LHC L1T selection
algorithms must reduce the event rate by a projected six orders of magnitude, compared to the current four,
and hence be even more accurate at very low false positive rates (FPRs). To satisfy these challenging
requirements, deep neural networks are explored, since this type of algorithms are shown to be relatively fast
and accurate in similar classification tasks.

However, conventional machine learning (ML) classifiers would not, as they are commonly found in
literature, satisfy the latency constraints of the L1T. Thus, reference [11] introduced hls4ml [12], an
open-source Python library for translating machine learning models into FPGA or application-specific
integrated circuit (ASIC) firmware. Since there are several L1T algorithms deployed per FPGA, each of them
should take only a fraction of the full FPGA resources. To compress the models, the numerical precision of
their the weights and operations are reduced in a process known as quantization [13, 14]. With its interface
to QKeras [15], hls4ml supports quantization-aware training, making it possible to drastically reduce FPGA
resource consumption while preserving accuracy. Using hls4ml we can compress neural networks to fit the
resources of current FPGAs.

The use of machine learning to classify jets is well-studied for high energy physics and several ML
algorithms are currently in use in experiments at the LHC. The most successful such algorithms use the jet
constituents as inputs [7, 8, 16–21]. Permutation-invariant machine learning algorithms such as deep sets
(DS) [16, 22] and interaction network (IN) [23–26], a type of graph neural network (GNN), are suitable for
jet tagging because jet particle data is sparse and has no intrinsic order. Additionally, the DS and IN models
outperform simpler MLPs when the number of particles is larger than 16. However, INs are computationally
expensive: they apply a multilayer perceptron (MLP) to each node and each edge; thus the computational
cost scales asO(N2), where N is the number of particle constituents of a jet. In contrast, a DS network
applies an MLP to each particle only and thus scales linearly with N.

In this work, we implement and compare a variety of exactly permutation-invariant neural networks
based on particle-level data, i.e. DS and IN models, as well as MLPs, which are not permutation-invariant.
The MLP, IN, and DS networks we train are designed to haveO(100) ns inference time and synthesized into
RTL firmware for an FPGA using hls4ml and Vivado HLS. We show the dependence of these algorithms on
N by comparing their classification accuracies, their latencies, throughput, and their resource consumption,
as a guide for designing jet origin classifiers for the future trigger systems at the HL-LHC experiments.

The rest of this paper is organized as follows. Section 1.1 discusses related work. In section 2, we
introduce the dataset. This is followed by a discussion of the model architectures in section 3. Further,
section 4 describes how the models are compressed. We discuss the translation into firmware in section 5,
before we conclude in section 6.

1.1. Related work
Previous efforts explore tools for translating neural network algorithms into FPGA firmware, as reviewed in
references [27, 28]. However, these tools aim at implementations that are not optimized for the L1T systems,
and they do not necessarily support the neural network architectures studied here. Conifer [29] and
fwXmachina [30–32] feature custom implementations of boosted decision trees on FPGAs, which achieves
the desired L1T constraints, but cannot be extended to neural networks. LL-GNN [33] proposes a
domain-specific low latency hardware architecture for processing GNNs in high energy physics, which
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involves many manual optimizations. Our current work leverages some of these manual optimizations and
enables an automated design flow with hls4ml . Nano-PELICAN [19] is a highly compressed version of
PELICAN [19, 20], a permutation- and Lorentz-invariant network. Moreover, LLPNet [34] is a lightweight
graph autoencoder for tagging long-lived particles in the L1T. However, FPGA implementations of these
models have not yet been studied. Another long-lived particle trigger is discussed in reference [35], featuring
latencies compatible with HLT constraints. Therein, the authors use an approach to model compression that
is usually employed in commercial contexts; here we need manual custom optimizations for our models to
satisfy the L1T constraints.

2. Dataset

In this work, we analyze the publicly available hls4ml jet dataset [36], consisting of jets stemming from five
different origins: light quark (q), gluon (g),W boson, Z boson, and top quark (t), each represented by up to
150 particle constituent four-vectors. The constituents are in order of descending transverse momentum, pT.
The dataset is split into 504 000 (126 000) jets for training (validation) and 240 000 jets for testing, with
k-folding applied as detailed in section 3. The initial-state partons and gauge bosons are generated to have
pT ≈ 1TeV, while the final-state particle energies and momenta are smeared to achieve CMS-like detector
resolutions. Additional information on the dataset is found in reference [37]. This dataset does not
necessarily reflect the information available in the L1T with utmost accuracy; however, it is adequate for the
comparative analysis done in this work.

An average number of 12 constituents is expected for a typical jet in the L1T, while the average number of
constituents per jet in the studied data set is 38 due to the high pT of the initial-state particles. Despite this
difference, we use the hls4ml data set as it is a benchmark for this type of application. The number of
constituents per jet is truncated to the first N highest pT particles with pT > 2GeV and then randomly
shuffled; this is done to mimic the HL-LHC L1T scenario where the jet particles would be unordered. The
2GeV threshold is motivated by the CMS L1T tracking planned for the HL-LHC [3], which will reconstruct
tracks down to 2GeV. The N ∈ {8,16,32} cases are studied to quantify the effect of N on different model
metrics, e.g. accuracy, latency, and resources. Whenever a jet contains less than N constituents, the data is
zero padded up to N.

The constituent features we use are the transverse momentum pT, the pseudorapidity difference relative
to the jet axis ηrel, and the azimuthal angle relative to the jet axis ϕrel. In contrast with the current L1T, the
latter two will be available at the HL-LHC L1T. As the particle pT has significantly higher values than ηrel and
ϕrel, their distributions are normalized with respect to their corresponding [5, 95]% interquantile range; this
method is used instead of the full range of the feature for robustness against data outliers. This process brings
pT,ηrel,ϕrel to the same order of magnitude. Furthermore, this division can be achieved using a bit shift on
the FPGA and thus has a negligible impact on the key model metrics.

3. Model architectures

The input data consists of N jet constituents, each with the three features (pT,η,ϕ). For the IN, each jet is
represented as a fully-connected graph, where the graph nodes are the jet constituents defined by the three
aforementioned features. Meanwhile, for the DS, the data is represented as a collection of independent points
and the algorithm acts on each point separately. For the MLP, the constituent dimension of the data is
flattened and the network receives a 1D list of values. The models we use are all five-class classifiers,
implemented using the TensorFlow [38] and Keras [39] libraries.

The output layer of all these models consists of a fully-connected layer with five nodes and a softmax
activation function. Thus, the model returns the probabilities for a given jet sample to originate from one of
the five classes listed at the start of section 2. Based on the nature of the input data and the strict latency and
resource constraints, we explore simple MLP models and permutation-invariant DS and IN models. The
former is considered due to their favorable low latency inference, whereas the latter are expected to have a
higher classification accuracy. We use the following specific architectures:

(a) A simple MLP as shown in figure 1(a). The number of layers, the number of nodes, and the other
hyperparameters of the MLP varies with the number of input jet constituents N. For 8 constituents, the
MLP consists of 8 hidden layers with {120,60,32,64,64,64,32,44} nodes, where we apply L1
regularization throughout with a coefficient of 1.31× 10−5; this network is trained with a learning rate
of 0.0013 and batch size of 128. In the N = 16 case, the MLP has five hidden layers with {88,88,44,
44,44} nodes and an L1 regularization coefficient of 2.36× 10−5; the 16 constituent MLP is trained
with an initial learning rate of 0.0015 and batch size of 256. Finally, for 32 constituents, the MLP is
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Figure 1. Schematic of all the considered models. (a) A simple multilayer perceptron. The 2D input is flattened to one dimension
before it is passed through the MLP. (b) A permutation-invariant deep set network [22]. The initial MLP acts on the features of
each input constituent. The aggregation layer S performs a permutation invariant operation at the constituent level and hence
brings the input to a 1D vector. (c) A permutation-invariant interaction network [40] as implemented before in reference [7].
The input is transformed by the marshaling functionm into a fully-connected graph. The exact mechanics of the IN are described
in section 3. For each network type, all hyperparameters, such as the number of layers and number of nodes per layer, are
optimized depending on the number of constituents. The hyperparameters of each network are presented in section 3 and their
respective performance is shown in table 1.

composed of 7 hidden layers with {84,88,32,32,44,32,44} nodes, has an L1 coefficient of 3.14× 10−5,
and is trained using an initial learning rate of 0.0047 and a batch size of 1024. All these three networks
use the ReLU activation function [41, 42] and the Adam optimizer [43], where the learning rate is
divided by 10 for every 15 epochs of no accuracy improvement. The training stops when accuracy
stagnates for 20 epochs.

(b) A DS network [22] as schematically illustrated in figure 1(b). The first MLP ϕ of this network acts on the
features of each constituent independently, mapping the 3 input features to some output dimension D.
Then, this output A with dimensionality (N,D) is aggregated by S over the constituents N, reducing the
data from a 2D matrix to a one dimensional vector of length D. Finally, a second MLP ρ is applied to the
aggregation output to produce the jet class predictions. For any N ∈ {8,16,32}, ϕ is comprised of 3
hidden layers, each with 32 nodes. The aggregation S is chosen to be an average instead of a maximum,
since they give similar results, but computing the number of FLOPs for the average is much more trivial
than for the maximum. The second MLP ρ uses only one hidden layer with 32 nodes, excluding the
output layer. ReLU activation is used for all DS networks. The 8 and 16 constituent cases are trained
with a batch size of 256 and learning rates of 0.0018 and 0.0029, respectively. Meanwhile, the 32
constituent DS is trained with a batch size of 128 and a rate of 0.0032. All the DS models use the same
optimizer, learning rate decay, and early stopping parameters as the MLP.

(c) An IN [7, 40] that consists of an edge MLP ϕR, followed by a node MLP ϕO, and a graph classifier MLP
ϕA, as shown in figure 1(c). The ϕR network takes input features from a pair of nodes and learns a set
of different edge features. The edge features are aggregated at the corresponding receiver nodes, and
concatenated with the original node features as input to ϕO. The output embeddings are then averaged
by S over the N constituents, and given as input to the graph classifier MLP, which consists of a single
ReLU activated fully-connected layer, excluding the output layer. The ϕR and ϕO MLPs are implemented
using 1D convolutions of unit kernel size and unit stride, where weights are shared across the edges
and nodes. For 8 and 16 constituents, the MLP ϕR consists of two hidden layers with {12,6} neurons.
Meanwhile, the ϕR for 32 constituents has only one hidden layer with three neurons due to the limited
hardware resources. The node MLP ϕO has three hidden layers with {36,18,6} neurons for all cases. The
graph classifier MLPs ϕA have one hidden layer with 170, 170, and 512 neurons for the 8, 16 and 32
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Table 1. Floating-point model performance for 8, 16, and 32 jet constituents. The uncertainties on the AUCs are all∼ 0.001 and thus not
included for legibility.

Architecture Constituents Parameters FLOPs Accuracy

AUC

g q W Z t

MLP
8

26 826 53 162 64.6± 0.1% 0.84 0.88 0.90 0.88 0.92
DS 3461 36 805 64.0± 0.3% 0.84 0.88 0.90 0.88 0.92
IN 3347 37 232 64.9± 0.2% 0.84 0.88 0.91 0.89 0.92

MLP
16

20 245 40 485 68.4± 0.3% 0.87 0.89 0.91 0.90 0.94
DS 3461 71 109 69.4± 0.2% 0.87 0.89 0.93 0.92 0.94
IN 3347 140 432 70.8± 0.2% 0.88 0.90 0.94 0.92 0.94

MLP
32

24 101 48 197 66.2± 0.2% 0.90 0.89 0.89 0.88 0.94
DS 3461 139 717 75.9± 0.1% 0.91 0.91 0.96 0.95 0.95
IN 7400 109 556 75.8± 0.3% 0.91 0.91 0.96 0.95 0.95

constituent models, respectively. Both the IN models for 8 and 32 constituents are trained with a batch
size of 128, while the batch size is 512 for the 16 constituent model. All the IN models use the Adam
optimizer with a learning rate of 0.0005 and early stopping after 40 epochs of no accuracy improvement
on the validation data.

For all the models, Tensorflow [44] version 2.8 and QKeras [15] version 0.9 are used. The hyperparameter
optimization constraints are set such that the model can fit on the Xilinx Virtex UltraScale+ VU13P FPGA.
This specific FPGA is chosen because it is representative of the future HL-LHC L1T hardware platform. The
hyperparameter optimization is performed automatically using Optuna [45] for the MLP and DS, while for
the IN it is performed using grid search. The models presented here are not necessarily the best models that
could be achieved with this data, due to hardware constraints. However, they are the best possible models that
can be synthesized on the chosen FPGA device, given the computational limitations of the hyperparameter
optimization process and the simple model compression techniques that we consider. Additionally, pruning
is applied to all the 32 constituent MLP, IN, and DS models such that they fit within the resource constraints
of the FPGA. We prune the 32 constituent models using the TensorFlow Model Optimization Toolkit, with a
polynomial decay schedule [46] and target sparsity of 50%. The pruning is done only for the 32 constituent
case since the 32 constituent IN is too large given the available resources of the chosen FPGA. The
performance of the models is shown in table 1. The uncertainty on the AUC and FPR is obtained using k-fold
cross validation with k= 5. The training dataset is split into 5 such that 1/5 is used for validation and the
remaining 4/5 is used for training. The uncertainties on the figures of merit, AUC and FPR, are quantified by
the standard deviation across the five folds and found to beO(0.1)%. The uncertainties due to random
initializations of model parameters are studied as well and found to be negligible.

Figure 2 shows the inverse of the average FPR across the 5 classes at 80% TPR, i.e. the inverse average
mistagging rate, for each model as a function of input constituents N. The models whose performance is
shown in this figure are not the floating point models, but their weights and activations are quantized to 8
bits; moreover, the 32 constituent models are 50% pruned. The details are explained in sections 4 and 5. For
now, notice that the models perform similarly if only the highest pT 8 constituents are considered. However,
as the number of input constituents N increases from 8 to 32, the IN and the DS have a higher 1/FPR than
the MLP.

In addition, while the mistagging rate decreases significantly for the IN and DS as the number of input
constituents increases, the mistagging rate increases for the MLP. Increasing the MLP size within the
constraints imposed by the High Level Synthesis (HLS) compiler and the targeted FPGA did not lead to an
improvement in the MLP performance. This effect is most likely due to the lack of ordering in the
constituents and to the increase in sparsity with the number of constituents.

This implies that for an L1T system where more than 8 unordered jet constituents are available, using a
set or a fully-connected graph representation is beneficial in terms of signal efficiency. As can be seen from
table 1, this is, however, at the cost of a significantly higher number of floating-point operations necessary for
the DS or IN, which implies that the models come at a higher FPGA resource cost. Ultimately, a trade-off
must be made between acceptable signal efficiency and computational resource costs.
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Figure 2. The inverse of the Average False Positive Rate (FPR) at a fixed true positive rate (TPR) of 80% over k= 5 folds of data
for N ∈ {8,16,32} constituents per jet. This TPR is chosen since it is a conventional working point in related literature. The size
of the MLP is constrained by requiring it to be synthesizable in hls4ml . Therefore, the number of parameters per consecutive
layer is limited and the MLP performance decreases from 16 to 32 constituents. This is not a factor for the other networks that use
a 2D representation of the data. The models are quantized to 8 bits.

4. Model compression by quantization

We compress the optimized floating-point models by quantization, using QKeras [15, 47]. The quantization
is performed using the straight-through estimator where layers are quantized during the forward pass, but
not for backpropagation. The models are trained scanning the bit widths from 2 to 16, with the number of
integer bits set to zero. Furthermore, all parameters are quantized to the same bit width, while the activations
are fixed to 8 bits. The quantized counterpart of each IN architecture is implemented using QKeras
supported layers, such as fully-connected and convolutional layers. Additionally, we developed a custom
Keras layer to project the features from the nodes to edges and vice versa through multiplication with the
sender or receiver adjacency matrices.

The effect of quantization on the inverse FPR averaged over classes, 1/FPR, at a fixed TPR of 80% is
shown in figure 3 for the 8 constituent models. The uncertainty band is again estimated using k-fold cross
validation. The figure shows that 8-bit precision through quantization-aware training is sufficient to
compress the models and simultaneously maintain high jet tagging accuracy for our architectures.

5. Firmware implementation

The quantized models are translated into firmware using hls4ml , then synthesized with AMD Vivado HLS
2020.1, targeting a Xilinx Virtex UltraScale+ VU13P (xcvu13p-flga2577-2-e) FPGA with a clock
frequency of 200MHz . As mentioned in section 3, this particular model is chosen since it is representative of
the planned hardware for the HL-LHC trigger. We use a branch of hls4ml , available at reference [48].
Except for the custom IN projection layers, all others are natively supported by hls4ml . For the projection
layer, custom HLS was included using the extension API of hls4ml . This custom HLS code is inspired by
the optimizations in reference [33]. Since the adjacency matrices are binary and the columns are one-hot
encoded the projection calculations are simplified to elementary load and store operations.

We also use a new parallelized implementation of pointwise 1D convolutional layers. Each pointwise
layer runs an MLP on each jet constituent, requiring a total of N×Min ×Mout multiplications where N is the
number of jet constituents,Min is the number of MLP inputs, andMout is the number of MLP outputs. The
amount of parallelization is controlled by the reuse factor (RF) in hls4ml , which is used to balance speed
with resource consumption. The RF specifies how many times a multiplier unit is (re)used to compute all the
multiplications in a given layer so that only N×Min ×Mout/RF total multiplier units are needed. To avoid a
limitation of the HLS compiler on the number of fully unrolled elements within a function call, we split each
layer computation into N/RF separate function calls each using onlyMin ×Mout multiplier units.
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Figure 3. The inverted average FPR across the five jet classes, 1/FPR, as a function of the bit width for the IN, DS, and MLP. For
each model, the threshold on the classifier score corresponds to a TPR of 80%. The model performance shown here is determined
on the N= 8 data set. A bit width of 8 maintains good classification accuracy.

Table 2. Average latency, initiation interval (II), and resource consumption for the MLP, DS, and IN models with weights quantized to a
bit width of 4, 6, and 8, trained on jet data with a maximum of 8 constituents. The activation functions in these models are quantized to
a fixed bit width of 8 to preserve performance. The cc next to the latency and II represents the number of clock cycles on the FPGA. The
numbers in parentheses next to the FPGA resource values correspond to the used percentage of the given resource. The accuracy ratio
between the models presented in this table and the quantized models before FPGA implementation are all above 0.9.

FPGA: Xilinx Virtex UltraScale+ VU13P

Architecture Precision RF Latency [ns] (cc) II [ns] (cc) DSP LUT FF BRAM18

MLP
4 1 95 (19) 5 (1) 101 (0.8%) 235 080 (13.6%) 90 150 (2.6%) 4 (0.1%)
6 1 95 (19) 5 (1) 292 (2.4%) 313 371 (18.3%) 114 712 (3.3%) 4 (0.1%)
8 1 105 (21) 5 (1) 262 (2.1%) 155 080 (7.6%) 25 714 (0.6%) 4 (0.1%)

DS
4 2 95 (19) 15 (3) 101 (0.8%) 235 359 (13.6%) 90 190 (2.6%) 4 (0.1%)
6 2 95 (19) 15 (3) 292 (2.4%) 313 230 (18.1%) 114 745 (3.3%) 4 (0.1%)
8 2 95 (19) 15 (3) 626 (5.1%) 386 294 (22.3%) 121 424 (3.5%) 4 (0.1%)

IN
4 2 150 (30) 10 (2) 5 (0.0%) 276 720 (16.0%) 124 354 (3.6%) 12 (0.2%)
6 2 155 (31) 15 (3) 673 (5.5%) 387 625 (22.4%) 161 685 (4.7%) 12 (0.2%)
8 2 160 (32) 15 (3) 2191 (17.8%) 472 140 (27.3%) 191 802 (5.5%) 12 (0.2%)

We first evaluate the FPGA latency and resource consumption for the three different architectures at a
numerical precision of 4, 6, and 8 bits. Table 2 shows the latency and resource consumption of the quantized
models trained on jets with at most 8 constituents. These results reflect post-logic-synthesis performance by
simulating the FPGA on CPU: the models have not been implemented on a physical FPGA. The estimates
also assume minimal I/O overhead, i.e. the data is directly transferred via the bonded I/O pins. However, in a
realistic implementation, an experiment-specific firmware shell would handle the I/O to transfer and process
the data from the optical transceivers, thus providing it to the algorithm blocks. This I/O overhead would be
the same for all the algorithms we compare. The resources on the FPGA are digital signal processors (DSPs),
lookup tables (LUTs), block random access memory (BRAM), and also flip-flops (FFs). The model that is
synthesized on the FPGA using hls4ml achieves 90% of the accuracy displayed by a model that is
compressed in the same ways, but ran directly on CPU.

A fully parallel implementation is possible for all MLPs by setting the RF in hls4ml to 1, such that each
network multiplication is distributed across all the resources. For the DS and IN models, the RF ∈ {2,4,8} is
set for N ∈ {8,16,32} constituents respectively, due to the limited amount of hardware resources. Increasing
the RF reduces the model resource consumption at the cost of increasing its latency and throughput. Equally
important for the throughput is the initiation interval (II), which represents how many clock cycles need to
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Table 3. Number of jet constituents, reuse factor, latency, initialization interval (II) and resource consumption for the models quantized
to 8 bits. The cc next to the latency and II represents the number of clock cycles on the FPGA. The numbers in parentheses next to the
FPGA resource values correspond to the used percentage of the given resource. The accuracy ratio between the models presented in this
table and the quantized models before FPGA implementation are all above 0.9.

FPGA: Xilinx Virtex UltraScale+ VU13P

Architecture Constituents RF
Latency
[ns] (cc) II [ns] (cc) DSP LUT FF BRAM18

MLP
8 1 105 (21) 5 (1) 262 (2.1%) 155 080 (9.0%) 25 714 (0.7%) 4 (0.1%)
16 1 100 (20) 5 (1) 226 (1.8%) 146 515 (8.5%) 31 426 (0.9%) 4 (0.1%)
32a 1 105 (21) 5 (1) 262 (2.1%) 155 080 (7.2%) 25 714 (0.7%) 4 (0.1%)

DS
8 2 95 (19) 15 (3) 626 (5.1%) 386 294 (22.3%) 121 424 (3.5%) 4 (0.1%)
16 4 115 (23) 15 (3) 555 (4.5%) 747 374 (43.2%) 238 798 (6.9%) 4 (0.1%)
32a 8 130 (26) 10 (2) 434 (3.5%) 903 284 (52.3%) 358 754 (10.4%) 4 (0.1%)

IN
8 2 160 (32) 15 (3) 2191 (17.8%) 472 140 (27.3%) 191 802 (5.5%) 12 (0.2%)
16 4 180 (36) 15 (3) 5362 (43.6%) 1387 923 (80.3%) 594 039 (17.2%) 52 (1.9%)
32a 8 205 (41) 15 (3) 2120 (17.3%) 1162 104 (67.3%) 761 061 (22.0%) 132 (2.5%)

a Pruning to a sparsity of 50% is applied to the 32-constituent IN model such that it can fit within the resource constraints of the FPGA.

For consistency, the same pruning sparsity is applied to the 32-constituent MLP and DS models.

elapse before the network is ready to receive new inputs. The II is higher for the DS and IN models than the
MLP, but this can be partially compensated by running several instances of the model in parallel.

The way this is accomplished in trigger systems is through time multiplexing, in which NTM trigger
processor boards run in parallel each processing different events. For example, a typical choice is NTM = 6,
meaning the II to process an entire event would be (25 ns)(NTM) = 150 ns. However, each recorded event
contains multiple jets. Assuming that 10 jets are classified sequentially per event, the maximum allowable II
per jet would correspond to approximately 15 ns , which is perfectly consistent with table 3. We note that
given the size of the models, this approach may not be feasible.

Table 3 shows how resource consumption and latency scale as a function of the number of input jet
constituents for the three different architectures. While the latency remains relatively unchanged as the
number of constituents increases for the MLP, the latency is proportional to the number of constituents for
the DS and IN. For cases where the number of constituents is large, using a DS or IN architecture is
advantageous. However, from table 3, this incurs additional resources and latency. One partial solution to
this resource problem is to use advanced pruning methods [14, 46, 49–53], where insignificant weights are
removed while the model performance is maintained. In this work, we use pruning for the 32 constituent
models, although our pruning process is rudimentary and done to fit the IN model into the available
resources of the chosen FPGA. When the model is synthesized, the pruned weights are set to zero and the
corresponding operations are skipped. Different pruning algorithms [50–52] might perform better.
Alternatively, the RF could be increased to achieve lower resource consumption. However, this implies higher
latencies, which in the L1T context is not worth paying. Exploration of additional model compression
paradigms is left for future work.

6. Conclusion and future work

Neural network based jet classification algorithms are synthesized on FPGA devices that mimic the
environment within the hardware layers of the real-time data processing systems for a typical LHC
experiment after the high-luminosity upgrade. Using jet data with constituent level information, we show
how one could synthesize machine learning algorithms pertaining to three different data representations on
an FPGA by using the hls4ml library. We also demonstrate how metrics like accuracy, latency, and resource,
utilization scale as a function of the number of input jet constituents: an improvement in accuracy is gained
by using a set or fully-connected graph representation when the number of jet constituents is larger than 8.
Meanwhile, the DSs network strikes a good balance between accuracy, latency, and resource consumption
compared with the deployed and tested MLP and IN models. Employing quantization-aware training and,
for the 32 constituent case, pruning, we show how to efficiently limit resource utilization of these models
while retaining accuracy.

In conclusion, we have identified and shown the necessary ingredients to deploy a jet classifier in the
level-1 trigger of the high-luminosity LHC experiments, when high-granularity particle information and
particle-flow reconstruction would be accessible. An algorithm of this kind could significantly improve the
quality of the trigger decision and improve signal acceptance, increasing the scientific reach of the
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experiments. Additionally, the results shown in this work could be improved upon by employing advanced
model compression techniques, more thorough hyperparameter optimization, and better synthesis
fine-tuning. Moreover, the presented results, although representative, are from post-synthesis but
pre-implementation algorithms. A full FPGA implementation is also left for future work.

Data availability statement

The data used in this study are openly available at Zenodo at reference [36] under DOI https://doi.org/10.
5281/zenodo.3602260. The software used in this study is also available at Zenodo at reference [48] under
DOI https://doi.org/10.5281/zenodo.10553804.
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