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SPACE CHARGES IN ELECTRON STORAGE RINGS AND THE REMOVAL OF POSITIVE IONS BY A

D.C, CLEARING FIELD,

Summary,

An approximation is given for the electrostatic and magnetic fields of a 

stacked electron beam of elliptic cross-section. The shift of the vertical betatron 

frequency due to space charge forces is worked out and subsequently an upper limit 

is given for the electron density without and with neutralisation by positive ions. 

Furthermore the time is calculated in which a critical positive space charge is 

built up by ionisation of the residual gas.

Different kinds of external electrostatic clearing fields are proposed, in 

order to remove the positive ions, and the perturbation of the equilibrium orbits 
by these clearing fields are assessed,

1, The Space Charge Field.

We assume an electron beam of elliptic cross-section and homogeneous current 

density, as shown in Fig. 1.

Fig. 1,

Beam cross-section with electrostatic and magnetic field strength inside the beam, 
a, b semi-axes.
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Assuming furthermore that the beam surface is an equipotential, we obtain the 

potential inside the beam:

(1)

where e$ is the electron charge, n$ the electron density and e$ the dielectric 

constant of free space.

Equation (1) is a solution of the Poisson equation

(2)

The two components of the field strength  = - grad  inside the beam, calculated 
from Eq. (1) are

(3)

where the factor

(4)

(5)

is determined by the axis ratio of the cross-section, f equals 1/2 for a circular 
beam and approaches 1 for a flat one. The field strength from eqs. (3), (4) is 

not too bad an approximation for any real beam and well suited for different kinds 
of estimates, because the component Ey is proportional to y and independent 

of z and the component Ez, proportional to z and independent of y.

In a similar way an approximation can be found for the magnetic field inside 

the beam.

(7)

(6)
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where G is the electron current density and the permeability of free space«

The equations (6) and (7) are a solution of the Maxwell equations

(8) 

(9)

Current density and electron density are connected by

(10)

where ß c is the velocity of the electrons- It is easy to see that

(11) 

(12)

2. Space Charge Forces on an Electron from the Beam and the Shift of Betatron 

Frequencies .

The space charge force on a moving electron’ is

(13)

where E^ and E^ are the electric fields due to ions and electrons respectively 

and c ß is the velocity vector. For the two components, of the force we work out, 
using Eqs. (?), (4), (6), (7), (10) and the relationship (1 - ß ) = 1/y2 :

(14)

(15)

where ni is the ion density, which is supposed to be uniform. 
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2The term n^/y comes from the combination of the electrostatic and magnetic 
forces of the moving electron charge (second and third term in Eq. (13)) which almost 

cancel each other out. No such cancelling occurs for the pure electrostatic force 

proportional to n .
The space charge force  is in competition with the confining force F^ 

of the focusing field.

From the differential equation for the betatron motion in ’’smooth approximation”

(16)

where £ denotes either y or z , we obtain

(17)

where R is the average orbit radius, m^ the electron rest mass and Q the 

number of betatron oscillations per revolution. The shift in betatron frequency, 

due to a change in the total confining force, expressed by the change AQ>, of 
the 'Q-value is

(18)

The more important shift occurs in the direction of the small axis of the ellipse, 

which is supposed to be the z-axis. We obtain

(19)

The minus sign means, that an electron space charge decreases the betatron 

frequency, and positive space charge increases it. The influence of an ion density 
2on the frequency shift is y times greater than that of the s<ame number of electrons 

per unit volume.
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3* Space Charge Limits.

The maximum possible electron denisty without positive ions is deteimined by 
the maximum possible shift AQ .z

(20)

Using the following parameters and approximations,

(21)

we obtain:

(22) 

(23)

Table I shows the results for different energies*

Table I

Space charge limits without positive ions

Y (n )
e max

0 max
-3 cm , -2A cm

4 1.7 x 108 0.81

10
92.7 x 10J 13

20 2.1 x 1010 100

40 1.7 x 1011 810

100 122.7 x 10 1300

200 2.1 x 1015 10.000
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If the positive ions are not removed by a clearing field, they accumulate 
until n. equals n . The shift of the betatron frequency then will be in opposite 

direction as for electron space charge alone.

(24)

Hence the space charge limit for a completely neutralized beam will be

(25)

2This space charge limit is y times smaller than that for a pure electron beam. 

Table II shows the maximum electron densities and current densities for a neutralized 
beam, using the same parameters and approximations as listed in Eqs. (21).

Table II
Space charge limits for a neutralized beam (ni = n )

Y e max
GS
max

-3cm , -2A cm

4
71.1 x 10' 0.051

10 72.7 x 10' 0.13

20
75.3 x 10' 0.25

40 1.1 x 108 0.51

100 2,7 x 10$ 1.3

200 5.3 x 108 2.5

4, Build-up Time for the Critical Positive Space Charge.

A critical time for the build-up of the positive space charge is the time in 

which so many ions are produced and trapped that they just compensate the influence 

of the electron space charge on the shift of the betatron frequency. This happens

when
PS/1616 (26)
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From that moment on‘the space charge limit drops down from the values listed in 

Table I towards the values of Table II,

The number of ions produced per 'unit path length during the time interval 7^ 

is

(27)

where s is the specific ionisation, that is the number of ion pairs produced by 

a single electron per time unit and 'density unit, and p the gas density in Torr.

The specific ionisation for 2 MeV electrons in air is 0.06 cm Torr and 
' 1) 2)

rises for higher energies slowly to 0.14 at 500 MeV. 1 z As an average between
-1 -12 and 100 MeV we can take 0.08 cm Torr . From

we obtain the critical time

(29)

(29)

-9 -Numerically for p - 10 Torr and ß —1

(30)

In Table III are listed the critical times for different energies.

Table III

Build-up time for a critical positive space charge

Y %rit

4 25 ms

10 4 ms

20 1 ms

40 250 ps

100 40 ps

200 10 ps
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The time necessary for complete neutralisation (n^ = n ) is

(31)

and depends only on the gas density.

The positive ions ha~re to be removed from the beam, if stacking experiments 

are to be carried out for a time longer than the critical time given by Table III. 
Otherwise the current density will be seriously limited, or other complications 

will arise from the positive space charge.

3. Constant Clearing Field.

The easiest way to remove the ions would be a homogeneous electrical D.C, field 

all around the orbit. The direction of the field should be axial, that me-ns parallel 

tc the magnetic field of the bending magnets, because only in this direction can 

the ions easily be withdrawn.

The strength of the clearing field must be greater than the axial component of 

the electrostatic field of the beam. The maximum value of this component can be 
obtained from Eq, (4).

(32)

where E is the strength of the clearing field.

For a relativistic beam of flat cross-section (ß-211, f — 1) and of 

current I we obtain

or

(33)

(34)

The minimum clearing .field strength depends only on the ratio of the current to 
the radial width of the beam. For instance, a clearing field of 1000 v/cm allows 

a stacked electron beam of 40 A for each centimetre of radial beam width.
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While the beam current gives a lower limit for the clearing field, an upper 

limit is given from the fact that the clearing field applies a constant forée to the 

electrons and shifts the plane of the equilibrium orbit upwards or downwards. The 

approximate value of this shift is the distance for which the mean focusing force 

equals the force from the clearing field

(35)

The z-component of the focusing force in smooth approximation is

(36)

By comparing Eqs, (35) and (36) wé obtain for the shift of the equilibrium orbit

(37)

If ( Z\ z) is the maximum shift which can be tolerated, the upper limit for the 
max

clearing field will be

(38)

0
2where = m^ c is the rest energy of the electron.

Using the same parameters and approximations as before

(21)

we obtain numerically

(39)

This means that, for an electron energy y = 4 and a maximum tolerable shift
(z) =2.5 mm, the maximum strength of the clearing field is 45 V/cm.

max
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For a given clearing field the stacked current is limited; hence by combining 
Eqs, (34) and (59) we obtain an upper limit for the current proportional to the 

maximum shift of the equilibrium orbit.

(40)

or numerically

(41)

This means, a constant clearing field limits the stacked current to about 2 A per 
cm radial beam width, if we have electrons with y = 4 and assume a maximum toler­

able shift of the equilibrium orbit of 2,5 mm.

6« Alternating Clearing Fjeld.

Another possible arrangement is a clearing field, constant in time, but alter­

nating azimuthally in sign.

The most reasonable periodicity for an alternating clearing field would be 
field sector in . 

tha  of the magnet field, in other words, one positive and one negative clearing 
/field period. An alternating clearing field has the advantage that the median

plane of the beam remains unchanged. On the other hand it causes a vertical scallop­
ing of the equilibrium orbit.

An approximation can be worked out for the scalloping amplitude, the maximum 
deviation of the disturbed equilibrium orbit from the medium plane, as a function 

of the field strength of the alternating clearing field.

From Fig, 2 it can be seen that the disturbed equilibrium orbit inside each 

half sector is part of a betatron oscillation about a plane which is shifted 

away from the median plane by the distance /\ z. The magnitude of △ z is the same 
as described by Eq. (57) from section 5. For reasons of sjrmmetry the disturbed 

orbit must intersect the median plane between two adjacent half sectors of the 

clearing field.

The disturbed orbit in the positive half sector can be described by

(42)

where the azimuth angle starts in the centre of the half sector, 
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Fig. 2.

Scalloping equilibrium orbit in an alternating clearing field, 

z axial displacement 

Ô azimuth angle 

M number of sectors

The scalloping amplitude ôz is now determined by the equation

(43)

(44)

which leads to

(45)
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For M - 8 and Q - 3*75 we have

(46)

We see that the maximum deviation of the scalloping equilibrium orbit in an alter­

nating clearing field is for the considered parameters only one third of the shift 

in a constant clearing field.

Correspondingly, the beam current limit, as given in Eq. (41)» is a factor of 

three higher.

The beam current limit can furthermore be increased by using a higher periodicity 
of the clearing field. For instance, a clearing field with two positive and two 

negative sections on one focusing field sector will increase the current limit by 

a factor of four compared with the simple alternating clearing field as described 
before and by a factor of twelve compared with the limits from Eq. (41).

The last mentioned alternating clearing field, fits well into the scheme of 
K. Johnsen's proposal 3c in PS/lnt. AR/60-6, as can be seen from Fig. 3-

Fig. 3.
First line : bending and focusing magnets

Second line; Clearing field.
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7. Gaps in the Clearing Field.

It could be necessary or useful’ to have parts of the orbit free from clearing 

electrodes, for instance sections which are occupied by R.F. cavities, pick-up 
electrodes, inflection devices and so on. The influence of such a gap is certainly 
negligible, if it is not longer than the vertical distance of the clearing field 

electrodes, especially if the clearing field has the same sign on both sides of 
the gap.

If the field free region is longer, the clearing of this region relies only 

on the thermal velocity of the. ions.

The mean velocity of ions with mass number 28 at 20° Celsius is about 
4 /3 x 10 cm/sec. The energy transfer by electron collisions can be neglected.

Let us assume that inside each sector of the length 2tcR/m there is a field- 
free gap of the length /Z, which is not inside the magnetic field. The mean time, 

necessary to cross this gap with the thermal velocity, is Zv . This time has to be 

compared with the critical build-up time from. Eqs. (29), (30 ) and Table III. But 

one has to keep in mind that a space charge, filling only a fraction of the orbit, 

shifts the betatron frequencies correspondingly less. Consequently the build-up 
time for a critical space charge is longer by roughly the factor 2teR/mZ . For the 

gap length we obtain finally the condition

(47)

2or, using R = 4 x 10 cm, M = 8 and Eq. (30)

(48)

We see that a storage ring for energies up to y = 20 can have rather large field 

free sections.

An interrupted clearing field has of course the effect of scalloping the 

equilibrium orbit vertically. If necessary, the disturbed equilibrium orbit can be 

constructed similar to the case of the continuous alternating clearing field, as 

described in Fig. 2.
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8. Drift Velocity inside a Bending Magnet.

The insertion of clearing electrodes increases the total vertical dimensions 
of the vacuum chamber and therewith the gap of the bending magnets. It could be 

questioned whether it is possible to keep_the vacuum chamber inside the bending magnet 

free from clearing electrodes. In this case the thermal velocity is not able to 

drive the positive ions out of the bending magnet. But the combination of the 
electrostatic field of the beam and the external magnetic field causes the ions to 
move on cycloid orbits with a main drift velocity parallel to the beam axis.

The drift velocity is given by

(49)

Using Eq. (j)

(50)

The factor(11 - f) = equals 0.5 for a circular cross-section of the

beam and approaches zero for a flat beam  The drift velocity is further- 

more proportional to the radial distance y from the equilibrium orbit. In order
to obtain the mean drift velocity we put y equal a/2.

(51)

where the bar means the average over all electrons.

If we finally express the electron densitj/- by the current I

(52)

we obtain

(53)

The mean drift velocity is proportional to the vertical current density (2b is 
the vertical width of the berm) and reciprocal to the external magnet field.
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For a beam of circular cross-section the factor in Eq. (53) is

(54)

In the same manner as in the previous section 8 , concerning a field-free section, 

the time necessary to travel the length of a bending magnet has to be compared 
with the build-up time for a critical space charge. This leads for = 50 cm 

to the condition

(55)

For y = 4 and B = 70 Gauss we obtain for instance

(56)

This estimate is made under the assumption of a circular cross-section. For an 
elliptic cross-section the limit from Eq. (56) has to be multiplied by the factor

where a/b is as before the ratio of the radial width to the vertical width of 

the beam.

Even for a flat beam the result of Eq. (56) is surprisingly good: the electric 

field of only a few microamps of stacked electrons is sufficient to drive the 

positive ions fast enough out of the bonding magnets.

9. Radial Clearing Field in the Bending Magnets.

In spite of the good result from Eq. (54) it is somewhat unsatisfactory to rely 

for the removal of positive ions only on the electric field of the stacked beam 

itself.

One would be independent of the field of the beam, without increasing the 

magnet gap, if the electrost tic field, necessary for the cycloidal motion, is 

produced by radial clearing electrodes as shown in Fig. 4.
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Fig. 4.

The necessary field strength is very snail. It c?.n be- calculated from the con­

dition

(57)

Using Eq. (3o), L = 50 co, y = 4 and B = 70 Gauss, we obtain

(58)

This condition is very easy to maintain, even considering a great distance between 

the two electrodes and the fact that the main part of the field will be deflected 

to the chamber wall.

10.. Conclusion.

A clearing field is necessary if any important electron density should bo 

stacked. The design of the clearing field depends of course on the kind of storage 
ring system to be built. But it seems to be clear from the foregoing, that‘no 

difficult problems exist for the design of a suitable clearing field array for any 
storage ring system, at least for energies up to 10 MeV. The D.C, voltages are not 

too high. The perturbation.of the equilibrium orbit can be kept small by the use 
of an alternating clearing field. Azimuthal gaps in the clearing field are tolerable. •
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It is possible to have the bending magnets either free from clearing electrodes 

or with radial clearing electrodes, which does not increase the gap of the bending 

magnets.

E. Fischer
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