
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

DB/iw CERN/MPS/SR 71-8
7 September, 1971

DAMPING OF THE LONGITUDINAL INSTABILITY IN THE CERN PS

D. Boussard and J. Gareyte

Paper presented at the
VUIth International Conference on High Energy Accelerators 

CERN, Geneva
20 - 24 September, 1971



DAMPING OF THE LONGITUDINAL INSTABILITY IN THE CERN PS

D. Boussard and. J. Gareyte

CERN, Geneva, Switzerland

Abstract
After a summary of the theory of the coherent 

longitudinal instability observed in the CPS, 
three different compensation techniques are pre­
sented : spread in the synchrotron frequencies 
of individual bunches, Landau damping by RF non 
linearities, and active feedback. Experimental re­
sults are described.

1. Introduction
Coherent bunch oscillations become unstable 

in the CPS when intense short bunches are accel­
erated. The instability is attributed to a coup­
ling from bunch to bunch via some external struc­
ture of impedance Z: a bunch induces in this 
structure a voltage which perturbs the motion cf 
the following bunches. The system being closed 
after h=20 (harmonic number)bunches may be un­
stable .

2. Mathematical description of the instability
The perturbed synchrotron equations for a 

particle having a momentum deviation u=p-p and 
a phase deviation Φ are: °

(1)
equivalent mass of the 
phase oscillator

wθ = revolution frequency 
φ = hθ , where θ is the azimuth and h the harmo­

nic number. V is the accelerating potential 
and v the perturbing potential.

1.2.3)2.1 Simple approach 7 7
If we assume that the bunches are rigid, 

equations (1) apply to the phase Φ and the momen­
tum deviation u of the centre of mass of bunch m, 
subject to the perturbing potential v ( φ). 
Linearizing (l) and expanding v to first order 
in φ we get :

(2)

Looking for harmonic solutions of the form φ exp 
(- jwt), eq. (2) becomes algebraic:

(5)

2The h solutions for w can be found from the eigen­
values of the coefficient matrix of (3). The 
growth rates are l/r = Im (w). If the h bunches 
are equal and if there is no synchrotron frequen­
cy spread, the matrix is cyclic and adjacent 
bunches oscillate with a phase difference k(2îi/^); 
k = 1,2,...h, will be called the mode number.

The β^ are easily found by a Fourier analysis 
method. If I is the mean current of bunch m, om ’

we have :

(4)

where Ap is the Fourier coefficient of the bunch, 
defined, if i(t) is the current, by

(5)

2.2 The influence of the beam control system __
It was demonstrated 7 that in absence 

of synchrotron frequency spread from bunch to 
bunch the beam control loops (radial and phase) 
do not affect the stability conditions of the sys­
tem. They introduce a coupling between bunches, 
but which is apparent only for the k = 0 mode.

On the contrary, if a small spread is present, 
the beam control is able to "see" the motion of 
the bunches also for the other modes, and has,am 
important influence on the dipole instability'’’"-'. 
This was demonstrated analytically for a h=4 
machine, and confirmed by means of a computer pro­
gramme in the case of the CPS (h=20). This computer 
programme solves the general case by computing the 
eigenvalues and eigenvectors of a hxh complex 
matrix, in which, in addition to the wake fields, 
the action of phase lock, radial control, bunch 
to bunch spread in frequency and population is 
taken into account.

A noteworthy consequence of the action of beam 
control is that suppressing some bunches in the 
machine does not ensure stability, even in the 
case of low Q wake fields: the beam control 
"bridges the gap" provided that some spread in 
synchrotron frequencies is present?).

3. Experimental observations in the CPS.
Differènt observation techniques are used: 

- Direct observation of bunches on a fast oscil­
loscope with "mountain range" display (photo 1), 
observation of the phase difference between 
bunches and the RF voltage, by means of phase 
discriminators, 
spectral analysis of the signal of a radial 
PU station to separate the different modes 
(photo 3), 
observation of the peak detected PU signal 
showing filamentation (photo 2).
Clean oscillations of the first moment of the 

13 ns long bunches are observed soon after tran­
sition, reaching a maximum peak to peak amplitude 
of 7 ns before filamentation and higher order 
instabilities come into play.

As can be seen on photo 3, in general mode 
numbers from 1 to 5 are present with e folding 
times T around 50 ms. The parasitic resonances of 
our 14 accelerating cavities (Q~ 20, Fa: 48 MHz, 
Ro = shunt resistance a: 800 Ω each) may give rise 
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to mode numbers 5,4,5 with t - 80 ms. Electrosta­
tic septum extractor tanks (Q - 700 ; F - 69-90 
MHz, Ro=18 kΩ) introduced recently in the machine, 
where found to be responsible for very powerful in­
stabilities with e-folding times of 10 ms. The mode 
numbers are related to the resonant frequency of 
the tank, which changes with the position of the 
electrodes. Their influence was very much reduced 
by damping the main resonance by means of a mag­
netic coupling loop and an external resistor.

It is felt that other structures are involved 
in the excitation of the observed instability, and 
investigation is going on.

4. Stabilization by frequency spread
A very general method of damping the instabi­

lity is to make the synchrotron frequency of the 
bunches slightly different in order to reduce the 
influence of parasitic couplings.

4.1 Selection of a modulation pattern
In the case of a machine without beam 

control a direct solution of the problem can be 
found for a sinusoidal modulation of bunch fre­
quencies, (1 period per turn) using Chesbyshev 
functions 6).

In our case the effect of some modulation pat­
terns is strongly attenuated by the beam control 
system 3,4). The computer program already mentioned 
has allowed us to select the more efficient 
schemes. For a mode 1, a sinusoidal modulation 
gives the stronger reduction of growth rate, and 
the effect is not reduced by the beam control. 
For a mode 5 (short range wake fields), a meander 
pattern (h/2 periods per turn) should be preferred 
because it is not affected by the beam control. 
On the contrary, the effect of the sinusoidal 
spread is in this case strongly reduced. For typi­
cal e-folding times of t=70 ms the effect of a 
frequency modulation of ± 5.5% is to multiply r 
by about 4, which is sufficient to ensure stabi­
lity within a 500 ms acceleration cycle. For a 
stronger instability, (r < 70 ms) the multiplying 
factor falls off rapidly, so that unpractically 
large modulation amplitudes would be needed.

4.2 Experimental results
A simple way to produce the meander pat­

tern is to drive one cavity at half the RF fre­
quency. Experiments were first made on a magnetic 
flat top at 10 GeV/c. Photos 1 show typical bunch

Photos no. 1 - Bunch shapes
a) without RF/2 b) with RF/2

shapes at the end of the 500 ms flat top without 
(a) and with (b) one cavity fed at RF/2. (1O kV, 
corresponding to of the main RF voltage, i.e. 
ΔΩ/Ω ~ + 5.5^).

During these experiments, the instability, 
with measured e-folding times of 50 "to 150 ms, 

was completely damped. Further experiments during 
a normal acceleration cycle gave not so favorable 
results, either because the growth rates were then 
a little larger, or for another unknown reason.

Experiments both on a flat top and during 
acceleration with a sinusoidal amplitude modula­
tion of the KF at the revolution frequency (pro­
ducing the sinusoidal pattern) showed no visible 
damping, in agreement with the theory for the case 
of short range wake fields and beam controlled 
acceleration.

5• Stabilization by Landau-damping
A spread in the unperturbed synchrotron fre­

quencies of the individual particles may intro­
duce a damping of the instabilities.

7}5.1 Analytical calculations ''
Following a paper by A.N. Lebedev θ), 

we use a Vlasov equation approach. The fact that 
we consider h=20 bunches oscillating not in phase 
complicates strongly the problem in our case. 
Simplifying assumptions have to be made to make 
the calculations tractable: in particular a single 
resonator with a Q not too low is assumed to be 
responsible for the instability.

Let f(u,φ,t) be the distribution function of 
the particles in the machine. If f0 (u) is the 
stationary (unperturbed) distribution function, 
we can write:

(6)

Applying the Vlasov equation to f, expressing 
u and Φ in the amplitude a and phase Φ of the un­
perturbed synchrotron motion and assuming f-fc of 
the form: 

we get
(7)

where

Now let v ( φ) be the instantaneous voltage seen 
by a particle of bunch m where it has the phase φ. 
It is the sum of the ones created in impedance Z 
by the passage of all bunches, and can be decom­
posed in Fourier series in β = | (azimuth in a 
frame rotating with the synchronous particles). 
If we consider only dipole oscillations (without 
changes in shape), we can write:

(8)

where

(9)
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Now the current i (φ) of bunch m is given by:

We can again develop both sides in Fourier series 
and get, with f given by (?), after some calcu- 
lations:

(10)

If Z is the impedance of a resonator with a Q not 
too low, we can make further simplifications: neg­
lect the variation of Ap in the meaningful range 
of frequencies, take p=k in the Inp. If we restrict 
ourselves to n=-l, (dipole motion) and to small 
oscillations, we get:

(11)

where J\ is the Bessel function of order 1.1
If  1, the bracket depends on p. We can 

again neglect this variation if the Q of the re­
sonator is not too low, and write:

where
(12)

(13)

The βm£ is the one of section 2, except for the 
Fourier coefficient of the bunch, which is now 
implicitely included in the integral.

Knowing from the eigenvalue problem ( 12) we 
have now to solve the dispersion relation (13) to 
get the perturbed collective frequency u. For 
distributions other than the rectangular one, we 
have to turn to numerical calculations.

5.2 Numerical calculations
A computer programme has been written to 

solve (15) for any given distribution function fθ, 
in particular for a function of the type (l-a4)2 
which gives a good fit to the observed OPS bunches.

The determination of the threshold must be 
carried out in any particular case, as the rela­
tive magnitude of the real and imaginary part U 
and V of the eigenvalues depend very much on the 
Q and thé tune of the resonator responsible for 
the instability. As pointed out by Hereward 9) 
the space charge frequency shift should be in some 
way introduced in the diagonal terms of the matrix. 
This extra term is, for the CPS comparable with 
the term coming from the wake fields. It might 
change the threshold intensity by approximately 
40/0.

The practical result of our calculations is 
that a very strong non linearity has to be intro­

duced to damp the instability, and this can only 
be achieved by bringing the extreme particles of 
the bunches very near to the separatrix.

5.3 Experimental results
A programmed voltage reduction has been 

applied from transition to high energy, such as 
to give a constant longitudinal acceptance, very 
near to the emittance measured just after transi­
tion (6 GeV/c). The result is spectacular (photo 
2) provided the bucket is tightly fitted to the 
bunch all along the acceleration cycle. The emit­
tance blow-up which is normally around 6 is reduced 
to a negligible amount. This method is presently 
used in operation.

Photo no. 2 - Peak detected wide band PU signal 
- RF voltage

trigger : transition timing-50 ms/cm

6. Active feed-back damping
The principle of this method is to detect any 

longitudinal instability by looking at the signal 
of a radial PU-station and to feed back this sig­
nal to the beam through a cavity. This system can 
be considered as an auxiliary beam control work­
ing on the RF voltage (unlike conventional systems 
working on the phase), which allows us to act more 
or less separately on each bunch depending on the 
tune and the bandwidth of the cavity. As the latter 
is not memoryless, information from bunch number 
m will affect not only bunch number m itself, but 
also all the other bunches. The total time delay 
of the system (PU to cavity) must be equal to the 
transit time of the beam.

This feed-back system will modify equations 
(3) in the following manner:

(14)

Ymn corresPonds to influence of bunch number 
n on bunch number m through the feed-back loop. 
The y’s are proportional to the loop gain and the 
jw says that the radial position of bunch n is 
proportional to the derivative of φ . For equal 
bunches and no synchrotron frequency spread the 
eigenvalues are given by:

(15)

where t = m-n and = exp 2tt jk/h. The influence 
of the main beam control system does not affect 
this result.

3
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can "be calculated, using a Fourier expansion 
like in equation (4). The PU signal which corres­
ponds to bunch t is of the form:

r being the radial excursion of bunch I and sRo 
the DC component of the PU signal from bunch I. 
The voltage seen by one bunch when it passes 
through the cavity is therefore:

(16)

(17)

g[X(p) + jY(p)]being the electronic gain of the 
feed-back loop and Δt the time delay error. Now, 
converting radial displacements into phase oscil­
lations, one finds Y:

(18)

The root displacement, due to the feed-back sys­
tem is given by:

(19)

Using (18) and (19) one finds that for p qhik 
(q any integer), △ oj2 vanishes (sum of the h roots 
of unity) whereas for p = k for example one gets:

(20)

This result shows that mode number k can be stabi­
lized by a feed-back system working on the fre­ed 
quency (qh + k)

6.2 Experimental results
We used one of the present 14 cavities 

of the PS as a feed-back cavity and tuned it around 
the 17th harmonic of the revolution frequency 
(h=20 in the CPS) in order to stabilize mode num­
bers around J.

The electronic gain required to suppress insta­
bilities having 10 ms growth times is around 10$ 
at 28 GeV using our normal PU stations. Therefore 
the noise is an important problem and we reduced 
it by filtering the signal by a "comb" filter 
(band-pass at 17, 10 and 19th frev , band reject 
at fRF).

Note that the beam was brought in the centre 
of the radial PU electrodes in order to remove as 
far as possible unwanted components due to a dis­
persion in bunch populations.

Photos J, taken on a spectrum analyser with 
multiple triggering show the stabilizing influence 
of the feed-back loop on modes 1,2,3 and 4. The

adjacent modes (5 and 6) are outside the bandwidth 
of the system and are not damped. This result was 
confirmed by the use of the other diagnostic tech­
niques .

7. Conclusion
The three studied schemes are efficient in 

damping longitudinal instabilities, and may be 
combined to suit particular cases. However, their 
use becomes very tricky if fast growth rates are 
involved. Therefore, care has to be taken not to 
introduce in the machine too harmful equipment.

Photos no. 3
Spectrum display 
of a. radial PU 
signal (vert.log. 
scale) 
a)without damping 
b)with damping
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