CERN Accelerating science

002887877 001__ 2887877
002887877 005__ 20250719062914.0
002887877 0248_ $$aoai:cds.cern.ch:2887877$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002887877 0247_ $$2DOI$$9arXiv$$a10.1103/PhysRevLett.133.132503$$qpublication
002887877 037__ $$9arXiv$$aarXiv:2401.07976$$cnucl-ex
002887877 035__ $$9arXiv$$aoai:arXiv.org:2401.07976
002887877 035__ $$9Inspire$$aoai:inspirehep.net:2747136$$d2025-07-18T10:45:16Z$$h2025-07-19T02:02:28Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002887877 035__ $$9Inspire$$a2747136
002887877 041__ $$aeng
002887877 100__ $$aGe, Zhuang$$jORCID:[email protected]$$tROR:https://ror.org/05n3dz165$$tROR:https://ror.org/02k8cbn47$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
002887877 245__ $$9APS$$aHigh-Precision Mass Measurements of Neutron Deficient Silver Isotopes Probe the Robustness of the <math display="inline"><mrow><mi>N</mi><mo>=</mo><mn>50</mn></mrow></math> Shell Closure
002887877 269__ $$c2024-01-15
002887877 260__ $$c2024-09-26
002887877 300__ $$a9 p
002887877 500__ $$9arXiv$$a9 pages, 3 figures
002887877 520__ $$9APS$$aHigh-precision mass measurements of exotic <math display="inline"><mrow><mmultiscripts><mrow><mi>Ag</mi></mrow><mprescripts/><none/><mrow><mn>95</mn><mi>–</mi><mn>97</mn></mrow></mmultiscripts></mrow></math> isotopes close to the <math display="inline"><mi>N</mi><mo>=</mo><mi>Z</mi></math> line have been conducted with the JYFLTRAP double Penning trap mass spectrometer, with the silver ions produced using the recently commissioned inductively heated hot cavity catcher laser ion source at the Ion Guide Isotope Separator On-Line facility. The atomic mass of <math display="inline"><mrow><mmultiscripts><mrow><mi>Ag</mi></mrow><mprescripts/><none/><mrow><mn>95</mn></mrow></mmultiscripts></mrow></math> was directly determined for the first time. In addition, the atomic masses of <math display="inline"><mi>β</mi></math>-decaying <math display="inline"><msup><mn>2</mn><mo>+</mo></msup></math> and <math display="inline"><msup><mn>8</mn><mo>+</mo></msup></math> states in <math display="inline"><mrow><mmultiscripts><mrow><mi>Ag</mi></mrow><mprescripts/><none/><mrow><mn>96</mn></mrow></mmultiscripts></mrow></math> have been identified and measured for the first time, and the precision of the <math display="inline"><mrow><mmultiscripts><mrow><mi>Ag</mi></mrow><mprescripts/><none/><mrow><mn>97</mn></mrow></mmultiscripts></mrow></math> mass has been improved. The newly measured masses, with a precision of <math display="inline"><mrow><mo>≈</mo><mn>1</mn><mtext> </mtext><mtext> </mtext><mi>keV</mi><mo>/</mo><msup><mrow><mi mathvariant="normal">c</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math>, have been used to investigate the <math display="inline"><mi>N</mi><mo>=</mo><mn>50</mn></math> neutron shell closure, confirming it to be robust. Empirical shell-gap and pairing energies determined with the new ground-state mass data are compared with the state-of-the-art ab initio calculations with various chiral effective field theory Hamiltonians. The precise determination of the excitation energy of the <math display="inline"><mrow><mmultiscripts><mrow><mi>Ag</mi></mrow><mprescripts/><none/><mrow><mn>96</mn><mi>m</mi></mrow></mmultiscripts></mrow></math> isomer in particular serves as a benchmark for ab initio predictions of nuclear properties beyond the ground state, specifically for odd-odd nuclei situated in proximity to the proton dripline below <math display="inline"><mrow><mmultiscripts><mrow><mi>Sn</mi></mrow><mprescripts/><none/><mrow><mn>100</mn></mrow></mmultiscripts></mrow></math>. In addition, density functional theory calculations and configuration-interaction shell-model calculations are compared with the experimental results. All theoretical approaches face challenges to reproduce the trend of nuclear ground-state properties in the silver isotopic chain across the <math display="inline"><mi>N</mi><mo>=</mo><mn>50</mn></math> neutron shell and toward the proton dripline.
002887877 520__ $$9arXiv$$aHigh-precision mass measurements of exotic $^{95-97}$Ag isotopes close to the $N = Z$ line have been conducted with the JYFLTRAP double Penning trap mass spectrometer, with the silver ions produced using the recently commissioned inductively-heated hot cavity catcher laser ion source at the Ion Guide Isotope Separator On-Line facility. The atomic mass of $^{95}$Ag was directly determined for the first time. In addition, the atomic masses of $\beta$-decaying 2$^+$ and 8$^+$ states in $^{96}$Ag have been identified and measured for the first time, and the precision of the $^{97}$Ag mass has been improved. The newly measured masses, with a precision of $\approx$ 1 keV/c$^2$, have been used to investigate the $N =$ 50 neutron shell closure confirming it to be robust. Empirical shell-gap and pairing energies determined with the new ground-state mass data are compared with the state-of-the-art \textit{ab initio} calculations with various chiral effective field theory Hamiltonians. The precise determination of the excitation energy of the $^{96m}$Ag isomer in particular serves as a benchmark for \textit{ab initio} predictions of nuclear properties beyond the ground state, specifically for odd-odd nuclei situated in proximity to the proton dripline below $^{100}$Sn. In addition, density functional theory (DFT) calculations and configuration-interaction shell-model (CISM) calculations are compared with the experimental results. All theoretical approaches face challenges to reproduce the trend of nuclear ground-state properties in the silver isotopic chain across the $N =$50 neutron shell and toward the proton drip-line.
002887877 540__ $$3preprint$$aCC BY 4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002887877 542__ $$3publication$$dAmerican Physical Society$$g2024
002887877 595__ $$cHAL
002887877 65017 $$2arXiv$$anucl-th
002887877 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002887877 65017 $$2arXiv$$anucl-ex
002887877 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002887877 690C_ $$aCERN
002887877 690C_ $$aARTICLE
002887877 700__ $$aReponen, Mikael$$jORCID:[email protected]$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aEronen, Tommi$$jORCID:0000-0003-0003-6022$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aHu, Baishan$$jORCID:0000-0001-8071-158X$$tROR:https://ror.org/03kgj4539$$tROR:https://ror.org/01qz5mb56$$uTRIUMF$$uORNL, Oak Ridge (main)$$uOak Ridge$$vTRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada$$vPhysics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA$$vNational Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
002887877 700__ $$aKortelainen, Markus$$jORCID:0000-0001-6244-764X$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aKankainen, Anu$$jORCID:0000-0003-1082-7602$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aMoore, Iain$$jORCID:0000-0003-0934-8727$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aNesterenko, Dmitrii$$jORCID:0000-0002-6103-2845$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aYuan, Cenxi$$jORCID:0000-0002-3495-3614$$tROR:https://ror.org/0064kty71$$uSYSU, Guangzhou$$vSino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082 Guangdong, China
002887877 700__ $$aBeliuskina, Olga$$jORCID:0000-0003-4448-7650$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aCañete, Laetitia$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$ade Groote, Ruben$$jORCID:0000-0003-4942-1220$$tROR:https://ror.org/05f950310$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$uLeuven U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vKU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
002887877 700__ $$aDelafosse, Celement$$jORCID:0000-0001-5717-2426$$tROR:https://ror.org/03xjwb503$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$uCENBG, Gradignan$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002887877 700__ $$aDelahaye, Pierre$$uGANIL$$vGANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, 14000 Caen, France
002887877 700__ $$aDickel, Timo$$jORCID:0000-0002-5965-8689$$tROR:https://ror.org/033eqas34$$tROR:https://ror.org/02k8cbn47$$uDarmstadt, GSI$$uU. Giessen, II. Phys. Inst.$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany$$vII. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
002887877 700__ $$ade Roubin, Antoine$$jORCID:0000-0002-6817-7254$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aGeldhof, Sarina$$jORCID:0000-0002-1335-3505$$tROR:https://ror.org/042dc0x18$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vGANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, 14000 Caen, France
002887877 700__ $$aGins, Wouter$$jORCID:0000-0002-2353-7455$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aHolt, Jason D.$$jORCID:0000-0003-4833-7959$$tROR:https://ror.org/03kgj4539$$tROR:https://ror.org/01pxwe438$$uTRIUMF$$uMcGill U.$$vTRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada$$vDepartment of Physics, McGill University, Montréal, Quebec H3A 2T8, Canada
002887877 700__ $$aHukkanen, Marjut$$tROR:https://ror.org/057qpr032$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$uCENBG, Gradignan$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vUniversité de Bordeaux, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
002887877 700__ $$aJaries, Arthur$$jORCID:0000-0002-5279-0820$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aJokinen, Ari$$jORCID:0000-0002-0451-125X$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aKoszorús, Ágota$$tROR:https://ror.org/04xs57h96$$tROR:https://ror.org/05f950310$$tROR:https://ror.org/01ggx4157$$uLiverpool U.$$uCERN$$uLeuven U.$$vExperimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland$$vDepartment of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom$$vKU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
002887877 700__ $$aKripkó-Koncz, Gabriella$$tROR:https://ror.org/033eqas34$$uU. Giessen, II. Phys. Inst.$$vII. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
002887877 700__ $$aKujanpää, Sonja$$jORCID:0000-0002-5709-3442$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aLam, Yi Hua$$jORCID:0000-0001-6646-0745$$tROR:https://ror.org/03x8rhq63$$tROR:https://ror.org/05qbk4x57$$vInstitute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China$$vSchool of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
002887877 700__ $$aLam, Yihua$$uLanzhou, Inst. Modern Phys.$$vInstitute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China$$vSchool of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
002887877 700__ $$aNikas, Stylianos$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aOrtiz-Cortes, Alejandro$$tROR:https://ror.org/042dc0x18$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vGANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, 14000 Caen, France
002887877 700__ $$aPenttilä, Heikki$$jORCID:0000-0001-8720-1515$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aPitman-Weymouth, Daniel$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aPlaß, Wolfgang$$jORCID:0000-0003-2744-2645$$tROR:https://ror.org/033eqas34$$tROR:https://ror.org/02k8cbn47$$uDarmstadt, GSI$$uU. Giessen, II. Phys. Inst.$$vGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany$$vII. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
002887877 700__ $$aPohjalainen, Ilkka$$tROR:https://ror.org/05n3dz165$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aRaggio, Andrea$$jORCID:0000-0002-5365-1494$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aRinta-Antila, Sami$$jORCID:0000-0003-4198-1960$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aRomero, Jorge$$tROR:https://ror.org/04xs57h96$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$uLiverpool U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vDepartment of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom
002887877 700__ $$aStryjczyk, Marek$$jORCID:0000-0001-6515-2409$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aVilen, Markus$$jORCID:0000-0002-0375-2502$$tROR:https://ror.org/05n3dz165$$tROR:https://ror.org/01ggx4157$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland$$vExperimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
002887877 700__ $$aVirtanen, Ville$$jORCID:0000-0003-0276-6483$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 700__ $$aZadvornaya, Alexandra$$jORCID:0000-0002-2537-5664$$tROR:https://ror.org/05n3dz165$$uJyvaskyla U.$$vDepartment of Physics, University of Jyväskylä, Accelerator Laboratory, P.O. Box 35, FI-40014, Jyväskylä, Finland
002887877 773__ $$c132503$$mpublication$$n13$$pPhys. Rev. Lett.$$v133$$xPhys. Rev. Lett. 133, 132503 (2024)$$y2024
002887877 8564_ $$82507933$$s574304$$uhttp://cds.cern.ch/record/2887877/files/2401.07976.pdf$$yFulltext
002887877 8564_ $$82507934$$s9233$$uhttp://cds.cern.ch/record/2887877/files/Fig3-96Ag-level-scheme-final.png$$y00002 Partial energy level scheme of $^{96}$Ag. The experimental data (EXP) is compared to calculated excited states using the 1.8/2.0(EM), N$^3$LO+3N$_{\text{lnl}}$ and $\Delta$NNLO$_{\text{GO}}$ interactions, as well as CISM.
002887877 8564_ $$82507935$$s58209$$uhttp://cds.cern.ch/record/2887877/files/Fig2-final.png$$y00001 (a) $S_{2n}$, (b) $\Delta S_{2n}$ and (c) $\Delta S_{n}^{3}$ of Ag isotopes as a function of neutron number. Our results (red squares) are compared to the evaluated values from AME2020 (black circles), and predictions from DFT (brown), CISM (green), and \textit{ab initio} calculations with various Hamiltonians (cyan: N$^3$LO+3N$_{\rm lnl}$; blue: 1.8/2.0(EM); pink: $\Delta$NNLO$_{\rm GO}$). If data from this work or experimental data from AME2020 include the extrapolated data, the data points are indicated with open squares or open circles. The error bars illustrate 1$\sigma$ uncertainty of the data points.
002887877 8564_ $$82507936$$s75039$$uhttp://cds.cern.ch/record/2887877/files/Fig1-PI-ICR-95Ag-97Ag-3.png$$y00000 (a) A Ramsey time-of-flight ion-cyclotron resonance (TOF-ICR) spectrum for $^{97}$Ag$^{+}$ acquired with a 25 ms (On) - 350 ms (Off) - 25 ms (On) excitation pattern. The black dots with uncertainties are the average TOF, and the solid line in red is the fit of the theoretical line shape. The vertical red line demonstrates the central frequency. (b) Well-resolved $^{96,96m}$Ag$^{+}$ ion radial motion (reduced cyclotron) projections on the 2-dimensional position-sensitive detector. (c) Ion spots (center, $^{95}$Mo$^{+}$, cyclotron phase and magnetron phase of $^{95}$Ag$^{+}$) after a typical PI-ICR excitation pattern with an accumulation time of 370 ms. The magnetron phase spot is displayed on the left side and the cyclotron phase spot on the right. The angle difference between the two spots relative to the center spot is used to deduce the cyclotron frequency of the measured ion species. The number of ions in each pixel is illustrated by color bars.
002887877 8564_ $$82519261$$s60402$$uhttp://cds.cern.ch/record/2887877/files/Fig2-mass-filters-95-97Ag-final4.png$$y00001 (a) $S_{2n}$, (b) $\Delta S_{2n}$ and (c) $\Delta S_{n}^{(3)}$ of Ag isotopes as a function of neutron number. Our results (red squares) are compared to the evaluated values from AME2020 (black circles), and predictions from DFT (brown), CISM (green), and \textit{ab initio} calculations with various Hamiltonians (cyan: N$^3$LO+3N$_{\rm lnl}$; blue: 1.8/2.0(EM); pink: $\Delta$NNLO$_{\rm GO}$). If data from this work or experimental data from AME2020 include the extrapolated data, the data points are indicated with open squares or open circles. The error bars illustrate 1$\sigma$ uncertainty of the data points.
002887877 8564_ $$82538484$$s71539$$uhttp://cds.cern.ch/record/2887877/files/Fig1-PI-ICR-95-97Ag-final4.png$$y00000 (a) A Ramsey time-of-flight ion-cyclotron resonance (TOF-ICR) spectrum for $^{97}$Ag$^{+}$ acquired with a 25 ms (On) - 350 ms (Off) - 25 ms (On) excitation pattern. The black dots with uncertainties are the average TOF, and the solid line in red is the fit of the theoretical line shape. The vertical red line demonstrates the central frequency. (b) Well-resolved $^{96,96m}$Ag$^{+}$ ion radial motion (reduced cyclotron) projections on the 2-dimensional position-sensitive detector. (c) Ion spots (center, $^{95}$Mo$^{+}$, cyclotron phase and magnetron phase of $^{95}$Ag$^{+}$) after a typical PI-ICR excitation pattern with an accumulation time of 370 ms. The magnetron phase spot is displayed on the left side and the cyclotron phase spot on the right. The angle difference between the two spots relative to the center spot is used to deduce the cyclotron frequency of the measured ion species. The number of ions in each pixel is illustrated by color bars.
002887877 960__ $$a13
002887877 980__ $$aARTICLE