CERN Accelerating science

002884560 001__ 2884560
002884560 003__ SzGeCERN
002884560 005__ 20231221204543.0
002884560 0247_ $$2DOI$$9JACOW$$a10.18429/JACoW-IPAC2023-MOPA065
002884560 0248_ $$aoai:cds.cern.ch:2884560$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002884560 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2716615$$d2023-12-20T08:43:08Z$$h2023-12-21T05:37:16Z$$mmarcxml
002884560 035__ $$9Inspire$$a2716615
002884560 041__ $$aeng
002884560 100__ $$aElliott, A$$uFlorida Inst. Tech.
002884560 245__ $$9JACOW$$aElectrostatic dust lofting: a possible cause for beam losses at CERN’s LHC
002884560 260__ $$c2023
002884560 300__ $$a4 p
002884560 520__ $$9JACOW$$aDust particles interacting with the proton beams have caused many thousand beam-loss events at CERN's Large Hadron Collider (LHC), some of which led to premature beam dumps and even magnet quenches. It has been hypothesized that dust particles on the vacuum chamber wall of the LHC are negatively charged due to electron clouds and can detach from the chamber wall by the electric field of the beam. To test this hypothesis, we performed experiments to study the electrostatic lofting of dust particles from a conducting surface. A monolayer of SiO2 particles with a diameter of <44 um is deposited on such a surface and exposed to an electron beam of 80-140 eV. An external electric field of up to 3 kV/cm is then applied. The properties of dust charging and levitation are characterized from recorded high-speed videos. We observed that dust particles are lofted both during electron beam charging and during the application of the external electric field. Our results provide experimental evidence that dust particles can be detached from a conducting surface and help to understand the mechanism of how dust particles can enter the LHC beam.
002884560 540__ $$aCC-BY-4.0$$bJACOW$$uhttps://creativecommons.org/licenses/by/4.0
002884560 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002884560 6531_ $$9author$$aelectron
002884560 6531_ $$9author$$aelectronics
002884560 6531_ $$9author$$aacceleration
002884560 6531_ $$9author$$avacuum
002884560 6531_ $$9author$$acollider
002884560 690C_ $$aARTICLE
002884560 690C_ $$aCERN
002884560 700__ $$aWang, X$$uU. Colorado, Boulder
002884560 700__ $$aHoranyi, M$$uU. Colorado, Boulder
002884560 700__ $$aTaylor, K$$uU. Colorado, Boulder
002884560 700__ $$aSchmidt, R$$uDarmstadt, Tech. Hochsch.
002884560 700__ $$aWiesner, C$$uCERN
002884560 700__ $$aWollmann, D$$uCERN
002884560 700__ $$aBelanger, P$$uTRIUMF
002884560 773__ $$cMOPA065$$pJACoW IPAC$$qIPAC2023$$v2023$$wC23-05-07$$y2023
002884560 8564_ $$82501845$$s591675$$uhttp://cds.cern.ch/record/2884560/files/document.pdf$$yFulltext
002884560 960__ $$a13
002884560 962__ $$b2858945$$kMOPA065$$nvenice20230507
002884560 980__ $$aARTICLE
002884560 980__ $$aConferencePaper