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Summary
Coherent longitudinal instabilities, similar 

to those observed in electron storage rings and in 
the Brookhaven AGS'1 , occur in the CERN PS. The re­
sulting dilution in longitudinal phase space would 
critically affect the luminosity obtainable in the 
intersecting storage rings (ISR). A theoretical 
study of the mechanism of this instability is pre­
sented, including the influence of the beam control 
loop. A compensation technique, based on introdu­
cing a difference in the synchrotron frequencies of 
different bunches has been studied. We find that in 
the 'presence of beam control the effectiveness of 
this cure depends critically on the pattern in which 
the frequency varies between the bunches.

I. Introduction
Coherent bunch oscillations become unstable in 

the CPS when intense short bunches are accelerated. 
The instability has been attributed to a coupling 
from bunch to bunch via high frequency resonators2. 
The most harmful pieces of equipment were found to 
be the accelerating cavities which have a parasitic 
resonance in the 50 MHz region. A bunch passing 
through a cavity induces an oscillating voltage 
which decays relatively slowly and perturbs the mo­
tion of the following bunches. The system being 
closed after h=20 (harmonic number) bunches may be 
unstable.
II. Mathematical description of the instability

The perturbed synchrotron equations for bunch 
m are :

(1)

where V is the accelerating and vm the perturbing 
potëntial, a and b are constants,  is the syn­
chrotron frequency.

1 2a) Simple approach ’
Linearizing (1) and writing

(2)

where φn is the phase deviation of the centre of 
mass of bunch n, we get

(3)

Looking for harmonic solutions of the form 
Φm exp (+ jat), eq. (3) becomes algebraic

(4)

The h solutions for w can be found from the 
eigenvalues of the coefficient matrix of (4). The 
growth rates are l/r = Im( w) . In the absence of fre­
quency spread, adjacent bunches oscillate with a 
phase difference k(2jt/h), k = 1,2, ... h. For low Q 
coupling impedances, the mode with k closest to 
h/4 (k=5 in the PS) has the fastest growth.
b) Influence of the beam control system

In the case of beam controlled acceleration, 
the phase of the RF voltage enters in (1) under 
the form:

(5)

and (4) becomes now:

(6)

These h equations must be completed by the beam 
control equation which says that the RF phase is the 
average of bunch phases corrected by the radial er­
ror signal.

(7)

G is the gain of the radial loop, including some dy­
namical constants. (The factor jw means that the ra­
dial position is proportional to the time derivative 
of the phase.) We have now h+1 equations, and the 
roots of the associated determinant will give us the 
oscillation modes of the system.

It can be demonstrated that these roots are 
exactly the same as those of the system (4) except 
for two trivial ones. Let us show this result in the 
case of equal bunches. For all the modes except for 
k=0 the average oscillation of all the bunches has 
zero amplitude and therefore equations (6) and (7) 
are satisfied with ΦrF=o. Thus, the corresponding 
eigenvalues are still solutions of the system. As 
the degree in a of the determinant did not change, 
we have found all the solutions except two. But it 
is easy to check that a=0 and w=-jGΩ2 are also so­
lutions of (6) and (?)• One then can conclude that 
the beam control system does not affect the stabi­
lity conditions of the system.
c) The dispersion relation^

Using a Vlasov equation approach and assuming 
that the h bunches are equal, the problem can be 
reduced to an eigenvalue problem, similar to (4) but 
where Ω2- w2 has to be replaced by X

(θ)

fo being the stationary distribution and a the am­
plitude of the incoherent synchrotron oscillation.

III. Spread in synchrotron frequencies
A very general method of damping the instabi­

lity is to make the synchrotron frequencies of the 
bunches slightly different in order to reduce the 
influence of parasitic couplings. This method has 
first been proposed by 0. Pellegrini and is being 
used in electron storage rings.
a) Analytical approach

In the case of a machine without beam control 
a direct solution of the problem can be found for a 
sinusoidal modulation of bunch frequencies, using 
Chebyshev functions4. in the more complicated case 
of beam controlled acceleration we shall use a root 
locus method. Equations (6) and (7) are perturbed 
by symmetrical frequency shifts characterized by 
δ - (Ω+dΩ)2-Ω2 , and the corresponding root displace­
ment is given by:

(9)

obtained by developing the determinant H(w,δ ) around 
the root w.

The denominator can be explicitely calculated, 
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because we know the determinant. The numerator de­
pends on the modulation pattern. For a machine with 
h=4, and assuming short range wake fields, so that 
every bunch acts on the subsequent one only, we 
find the following results:
Modul, pattern Without beam With beam control 

control
Sinusoidal 
+δ, o, -δ, o 
+δ, +δ, -δ, -δ
Meander 
+δ, -δ, +δ, -δ

It is concluded that the beam control system 
reduces the stabilizing influence of a sinusoidal 
bunch to bunch frequency spread. However, the mean­
der pattern for which frequency deviation alter­
nates from one bunch to the other remains effective.
b) Computer calculation '

A computer programme has been written to find 
the growth rates by calculating the eigenvalues and 
eigenvectors of an h x h complex matrix. The action 
of phase lock, bunch to bunch spread in frequency 
and population can be taken into account. The coup­
ling coefficients βmn, for any measured coupling 
impedance and bunch shape, are calculated by a 
Fourier analysis method. An auxiliary programme cal­
culates the dispersion integral and permits Landau 
damping calculation for any given density distribu­
tion.

The computer programme was used to calculate 
the growth rates for various modulation patterns in 
the presence of the beam control. The results for an 
h=20 machine confirm the conclusion drawn from the 
h=4 model. With beam control and for short range 
wake fields the meander pattern remains stabilizing, 
whereas the sinusoidal pattern (1 modulation period 
covers 1 turn) becomes ineffective.

IV. Experimental results
Different observation techniques were used: 

- Direct observation of bunches on a fast oscillo­
scope with "mountain range" display (photo 1) 

- Observation of the phase difference between bun­
ches and the RF voltage, by means of phase dis­
criminators. This permits easy measurements of the 
phase shift between bunches or growth time mea­
surements.

Clean oscillations of the first moment of the 
13 ns long bunches are observed soon after transi­
tion, reaching a maximum peak to peak amplitude of 
7 ns before filamentation and higher order instabi­
lities come into play. The mode number currently 
observed is 5- The e-folding time may vary from 40 
to 150 ms. Using the measured frequency distribu­
tion of the parasitic resonances of the 14 cavities 
as well as the shunt impedance (800 Ω) and the qua­
lity factor (24) (measured on a spare cavity), the 
calculated e-folding time (including Landau damping) 
is 80 ms, in good agreement with the growth time 
measurements made at the same time.
b) Compensation

A simple way to produce the meander pattern is 
to drive one cavity at half the RF frequency. Expe­
riments were first made on a magnetic flat top at 10 
GeV/c. Photo 1 shows typical bunch shapes at the end 
of the 5OO ms flat top without (a) and with (b) one 
cavity fed at RF/2. (1O kV, corresponding to 7% of 
the main RF voltage, i.e. ΔΩ/q ~ + 3.5 %.)

The scheme was found to work also during acce­
leration, though with reduced efficiency.

Experiments with a sinusoidal amplitude modu­
lation of the RF at the revolution frequency (pro­
ducing the sinusoidal pattern) clearly showed the 
ineffectiveness of this technique in the presence 
of beam control.

a) without RF/2

(bunches are 
already 
distorted)

lb) with RF/2

Photo 1 5 ns/cm, horiz.
0.8 synchrotron period/cm, vert.

c) The missing bunch experiment
Another observation, which emphasizes the im­

portance of the beam control, was made during the 
missing bunch experiment. Since the instability is 
ascribed to a relatively low Q impedance, it was 
expected that making a gap of 4 or more bunches in 
the machine would open the loop, and suppress the 
instability. The experiment was done and showed 
that this was not true. Theoretical investigation 
with the techniques described above showed that, 
provided there exists small bunch to bunch spread 
(~ 1%o) in synchrotron frequencies, the phase lock 
system "bridges the gap".

Conclusion
The beam control system has an important in­

fluence on dipole longitudinal instability. Al­
though usually designed to act only on the k=0 mode, 
it introduces an auxiliary coupling between bunches 
which becomes apparent for the other modes provided 
that the free synchrotron frequencies of the bunches 
are different.
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