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Abstract

The two-particle momentum correlation functions between charm mesons (D∗± and D±) and charged
light-flavor mesons (π± and K±) in all charge-combinations are measured for the first time by the
ALICE Collaboration in high-multiplicity proton–proton collisions at a center-of-mass energy of√

s = 13 TeV. For DK and D∗K pairs, the experimental results are in agreement with theoretical
predictions of the residual strong interaction based on quantum chromodynamics calculations on the
lattice and chiral effective field theory. In the case of Dπ and D∗π pairs, tension between the calcu-
lations including strong interactions and the measurement is observed. For all particle pairs, the data
can be adequately described by Coulomb interaction only, indicating a shallow interaction between
charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interac-
tion of the Dπ and D∗π systems are determined by fitting the experimental correlation functions with
a model that employs a Gaussian potential. The extracted values are small and compatible with zero.

*See Appendix A for the list of collaboration members
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1 Introduction

The exploration of the strong interaction within hadrons remains a pivotal question in particle physics.
Quantum chromodynamics (QCD) has been well tested at distances significantly shorter than the nu-
cleon’s size and many high-energy phenomena can be effectively explained through perturbative QCD at
the quark level. However, when the distance between quarks reaches the nucleon size, the QCD becomes
a strongly coupled theory and the low-energy processes between hadrons are not yet well described.
From the experimental point of view, the residual strong interaction between hadrons has been studied
in the past using scattering experiments at low energies with both stable and unstable beams. Numerous
results have been achieved for nucleon–nucleon interactions with this method [1, 2], however, due to the
experimental challenge in realizing scattering experiments with unstable particles, only a reduced set of
measurements could have been performed in the strange sector and none in the charm sector. In order to
overcome these experimental limitations, the femtoscopy technique has emerged as an interesting tool to
study reactions among hadrons [3]. This method is based on the measurement of the correlation function
of pairs of hadrons in momentum space, which encodes the information of the interaction between the
two hadrons convoluted with the emitting source distribution. The ALICE Collaboration measured the
residual strong interaction between several light and strange hadrons using the femtoscopy technique in
high-multiplicity proton–proton (pp) collisions, including pp, pK±, pΛ, pΛ, pΣ0, ΛΛ, ΛΛ, pΞ−, pΩ−,
pϕ, and ΛK interactions [4–14].

The study of hadronic interactions involving charm mesons (D, D∗) has gained significant interest after
the observation of the charm-strange meson D∗s0(2317) [15–17], whose mass lies significantly below the
quark model [18] predictions (mexperiment−mquark model ≈ 100 MeV/c2), preventing its accommodation
in simple constituent quark models [19]. The puzzle of the D∗s0(2317) low mass has led to a range
of theories, such as those based on the concepts of conventional charm-strange mesons with coupled-
channel impacts [20–26], or of D(∗)K molecule [27–31], or of a tetraquark state composed of cqsq
(anti)quarks [32–34]. Models based on a mixture of tetraquark and molecular states were also pro-
posed [35, 36]. In recent years, several exotic hadrons with charm-quark content have been discovered,
such as the χc1(3872) [37], T+

cc [38, 39], Pc(4312), Pc(4440), and Pc(4457) [21, 40, 41] states. Simi-
larly to the D∗s0(2317), these states can be interpreted as DD∗, DD∗, or ΣcD, ΣcD∗ molecular states, or
compact multiquark states [42–45]. The observation of potential molecular states is, however, not the
only measurement that challenges the charm-hadron spectrum in terms of the conventional quark model.
In fact, the masses of the non-strange D∗0(2300) and D1(2430) charm mesons [46–48] are very similar
to the corresponding states in the charm-strange spectrum, D∗s0(2317) and Ds1(2460) [15, 17, 21], while
they are expected to be smaller. When combining chiral effective field theory with quantum chromody-
namics calculations on the lattice, all low-energy open heavy-flavor mesonic states with positive parity
can be classified as hadronic molecules. In this framework, pions, kaons, and η mesons arise as Gold-
stone bosons and, by computing the Dπ, Dη, and DsK coupled-channel scatterings, a bound state with a
large coupling to the Dπ channel is obtained at a mass that corresponds to the D∗0(2300) state [49–53].
Nevertheless, their structures remain uncertain owing to the lack of direct experimental information on
the residual strong interaction between charm and light hadrons. These measurements are particularly
challenging because conventional scattering experiments with charm hadrons are restricted by their short
lifetime. Only recently, the residual strong final state interaction involving charm hadrons became ex-
perimentally accessible thanks to the femtoscopy technique. The first study of the strong interaction
between charm mesons and nucleons (pD−) was published by the ALICE Collaboration in Ref. [54],
proving the feasibility of applying the femtoscopy technique to the charm sector.

The knowledge of interactions between charm particles and light-flavor hadrons is also essential for the
study of ultrarelativistic heavy-ion collisions. In these collisions, a color-deconfined state of matter,
called quark–gluon plasma (QGP), is formed [55–59]. Due to the early production, charm quarks are
recognized as ideal probes of the QGP and measurements of the yields and angular anisotropies of
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charm hadrons can be used to infer information about the QGP properties [60, 61]. However, during
the hadronic phase following the deconfined state of the system, the charm hadrons can interact with the
other particles produced in the collision, which are mainly light-flavor hadrons, via elastic and inelastic
processes. These interactions modify the momentum and angular distributions of heavy-flavor hadrons
in heavy-ion collisions. Therefore, the scattering parameters of the charm hadrons with light-flavor
hadrons, in particular pions and kaons, must be determined to disentangle this effect from those related
to the QGP formation [62].

In this article, the first measurement of the residual strong interaction between non-strange charm and
light-flavor mesons via the femtoscopy technique is presented. This method relies on the fact that par-
ticles with similar momentum, hence small relative momentum, can interact with each other strongly, if
they are emitted at small relative distance. The momentum correlation functions of the charm mesons
D+ and D∗+ with charged pions and kaons, also simply referred to as light-flavor mesons in the follow-
ing, are measured for all charge combinations in pp collisions at

√
s = 13 TeV. Section 2 contains the

description of the experimental apparatus, the selection of charm and light-flavor mesons, as well as the
single-particle properties (e.g. purity), which are later needed to extract the final results from the raw
experimental data. The measurement of the correlation functions is described in Section 3, while the
evaluation of the systematic uncertainties is discussed in Section 4. Finally, the results are presented and
compared to model calculations in Section 5.

2 Event and particle selection

This analysis is performed on a data sample of pp collisions at
√

s= 13 TeV collected with the ALICE [13]
experiment during the LHC Run 2 data-taking period. The events are selected employing a high-
multiplicity (HM) trigger. The multiplicity is estimated using the V0 detector, which consists of an
array of scintillators located at forward (2.8 < η < 5.1) and backward (−3.7 < η <−1.7) pseudorapid-
ity [63]. The multiplicity estimator is the V0 amplitude, which is related to the energy deposited by
ionizing particles in the V0 detector. The triggered events correspond to the 0–0.17% percentile of the
inelastic events with the highest V0 amplitude and with at least one charged track in the range |η | < 1
(INEL > 0). The resulting HM dataset consists of approximately 1.0×109 inelastic pp collisions with,
on average, 30 charged particles per event in the pseudorapidity interval |η |< 0.5 [10]. Charged-particle
tracks are reconstructed using both the Inner Tracking System (ITS) [64] and the Time Projection Cham-
ber (TPC) [65], which are embedded in a uniform magnetic field of 0.5 T along the beam direction.
They cover the full azimuthal angle and the pseudorapidity interval |η |< 0.9. The position of the pri-
mary vertex is obtained from the reconstructed tracks, and the particle identification (PID) is performed
employing both the TPC and the Time-of-Flight (TOF) [66] detectors.

The PYTHIA 8.243 event generator [67] is used in the Monte Carlo (MC) simulations. The generated
particles are transported through a simulation of the ALICE apparatus using GEANT 3 [68]. Events
and tracks are reconstructed employing the same algorithms as used for real collision data [69] and a
selection on large charged-particle multiplicities is applied to mimic the effect of the HM trigger.

2.1 Light-meson selection

The K+ and π+ candidates are identified using PID information provided by the TPC and TOF, via the
specific energy loss dE/dx and time-of-flight, respectively. For each track, the deviation of the measured
quantity with respect to the expected value for a particular particle-species hypothesis in terms of units of
the detector resolution is computed and denoted as nTPC/TOF

σ . Pion candidates with transverse momentum
pT < 0.5 GeV/c are identified using only the TPC dE/dx signal via a selection of |nTPC

σ (π)| < 3. For
larger pT the PID information of TPC and TOF is combined into ncomb

σ =
√
(nTPC

σ )2 +(nTOF
σ )2 and a

selection of ncomb
σ < 3 is applied. Tracks with pT > 0.5 GeV/c which do not have a TOF signal are

discarded. The PID selection of the kaon candidates is performed similarly with an additional more
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complex set of selections on nTPC
σ and ncomb

σ , not only for kaons but also for electrons and pions, in order
to suppress possible contamination to the kaon sample in specific momentum regions [14].

The pion and kaon candidates are selected in the pT ranges [0.14, 4.0] and [0.15, 2.15] GeV/c, respec-
tively. The lower limit is imposed to suppress the light-meson candidates stemming from interactions
with the detector material. The tracks are required to be reconstructed from more than 80 clusters in the
TPC to assure a good quality of the track, good pT resolution at large momenta, as well as to remove
fake tracks from the sample. In addition, the candidates are selected within a pseudorapidity range of
|η | < 0.8. To suppress the contribution of particles coming from weak decays or interactions with the
detector material, a selection on the distance of closest approach (DCA) to the primary vertex in the
transverse plane xy and along the beam axis direction z is applied. For kaons, DCAK

xy < 0.1 cm and
DCAK

z < 0.2 cm are required, while for pions DCAπ
xy,z < 0.3 cm.

The purity of the pion and kaon samples, defined as the ratio of the correctly identified particles over the
total number of candidates, is computed as a function of pT using MC simulations, and is reweighted
by the pT distribution of the pion or kaon candidates that form a pair with D(∗)+ mesons at low relative
momentum. It is found to be 99% for pions and 98% for kaons.

The particles can be classified according to their origin: the ones that do not come from interactions with
the material of the detector are classified as primary or secondary, according to the ALICE definition [70].
The fraction of each contribution is estimated with a template fit to the DCA distribution. The templates
for the DCA distributions of primary particles, secondaries from weak decays, and secondaries from
interactions in the material are obtained from MC simulations. The primary fractions are found to be
99.5% and 99.8% for pions and kaons, respectively. A portion of identified primary light-flavor mesons
comes, however, from the strong decay of long-lived resonances (cτ > 5 fm). As the fractions of this
contribution cannot be determined via DCA template fits, they are estimated with the THERMALFIST
statistical hadronization model [71]. The resonances that contribute the most to the pion yield are the η

and ω mesons, while in the case of kaons it is the ϕ meson. The resulting primary fractions of pions and
kaons, subtracted of the contribution of such long-lived resonances, are found to be about 88% and 94%,
respectively. These values are used in the following analysis as primary fractions.

2.2 Charm-meson selection

The D+, D∗+, and D0 candidates are reconstructed via the hadronic decay channels D+→ K−π+π+,
D∗+→ D0π+, followed by D0→ K−π+, and their charge conjugates. The branching ratios (BR) of
the considered D+, D∗+, and D0 decays are BR = (9.38± 0.16)%, BR = (67.7± 0.5)%, and BR =
(3.947± 0.030)%, respectively [72]. The tracks fulfilling a set of standard quality selections [54] are
combined with the correct charge signs to build D+- and D∗+-meson candidates. The obtained sample of
charm-meson candidates consists of three different classes: candidates that result from the combination
of uncorrelated pions and kaons form the combinatorial background, charm mesons that come from the
hadronization of a charm quark or the decay of excited open-charm or charmonium states, which are
referred to as prompt, and D(∗)+ mesons that come from the decay of beauty hadrons, which are referred
to as non-prompt.

To separate the prompt, non-prompt, and combinatorial background contributions, the decay-vertex
topology, in combination with the PID information is used. The mean proper decay length of D± and D0

mesons is about 312 µm and 123 µm, respectively, while for beauty hadrons it is close to 500 µm [72].
Topological variables, such as the DCA of the charm meson candidate, the D+ (D0) decay length, and
the cosine of the pointing angle, namely the angle between the D+ (D0) momentum and the line that
passes through the primary and secondary vertices, are exploited by a multi-class machine learning
(ML) algorithm based on Boosted Decision Trees (BDT). The ML model, provided by the XGBoost
library [73, 74], is trained using labeled examples of candidates of each class. The samples of prompt
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and non-prompt D+ and D∗+ mesons are obtained from a PYTHIA 8 simulation with enhanced produc-
tion of heavy-flavor hadrons, where only events that contain a cc or bb pair are selected, and the charm
mesons are forced to decay in the hadronic decay channels of interest for the analysis. The background
sample for D+ is obtained from the data by selecting the sidebands of the candidate invariant-mass dis-
tribution. For D∗+ mesons, the right sideband of the invariant-mass difference ∆M = M(Kππ)−M(Kπ)
is used. To prepare the sample for the training, loose selections on the PID and decay-vertex topology
are applied. The training is performed in several pT intervals. Then, the model is applied to the data, as-
signing scores to each candidate, which are related to the probabilities that the candidate belongs to each
of the three classes. To suppress the combinatorial background and enhance the prompt contribution in
the sample, candidates with a low background-score and high prompt-score are selected; the selections
are chosen such that they maximize the expected significance and purity.

The fraction of non-prompt candidates present in the sample is estimated with a data-driven procedure
that relies on the fact that the prompt selection efficiencies change differently to the non-prompt ones
when the selection on the ML scores is changed. For each selection i on the ML scores, the raw yield
Yi of charm-meson candidates is extracted via a fit to the invariant-mass distribution of the charm-meson
candidates. The fit function is the sum of a Gaussian, for the description of the signal, and an exponential
or an exponential multiplied by a power law for the description of the background in the case of D+ and
D∗+ mesons, respectively. The left panel of Fig. 1 shows an example of fit to the ∆M distribution of
D∗+ candidates with 2.2 < pT < 2.4 GeV/c. The raw yield is related to the corrected yields of prompt
(Nprompt) and non-prompt (Nnon-prompt) mesons via

δi = Yi− (Acc× ε)prompt,i×Nprompt− (Acc× ε)non-prompt,i×Nnon-prompt, (1)

where (Acc× ε)prompt/non-prompt is the product of acceptance and efficiency for each selection and δi are
the residuals that account for the equation not holding exactly because of the uncertainties. The definition
of multiple sets of selections leads to an overdetermined system of equations, out of which the corrected
yields can be extracted via a χ2 minimization. Further details are provided in Ref. [75]. An example of
a raw-yield distribution as a function of the BDT-based selection used in the minimization procedure for
D∗+ mesons with 2.2 < pT < 2.4 GeV/c is shown in the right panel of Fig. 1. The leftmost data point of
the distribution represents the raw yield corresponding to the loosest selection on the BDT output related
to the candidate probability of being a non-prompt D∗+ meson, while the rightmost one corresponds to
the strictest selection, which is expected to preferentially select non-prompt D∗+ mesons. The prompt
and non-prompt components obtained from the minimization procedure are represented by the red and
blue filled histograms, respectively. The non-prompt fraction extracted in pT intervals is reweighted with
the pT distribution of the D(∗)+ mesons that form pairs at low k∗. The extracted non-prompt fractions are
(7.2±0.2)% for Dπ and DK, and (7.7±1.3)% for D∗π and D∗K.

The prompt component of the D+-meson sample also includes mesons that come from the decay of
excited charm states. The main contribution comes from the decay of the D∗+ mesons, via the D∗±→
D±+π0 and D∗± → D±+ γ decays, that have a branching ratio of (30.7± 0.5)% and (1.6± 0.4)%,
respectively [72]. Since the strong final-state interaction (FSI) is only accessible via the study of the
primary particles, the D+ mesons that result from the decay of charm resonances represent a source
of background. Unlike the contribution of D+ mesons from beauty-hadron decays, it is not possible
to experimentally separate it with the procedure described above, due to the short lifetime of the D∗+

resonances (cτ ≈ 2400 fm) [72]. The fraction of D+ mesons originating from D∗+ decays is estimated
in Ref. [54], employing the production cross sections of D+ and D∗+ mesons in pp collisions at

√
s =

5.02 TeV [75, 76] and a simulation with PYTHIA 8.2 for the description of the D∗± → D±+X decay
kinematics. It is estimated to be (27.6±1.3 (stat.)±2.4 (syst.))%.

To obtain a high-purity sample of D(∗)+-meson candidates, the following procedure is used. The dis-
tribution of the invariant mass of the D+-meson candidates and invariant-mass difference of the D∗+-
meson candidates is fitted in several pT intervals, from 1 to 10 GeV/c. The sample of D(∗)+ mesons
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Figure 1: Left: distribution of invariant-mass difference for D∗+ candidates in the 2.2 < pT < 2.4 GeV/c interval.
The green solid line shows the total fit function and the gray dotted line the combinatorial background. The
contributions of D∗+ mesons originating from charm hadronization and beauty-hadron decays are obtained with
the method relying on the definition of different selection criteria, as explained in the text. Right: example of
raw-yield distribution as a function of the BDT-based selection for the 2.2 < pT < 2.4 GeV/c interval, employed
in the procedure adopted for the determination of the fraction of D∗+ originating from beauty-hadron decays.

used for the analysis is obtained by applying a selection to the invariant mass of the candidates, which
is defined by a 2σ window around the nominal mass, MD± = 1869.66± 0.05 MeV/c2 and MD∗± =
2010.26±0.05 MeV/c2 [72], where σ is the width of the fitted Gaussian. This selection range is repre-
sented by the vertical dashed lines in Fig. 1. The purity is computed as the ratio of the signal candidates
over the total number of candidates in this invariant-mass range, where the number of signal candidates
is extracted with a fit to the invariant-mass distribution. This results in a pT-integrated purity of around
71% for D+ mesons and 67% for D∗+ mesons.

3 The correlation function

In this analysis, the interaction between the charm mesons D(∗) and the light-flavor mesons π and K is
investigated employing the correlation function [77], defined as

C(k∗) = N × Nsame(k∗)
Nmixed(k∗)

, (2)

where k∗ = 1
2 × |p

∗
1−p∗2| is the relative momentum of two particles with momentum ppp1 and ppp2 in the

pair rest frame, denoted by the asterisk, N is a normalization constant, and Nsame (mixed)(k∗) is the k∗

distribution of the pairs measured in the same (mixed) events. The mixed-event distribution, which does
not contain any effect of the strong FSI, reflects the phase space of the underlying event. Therefore, it
serves as a reference to which the same-event distribution can be compared in order to extract information
on the strong FSI of a specific system. To ensure a good quality of the reference sample, Nmixed, the
mixing is performed only between events with similar multiplicity and primary-vertex position [5, 7, 10].
As the same (mixed) event distributions of the pairs are found to be compatible with the ones of the
respective charge conjugates, they are combined in order to enhance the statistical precision. In the
following, same-charge D(∗)X refers to D(∗)+X+⊕D(∗)−X− pairs, while opposite-charge D(∗)X refers to
D(∗)+X−⊕D(∗)−X+ pairs, where X is either K or π. The normalization constant N is chosen such that
the mean value of the correlation function equals unity in a given range at large k∗, where the particles
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Table 1: Number of pairs with small relative momenta, where final-state effects become relevant, and in the full
k∗ range, as well as the normalization range for the individual particle pair combinations under investigation.

Pair
Number of pairs in Nsame(k∗) Normalization range

Total k∗ < 200 MeV/c

D+π+⊕D−π− 3.0×106 2.0×105
k∗ ∈ [1.0, 1.5]GeV/c

D+π−⊕D−π+ 2.9×106 2.1×105

D+K+⊕D−K− 1.7×105 1.9×103
k∗ ∈ [1.5, 2.0]GeV/c

D+K−⊕D−K+ 1.6×105 2.2×103

D∗+π+⊕D∗−π− 4.7×105 3.3×104
k∗ ∈ [1.5, 2.0]GeV/c

D∗+π−⊕D∗−π+ 4.8×105 3.4×104

D∗+K+⊕D∗−K− 4.9×104 479
k∗ ∈ [1.5, 2.0]GeV/c

D∗+K−⊕D∗+K− 4.8×104 477

are not close enough in momentum space to experience FSI. The number of pairs and the normalization
range for the different channels are reported in Table 1. The latter are chosen according to the shape of
the same (mixed) event distributions, which decreases and flattens out at different k∗ regions depending
on the involved light-flavor meson. The experimental correlation functions are computed in k∗ intervals
of 50 MeV/c and the horizontal position of each data point is the average of the k∗ distribution of the
mixed event in the corresponding k∗ interval. The effect of the finite momentum resolution of the ALICE
detector on data is found to be negligible.

The experimental correlation functions involving D+ and light-flavor mesons, obtained from Eq. 2 are
shown in the left panels of Figs. 2 and 3. They are raw quantities, which can be decomposed as

Craw(k∗) =Cfemto(k∗)×Cnon-femto(k∗), (3)

where Cfemto(k∗) = ∑i,j λi,j×Ci,j(k∗), with Ci,j(k∗) arising from the FSI between the i-th and j-th compo-
nents of the two particle species involved in the analysis, namely primary, secondary, and misidentified
particles. Each of these contributions is weighted according to so-called λ parameters, which are com-
puted as λij = pi pj fi fj where pi,j and fi,j are, respectively, the purities and primary (secondary) fractions
of the i-th and j-th contributions to the particle samples, discussed in Section 2.1. The contribution to
Cfemto(k∗), that only includes primary signal particles, is also referred to as genuine correlation func-
tion Cgen(k∗) and is used to extract the relevant physics information about the strong FSI for the pair of
interest. A detailed discussion on the different contributions to Cfemto(k∗) can be found in Section 3.1.
The remaining residual backgrounds, not related to FSI, are included in the term Cnon-femto(k∗), which is
discussed in Section 3.2.

3.1 Contributions related to FSI

There are several contributions to Cfemto(k∗) in Eq. 3 in the case of D(∗)+ and light-flavor mesons. When
it is not possible to constrain them experimentally, these contributions can be modeled using the Koonin–
Pratt equation [77]

C(k∗) =
∫

d3r∗S(rrr∗)|ψ(rrr∗,kkk∗)|2, (4)

where the so-called source function S(rrr∗) contains the distribution of the relative distance in the pair rest
frame, and ψ(rrr∗,kkk∗) denotes the two-particle wave function, which contains the interaction. Together
they determine the shape of the correlation function, which is sensitive to the strong FSI at small k∗ <
200 MeV/c, also denoted as femtoscopic region.
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The source is constrained from the core–resonance model [78], which is based on the hypothesis of a
common emission source of all hadrons [79] and is anchored to p–p correlation data in pp collisions.
The model is characterized by a mT-dependent Gaussian core of width rcore, from which all primordial
particles, which are created directly during the hadronization process, and do not stem from an interme-
diate decay, are emitted. Therefore, by measuring the mT of the reconstructed particle pairs with small
k∗ it is possible to obtain the respective core radius from a parameterization of the p–p data used in the
model, following several previous femtoscopic analyses [6, 7, 10–12, 54, 80]. The mean mT of D(∗)π
pairs with k∗ < 200 MeV/c is about 2.55 GeV/c2, while it is approximately 2.66 GeV/c2 for D(∗)K
pairs. This leads to core radii of rD(∗)π

core = 0.82+0.07
−0.07 fm and rD(∗)K

core = 0.81+0.08
−0.07 fm for D(∗)π and D(∗)K

pairs respectively. However, also short-lived resonances feeding into the yields of the particles of in-
terest have to be considered, as they lead to an effective enlargement of the source. This is accounted
for in the core–resonance model by fixing the yields of the resonances and employing an event gen-
erator to model their propagation and relative spatial orientation. At large r∗ these resonances lead to
an exponential tail in the Gaussian-shaped source distributions obtained from the model for both D(∗)K
and D(∗)π. Therefore, the effective source employed in this analysis is obtained by parameterizing the
distributions with two Gaussian sources of width ri

eff, which are combined with the weight w, leading
to Seff(r∗) = wS1(r∗) + (1−w)S2(r∗). The values of the source parameters can be found in Table 2.
Employing Seff(r∗) as source function in Eq. 4 ultimately leads to two properly weighted correlation
functions with the respective Gaussian sources, S1(r∗) and S2(r∗).
The two-particle wave function ψ(rrr∗,kkk∗) can be obtained by numerically solving the Schrödinger equa-
tion for a given interaction potential, for example by employing CATS [81], a correlation analysis tool
using the Schrödinger equation.

The relevant contribution to Cfemto(k∗), needed to extract information of the strong FSI between D(∗)π
and D(∗)K, is the genuine correlation function Cgen(k∗), which is associated to primary light-flavor
mesons and signal D(∗)+ candidates.

As the D(∗)+-meson samples are not pure, the correlation between combinatorial background candidates
and light-flavor mesons has to be taken into account, which arises from the interaction between the light-
flavor mesons and the particles from which the background D(∗)+-meson candidate is built from [82].
It is estimated using a data-driven approach, where pions or kaons are paired with a pure sample of
background D(∗)+ mesons, obtained from the sidebands of the invariant-mass intervals outside the D(∗)+-
meson signal region. The resulting correlation function is referred to as CSB(k∗)

For the D+ mesons, the sideband intervals start at 5 σD away from the nominal mass and extend for
200 MeV/c2. The σD corresponds to the width of the Gaussian function describing the signal peak
and is determined via a fit to the invariant-mass distribution, considering its pT dependence. For the
D∗+ mesons, the selection is analogous except that, instead of the invariant mass, the invariant-mass
difference M(Kππ)−M(Kπ) is used, and only the right sideband is considered.

Since a contamination from D∗+-meson is expected in the D+-meson sideband sample, due to D∗+→ D0π+

and subsequent D0→ K−π+ decays, the invariant-mass interval [1.992, 2.028] MeV/c2 is excluded.

Table 2: Parameters of the effective source Seff(r∗), which is given by the weighted sum of two Gaussian dis-
tributions of width ri

eff and used in the modeling of the correlation functions. The difference between the D(∗)π

and D(∗)K systems is due to the different transverse mass of the systems as well as resonances feeding into the
light-flavor mesons.

Pair w r1
eff [fm] r2

eff [fm]

D(∗)K 0.78+0.02
−0.01 0.86+0.09

−0.07 2.03+0.19
−0.12

D(∗)π 0.66+0.03
−0.02 0.97+0.09

−0.08 2.52+0.36
−0.20
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Table 3: List of λ parameters, which quantify the individual contributions to the different raw correlation functions
investigated in this paper.

Dπ DK D∗π D∗+K+⊕D∗−K− D∗+K−⊕D∗+K−

λgen 0.40 0.43 0.80 0.55 0.59
λSB 0.29 0.29 n.a. 0.32 0.28
λflat 0.14 0.10 0.20 0.13 0.13

λDD←D∗ 0.17 0.18 n.a. n.a. n.a.

This corresponds to 2.5 σD∗ around the D∗+ mass. The correlation functions obtained from the left and
right sidebands are compatible within the uncertainties and combined as a weighted average, consid-
ering the relative abundances of background in the left and right half of the D+-meson signal region.
The correction of the combinatorial D∗π correlation function requires a different approach with respect
to the traditional sideband method. This is due to the presence of an additional source of correlated
background that arises from the correlation of a soft pion of a real D∗+ decay with a background D∗+

candidate formed by the D0 meson coming from the same D∗+ decay of the soft pion and an unrelated
pion. Such a correlation results in a peak in the correlation function at k∗ ≈ 40 MeV/c, which cannot
be removed via pair- or particle-level selections since the particle’s origin is not known in data. For this
reason, the correction for the combinatorial background cannot be carried out via a sideband analysis.
Instead, the background-corrected correlation function is directly computed as

C′raw(k
∗) = N

psame(k∗)Nsame(k∗)
pmixed(k∗)Nmixed(k∗)

, (5)

where psame/mixed(k∗) is the purity of the D∗+-meson sample, calculated in the same- and mixed-events,
as a function of k∗. Since the peak in the correlation function comes from the combinatorial background
of the D∗+-meson candidates, a reweighting by the purity removes by construction the artifact at k∗ ≈
40 MeV/c. The opposite-charge D∗K correlation function is affected by a similar issue since the D0

meson decays into K− via D0→ K−π+. However, in this case, the peak associated with the correlated
background is found to be at k∗ ≈ 600 MeV/c, outside the femtoscopic region. As the correlation
function above 200 MeV/c does not carry information about the strong FSI, the traditional sideband
method is used to correct for the combinatorial background.

As already discussed in Section 2.2, a significant fraction of the D+ mesons is produced from the de-
cays of charm-hadron resonances. As this contribution cannot be separated experimentally, it is modeled
using the Koonin–Pratt formalism with Coulomb potential, which is found to adequately describe the
experimental correlation functions involving D∗+ mesons, presented in Section 5. Subsequently, the
so-obtained correlation functions are mapped into the ones of (D+← D∗+)π and (D+← D∗+)K pairs,
respectively. The transformation of the momentum basis is performed using GENBOD phase-space sim-
ulations [83] of the D∗±→ D±π0 decay, as in this case the kinematics are most stringently constrained.
Contributions to the D+-meson yield from decays of other excited charm resonances are considered to
be negligible [72].

A flat correlation function is assumed for sources of background that are not expected to lead to corre-
lations, or that can be assumed negligible due to their small λ scaling parameter. They include contri-
butions from particle pairs involving non-primary light-flavor mesons and contamination of the samples,
as well as non-prompt D(∗)+ mesons. Especially, the correlation of primary light-flavor mesons with
non-prompt D+ mesons is studied in analogy to D+ mesons from D∗ decays, assuming Coulomb-only
interaction, as it is associated to a non-negligible λ parameter of ∼ 5%. The decay kinematics for
B+→ D++X decay is simulated and the correlation function of B mesons and light-flavor meson pairs
is mapped into the one of the daughter D+ and light-flavor mesons. As the phase space available for the
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decay is much larger compared to the D∗+→D+ case, the information on the interaction between beauty
and light-flavor hadrons is lost, leading to a flat correlation.

In total, four(three) contributions to Cfemto(k∗) of the D(∗)K and D(∗)π systems can be identified. The
individual λij parameters are combined, based on how the corresponding correlation functions are ob-
tained: λgen is associated with the correlation function obtained from primary signal particles only, λSB
to the one from D(∗)+-meson background candidates, λD←D∗ to the one obtained using D+ mesons from
D∗+-meson decays, and λflat contains all other femtoscopic contributions. The combined λ parameters
for each system can be found in Table 3.

3.2 Residual contributions

Energy–momentum conservation effects and the production of particles within jet-like structures in-
troduce an enhancement of the correlation function and represent a residual background Cnon-femto(k∗)
not related to FSI and already introduced in Eq. 3, which has to be taken into account. The contribu-
tion of jet-like structures was observed in several meson–meson [4, 84–87], meson–baryon [5, 11], and
baryon–antibaryon [12] femtoscopic analyses. They are related to initial hard processes at the parton
level [88], and not to femtoscopic FSI. The correlation function used to model the residual background,
Cnon-femto(k∗), is obtained from MC simulations, where the FSI is absent. It is further multiplied by a
constant N, which is a free parameter and accounts for a possible bias due to the chosen normalization
region of the raw data. In the case of the Dπ and D∗K systems, an additional polynomial of the form
p(k∗) = ak∗2 and p(k∗) = ak∗, respectively, are added to the MC correlation function CMC(k∗) to better
fit the background model to Craw(k∗) at intermediate k∗. This introduces an additional free parameter a
and leads to the following expression for the residual background Cnon-femto(k∗) =N× [CMC(k∗)+ p(k∗)].

3.3 Modeling of the correlation function

In order to extract the unknown Cgen(k∗) from the raw data, which is needed to study the residual strong
interaction between the different particle pairs of interest, a model is built according to Eq. 3, taking into
account all the relevant background contributions discussed in the previous sections.

In the case of Dπ and DK pairs, all the sources of background, mentioned and explained in detail in
Sections 3.1 and 3.2, are present. Therefore, the model takes the form

Craw(k∗) = λSBCSB(k∗)+Cnon-femto(k∗)
[
λgenCgen(k∗)+λD←D∗CD←D∗(k∗)+λflat

]
, (6)

where CSB(k∗) is the correlation function arising from the D+-meson combinatorial background,
Cnon-femto(k∗) is the correlation function that describes the residual correlation not associated to FSI
and mainly coming from jet-like contributions, and CD←D∗(k∗) is the correlation function associated to
the D+ mesons from D∗+ decays. Finally, λflat accounts for all femtoscopic background contributions,
assumed to be flat. Notably, as CSB(k∗) is obtained in a data-driven approach, it already includes possible
residual jet-like contributions and thus does not have to be multiplied by Cnon-femto(k∗).

The model for the D∗K correlation functions is similar to the one used for Dπ and DK correlations, with
the difference, that the contribution from excited charm states is assumed to be negligible, hence λD←D∗ =
0. The same assumption holds for D∗π correlation functions. In this case, however, the combinatorial
background is already subtracted using the sideband-less approach described by Eq. 5 in Section 3.1.
Therefore, the final model is given by Eq. 6, with λD←D∗ = 0 and λSB = 0.

To determine the free parameters related to Cnon-femto(k∗), a background model is defined by imposing
Cgen(k∗) = 1 in Eq. 6 for all pair combinations. The resulting expressions are fitted directly to the
raw data in the range of k∗ ∈ [100,600] MeV/c for Dπ correlations and k∗ ∈ [200,400] MeV/c for
DK. The chosen fit range for correlations involving D∗π is k∗ ∈ [300,1000] MeV/c, while it is k∗ ∈
[250,500] MeV/c for D∗K. The fit ranges are tuned to select a k∗ region in which the femtoscopic

10



Studying the interaction between charm and light-flavor mesons ALICE Collaboration

0 200 400 600 800
)c (MeV/k* 

1.0

1.1

1.2

)
k*(

ra
w

C 

+π− D⊕ −π+D

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

0 200 400
)c (MeV/k* 

1.0

1.2

1.4

1.6

)
k*(

C 

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

+π− D⊕ −π+*), Dk(rawC

Total background

 = 0.29)SBλ = 0.17, D*←Dλ(
 = 1)D*←Dλ*) (k(D*←DC

 = 1)SBλ*) (k(SBC

*)k(non-femtoC

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

0 200 400 600 800
)c (MeV/k* 

1.0

1.1

1.2

)
k*(

ra
w

C 

−π− D⊕ +π+D

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

0 200 400
)c (MeV/k* 

1.0

1.2

1.4

1.6

)
k*(

C 
 = 13 TeVsALICE pp 

0) > % INEL 0.17 − High-mult. (0
−π− D⊕ +π+*), Dk(rawC

Total background

 = 0.29)SBλ = 0.17, D*←Dλ(
 = 1)D*←Dλ*) (k(D*←DC

 = 1)SBλ*) (k(SBC

*)k(non-femtoC

 = 13 TeVsALICE pp 
0) > % INEL 0.17 − High-mult. (0

Figure 2: Experimental Dπ raw correlation functions (Craw(k∗)) with statistical (bars) and systematic uncertainties
(boxes) (left column), and background contributions to the experimental correlation functions (right column). The

width of the bands corresponds to the total uncertainty σtot =
√

σ2
stat +σ2

syst. The violet band describes the total
background, fitted to the data, and used to extract the genuine correlation function from the raw signal. This
band consists of several contributions, which are also shown individually in the figure, scaled by the appropriate λ

parameter. The results are shown for opposite-charge (first row) and same-charge (second row) pairs.

correlations are expected to be negligible. The different sources of background, together with the total
background model (violet band) and the raw data, are reported in the right panels of Figs. 2 and 3 for both
the Dπ and DK correlation functions, respectively. The blue band represents the residual Cnon-femto(k∗),
the orange band the combinatorial background CSB(k∗), and the red band the contribution arising from the
feed-down of D∗+ to D+, CD←D∗(k∗). Once the parameters are fixed from the fit, the genuine correlation
function Cgen(k∗) is extracted from the raw data via Eq. 6, adapted to the pair of interest.

4 Systematic uncertainties

The genuine correlation functions, which are the observables used to extract information on the residual
strong final state interaction, are affected by several sources of systematic uncertainty related to the
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Figure 3: Experimental DK raw correlation functions (Craw(k∗)) with statistical (bars) and systematic uncertainties
(boxes) (left column), and background contributions to the experimental correlation functions (right column). The

width of the bands corresponds to the total uncertainty σtot =
√

σ2
stat +σ2

syst. The violet band describes the total
background, fitted to the data, and used to extract the genuine correlation function from the raw signal. This
band consists of several contributions, which are also shown individually in the figure, scaled by the appropriate λ

parameter. The results are shown for opposite-charge (first row) and same-charge (second row) pairs.

selection criteria or the background corrections to the raw data. Such uncertainty contributes to the
systematic uncertainty of the scattering parameters, together with the systematic uncertainties associated
with the source parameters and the choice of the fit range. The details on how the systematic uncertainties
are estimated are provided in the following paragraphs.

4.1 Genuine correlation function

The choice of the selection criteria of the light-flavor and D(∗)-meson candidates determines the single-
particle properties of the sample and hence the distributions of the pairs in the same (mixed) events.
Therefore, an impact on the raw correlation function is expected, which is then propagated to the gen-
uine correlation function. To estimate the systematic uncertainty associated with this contribution, the
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selection criteria mentioned in Section 2 are varied, and the raw correlation functions are recomputed for
each set of variations. On the raw correlation function, the relative systematic uncertainty is below 3%
in the case of D(∗)K pairs and below 1% in the case of D(∗)π pairs.

The uncertainties on the λ parameters, which affect the modeling of the background, are dominated by
the uncertainty on the fraction of non-prompt charm mesons, D+ mesons from D∗+ decays, and light-
flavor mesons from the decay of long-lived resonances as well as the purity of the D(∗)+ meson candi-
dates. It is estimated by varying the fractions of charm mesons according to the uncertainties stated in
Section 2. The fractions of strongly-decaying long-lived resonances feeding into the light-flavor mesons,
which are estimated using THERMALFIST, are varied by 10% [79] and the purity of D(∗)+ mesons by
2% [54]. This leads to a variation of ∼ 10% of the λ -parameter values.
The systematic uncertainty on the background model is estimated by propagating the systematic uncer-
tainties of the raw correlation functions and by varying the fractions according to the uncertainties stated
above. Additionally, the fit range of the background model is varied in order to account for possible
systematic effects related to the fit procedure. For particle pairs involving D+ mesons, where the feed-
down contribution from D∗+ decays is modeled assuming Coulomb-only interaction, the uncertainty on
the effective source parameterization, reported in Table 2, represents an additional source of systematic
uncertainty of the background model.

The total systematic uncertainty of the genuine correlation functions, computed taking into account all
the contributions mentioned above, is found to be below 1% for opposite-charge Dπ, below 2% for
same-charge Dπ, below 10% for same-charge DK, below 15% for opposite-charge DK, below 2.5%
for D∗π, below 7% for same-charge D∗K, and below 25% for opposite-charge D∗K. In the low k∗

region, the correlation functions are the most affected by the systematic uncertainties. The larger relative
systematic uncertainty of the D(∗)K correlation functions with respect to the ones of D(∗)π arises from
the propagated uncertainty of the raw correlation functions, which is related to the light-flavor meson
selections. Overall, this represents the main source of systematic uncertainty of the genuine correlation
functions, followed by the uncertainty on the λ parameters.

4.2 Scattering lengths

The systematic uncertainty associated to the extraction of the scattering lengths, discussed in the next
section, besides the one related to the genuine correlation functions, is obtained by taking into account
the choice of the fit range and the lack of precise knowledge of the source function. The first is estimated
by varying the fit range by 50 MeV/c, and the second one by performing the fit with different effective
source parameters, determined according to the uncertainties reported in Table 2. The latter represents
the largest contribution to the systematic uncertainties on the scattering lengths, besides the propagated
systematic uncertainties of the genuine correlation functions.

5 Results

The measured genuine correlation functions, extracted from the raw data as described in Section 3, are
shown in Fig. 4 and Fig. 5 for correlations involving light-flavor and D+ or D∗+ mesons, respectively. In
the femtoscopic region k∗ < 200 MeV/c the genuine correlation functions are sensitive to the Coulomb
and strong nuclear forces and can be compared to the corresponding calculations.
The strong interactions between the mesons depend on the quantum numbers of the systems and can
therefore be separated into different isospin and strangeness configurations. These are namely: D(∗)π(I =
3/2,1/2,S = 0), D(∗)K(I = 1,0,S =−1), and D(∗)K(I = 0,S =+1). Several theoretical predictions are
available for the Dπ and DK scattering lengths [89–93], while only two are present for the D∗π and
D∗K systems [93, 94]. The models are listed below, together with a brief description of the calculation
method. The corresponding scattering lengths are summarized in Tables 4 and 5.
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Table 4: Scattering lengths of the available theoretical models for the Dπ interactions. The values are reported
separately for the different isospin states.

Model a0 (fm)

Dπ(I = 3/2) Dπ(I = 1/2)

L. Liu et al. [89] −0.100±0.002 0.37+0.03
−0.02

X. Y. Guo et al. [90] −0.11 0.33

Z. H. Guo et al. [91]
Fit-1B −0.101+0.005

−0.003 0.31+0.01
−0.01

Fit-2B −0.099+0.003
−0.004 0.34+0.00

−0.03

B. L. Huang et al. [92] −0.06±0.02 0.61±0.11
J. M. Torres-Rincon et al. [93] −0.101 0.423

D∗π(I = 3/2) D∗π(I = 1/2)
Z.-W. Liu [94] −0.13−0.00036i 0.27−0.00036i

– L. Liu et al. [89]: The S-wave scattering lengths aDπ
0 (I = 3/2), aDK

0 (I = 0), and aDK
0 (I = 1) are

calculated on the lattice using Lüschers finite volume technique. Extrapolation to the physical
point is performed using unitarized chiral perturbation theory (ChPT) up to next-to-leading order
(NLO), where the low-energy constants (LECs) are determined by a fit to the lattice data. The
latter are exploited to predict the scattering lengths in the other isospin channels.

– X. Y. Guo et al. [90]: N3LO ChPT is employed and the LECs are determined by a global fit to
lattice QCD data, including the S-wave scattering length from [89]. A chiral expansion scheme is
applied to obtain the scattering lengths at physical pion mass.

– Z. H. Guo et al. [91]: The scattering length between the light-flavor and charmed mesons is
obtained from unitarized ChPT up to NLO. The free parameters of the theory are constrained to
lattice QCD calculations of the scattering length, including [89], and the finite-volume spectra. The
fit is performed on different sets of the data, denoted as Fit-1B and Fit-2B. Finally, the scattering
lengths are obtained using a chiral extrapolation to the physical point.

– B. Huang et al. [92]: Lattice QCD calculations of the finite-volume spectra and scattering lengths,
including [89] are used to determine the LECs of the Lagrangian formulated within unitarized
heavy-meson ChPT at N3LO. The scattering lengths used in this paper are obtained from the

Table 5: Scattering lengths of the available theoretical models for the DK interactions. The values are reported
separately for the different strangeness and isospin states. The real and imaginary components are associated with
elastic and inelastic processes, respectively.

Model a0 (fm)

DK(I = 1) DK(I = 1) DK(I = 0)
L. Liu et al. [89] 0.07±0.03+0.17+0.02

−0.01i −0.20±0.01 0.84+0.17
−0.22

X. Y. Guo et al. [90] −4.87×10−2 −0.22 0.46

Z. H. Guo et al. [91]
Fit-1B 0.06+0.05

−0.03 +0.30+0.09
−0.05i −0.18+0.01

−0.01 0.96+1.44
−0.44

Fit-2B 0.05+0.04
−0.03 +0.17+0.02

−0.03i −0.19+0.02
−0.02 0.68+0.17

−0.16

B. L. Huang et al. [92] −0.01±0.03 −0.24±0.02 1.81±0.48
J. M. Torres-Rincon et al. [93] −0.027+0.083i −0.233 0.399

D∗K(I = 1) D∗K(I = 1) D∗K(I = 0)
Z.-W. Liu [94] −0.022+0.18i −0.19−1.7×10−6i 0.29+5.2×10−6i
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iterated method.

– J. M. Torres-Rincon et al. [93]: The model employs unitarized ChPT with heavy-quark symmetry
considerations at NLO, in a coupled-channel basis. The LECs at NLO are taken from [91]. Predic-
tion for the D∗π and D∗K scattering lengths are provided, exploiting heavy-quark spin symmetry.

– Z.-W. Liu et al. [94]: The S-wave scattering lengths of interactions involving the heavy vector
meson D∗ are derived within the framework of heavy-meson ChPT at N2LO. The LECs at NLO
are obtained from the mass splitting between heavy mesons and the resonance saturation model,
while most of the N2LO LECs are assumed to be negligible.

The theoretical curves of the J.M. Torres-Rincon et al. model were provided in a private communication
with the authors and use the effective source parameterization Seff(r∗) described in Section 3.1, with
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Figure 4: Genuine correlation functions with statistical (bars) and systematic uncertainties (boxes) compared to
theoretical model predictions (bands), listed in Tables 4 and 5. The width of the theoretical bands represents the
uncertainty related to the source. The number of standard deviations nσ is reported for each model in the legend.
The results are shown for Dπ (first row) and DK (second row) for the opposite- (left column) and same-charge
(right column) combinations.
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values listed in Table 2. In the other cases, the scattering lengths predicted by the models are converted
into correlation functions by employing Eq. 4 with the effective source parameterization Seff(r∗). The
wave function is obtained by taking into account both the Coulomb and strong interaction. The former is
modeled using the well-understood Coulomb potential, while the latter is parameterized with a Gaussian
potential of the form

V (r) =V0 exp(−m2
ρr2), (7)

where V0 is the potential strength and mρ is the mass of the lightest exchangeable meson, the ρ meson,
which is the parameter that controls the potential range. The strength V0 is tuned to reproduce the
scattering lengths of the model [44].

The theoretical models provide the scattering parameters in the (strangeness, isospin) basis, but in the
experiment, the interactions are accessible only in the charge basis. The same-charge pairs consist of
a pure isospin state. The opposite-charge pairs are a mixture of two isospin states, which can be ad-
dressed by solving the coupled-channel Schrödinger equation with two isospin interaction components.
In the case of D(∗)π pairs, the isospin channel I = 3/2 is shared between the same- and opposite-charge
configurations, as both have no net strangeness.

The theoretical correlation functions obtained from the different models of the strong interaction between
charm and light-flavors mesons are compared to the measured genuine correlation functions in Fig. 4 and
Fig. 5 for D+ and D∗+, respectively. The predictions for the Coulomb-only hypothesis (gray curves) are
shown as a reference, as any deviation of the experimental data from it indicates the presence of strong
FSI. Additionally, the difference between the data and the calculations is quantified by the number of
standard deviations nσ and is reported in the figure legends. Each nσ value is directly obtained from the
p-value and reflects how well the specific model describes the data in the range of k∗ < 200 MeV/c by
considering the total uncertainty of the data as well as the predictions.

Even though the current statistical precision is not sufficient to distinguish between the individual model
predictions of the residual strong interaction involving kaons, no tension with theory is observed in most
cases. The exception is K+D−⊕K−D+, where the larger nσ values are likely due to the fluctuation of
the fourth data point. This is different for correlation functions involving pions. In the case of opposite-
charge D(∗)π pairs the data are significantly lower than any of the model predictions and clearly favor
the Coulomb-only hypothesis. For same-charge pairs, the deviation between data and models is much
smaller, however, the Coulomb-only hypothesis is still favored.
In general, the correlation functions for all the analyzed particle systems can be adequately described
by only considering the Coulomb interaction, indicating a shallow residual strong interaction between
the D+ and D∗+ mesons and light-flavor hadrons. A slight tension of nσ = 2.62 is observed for the
D∗+π+⊕D∗−π− system, where the data points scatter around unity in the low k∗ region. However,
as mentioned above, the Coulomb-only hypothesis is still favored over the calculations with residual
strong interactions. In the case of D+K−⊕D−K+ the nσ = 2.72 between the data and Coulomb-only
hypotheses could be related to the fluctuating data point at k∗∼ 180 MeV/c. By only considering smaller
k∗ values, the nσ value reduces to 1.76, indicating that the Coulomb interaction sufficiently describes the
measurement in the sensitive relative-momentum region.

The most precise correlation functions of this analysis, namely D+π+⊕D−π− and D∗+π+⊕D∗−π−,
are employed to extract the scattering length a0 of the strong interaction. This is done by parameterizing
the data using the same approach as for the theory predictions, which involves a Gaussian potential given
by Eq. 7 with variable potential strength V0 to model the strong interaction. As the isospin I = 3/2
state is shared among both charge combinations, the corresponding V I=3/2

0 parameter is a common fit
parameter of the two correlation functions. The potential strengths V I=3/2

0 and V I=1/2
0 are determined by

a simultaneous χ2 minimization within k∗ < 250 MeV/c. Finally, the I = 1/2 and 3/2 scattering lengths
are calculated by solving the Schrödinger equation in the isospin basis.
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Figure 5: Genuine correlation functions with statistical (bars) and systematic uncertainties (boxes) compared to
theoretical model predictions (bands). The width of the bands represents the uncertainty related to the source. The
number of standard deviations nσ is reported for each model in the legend. The results are shown for D∗π (first
row) and D∗K (second row) for the opposite- (left column) and same-chage (right column) combinations.

The scattering lengths extracted by the minimization are summarized in Table 6. Figure 6 shows the
corresponding model correlation functions (red bands) as well as the fitted data. The width of the bands
represents the total uncertainty obtained from the χ2 minimization. The χ2/ndf of the combined fit of
the Dπ correlation functions is 0.7 within k∗ < 250 MeV/c, while it is 1.0 in the case of D∗π. The
correlation between the scattering lengths for the isospin channels I = 1/2 and I = 3/2 extracted from
the simultaneous fits are shown in Fig. 7. The red (orange) areas represent the confidence intervals for a
68% (95%) probability. Notably, the scattering lengths governing the residual strong interaction between
D+ and D∗+ mesons with light-flavor mesons are found to be compatible with each other within the
uncertainties. This is understood in terms of heavy-quark spin symmetry, which states that, at leading
order, the interaction of light-flavor mesons with pseudoscalar or vector charm mesons is the same.
The measured scattering lengths for the isospin I = 1/2 channels are vanishing for both D+ and D∗+

mesons. In the case of I = 3/2, they are compatible with zero within uncertainties for the Dπ interac-
tion, while they are positive with a significance of about 1.1σ for the D∗π interaction. The scattering
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Figure 6: Comparison of the Dπ (first row) and D∗π (second row) genuine correlation functions of same- (left
column) and opposite-charge (right column) combinations with the results of the χ2 minimization using a Gaus-
sian potential to parameterize the strong interaction (red band). The width of the band corresponds to the total
uncertainty. The gray curve represents the correlation functions assuming only interaction via the Coulomb force.

lengths extracted from the data are further compared with the theoretical predictions reported in Tables 4
and 5. For the I = 1/2 channel, the measurements are significantly different from the values predicted
by theoretical models, which cover the range between about 0.3 and 0.6 fm. Depending on the model,
5−13σ are obtained for Dπ and 6−8σ for D∗π, taking into account the uncertainty of the data as well
as the predictions. In the case of the I = 3/2 channel, the measurements also show a tension with the
theoretical predictions, it is, however, smaller than in the I = 1/2 channel. In the Dπ case, a deviation of
2−5σ is found, depending on the model, while it is around 3−4σ for D∗π. A much larger source size
could diminish this discrepancy, as it leads to a less pronounced correlation signal for a given interaction
strength. However, there is no obvious motivation for assuming a breaking of the universal mT scaling of
the core radius [78, 79] in the case of correlation functions involving charm mesons. Especially, it is suc-
cessfully used in the analysis of the experimental pD− correlation function [54]. In Ref. [95] the hidden
gauge formalism, implementing unitarization in coupled channels, is used to study the molecular nature
of the lowest-lying D1 states (D1(2420) and D1(2430)), as well as the scattering amplitudes of some
of the members of the meson−baryon basis considered (D∗π, Dρ) and the corresponding correlation
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Figure 7: Scattering length of the Dπ (left) and D∗π (right) interaction, for the two isospin channels that character-
ize the systems. They are extracted from a simultaneous χ2 minimization to the experimental correlation functions.
The red (orange) areas represent the resulting confidence intervals for a 68% (95%) probability. The dashed lines
correspond to Coulomb interaction only, as the scattering lengths of the strong interaction vanish. As comparison,
the available theoretical predictions [89–94], listed in Tables 4 and 5 are shown as well.

functions. In order to better accommodate the D1(2430) within the experimental observations [46, 96],
a bare quark-model pole structure is added explicitly, whose parameters-dependence allows the authors
to consider two plausible scenarios. The one denoted as Model B in their publication provides as a result
a scattering length of aI=1/2

D∗π = 0.1 fm, which is a value much closer to the one obtained in the present
work. Alternatively, other complex structures, for example in higher partial waves, not taken into account
by the theory models, could modify the predictions.

In summary, the measured correlation functions between charm mesons and light-flavor mesons are
compatible with the predictions obtained with only Coulomb interaction, suggesting that the residual
strong interaction between these pairs of particles is shallow. A significant discrepancy in the I = 1/2
channel is found with respect to the predictions for the D(∗)π scattering lengths, which is much less
pronounced in the I = 3/2 channel. This discrepancy could be reconciled with the theory only in the
case of a sizeable emitting source, which is not well motivated. The current precision of the D(∗)K
correlation functions does not allow for the discrimination between the available models and for a firm
conclusion on the possible formation of bound states. Finally, the measured interactions suggest that
the rescattering probability of charm mesons with light hadrons in the hadronic phase of the system
produced in ultrarelativistic collisions is small. Even with values of scattering lengths predicted by
theory calculations, which are larger than the measured ones reported in this article, a small impact on
the D-meson final momenta is expected [62], given the duration of the hadronic phase of the system
created in ultrarelativistic heavy-ion collisions of about ∆τhad ≈ 5−10 fm/c [13, 62, 97].

6 Conclusion

The study of the residual strong interactions of D(∗)+ mesons with charged pions and kaons is performed
for the first time, using high-multiplicity proton–proton collision data at

√
s = 13 TeV collected with

the ALICE detector at the LHC. The femtoscopy technique is used to test various theoretical models of
the strong interaction by comparing the experimental correlation functions for the different particle pairs
with the predictions by theory. As comparison also the Coulomb-only assumption is tested and, within
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Table 6: The scattering lengths a0 of the D(∗)π interaction, extracted from a χ2 minimization to the experimental
genuine correlation function, using a Gaussian potential to parameterize the strong interaction.

Pair I a0 [fm]

Dπ
3/2 0.01±0.02 (stat.)±0.01 (syst.)
1/2 0.02±0.03 (stat.)±0.01 (syst.)

D∗π
3/2 0.05±0.04 (stat.)±0.02 (syst.)
1/2 −0.03±0.05 (stat.)±0.02 (syst.)

the current uncertainties, all the measured correlation functions can be well described by it. For the same
charge D∗π system, a slight tension with the Coulomb-only assumption of nσ = 2.62 is observed. Still,
it describes the data better than the model including the strong interaction. A comparison of the DK and
D∗K data to theoretical predictions does not lead to a clear result, as no preference among the different
models of the strong interaction or Coulomb-only hypothesis is observed due to the limited statistical
precision. In the case of Dπ interaction instead, the experimental data indicates that the theoretical
models overestimate the scattering lengths, especially in the opposite-charge Dπ correlation function,
where a strong discrepancy is found. In comparison, Coulomb-only predictions yield a better description
of the data. The same can be observed for the correlation functions involving D∗+ mesons.

Among the experimental correlation functions studied in this work, the ones of the Dπ and D∗π systems
are the most precise. Therefore, they are used to determine the scattering lengths of the strong interaction,
which is modeled using a Gaussian potential. The scattering parameters are found to be small and
compatible with zero. Especially, the disagreement between the scattering length of the isospin channel
I = 1/2, extracted from the data, and the theoretical predictions is found to be larger than 5σ , challenging
the current understanding of the residual strong interaction between D mesons and pions.

These findings also provide important information for the interpretation of the measurements of D-meson
production and angular anisotropy in heavy-ion collisions [60, 61], since they suggest that the effect of
the rescattering of D(∗)+ mesons with light hadrons during the hadronic phase of the system produced in
such collisions is small.

The precision of these measurements will improve with the data taken during the LHC Run 3 data-taking
period. In fact, the dataset collected by the ALICE Collaboration will benefit from various detector
upgrades, which include an improved spatial resolution crucial for the reconstruction of heavy-flavor
decay vertices, and a larger luminosity thanks to the higher readout rate achievable [98]. Furthermore,
with such improvements, the momentum correlation functions of other particle pairs involving charm
hadrons will also become accessible.
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