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Abstract: The Structured Laser Beam (SLB) is a pseudo-non-diffracting laser beam that shares
many characteristics with a Bessel beam. However, it can theoretically propagate over an
unlimited distance while maintaining an extremely low inner core divergence of only 0.01 mrad.
This makes it a promising candidate for precise long-distance alignment applications such as the
alignment of particle accelerator components at CERN. In this work, a novel method to assess the
symmetrical wavefront aberrations induced by an SLB generator is presented. Our approach is
based on the analysis of a single-intensity distribution of an SLB. The coefficients of the Zernike
polynomials are estimated using artificial intelligence before least-squares fitting is used to refine
the result. This approach ensures that the fitting avoids local minima. This method provides a
novel way to analyze the optical aberrations induced by the SLB generator.
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1. Introduction

Accurately aligning accelerator components over long distances poses a significant challenge,
requiring precision of the transversal position in the range of tens of micrometers over distances
of hundreds of meters. At CERN, straight-line reference systems have been developed to meet
these stringent accuracy requirements [1]. These systems, such as the Wire Positioning System
and Hydrostatic Leveling System, use physical references, in these cases stretched wires and
water levels, respectively. While highly precise, they suffer from implementation difficulties and
component costs and are difficult to scale to even larger accelerators. An optical-based system
could serve as a viable alternative for future colliders like the Compact Linear Collider (CLIC)
[2] or the Future Circular Collider (FCC) [3], which are currently under study at CERN. These
projects require tight alignment tolerances in the transversal direction, with an accuracy of up to
10 µm (1σ) over a 200 m span [4]. Several optical-based systems for aligning structures over long
distances have been proposed in various works [4–9], however, the drawback of these systems
is their relatively high divergence, which makes it challenging to achieve accurate straight-line
reference measurements over long distances.

A promising candidate to overcome this drawback is the Structured Laser Beam (SLB) [10].
The SLB is a pseudo-non-diffracting beam with a transversal intensity profile similar to a Bessel
Beam (BB) of zeroth order [11,12]. It shares certain properties with the BB, such as a low
divergence of the central core compared to a Gaussian Beam (GB) and the ability for regeneration
behind obstacles [13]. Various reports have explored the use of pseudo-non-diffracting beams
for alignment purposes. Parks [14–17] used BB for aligning optical elements, while Gale [18]
employed projected BB for aligning larger structures over 19 m. However, contrary to a BB, the
SLB maintains a well-defined central core that can fit on a reasonably sized sensor chip even after
propagating for several hundred meters. Propagation tests up to 900 m have been conducted at
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CERN, yielding a divergence of under 0.01 mrad. This enables direct reading of the SLB image
using a reasonably sized camera chip even after propagation over hundreds of meters.

The generation principle for an SLB relies on utilizing the symmetrical optical aberrations,
namely defocus and spherical aberrations, and is described in detail in subsequent sections. It is
crucial to know the values of the defocus and spherical aberrations to determine SLB properties.
Some studies have addressed the issue of aberrated BBs produced by oblique illumination of an
axicon or a diffracting element [19–21]. Dudutis [22] demonstrated the use of these aberrated
beams for glass dicing. Khonina presented a method for analyzing astigmatic BBs to detect
birefringence of gradient-index lenses and crystals [23,24] and presented a way to analyze the
intensity distribution of optical aberrations for a combination of an axicon and bi-convex lens
[25]. Miao [26] proposed a technique for phase front retrieval and correction of a BB. However,
none of these works presented a fast and reliable method for assessing wavefront aberrations in
beams generated solely by symmetrical optical aberrations, such as an SLB.

To evaluate the wavefront shape, traditional wavefront sensing methods can be employed.
However, this approach can be problematic since the wavefront should be measured directly
behind the projection lens. In the context of long-distance alignment applications, the SLB
propagates within a vacuum pipe, making it challenging to directly measure the wavefront
immediately behind the generator. The considerable diameter of the generator projection lens can
also introduce complexities in measurements using conventional wavefront sensing methods. This
paper presents a simple method for estimating the wavefront of an SLB utilizing a combination
of a convolutional neural network (CNN) and least-square fitting. While there have been reports
of using artificial intelligence (AI) for detecting wavefront aberrations [27–29], to the best of
our knowledge, AI has not been employed for wavefront analysis of non-diffracting beams. This
method enables the determination of the SLB dominant symmetrical wavefront aberrations using
a single SLB intensity distribution, with application to high-precision, long-distance alignment,
where it can provide information about the beam properties.

2. Methodology

The SLB can be generated using various generators that create a uniquely shaped wavefront
by combining rotationally symmetrical aberrations: spherical aberration, secondary spherical
aberration and defocus. Such an optical system functions as a Keplerian beam expander,
maintaining the nearly parallel nature of both input and output beams while introducing a phase
delay. This phase delay results in a distinctive wavefront shape. It is important to note that this
wavefront is formed directly behind the projection lens, as depicted in Fig. 1. As one moves
farther from the generator along the direction of SLB propagation, various segments of the
wavefront undergo constructive and destructive interference, resulting in an intensity distribution
resembling that of a Bessel Beam. However, in the case of SLB, there is a radial intensity
modulation of the beam’s rings. The shape of the wavefront directly influences beam properties,
including the core size, the number of rings, and their intensity modulation. A critical parameter
in this context is the so-called zero-phase gradient ring, depicted in Fig. 2, which can be utilized
to determine the central core size [30].

An SLB can be generated using a variety of generators. In this work, a 5 mm ball lens made of
N-BK7 glass is used in combination with a plano-convex projection lens. The projection lens
is made of N-BK7 glass with a diameter of 9 mm and a radius of curvature of 10.3 mm. By
changing the distance between the lenses, denoted as LPL in the interval LPLMIN to LPLMAX , the
diameter of the zero-phase gradient ring is changed, affecting the core size as illustrated in Fig. 2.

The values of LPLMIN and LPLMAX were equal to 18.8 and 19.25 mm respectively. This interval
of values ensures that the SLB pattern can fit into a 10x10 mm region of interest on a Basler
camera acA4112-30uc featuring a CMOS chip measuring 14.13x10.35 mm placed 1.5 m away
from the generator. The limitations of our experimental setup defined this constraint. The shorter
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Fig. 1. Schematic of an SLB generator.

Fig. 2. Simulated intensity distributions and corresponding line profiles using Eq. (3) traced
to z = 1.5 m. (a) cj values corresponding to LPLMAX producing a core size of 0.26 mm (b)
the corresponding wavefront profile. The zero-phase gradient ring is highlighted by red dots
having a diameter of 2.81 mm. (c) cj values corresponding to LPLMIN producing a core
size of 0.16 mm (d) the corresponding wavefront profile. The zero-phase gradient ring is
highlighted by red dots having a diameter of 6.6 mm.
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LPL reduces the amount of defocus aberration in the wavefront. This affects the size of the
zero-phase gradient ring diameter, which becomes larger. The SLB with a relatively small core
size is created as a result at a certain distance. Other parameters, such as the number of rings
and divergence, are also affected by the change of the LPL distance. This generation principle
allows for fast and easy tuning of the SLB core size and other parameters. More details about the
generation principle can be found in our previous works [10,30,31] and in the paper of Herman
[32].

A method that analyses a single transversal intensity distribution to estimate the shape of the
wavefront directly behind the projection lens was proposed. The phase of the complex field
behind the projection lens, hence the wavefront shape, can be described using normalized Zernike
polynomials [33]. Zernike polynomials are described by Zj and their respective coefficients cj,
The Noll indexing was used [34].

To validate the method, results were compared with measured data obtained from a Shack-
Hartmann sensor (SHS). The SHS was placed as close as physically possible in front of the
projection lens to measure the wavefront in the plane directly behind the projection lens. The
SHS consisted of a microlens array MLA300-14AR from Thorlabs combined with a Basler
camera a2A5328-15umPRO. The wavefront shape and phase were calculated using in-house
software [35].

Equation (1) describes the complex field of a non-aberrated SLB, which is approximated using
only defocus and spherical aberrations with index j equal to 4, 11, and 22, respectively.

s(x0, y0, 0) = S0exp[i2π(c4Z4 + c11Z11 + c22Z22)] (1)

Equation (2) describes a situation where other aberrations that do not contribute to the creation
of a beam are present, represented as the sum of the j-number of Zernike polynomials in the
complex field. These aberrations can have unwanted influence on the intensity distribution
symmetry.

g(x0, y0, 0) = G0exp(i2π
∑︂

j
cjZj); j ∉ {4, 11, 22} (2)

If the complex field is known, a diffraction integral can be employed to propagate the field and
reconstruct the transversal intensity distribution U(x, y, z) at an arbitrary distance z as described
by Eq. (3). In this equation, k represents the angular wavenumber and λ the wavelength of light.

U(x, y, z) =
1

iλz
exp(ikz)exp[

ik(x2 + y2)

2z
]FT{s(x0, y0, 0)g(x0, y0, 0)exp[(x2

0 + y2
0)

ik
2z

]} (3)

The method presented here deals with the inverse task. The intensity distribution I(x, y) of
the SLB is measured using a CMOS chip at a given distance from the projection lens. This
measurement serves as input for a non-linear-least-squares minimization of the c4, c11 and c22
values to match the measured intensity distribution I(x, y) at a given distance z according to the
Eq. (4) [26]. We assume g(x0, y0, 0) = 0 for the fitting process. This estimation is allowed by
the fact that, in reality, the values of aberrations expressed by g(x0, y0, 0) are small. This will
become evident in the following chapters. S0 = 1 was also assumed.

S = min
c4,c11,c22

∑︂
x

∑︂
y
[U(x, y, z) − I(x, y)]2 (4)

When the minimization process begins with coefficient values equal to zero or random values,
the fitting process becomes trapped in a local minimum, failing to determine the values of the
polynomials even for least-squares fitting with fine-tuned parameters. To mitigate this issue, a
convolutional neural network (CNN) was employed to obtain the initial estimates for the c4, c11
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and c22 values.
RMSEwf = [

∑︂
j
(cjZj)

2]1/2 (5)

DenseNet121, InceptionV3, and Resnet-50 architectures were trained to estimate the coefficient
values. Detailed architectural schemes are provided in additional materials. An input of the
networks was a 224x224x3 intensity distribution of the SLB represented as an RGB image. An
output linear dense layer provided values for the matrix of the three symmetrical coefficients of
the Zernike polynomials. Models were trained using a dataset of 100,000 simulated transversal
intensity distributions of the SLB, which were generated using Eq. (3) traced up to 1.5 m.

The ranges of cj of values used in Eq. (1) and (2) for the generation of the training data were
obtained from multiple measurements of SLB wavefronts in the interval LPLMIN and LPLMAX
using a well-aligned generator and the SHS. These measurements are presented in the following
chapter. The wavefront root-mean-squared error (RMSEwf ) was calculated using Eq. (5) up to
j = 66, excluding piston (c1), tilts (c2, c3), and defocus (c4) and spherical aberrations (c11, c22),
to be in an interval of 0.06 to 0.08λ. The wavefront, therefore, can be approximated by Eq. (1)
without significantly affecting the calculation of the zero-phase gradient ring. This is true for
most of the generators, such as the ones presented in [30]. One has to be careful when short focal
length distance lenses are used as a SLB generator. As a generator consisting of two 5 mm high
index ball lenses, the system can be more prone to misalignment and cause a larger influence of
non-symmetrical aberrations on the intensity pattern.

Equation (2) was used as noise together with a Gaussian intensity noise with mean zero and
variance equal to 1e-7. The amplitude S0 = 1 was assumed. The cj value intervals in units of [λ]
used for training can be seen in Table 1. Note that though the magnitude of the c22 is small, it has
an important effect on the beam properties due to its symmetry and, therefore, must be used for
the description of the SLB wavefront.

Table 1. Interval of cj values used for training dataset simulations.

Coefficient cj [λ]

j = 1 0

j = 4 [-7.85; -1.25]

j = 11 [-2.55; -2.45]

j = 22 [-0.07; -0.08]

j ∈ [2, 66] \ {4, 11, 22} [-0.02; 0.02]

The dataset was divided into 80,000 images for testing and 20,000 images for validation. The
input images were normalized min-to-max in the interval of [0, 1] to mitigate the influence
of intensity, and a square root stretching operation was applied to enhance the shape features.
An Adam optimizer using a learning rate 1e-3 was used and halved every 15 epochs down to
a minimum value of 5e-6. The batch size was set to 32 using 300 epochs for training. The
mean-squared error (MSE) of the c4, c11 and c22 values served as the learning metric. The change
of a loss function MSE during the training process can be seen in Fig. 3.

InceptionV3 consistently achieved stable validation loss function MSE values, converging
to the order of 1e-5. ResNet50 and DenseNet121 exhibited stable validation loss function
MSE values in the lower order of 1e-4. To assess the performance of the trained networks, we
conducted a reconstruction experiment involving 1,000 wavefronts using simulated data that were
not part of the training set. We compared the predicted wavefronts with a reference wavefront by
calculating the difference in RMSEwf values. This involved subtracting two sets of coefficient
values representing the predicted and reference wavefronts for j in the interval of 4 to 66. This
means that the values of RMSEwf were largely influenced by the aberrations introduced by Eq. (2),
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Fig. 3. Loss function changing process of different networks. (a) Training process (b)
Validation process. For detailed architectures of ResNet50, InceptionV3, and DenseNet121
see Visualization 1, Visualization 2, and Visualization 3, respectively.

which were not estimated by the AI. The mean values and error bars indicating the standard
deviation are presented in Fig. 4. Notably, InceptionV3 outperformed the other architectures,
achieving an RMSE of 0.054λ. In contrast, the RMSE values for ResNet50 and DenseNet121
architectures are 0.104λ and 0.096λ, respectively. Consequently, we have selected InceptionV3
for subsequent reconstructions.

Fig. 4. Mean RMSEwf values of the difference between the reference and predicted
wavefront. Error bars represent the standard deviation.

3. Results

3.1. Simulation

The method was validated by reconstructing the wavefront of a simulated intensity distribution
with known values of the c4, c11 and c22 that were not utilized during the training. Data were
generated using the same procedure as for the training data.

The simulated reference intensity distribution, AI estimation followed by the fitting process can
be seen in Fig. 5(a), Fig. 5(b) and Fig. 5(c) respectively. The wavefront residual, which represents
the difference between the reference wavefront and the wavefront obtained after the fitting, is
depicted in Fig. 5(d). For comparative analysis of the c4, c11 and c22 the coefficient values can be

https://doi.org/10.6084/m9.figshare.24312619
https://doi.org/10.6084/m9.figshare.24312613
https://doi.org/10.6084/m9.figshare.24312616
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seen in Fig. 5(e). The layout presented in this figure is replicated in subsequent figures, each
showcasing additional wavefront reconstructions. The RMSEwf values were calculated for the
coefficients in the interval from 4 to 66, excluding piston and tilts.

Fig. 5. Validation of the method using simulated data. The square root stretching was
used to enhance the features in the intensity distributions. (a) Reference simulated intensity
distribution (b) Intensity distribution estimated by artificial intelligence (AI) (c) Intensity
distribution obtained through fitting (d) Wavefront residual representing the difference
between the reference and fitted wavefront (e) cj values of reference, AI estimation and
fitting for defocus, spherical and secondary spherical aberration

In the measurement displayed in Fig. 5, the percent error for the reference symmetrical
coefficients c4, c11 and c22 is equal to 0.64% going down to 0.14% after fitting. The RMSEwf
between the reference and the fitting process stands at 0.057λ after including the error of the
non-symmetrical coefficients up to c66. The peak-to-valley (PV) wavefront difference between
the initially generated reference and the wavefront obtained through fitting measures at 0.89λ.

The percent errors in the measurement presented in Fig. 6 are equal to 0.38% and 0.37% for
prediction and fitting respectively. The RMSEwf is equal to 0.077λ after fitting. The peak-to-valley
(PV) wavefront difference is measured to be 0.74λ.

The method has been effectively applied to data that were not part of the training dataset.
Fitting reduces the error of the AI estimation even when only the c4, c11 and c22 are the subject of
change. As a result, the coefficients used to generate the SLB are estimated with slightly higher
accuracy. Using AI estimation alone is up for consideration, reducing the method’s runtime from
seconds to milliseconds without significantly sacrificing accuracy. The main major portion of the
RMSEwf are the aberrations induced by Eq. (2).

3.2. Experiments

Wavefronts of several SLBs were measured using the SHS sensor and taken as a reference. The
intensity distributions were measured using the camera placed 1.5 m away from the generator.
The images were taken with low exposure values in order. Hence, pixels are not saturated. The
image was cut to have a size 10x10 mm, and the resolution was lowered to match the input size of
the InceptionV3 network. Two laser source with a wavelength of 532 nm and power of 0.9 mW
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Fig. 6. Validation of the method using simulated data. The square root stretching was
used to enhance the features in the intensity distributions. (a) Reference simulated intensity
distribution (b) Intensity distribution estimated by artificial intelligence (AI) (c) Intensity
distribution obtained through fitting (d) Wavefront residual representing the difference
between the reference and fitted wavefront (e) cj values of reference, AI estimation and
fitting for defocus, spherical and secondary spherical aberration

was used for measurements in Figs. 7 and 8. For measurements in Figs. 9 and 10, a laser source
with a power of 4.5 mW with a wavelength of 532 nm was used.

In the wavefront estimation depicted in Fig. 7 the percent error for the reference symmetrical
coefficients c4, c11 and c22 is equal to 0.57% going down to 0.45% after fitting. The RMSEwf
equals to 0.088λ after fitting. Simultaneously, the peak-to-valley (PV) wavefront difference
between the initially generated reference and the wavefront obtained through fitting measures at
1.15λ.

In the measurement presented in Fig. 8, the RMSEwf stands at 0.081λ after fitting. The percent
error of the defocus and spherical aberrations is equal to 0.24% and 0.15% for AI prediction
and fitting, respectively. The PV wavefront difference between the generated reference and the
wavefront was obtained through fitting measures at 0.88λ.

Experiments effectively demonstrate the method’s utility in estimating the wavefront of an
SLB, specifically the coefficients c4, c11, and c22. Notably, despite the AI model being trained on
a simulated dataset, it proves to be highly effective when applied to real measurements.

In the measurement presented in Fig. 9, the RMSEwf is equal to 0.085λ after fitting. The
percent errors of the c4, c11 and c22 for the AI estimation is equal to 1.47% and 0.52% for the
fitting. The peak-to-valley (PV) wavefront difference between the initially generated reference
and the wavefront obtained through fitting measures at 1.12λ.

In the wavefront estimation shown in Fig. 10, the percent error of the AI estimation is equal
to 1.45% decreasing down to 0.12% after using the fitting. The RMSEwf stands at 0.082λ after
using the fitting process. Simultaneously, the peak-to-valley (PV) wavefront difference between
the initially generated reference and the wavefront obtained through fitting measures at 0.92λ.

An increase in the reconstruction error for the coefficients c4, c11, and c22 of the AI estimation
is apparent for both measurements in Figs. 9 and 10. This increase could be attributed to
the utilization of a different laser source with higher power and a distinct spatial illumination
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Fig. 7. Validation of the method using a comparison with a SHS wavefront measurement.
The square root stretching was used to enhance the features in the intensity distributions. (a)
Measured intensity distribution (b) Intensity distribution estimated by artificial intelligence
(AI) (c) Intensity distribution obtained through fitting (d) Wavefront residual representing
the difference between the reference and fitted wavefront (e) cj values of measured reference,
AI estimation and fitting for defocus, spherical and secondary spherical aberration

Fig. 8. Validation of the method using a comparison with a SHS wavefront measurement.
The square root stretching was used to enhance the features in the intensity distributions. (a)
Measured intensity distribution (b) Intensity distribution estimated by artificial intelligence
(AI) (c) Intensity distribution obtained through fitting (d) Wavefront residual representing
the difference between the reference and fitted wavefront (e) cj values of measured reference,
AI estimation and fitting for defocus, spherical and secondary spherical aberration
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Fig. 9. Validation of the method using a comparison with a SHS wavefront measurement.
The square root stretching was used to enhance the features in the intensity distributions. (a)
Measured intensity distribution (b) Intensity distribution estimated by artificial intelligence
(AI) (c) Intensity distribution obtained through fitting (d) Wavefront residual representing
the difference between the reference and fitted wavefront (e) cj values of measured reference,
AI estimation and fitting for defocus, spherical and secondary spherical aberration

Fig. 10. Validation of the method using a comparison with a SHS wavefront measurement.
The square root stretching was used to enhance the features in the intensity distributions. (a)
Measured intensity distribution (b) Intensity distribution estimated by artificial intelligence
(AI) (c) Intensity distribution obtained through fitting (d) Wavefront residual representing
the difference between the reference and fitted wavefront (e) cj values of measured reference,
AI estimation and fitting for defocus, spherical and secondary spherical aberration
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distribution than for the previous measurements. After closely examining the figures, a stray light
outside of the SLB’s outer ring can be seen. This can cause an increase in the AI estimation error.

If we compare the reconstructed and measured reference wavefronts from the experiments,
the zero-phase gradient ring can be calculated with an error of less than 10 µm for all of the
presented reconstructions.

4. Discussion

The results obtained from this study show the advantage of using AI combined with least-squares
fitting to estimate the SLB wavefront, and its characteristics, using symmetrical defocus (c4) and
spherical aberrations (c11, c22) with a root-mean-squared error of the wavefront estimation being
smaller than 0.09λ. This approximation by symmetrical aberrations is enabled by the fact that
non-symmetrical aberrations in the SLB wavefront have low magnitudes, considering the SLB
generators used in long-distance alignment. Note that using lenses with shorter focal lengths
can cause the generator to be susceptible to misalignment and to the effect of non-symmetrical
aberrations.

While the AI estimation of the Zernike polynomial coefficients alone demonstrates satisfactory
results, the switch to a different laser source decreased the accuracy of the AI estimation. The AI
performance could be improved by increasing the number of samples used for training or possibly
by incorporating an illumination distribution change into the training dataset generation process.
Training on real data could improve the results. However, this process can be labor-intensive for
large datasets. The subsequent least-squares fitting process generally refines the estimation of
these coefficients, leading to higher precision. The trade-off between the accuracy gain and time
span of the method needs to be considered when it comes to the use of the fitting, which can
be rendered unnecessary. Importantly, despite being trained on simulated data, the CNN was
successfully applied to measured data from the laboratory, with results aligning with the SHS
measurements.

By accurately estimating the wavefront, describing it using the dominant defocus and spherical
aberrations produced by the SLB generator, it becomes feasible to determine the beam properties.
Notably, the zero-phase gradient ring, which affects the size of the SLB core. This assessment will
be beneficial for ensuring beam quality in precision-demanding applications such as long-distance
accelerator alignment. The simulation approach employed in this study allows to generate
non-diffracting beams through aberrations and can offer a straightforward means to obtain a
desired beam shape through the manipulation of the induced aberrations.
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