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Efficient and accurate algorithms are necessary to reconstruct particles in the highly granular
detectors anticipated at the High-Luminosity Large Hadron Collider and the Future Circular Collider.
We study scalable machine learning models for event reconstruction in electron-positron collisions
based on a full detector simulation. Particle-flow reconstruction can be formulated as a supervised
learning task using tracks and calorimeter clusters. We compare a graph neural network and kernel-
based transformer and demonstrate that we can avoid quadratic operations while achieving realistic
reconstruction. We show that hyperparameter tuning significantly improves the performance of the
models. The best graph neural network model shows improvement in the jet transverse momentum
resolution by up to 50%compared to the rule-based algorithm. The resultingmodel is portable across
Nvidia, AMD and Habana hardware. Accurate and fast machine-learning based reconstruction can
significantly improve future measurements at colliders.

One of the main approaches for event reconstruction at the Large Hadron
Collider (LHC) is currently based on the particle-flow (PF) algorithm1–13,
which combines measurements from different subdetectors to produce a
holistic particle-based description of the entire event. For the planned High
Luminosity LHC(HL-LHC)14 program, due to the installationofnewhighly
granular detector subsystems such as high-granularity calorimeter for
Compact Muon Solenoid (CMS), the reconstruction algorithms have to be
revisited or new algorithms have to be developed to fully make use of the
data which has a significantly higher complexity. Similarly, for possible
future experimental programs such as the Future Circular Collider
(FCC)15,16, existing algorithms have to be retuned or new ones developed,
possiblymany times for each new detector scenario under study. Therefore,
it is necessary to develop high-fidelity PF reconstruction algorithms that are
at the same time computationally efficient, and can be easily extended to
new detector concepts without significant manual work. Moreover, if
algorithms can be found that can reconstruct events from highly granular
detectors with improved fidelity, e.g., in terms of jet response, thismay have
important implications towards the sensitivity and thus cost-effectiveness of
future experiments.

There has been considerable interest in and development of machine
learning (ML)-based reconstruction methods, including for PF recon-
struction. In order to train a model that reconstructs events consisting of a
variable number of particles, a recipe for a loss function based on attractive
and repulsive potentials was given in ref. 17. In ref. 18, a version of this loss
was used together with a graph neural network (GNN)-based approach to
reconstruct events with high particle multiplicity accurately. This approach
was successfully applied in the CMS experiment19,20. Recently, ref. 21,
demonstrated that a network architecture based on learning a hypergraph
structure can improve jet reconstruction. In parallel, clustering using ML
has been demonstrated for high-granularity calorimeter reconstruction22.
Extending beyond particle reconstruction, there is considerable interest and
progress in reconstructing full decay trees using ML23,24.

One of the critical challenges for PF reconstruction is the highly
granular nature of the data: events can comprise hundreds of thousands of
heterogeneous measurements in various detector subsystems. This moti-
vates studying models that can scale to large input multiplicities and effi-
ciently process full events or batches of events simultaneously for improved
throughput. To support such studies, it is beneficial to establish open
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realistic simulated datasets with sufficient granularity to test various
approaches.

In this paper, we utilize an open dataset of electron-positron (e+e−)
collision events at a center of mass energy

ffiffi
s

p ¼ 380 GeV with full
GEANT4 simulation, suitable for detector reconstruction, available in the
EDM4HEP25 format for future studies. The specific center of mass energy
was chosen due to being well studied as one of the initially proposed sce-
narios for CLIC and thus the baseline reconstruction software is available
and tuned. However, nothing in our proposed approach is specific to the
center of mass energy or the specific detector configuration.

We test two types of scalable ML models as benchmarks that can
process full events consisting of tens of thousands of measurements, while
avoiding memory allocation or computations that scale quadratically with
the input size. Using charged particle tracks and clusters of calorimeter
energy deposits, we minimize a particle-based loss function and monitor
physics metrics that quantify event reconstruction performance during
training.We report the results of an extensive hyperparameter optimization
(HPO) of the GNN-based model performed using high-performance
computing (HPC) resources. We then evaluate the model’s physics and
computational performance, as well as its portability and quantization
compatibility.

We approach the challenge of high-fidelity full event reconstruction
via particle flow using two alternative scalable machine learning models:
kernel-based transformers and graph neural networks using locality-
sensitive hashing. After a large-scale hyperparameter optimization, we
find that the GNN-based model can reconstruct physics events with a
higher degree of fidelity compared to the rule-based baseline. At the same
time, its computational cost scales linearly with the size of the input
event, which is desirable for future deployment scenarios in high-
granularity detectors. Moreover, we demonstrate the portability of the
model to several computational hardware processors from Nvidia, AMD,
and Intel Habana. The model can also be scaled naturally to lower-level
datasets consisting of raw detector hits, if tuned tracking or clustering
algorithms are not available. Our proposed approach for particle flow
reconstruction is summarized in Fig. 1. We identify steps for future
development and also publish the code and datasets following the find-
able, accessible, interoperable, and reusable (FAIR) principles26–28 for
reproducibility and future development.

Methods
In this section, we describe the loss function for particle flow reconstruction,
the specific neural network (NN) approaches as well as the procedure for
dataset generation.

Loss function
The optimization goal for full event particle reconstruction follows the
machine-learned particle flow (MLPF) approach previously used in
refs. 18–20, andapplies a physics-inspired ansatz to simplify the event-based
reconstruction loss to a particle-based classification and regression loss.

The input to themodel is a set of detector elements: charged tracks and
calorimeter clusters (or alternatively, raw calorimeter hits), each described
by a feature vectorx∈X. The input features for the tracks consist of the track
pT, the pseudorapidity of the particle momentum (track tangent) η, the
azimuthal angle of the particle momentum ϕ, the track goodness-of-fit χ 2

and the number of degrees of freedom Ndof, the slope of the track

tan λ ¼ pz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þ p2y

q
, the signed impact parameterD0 with respect to the

origin (0, 0, 0) at interactionpoint in thexyplane, the signed curvature of the
trackΩ = sign(q)/R defined via the track radius R and charge q, the position
of the track along the z-axis Z0 with respect to the origin

29. For calorimeter
clusters, the features consist of transverse energy ET, η, ϕ, electromagnetic
calorimeter energy EECAL, hadronic calorimeter energy EHCAL, Cartesian
spatial coordinates x, y, z; the number of hits and the cluster size, measured
in standard deviations of the hit sets in x, y, and z.

The target of the model is a set of stable particles such as charged and
neutral pions, photons, electrons, and muons, defined through sufficient
energy matched to detector hits and with a PYTHIA8 status code 1. This
specific choice of target particles represents a reasonable optimization target,
but may not be optimal for all cases. The definition of an optimal ground
truth for particle reconstruction is left to future work. Each particle is
described by a particle type, charge, and continuous four-momentum
values, combined to forma target feature vector y∈ Y. The goal of themodel
is, for each event, to reconstruct the set Y, given the set X, i.e.,
ΦðXÞ ! Y 0 ’ Y . Tomake the set-to-set translation tractablewithML, and
to be able to treat particle multiplicities in the range of ∣X∣, ∣Y∣ ≃ 104 with a
single model pass, each target particle is associated with a single unique
input element.

Fig. 1 | A conceptual overview of the machine-learned particle flow approach
based on tracks, hits and clusters on one simulated tt event. a The raw tracker,
calorimeter andmuon chamber hits, embedded in position space, with the size of the
marker proportional to the hit energy. b Tracking algorithms reconstruct charged
particle tracks from the tracker hits, shownwith their extrapolated trajectories. cThe

calorimeter hits are clustered to correspond better to individual particles. d The
machine-learned particle flow algorithm reconstructs charged and neutral hadrons,
photons, electrons and muons based on the tracks and clusters from the previous
step, shown with their extrapolated trajectories.
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The target particles are assigned to input elements by an injective, non-
surjective function based on a physics prior. The general approach is based
on object condensation (OC)17, which includes a potential between inputs
and outputs. Here, we only associate charged particles to tracks and neutral
particles to the highest-energy calorimeter cluster (or hit), as a tradeoff
between expressiveness and computational cost. The event reconstruction
loss can be written as a sum over the input elements in each event

LðY ;Y 0Þ ¼
X
i

Lclsð yi; y0iÞ þ Lregð yi; y0iÞ: ð1Þ

Here, Lclsðyi; y0iÞ is a classification loss between the predicted and target
particle type and charge labels. The classification task is imbalanced, so we
use the focal loss30 for particle type classification, which assigns greater
weight to samples that are difficult to classify. Similarly, Lregðyi; y0iÞ is a
regression loss for the momentum components, where we use the Huber
loss31 to reduce the effect of outliers.

We note that in the recent hypergraph-based reconstructionmethod21,
the strict particle-to-element association is completely avoided, and the
associations are instead made an optimization target for an intermediate
model. This hypergraph reconstruction approach shows excellent physics
performance on small jet-based samples, but further work is needed to
extend it to full events with large particle multiplicities and to demonstrate
computational feasibility on realistic datasets.

Scalable neural network models. We now move to the specific NN
structure of the reconstruction model Φ(X). It could be implemented
with a simple feedforward network over the individual feature vectors of
each input element, i.e., ϕðxÞ ! y0. However, such a model would be
unable to consider correlations between related input elements, such as
tracks and calorimeter clusters (or hits) arising from a single particle.

An early approach proposed for full-event reconstruction previously
used a GNN with a learnable graph structure between the input nodes18.
This is conceptually similar to a transformer with full self-attention, which
has also recently been thoroughly investigated21.

However, the evaluation of full self-attention can be computationally
demanding andprohibitive for large inputmultiplicities (≥104)32. Such input
multiplicities can be easily reached when considering all tracks and calori-
meter clusters in future high luminosity collider events. It is possible that the
local nature of the problem can be exploited directly byfirst pre-partitioning
the event and running the full attention-based model only on subsets.
However, this requires careful implementation to avoid artifacts from
partitioning and subsequent stitching.

Here, we study models that can naturally scale to large input multi-
plicities by avoiding pairwise memory allocations or computation.
Increasing the input multiplicity that ML models can process simulta-
neously without manual splitting also receives considerable attention in the
literature because of its wide range of applications33,34, and our approaches
are based on existing research:
• Thefirstmodel uses adynamically learnedgraph structure18, but avoids

a full quadratic allocation or computation by using a learnable binning
based on locality-sensitive hashing (LSH) in each graph building
layer19,20, inspired by the Reformer architecture35. This approach
divides each event into bins of fixed size based on a learnable function.

• The alternative model is a kernel-based transformer in which the
softmax self-attention layer is approximated using positive orthogonal
random features36. This approach uses a mathematical approximation
based on random projections to avoid computing the full attention.

Both of these approaches avoid memory allocations or computations
that are quadratic in input multiplicity. The LSH-based approach was first
used in ref. 18, initially being pairedwith a k-nearest neighbors (kNN)graph
structure in each bin. In this paper, we instead use an all-to-all fully con-
nected graph in each bin, as we have found it to significantly outperform the
kNN-based approach computationally as well as in terms of fidelity.

Moreover, in this paper, we compare the LSH+GNN approach with the
kernel-based transformer alternative systematically. Thus, this paper offers
the first detailed comparison of alternative scalable models for particle flow
reconstruction.

The LSH-based GNN is constructed as follows. A full all-to-all graph
between N input elements (tracks and clusters) in the event would have
dimensionalityN2,which for an eventwithN = 103 tracks and clusterswould
requireN2 = 106 individual associations to be stored and computed for each
layer. Instead, we split the event dynamically into bins with a fixed and
constant sizeB≪N, anddefine the element-to-element connectivityonly in
each bin, each bin requiring B2 associations. For an event with N input
elements, the number of bins is then determined dynamically at runtime by
NB =N/B, with the last bin being padded if necessary. Therefore, instead of
computing anN ×N adjacencymatrix for each layer, we instead compute a
three-dimensional NB × B × B adjacency matrix. This means that an event
with N = 103 elements and bin size B = 102 would consist of NB = 10 bins,
requiringBN2

B ¼ 105 instead ofN2 = 106 individual associations. The graph
structure defined by the associationmatrix consists ofNB disjoint graphs of
B elements each, which is not amajor limitation because the graph building
layers can be stackedmultiple times, each building different disjoint graphs.
Fromaphysics point of view, it is reasonable to expect that nearby (for some
learnable definition of neighborhood) inputs should have a stronger asso-
ciation than input elements in highly separated parts of the detector. This
graph building layer can be implemented using elementary matrix opera-
tions in a fully batched and differentiable way using TENSORFLOW37,38.
This is similar to manually partitioning and restitching the event, but
achieved directly in the NN model using fully differentiable operations,
rather than with a manual heuristic. The GNN is based on stacked layers of
graph building and convolution, with the number of layers being a con-
figurable hyperparameter.

The alternative kernel-based transformer model avoids quadratic

scaling using the following approach. For N elements, given queries Q 2
RN × dq and keys K 2 RN × dk , the attention mechanism encodes a value

matrix V 2 RN × dv as

AttnðQ;K;VÞ ¼ softmax
QKTffiffiffiffiffi
dk

p
 !

V : ð2Þ

Here, the softmaxðQKTÞ operation creates a fullN ×Nmatrix. As in ref. 36,
wedefine a transformationψðxÞ ! x0 that transforms an input featuremap
x using predetermined random projections to a new feature space x0. For a
sufficiently large number of random projections, attention can be
approximated as

AttnðQ;K;VÞ ’ Q0ðK 0TVÞ ð3Þ

where Q0 and K 0 are the query and key matrices after the random feature
mapping ψ, respectively. Allocation of the entire N ×N matrix is avoided,
since the orderof operations is changed tofirstmultiply keyswith values and
then subsequently with queries. In the special case of self-attention, Q, K,
and V are all derived from X through a linear layer, and the self-attention
mechanism can be seen as an analogy to graph building and message
passing. A visual overview of the supervised learning setup, as well as the
LSH model structure, is shown in Fig. 2.

The complete model for PF reconstruction is then implemented based
on stacked layers of LSG-based GNN or self-attention and feedforward
networks, with the number of layers being a Hyperparameter (HP).

Dataset. Having defined NN models for PF reconstruction that avoid
OðN2Þ memory allocation and computational scaling, we train and test
them on a realistic dataset. We generate e+e− collision events with
PYTHIA8 (v8.306)39 and carry out a complete detector simulation with
GEANT4 (v11.0.2) using the Key4HEP framework (v2023-01-15)40. In
particular, we use the Compact Linear Collider (CLIC) detector
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model41,42, along with the Marlin reconstruction code43, and the
Pandora package44–46 for a baseline PF implementation. The CLIC
detectormodel is chosen because it is publicly available, well documented
and realistic, and similar to detector concepts that are in use at LHC, or
under consideration for either HL-LHC or FCC.

The CLIC detector model is based on the CMS detector at CERN. It
features a superconducting solenoid with an internal diameter of 7m,
providing a magnetic field of 4 T in the center of the detector. Silicon pixel
and strip trackers, the electromagnetic (ECAL) and hadron calorimeters
(HCAL) are embeddedwithin the solenoid. Each subdetector is divided into
a barrel and two endcap sections. The ECAL is a highly granular array of 40
layers of silicon sensors and tungsten plates. The HCAL is built from 60
layers of plastic scintillator tiles, read out by silicon photomultipliers, and
steel absorber plates. Themuon system surrounding the solenoid consists of
six and seven layers of resistive plate chambers interleaved with yoke steel
plates in the endcap and barrel respectively. Two smaller electromagnetic
calorimeters, LumiCal and BeamCal, cover the very forward region of the
detector on either side of the interaction point41,42.

Collision events are generated with different physics processes to test
the out-of-distribution performance of the model. In particular, we use

PYTHIA8 to generate≃ 106 inclusive tt, ZH, fully hadronic WW each,
and≃ 2 × 106qq events. Furthermore, we generate≃ 7 × 105 of tt PU10
events with a beam-induced hadronic overlay gg ! qq interactions, cor-
responding to an average of 10 additional interactions per event, known as
pileup (PU), to test the stability under varying conditions.We also generate
single e ± ; μ± ;K0

L; π
0; π± , neutron, and photon particle gun samples, with a

uniform energy distribution in E∈ [1, 100] GeV, generated using the
DDSIM47 package,≃ 106 events each for performance tests. The qq and tt
were split in an 80/20 ratio to form train/test samples, while the ZH,WW, tt
PU10 and single particle gun datasets were never used in training.

The datasets with generator particles; reconstructed tracks, hits and
calorimeter clusters; as well as reconstructed particles from the baseline
Pandora algorithm are saved in the EDM4HEP format, including all the
relevant associations. Overall, the size of the dataset is ~2.5 TB before pre-
processing to the ML-specific format using the TFDS library48. The raw
datasets in EDM4HEP format, along with the scripts and configurations to
generate the data, are available at ref. 49.

There are about 50–500 tracks or calorimeter clusters per event, while
the multiplicity for raw calorimeter hits is considerably larger at 5–15 × 103

per event. In this paper, we analyze the datasets at the level of the tracks and

Fig. 2 | One layer of the locality sensitive hashing based graph neural network.
aThe input event ofN tracks and clusters (elements) is described by a list ofN feature
vectors, one F-dimensional vector per element. b Each element is first assigned into a
bin based on a learnable function, denoted with the color of the box. c The elements
are then sorted according to the bin, such that elements in the same bin are con-
secutive. d In each bin, a full all-to-all learnable adjacency matrix is constructed
between all the elements in the bin, with the learned element-to-element association

illustrated by the color of the matrix element. e This matrix is used for message
passing in each bin, multiplying the corresponding bin feature vectors with the
learned adjacency matrix. f The output is a list ofN transformed feature vectors, one
D-dimensional vector for each track or cluster. Each input and output vector is
represented by a single gray box, the order of the input and output feature vectors is
preserved.

Fig. 3 | The model validation loss and physics performance throughout training
for the graph neural network and kernel-based transformer, before and after
hypertuning. The validation loss (a), jet (b) and pmiss

T resolution (c), parameterized
by the interquartile range (IQR) of the response distribution, for the graph neural
network (GNN, red) and kernel-based transformer (TF, blue)models before (dashed
lines) and after hyperparameter optimization (HPO, solid lines), evaluated using 10

trainings, each trained on four Nvidia A100 devices in a distributed data-parallel
manner. Lower values correspond to better physics performance. Only the loss is
explicitly minimized, the jet and pmiss

T resolution improvement emerges from the
minimization of the loss function. We show the evolution of these quantities during
the full training process, where only the random seed differs in each run. The shaded
regions show the standard deviation of the metrics across the runs.
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calorimeter clusters to study the physics performance of models. We note
that it is straightforward to apply the model on tracks and raw calorimeter
hits, however, we leave this analysis for a follow-up paper. The input ele-
ments and target particles have different underlying signatures in different
samples, depending on the physics process, therefore themodelswill have to
demonstrate out-of-distribution generalization.

Jets are defined by clustering particles with the generalized kT
algorithm (R = 0.7, p =− 1) for e+e− colliders50,51 with a minimum pT≥ 15
GeV. No additional quality cuts are applied to the jets at this stage. We

also evaluate the p!miss

T and total 3Dmomentum of the reconstructed and

generated particles. The missing transverse momentum vector p!miss

T is
calculated as the negative vector sum of the transverse momenta of all
particles in an event, and its magnitude is denoted as pmiss

T . We use these
quantities to assess the performance of MLPF and the baseline PF
reconstruction with respect to the ground truth defined by the generator
particles.

Results and discussion
Several steps were taken to ensure efficient training on large-scale datasets.
The models can be implemented using matrix operations in native TEN-
SORFLOW. Given the varying size of events, the model implements
variable-sized batching, supporting batching events at fixed batch size
increments, with the batch size inversely proportional to the size of the
events in the batch. This was necessary to reduce the amount of zero-
padding, and to enable automatic kernel compilation, so that a limited
number of kernels have to be compiled for each bucket size increment. Since
the total size of the datasets can reach several terabytes, efficient larger-than-
RAM training is enabled through dynamic dataset loading and interleaving
using the TENSORFLOWDATASETS library. Themodel supportsmixed-
precision training in BFLOAT16 and FLOAT16. The training in
BFLOAT16 results in loss values that are stable and largely compatible with
that of FLOAT32, while we find that the dynamic loss scaling for FLOAT16
results in NAN gradients and does not converge. At the time of writing,
software support forBFLOAT16 inTENSORFLOWis limited, such that the

Fig. 4 | Performance of the particle flow (PF) and machine-learned particle flow
(MLPF) algorithms on single particle gun samples. Charged hadron efficiency in
(a), neutral hadron efficiency in (b), photon efficiency in (c). The efficiencies are
parameterized as a function of track pT or cluster energy. The charged hadron fake

rate is shown in (d), the neutral hadron fake rate in (e), the photon fake rate in (f). For
efficiency and fake rate, we show the binomial statistical uncertainties from limited
samples. We show the pT response of charged hadrons in (g), and the energy
response of neutral hadrons in (h) and photons in (i).
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Fig. 5 | The generated (truth) and reconstructed kinematic distributions for
baseline particle flow (PF) and the proposed machine-learned particle flow
(MLPF) algorithm. The distribution of generated particles for tt, qq, WW and ZH,

and the ratio between the reconstructed and generated particle distributions for the
baseline algorithm (dashed line) and the machine-learned algorithm (solid line) for
charged hadrons in (a) and (b), neutral hadrons in (c) and (d), photons in (e) and (f).
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operations are not placed on tensor cores and the use of BFLOAT16 does
not result in increased training throughput, while training with FLOAT16
results in moderate speedups of 30–40% for the GNN model. Improving
training throughput using BFLOAT16 is the focus of future work.

An extensiveHPOwas performed for both theGNN-andkernel-based
transformer model using the JURECA supercomputer52. JURECA is a pre-
exascale modular supercomputer operated by Jülich Supercomputing
Centre at Forschungszentrum Jülich. The system consists of a flexible Data
Centric module, based on the Atos BullSequana XH2000. It has, among
others, 192 accelerated compute nodes with four NVIDIA A100 GPUs and
twoAMDEPYC7742CPUseach.Weemploy a similar approach toHPOas
in ref. 53, using Bayesian Optimization in combination with the ASHA54

algorithm. The optimization was performed in a distributed manner on 96
GPUs spread over 24 compute nodes, consuming roughly 7000 and 5000
GPU hours for the optimization of the kernel-based transformer and the
GNNmodel respectively. The hyperparameter optimization details can be
found in Supplementary Note 1: Hyperparameter optimization.

The performance improvements achieved fromHPO are presented in
Fig. 3.We find that the optimized versions of both theGNNand the kernel-
based transformer significantly outperform the unoptimized versions. The
relevant evaluation criterion formodel selection is the reconstruction of jets
and pmiss

T compatible with those at the generator level, a target that is not
explicitly trained for, but can be reached by minimizing the particle-level
loss. The optimized version of the GNN significantly outperforms the
kernel-based transformer, although both use a similar number of trainable
parameters (≃5 × 106). As the GNN-based model has significantly
improved validation loss andphysics performance,we focus on it for the rest
of this paper.

First, we study the performance of the chosen GNN model on single
particle gun samples that were never used in training. In Fig. 4, we see that
the performance of the baseline PF and our proposed MLPF algorithm is
broadly similar for charged hadrons, while the efficiency and fake rate for
neutral hadrons and photons are higher for PF, especially at low calorimeter
cluster energies. Apart from differences in acceptance thresholds that we
observe here, we do not expect or observe significant physical differences on

single particle gun samples. The pT and energy response distributions are
broadly similar for all particle types. From this, we conclude that while not
perfect, the baseline PF algorithm is reasonably well tuned and represents a
meaningful comparison point.

We also report the single-particle truth and reconstructed distributions
for all held-out samples in Figs. 5 and 6, as well as for jets in Fig. 7.

The physics performance in event-level quantities is summarized in
Fig. 8. The jet response distribution of the baseline PF algorithm is some-
what asymmetric, as the baseline jets are biased towards higher pT values
with respect to the matched generator jet, while the distribution from our
proposed algorithm is significantly more symmetric around unity. This is
due to the overall momentum regression being optimized on the samples
directly in MLPF.

We use ZH, WW and tt PU10 events to evaluate out-of-distribution
performance. We evaluate the jet response by clustering reconstructed
particles into jets, by matching the reconstructed and generator-level jets,
and computing the ratio of reconstructed to generator-level jet pT. In all
samples, the fraction of reconstructed jets from theGNN-basedMLPF is the
same or higher than for PF, with generally an improved jet response width,
quantified by the interquartile range (IQR) and median compared to the
rule-based baseline. This improvement over the baseline was not observed
before hyperparameter tuning. We also evaluate the total 3-momentum
response for either PF or MLPF particles, and find that the MLPF model
improves both the median and IQR of the total 3-momentum response
distributions for all samples.

To compare the momentum resolutions between the different
approaches, while accounting for the differences in the momentum scales,
we evaluate the metric of the IQR divided by the median of the response
distributions. We quantify the evolution of this metric for the jet pT (total
event 3-momentum) in bins of generator-level jet pT (generated total event
3-momentum) on the tt with 10 PU interactions (tt PU10) sample in Fig. 9.

The baseline PF and proposed MLPF algorithms behave qualitatively
similarly, with improved response IQR over median values at higher
generator-level jet pT (total 3-momentum), while the MLPF algorithm
consistently outperforms the baseline PF on this sample by up to 50%. This

Fig. 6 | The generated (truth) and reconstructed
kinematic distributions for baseline particle flow
(PF) and the proposed machine-learned particle
flow (MLPF) algorithm for electrons and muons.
The distribution of generated particles for tt, qq,
WW and ZH, and the ratio between the recon-
structed and generated particle distributions for the
baseline algorithm (dashed line) and the machine-
learned algorithm (solid line) for electrons hadrons
in (a) and (b) and muons in (c) and (d).

https://doi.org/10.1038/s42005-024-01599-5 Article

Communications Physics |           (2024) 7:124 7



improvement has important implications for the sensitivity of key mea-
surements at future colliders, such as those involving Higgs bosons that
decay to bottom quark-antiquark pairs55.

An important factor in the development of scalable ML-based full
event reconstruction models is improving the computational throughput
in future deployment scenarios. Possible approaches to improve infer-
ence throughput could include more efficient model formulations and
implementations56, sparsity and quantization. Therefore, we compare the
inference scalability of the rule-based PF implementation on CPU and
the proposed scalable GNN implementation on GPU with respect to
increasing input multiplicity, with the results summarized in Fig. 10.
Inference scaling tests of the GNN model are tested on a small, 8 GB
consumer GPU (Nvidia RTX2060S) to emulate a resource-constrained
scenario in edge deployment.

The rule-based version is run with 25, 50, 100, and 200 generated π−

particles per event for 10 events. We generated three different sets of these
events varying the random seed each time, andmeasured the runtime of the
particle-flow module in Key4HEP. The runtime of the baseline increases
nonlinearly with increasing particle multiplicity, and segmentation faults
occur for more than ~200 particles per event, possibly due to the baseline
code and configuration not being tuned for such a high number of particles.
Currently, it is only possible to track memory usage of the full baseline
reconstruction chain, not individual algorithms. However, we find that the
maximum memory requirements increase approximately linearly from
about 2 GB for 25 particles to about 8 GB for 200 particles.

TheGNNmodel is runwith a varying input size on an 8GB consumer
GPU multiple times to average over random fluctuations. Both the batch
size B, i.e., the number of batched events (B∈ {1, 2, 4, 8, 16}) and the event

Fig. 8 | Jet and total 3-momentum response in the validation samples, comparing
the baseline particle flow (PF) and the machine-learned particle flow (MLPF).
The jet response for ZH samples in (a), for WW samples in (b) and for tt with
hadronic overlay on (c). The total 3-momentum response is shown for ZH samples

in (d), for WW samples in (e) and for tt with hadronic overlay on (f). We also show
themedian of the distribution (M), forwhich values closer to unity are better, and the
interquartile range (IQR), for which lower values are better.

Fig. 7 | The generated (truth) and reconstructed
kinematic distributions for baseline particle flow
(PF) and the proposed machine-learned particle
flow (MLPF) algorithm for jets. The pT (a) and η
(b) distributions of generated jets for tt, qq,WWand
ZH, and the ratio between the reconstructed and
generated jet distributions for the baseline algorithm
(dashed line) and the machine-learned algorithm
(solid line).
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sizeN, i.e., thenumber of input elementsper event (N = 256n forn∈ [1, 40])
are varied independently. The inference runtime scales approximately lin-
early withN. We note that B≫ 1 is required to saturate the GPU, but this is
highly model and device specific. The maximum GPU memory of our
proposed MLPF algorithm varies between about 300 MB for the smallest
tested configurations (B = 1,N = 256 to about 4.5 GB for the largest tested
configuration (B = 16,N = 10240), with allocations scaling in a stepwise
manner due to the LSH binning.

We confirm that the ML-based reconstruction based on the LSH-
binned GNN for full event reconstruction avoids the quadratic scaling
present in a typical rule-based full event reconstruction algorithm. It is likely
that additional effortwill be able to significantly improve the performanceof
both algorithms. For example, in CMS, a k-dimensional tree57 is used to
avoid quadratic scaling11. With aggressive quantization, the throughput of
ML models can be significantly improved with a negligible performance
degradation58.

At this point, it is not meaningful to compare the absolute throughput
of the rule-based model on a CPU and the ML-based model on a GPU, as
neither method is particularly optimized for throughput, and the compar-
ison is strongly affected by the specific choice of hardware.

The training scalability is also tested, with results presented in Fig. 10,
on three different HPC centers with different accelerator hardware: Nvidia
H100GPUs from Flatiron Institute’s CoreSite cluster59, AMDMI250GPUs
from the LUMI supercomputer60, and Intel Habana Gaudi HPUs from the
Voyager supercomputer61. The LUMI supercomputer features GPU nodes
with 64-core AMD Trento CPUs and four AMDMI250X cards, each card
consisting of two accelerator chips. Voyager is an NSF-funded super-
computer with 42 first-generation Intel Habana Gaudi (training) nodes,
each with eight cards, two first-generation Intel Habana Goya (inference)
nodes, a 400GbEArista switch, and 3 PB of Ceph file system available at the
SanDiego SupercomputerCenter located at theUniversity ofCalifornia San
Diego. Intel Habana also provided additional access to eight Gaudi2 nodes
in an HLS-Gaudi2 Deep Learning Server62. For the training tests, there are
some differences in the configuration on the HPCs. For the AMD pro-
cessors, multi-card training was implemented with a mirrored worker
configuration, while for the Nvidia and Habana processors, Horovod63 was
used. Events were zero-padded to a regular size of 512 elements per event. A
batch size of 250 events per device was used for the Nvidia, AMD, and
HabanaGaudi2 processors, while a batch size of 100 per device was used for
the HabanaGaudi processors.We observe nearly linear scaling or better for

Fig. 9 | The jet and total 3-momentum resolution,
comparing the baseline particle flow (PF) with the
machine-learned algorithm (MLPF). The jet pT
response (a) and total 3-momentum response (b),
comparing the baseline particle flow (PF) with the
machine-learned algorithm (MLPF), parameterized
as the interquartile range (IQR) divided by the
median the tt sample with hadronic overlay, eval-
uated in bins of generated jet pT (total 3-momen-
tum). Lower values correspond to better resolution.

Fig. 10 | Computational performance of the baseline particle flow (PF) and the
proposed machine-learned algorithm in inference and training. Absolute timing
of the baseline PF (a) and the proposed GNN-based algorithm (b), illustrating the
scaling with respect to input particle or element (track and cluster) multiplicity. The
absolute processing time of the baseline algorithm on a single CPU thread is
approximately 1,s/event at the reference point of 100 charged pions, which corre-
sponds to approximately 96 ± 3 tracks and 170 ± 20 clusters. The runtime of the
machine-learned particle flow (MLPF) algorithm on the Nvidia RTX2060S GPU at
the reference point ofN = 256 elements, batch size B = 16 is 2 ms/event. This should
not be interpreted as a complete, exhaustive and final computational benchmark,
nor should it be used to claim 500-fold improvement in throughput fromMLPF, as

the absolute timing of any algorithm is heavily dependent on optimizations and
hardware. In ref. 20, the runtime of a heavily optimized version of the baseline
algorithm was measured at 9 ms/event, whereas the MLPF model at 320 ms/event,
both on a single CPU thread. In (c), we demonstrate the scaling of the training
performance across multiple devices on a single machine on Nvidia, AMD, and
Habana processor cards from the CoreSite, LUMI, and Voyager supercomputers,
respectively. For the multi-device scaling test, Horovod63 was used on CoreSite and
Voyager, while the TENSORFLOW MirroredStrategy68 was used on LUMI.
The batch size was adjusted to fit a single device and the dataset was fully
cached in RAM.
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all processors. The scaling for the Habana Gaudi1 (Gaudi2) processors is
enhanced by the all-to-all non-blocking intra-node network connection,
where each processor has a 100 (300)Gb network connection to every other
processor61,62.

Conclusions
We have used a realistic simulation for the CLIC detector, conceptually
similar to existing and future detector designs, to develop scalable machine
learningmodels for full event particleflow reconstruction.We compare two
scalable ML models: a GNN model that uses LSH, and a kernel-based
transformer using large-scale HPO. Both of these models avoid quadratic
scaling inmemory and computation, thus allowing the processing of events
from highly granular detectors. We find that a GNN model significantly
outperforms the kernel-based transformer alternative and the baseline
Pandora-based PF on the basis of individual particles as well as event-level
quantities such as jets and total 3-momentum. Improved particle-level and
event-level reconstruction can result in significant improvements for future
flagship analyses such as those involving the Higgs boson decaying to
bottom quarks. At the same time, the flexible and learnable LSH approach
allows one to process complex events expected at future detectors with up to
104 particles per event efficiently, while supporting various existing hard-
ware accelerators such as Nvidia, AMD and Habana without additional
porting effort. Our work contributes to the existing body of research by
proposing a new, challenging open dataset for particle flow reconstruction
studies, by defining relevant benchmarks andby identifying efficientmodels
that can solve these benchmarks better than existing rule-based algorithms
without additional tuning.

Further research is possible in several directions. First, it would be
useful to repeat this exercise using the simulation from detectors that are
taking data in Run 3 of the LHC, e.g., in CMS, to study the performance
of the reconstruction in more realistic conditions, and also study the
reconstruction performance on real data. Second, we are currently using
a simple particle-based loss, while the use of contrastive-adversarial
learning methods may allow one to account for event-level discrepancies
more effectively64. Third, the hypergraph model21 shows promising
physics performance but currently only supports small input sequences.
It may be interesting to extend the hypergraph construction over
dynamically binned events using the LSH approach. While the current
model works at the level of tracks and calorimeter clusters, our proposed
approach scales naturally to cases where one considers the raw detector
hits directly as an input, possibly allowing direct event reconstruction
without having to tune clustering or tracking algorithms. It may also be
useful to construct features using semi-supervised or unsupervised
learning from real data, to reduce the reliance on simulated datasets for
supervised learning65. Furthermore, large-context models are con-
tinuously improving, and it may be interesting to apply the latest
developments such as FLASHATTENTION66,67 on the models in this
paper. For improving throughput on e.g., CPUs, quantization has shown
promise, and it may be interesting to investigate if this can be repeated for
the type of models proposed for PF reconstruction. Finally, it is impor-
tant to integrate the proposed ML-based reconstruction models into
reconstruction frameworks such as CMSSW and KEY4HEP.

Data availability
Our datasets are published following the findable, accessible, interoperable,
and reusable principles. The datasets are available in ref. 49, the results
including the trained model weight files in ref. 69

Code availability
Our code is published following the findable, accessible, interoperable, and
reusable principles. The code used for analysis is available in ref. 70.
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