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1. Introduction

1 )As discussed in earlier notes  , longitudinal instability 
occurs at high intensities in the PS. A cure has to be found because 
the resulting bunch blow-up would affect the luminosity obtainable 
in the ISR.

2)Reference  gives a first summary of the experimental and 
theoretical work which was undertaken with the aim of finding anti­
dotes. One of the cures which was suggested is to decouple the 
bunches by making their synchrotron oscillation frequencies slightly 
different. The bunch to bunch frequency spread required for stabili- 
zation is calculated in reference 3).

These studies have been further pursued and a damping 
method has been successfully tested.

We have found it important to extend the theory to include 
the combined effect of the phase-lock beam control system and a 
bunch to bunch spread in the synchrotron frequencies and in the bunch 
population.

This degree of refinement of the theory was necessary to 
explain some experimental observations and to arrive at cures.

One of the new results is that in the presence of phase­
lock the stabilizing influence of a bunch to bunch frequency spread 
depends critically on the pattern of frequency variation. In section 
2 of the present report this is demonstrated for the simple case of 
a machine with 4 bunches (rf harmonic number h = 4) • This "h=4 - 
model" is simple enough for an analytical treatment and still general 
enough to obtain the same principle results as for the h=20 case.
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We discuss three modulation patterns out of which only 
one - the "meander” pattern - turns cut to he suitable for stabili­
zation in the presence of phase-lock.

For the more general case of h-20 the same results were 
obtained by means of a computer programme which is described in 
section 3 of this report.

In section 5 we summarize the experimental results which
2) were obtained since ref.  was written.

2. Analytical calculations

2.1 General considerations

The analytical approach used in the present section is 
a ’’root locus method" . Starting from the characteristic equation 
for the case of equal bunches, we evaluate the displacement of the 
roots for a small frequency spread.

We start from the characteristic matrix, equ. (46) of
2^ref. . The roots of the corresponding characteristic poly­

nominal H(oj) determine the stability of the system.

We are interested in the behaviour of the roots when one 
perturbs the free synchrotron frequency Q of some bunches by a 
small amount d 0. Let us define 5 by :

Expanding the polynominal H(w,6) in a Taylor series around 
the point 0 = wi , 6=0 (ok is one of the roots of H(w,o)=o) one has:
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(1)

If d). is a single root of H(w)2 the coefficient  
does not vanish, and one can drop the (dw) , (dw.6) ... terms if
6 is small.

Now, if the modulation pattern which describes the bunch 
frequencies Ch is symmetric (for instance odd number of equal 
bunches with equal coupling terms, and symmetric frequency spread), 
the dw obviously does not depend on the sign of 5 , and therefore 

 2the  term vanishes. One can then write to first order in S

(2)

2.2 The "h=4 model"

The preceding considerations are valid in the general
case. We shall now turn to the simple case of a machine with 4 equal 
bunches (rf harmonic number h = 4 ) . We assume coupling via ’’short 
range wake fields” so that each bunch. acts only on the subsequent 
one.

2 )In the notation used in ref. the characteristic matrix 

(3)
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The quantity A characterizes the influence of the beam control loop.
 —2In the present case A = (1+jGw), G 5 x 10 for the PS.

2 )The roots of H(ùj,o) = 0 are given by (ref. ):

(4)

Depending on the sign of ß, y = + w2 or w = + w3 is the 
unstable root. Let us assume that w2 is unstable (ß>o), and 
examine the behaviour of this root. We expand H(w,6) around the 
point w = w2, § = 0.

As H(w,S) is a polynominal, one has:

(5)

H(w,o) can be written according- to (3) and (4) in product form:

(6)

The first derivative is a sum of product terms which all but 
one contain a factor (w - w2). Therefore, for w = w2 :
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(7)

Using the roots (4) and assuming G G small compared, to unity, one 
finds :

(8)

To arrive at (8), we have assumed small coupling terms so 
that w2 - Q .

Next we have to calculate the quantity  . This term 
depends on the modulation pattern.

a) ’’Sinusoidal” pattern

The hunch frequencies are "perturbed” in the following
way:

(9)

Now the determinant of the matrix (3) may be expressed as a sum of 
determinants.

(10)
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As we have chosen a symmetric pattern, the coefficient
of 8 (see equ. (1)) vanishes for w = w2. The second derivative

 2 2 is given hy the last determinant which, for a) = œ2 (O' -w - ß=jß) 
becomes :

(11)

Expanding this determinant, one finds:

(12)

 2which reduces to: - j ß using the approximations ß « Q and
G Q « 1 mentioned above.

b) ’’Meander” pattern

’’Perturbations” alternate from one bunch to the next as
follows :

1st bunch
2nd bunch
3rd bunch
4th bunch

(13)

The second order terms in 8 result now from determinants having two 
lines of the form [1 0 0 0 -1] and so on.
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(14)

(15)

Under the same assumptions as before one finds:

c) ’’Square” pattern characterized by :

(16)

1st bunch
2nd bunch
3rd bunch
4th bunch

In the h=4 case this pattern can also be considered as a sinusoidal 
pattern with a different phase.
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Using the same method of calculation as above, one finds:

(17)

We are now able to calculate from equ. (2) the displace­
ment of the unstable root, especially the shift of its imaginary 
component. Equations (2), (8), (12), (15) and (17) give the follow­
ing results:

sinusoidal pattern:

meander pattern:

square pattern:

(18)

We compare these results to the frequency shift in the 
case of programmed acceleration (no beam control). Using the same 
method we find:

(19)

sinusoidal pattern:

meander pattern:

square pattern:

Note : 1 ) It is easy to check directly from the form of the charac­
teristic matrix that without beam control the "meander" 
and the "square" pattern are equivalent.

2) One can verify that the stable root (ai=w3) and the un­
stable one remain complex conjugate (to first order) for 
the modulation patterns examined.



- 9 -

The displacement of the roots is sketched in Fig. 1. From 
this figure as well as by comparison between equations (18) and (19) 
we conclude that the stabilizing influence of the sinusoidal and the 
square pattern is widely removed by the presence of the phase-lock 
system.

However, the stabilizing effect produced by the meander 
pattern is not affected by the influence of the beam control loop.

In addition we conclude from the examples of the present 
section that the radial loop gain is not a critical parameter. 
Therefore, it seems a reasonable approximation to replace the jGw 
term in A by jGQ. With this approximation, which, of course, is not

2valid for the two "trivial roots" w=o and co = -jG , the stability 
problem, even with beam control, reduces to an eigenvalue problem 
which can be solved by numerical calculations using a subroutine 
of the CERN computer library.
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"Meander” pattern
Unstable region

Stable region

"Sinusoidal" pattern

Fig. 1 - Root displacements without beam control
with beam control
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3. Numerical calculations

3.1 General description

A computer programme has been written, which finds the 
growth rates in the more general case of a machine with any RF~ 
harmonic number, especially for the PS with h = 20. The programme 
is based on the CERN library subroutine F 203 which calculates the 
eigenvalues and eigenvectors of a complex matrix. Phase-lock, 
radial control and bunch to bunch spreads in frequency and bunch 
population are taken into account.

An approximation is used to include the influence of the 
radial control loop (see section 3.2).

In principle, the programme can be used to simulate the 
situation for any wake field and any pattern of bunch frequencies. 
Calculations have been performed for the two wake field models 
described in ref. .

Short range coupling (low Q-wakes) : every bunch acts on the sub­
sequent one only.

Long range coupling (high Q-wakes) : every bunch acts on every 
other one in the same way 
except for a phase factor.

The bunch frequency patterns which were already discussed 
in the proceeding section have been studied:

a) ’’Sinusoidal" pattern:

(bunch number t out of h bunches)
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b) "Meander" pattern:

c) Rectangular pattern:

for

for

3.2 Equations of motion

For the numerical calculations we have assumed that the 
longitudinal motion of the centre of bunch t is characterized by

(20)

free synchrotron frequency of bunch £

average synchrotron frequency

relative number of particles in bunch m 
h

for equal population ni = 1.
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(P - JGq) describes the influence of the beam control 
loop, P = 1 was used assuming infinite gain of the phase­
lock loop at frequencies around Q, G0(~ 0.05 in the PS) 
is included as an approximate description of radial 
control, the exact expression would be Gw where w is 
the corresponding eigenfrequency.

ß: coupling coefficient describing the influence
of bunch m on bunch I due to wake fields.

Short range wakes:

Long range wakes:

W is a wake field coefficient which determines the growth 
rate, k is a mode number. W and k are input para­
meters of the programme.

Equation (20) is basically the same as equs. (42), (45)
2)of ref. except that the radial control loop is included approxi­

mating G $ = j Gw $ by j G O.

For small wake fields (ß << 0 ) this approximation is 
valid except for the two "trivial” eigenvalues (mode zero ). The 
stability of the system (20) is determined by the eigenvalues of a 
matrix ((m)) with elements
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(21)

The average bunch frequency 0 is substracted from the 
diagonal terms for numerical convenience. The eigenfrequencies 
of (2) are related to the eigenvalues X of ((H)) by

(22)

jwtAs we have assumed a time dependence e the growth
rate is

(23)

modes with 1/r <0 are damped.

The eigenvectors of ((M)) describe the oscillation ampli­
tudes of the bunches.
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3.3 Results

The numerical results obtained for a machine with h = 20 
are in full agreement with the conclusions which were drawn in 
section 2 from the simpler h=4 model.

For short range wake fields the stabilizing influence of 
the sinusoidal and the rectangular pattern is overridden by the 
phase-lock system. Unpractically large frequency spreads (50 % 
voltage modulation in the PS) are required for a significant re­
duction of the growth.

However, the meander pattern remains stabilizing in despite 
of the presence of beam control. The ’’meander spread” required for 
a given reduction of the growth is practically the same with and 
without phase-lock.

For long range wake fields the stabilizing effect of all 
three patterns is almost unaltered by the presence of phase-lock.

The radial control loop is in most practical cases of 
little importance. It is mainly the phase-lock system that matters. 
A spread in the number of particles per bunch seems to have little 
influence.

4. Application to the PS

It is concluded from the results of sections 2 and 3 that 
a meander spread looks promising for reducing coherent oscillations 
of the bunch centre in proton machines. Let us, therefore, calcu­
late the growth rate as a function of the "meander spread".
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Assuming low Q-wake fields and neglecting phase-lock, we 
obtain from the characteristic equation (8) of ref.3)

(24)

Equation (24) yields h different eigenfrequencies because

Assuming 

the fastest growth rate is

(25)

It is useful to compare 1/t to the growth rate 
in the absence of frequency spread:

(26)

These results were derived neglecting phase-lock. However, 
the results of sections 2 and 3 suggest that equations (25) and (26) 
remain valid in the presence of phase-lock.

It is interesting to note that without phase-lock equations 
(24) - (26) pertain equally to the rectangular pattern.
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Let us now put in numbers for the PS. We take

free synchrotron frequency in the PS at high energy.

With these numbers we find a reduction of the growth
rate

or

This growth time is long enough that we may regard the situation 
as practically stable.

In conclusion, a meander spread  = + 2.5 % (voltage
modulation  = ± 5 %) should be sufficient to ensure longitudinal 
dipole stability in the present PS.
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5- Experimental results

5.1 Instrumentation and measurements

Three different observation techniques were used:

a) Direct observation of bunches on a fast oscilloscope 
with a ’’Cappi type" trigger ("mountain range display"; 
see for instance photo 3)

b) Observation of radial oscillations of one or two launches.
The clamped signal of a radial PU station is gated at 
f rev , and low frequency component is filtered out 
and displayed on an oscilloscope.

c) Observation of the phase oscillation of one or two bunches.
The wide-band PU signal is gated at f in order to  rev
select one bunch and its RF component is filtered out
using a tunable filter working in the range 9.0 MHz - 9.6 MHz.
A phase discriminator then measures the phase difference 
between RF voltage and the selected bunch.

Photo 1 obtained by method c) shows the oscillation of two 
consecutive bunches. The phase shift between the two bunches is 
about 90° which corresponds to the most unstable mode (k = 5) .in the 
PS. Using a slower sweep (photo 2A) one can measure the growth time 
of the instability. Measured values are typically in the range of 
80 - 150 ms. Note that the decay observed later can be explained 
by the filamentation process.

In order to compare the measured growth rate with theore­
tical values calculated from the frequency response of the cavities, 
it was decided to measure the frequency of the first parasitic 
resonance of all 14 PS cavities.
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Measurements were performed on October 28, 1970, during 
a machine stop. Cavities were driven through their RF power ampli­
fier by a sweeped RF generator set around 50 MHz. Resonance curves 
were picked off via the coupling loops on both the upstream and the 
downstream side of the cavity. The precision of these frequency 
measurements is limited because resonance curves differ (by an 
amount as large as 0.7 MHz) from one side to the other of the same 
cavity. Therefore assumptions have to be made in order to average 
the data coming from each side of the cavity. The impedance at 
resonance, not measured by this method, was assumed to be 800 ohms.

2)Using the computer programme described in  we have calculated the 
theoretical growth times corresponding to the actual data.

10For N = 170 x 10 p/p we find a growth time of 80 msec 
for the fastest mode, which agrees with measurements made during 
the last MD sessions. However, it should be pointed out that shorter

2) growth times have been observed during earlier MD’s (ref. ).

5.2 Compensation

The simplest way to produce the ’’meander” pattern is to 
drive one (or more) cavity at half the RF frequency. The modulation 
of the synchrotron frequency depends on the amplitude and on the 
phase of the RF/2 voltage relative to the main RF. In order to 
avoid a changing phase relationship, the RF/2 voltage was only 
applied during the later part of the cycle where the revolution 
frequency is almost constant (f > 9.4 MHz).

RF

a) Experiments on a 10 GeV/c flat top (MB’s on 24/10 and 14/11)• 
Photo 2A shows typical oscillations growing during the 
500 ms flat top, whereas photo 3 A displays the bunch shapes 
just before the end of the flat top.
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The oscillograms 2B, 3B display the same situation when 
the full RF/2 voltage is applied (10 kV corresponding to 
~ 7 % of the main RF, i.e. AQ / Q w + 5*5 %)• These pic­
tures clearly show the effectiveness of this technique.

It was verified that the stabilizing influence depends on 
the phase difference between the RF- and RF/2-voltages; 
optimum stability was observed for values of the RF/2 phase 
differing by 180°.

b) Experiments during acceleration (MB on 14/11)•
The RF/2 voltage was switched on just after transition.
The "Cappi type" display photos 4A (without RF/2) and 4B 
(with RF/2 on) confirm that the meander spread is stabili­
zing during acceleration. These pictures were taken when 
the RF/2 cavity was working at about 5 kV.

When the cavity was driven at full amplitude (10 kV), very 
strong oscillations appeared. At present we do not have a 
clear explanation of this effect. It may be that the 
reduced size of the buckets produced by the superposition 
of the main RF and the RF/2 voltage complicated the situ­
ation.

Similar experiments were already performed (MB’s on 6/8/70 
and 8/10/70), both during acceleration and on a 10 GeV/c 
flat top, using modulation of the RF voltage at the revo­
lution frequency. This produces the "sinusoidal" pattern 
discussed in sections 2 and 3. Although these measurements 
were done under somewhat different conditions of the ma­
chine, they seem to indicate that the "sinusoidal" pattern 
is not very effective for stabilization.
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Photo 1

Oscillation of the centre 
of two consecutive bunches 
with respect to the RF.

Photo 2

Oscillation of the centre 
of two consecutive bunches 
on the flat top (10 GeV/c), 
50 ms/cm.

A. Without RF/2 voltage

B. With full RF/2 voltage 
(10 kV)

SIS/16779



Photo 3 Mountain range display of bunch shape

5 ns/cm, M 264 (10 GeV/c flat top)

A. Without RF/2

B. With full RF/2
(10 kV)



Photo 4 Mountain range display of bunch shape

5 ns/cm normal field rise.

A. B 614 (rise)

12 GeV
RF/2 off

B B 874 (rise)

17 GeV
RF/2 on (5 kV)


