
Available on CMS information server CMS NOTE -2023/014

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note

28 August 2023 (v2, 12 December 2023)

Towards Real-Time Machine Learning Based
Signal/Background Selection in the CMS

Detector Using Quantized Neural Networks and
Input Data Reduction

Arijana Burazin Misura, Josip Music, Marina Prvan, Damir Lelas

Abstract

To boost its discovery potential, the Large Hadron Collider (LHC) is being prepared for an exten-
sive upgrade. The new phase, High Luminosity LHC (HL-LHC), will operate at luminosity (number
proportional to the rate of collisions) increased by a factor of five. Such an increase in luminosity
consequently will result in enormous amounts of generated data, the vast majority of which is unin-
teresting data or pile up (PU). HL-LHC detectors, including Compact Muon Solenoid (CMS), will
thus have to rely on innovative technologies and methods to select, collect and analyze collisions
data. In charge of data reduction at the early stages of data streaming is a Level 1 Trigger (L1T), the
real-time event selection system based on information from calorimeters and muon detectors, with a
decision time of around 12 microseconds. For the L1T method, we propose quantized neural network
models deployed in targeted L1T devices, Field Programmable Gate Arrays (FPGAs), as a classifier
between electromagnetic and pile-up/QCD showers. Traditional classifiers are based on cluster shapes
and hand-crafted features, while the proposed quantized neural network uses raw detector data, that
speeds up the classification process. Data reduction using selection and quantization additionally de-
creases model size retaining accuracy. The model execution requires less than 1 microsecond, making
it a possible mechanism for real-time signal/background classification.

Towards Real-Time Machine Learning Based
Signal/Background Selection in the CMS Detector Using

Quantized Neural Networks and Input Data Reduction

Arijana Burazin Mišura, Josip Musić, Marina Prvan, and Damir Lelas

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture,
University of Split

December 12, 2023

Abstract
The Large Hadron Collider (LHC) is being prepared for an extensive upgrade to boost its discovery

potential. The new phase, High Luminosity LHC, will operate at luminosity (number proportional to
the rate of collisions) increased by a factor of five. Consequently, such an increase in luminosity will
result in enormous amounts of generated data, the vast majority of which is uninteresting data or pile up.
High Luminosity LHC detectors, including Compact Muon Solenoid, will thus have to rely on innovative
technologies and methods to select, collect, and analyze collision data. In charge of data reduction at the
early stages of data streaming is a level 1 trigger (L1T), the real-time event selection system based on
information from calorimeters and muon detectors, with a decision time of around 12 microseconds. For
the L1T method, we propose quantized neural network models deployed in targeted L1T devices, field
programmable gate arrays, as a classifier between electromagnetic and pile-up/quantum chromodynamics
showers. Traditional classifiers are based on cluster shapes and hand-crafted features, while the planned
quantized neural network uses raw detector data that speed up the classification process. Proposed data
reduction methods additionally decrease the model size, retaining accuracy. The model execution requires
less than 1 microsecond, making it a possible real-time signal/background classification mechanism.

Keywords: CMS; Level 1 Trigger; HGCAL; Quantized neural network; hls4ml; EM shower; Classification

1 Introduction
Exploration of the essential nature of space and discoveries of exotic particles would not be possible without
particle accelerators, which are primary tools in high-energy physics (HEP). The world’s largest particle
accelerator, the Large Hadron Collider (LHC) [1], is built to understand the fundamental laws of nature and
test different predictions of elementary particle physics. In 2012., the LHC experiments A Toroidal LHC
Apparatus and Compact Muon Solenoid (CMS) [2] confirmed the existence of the Higgs boson through
the discovery of the predicted fundamental particle. The current phase aims to fully characterize the Higgs
boson properties and search for phenomena beyond the standard model.

In the LHC ring, high-energy proton collisions occur every 25 ns. To analyze the results of the collisions,
four detectors surround collision points and record the obtained data. One of four LHC detectors is CMS,
a cylindrically shaped general-purpose detector with several concentric layers of components (Figure 1).
When interesting particles are produced as a result of the collision, they immediately decay into lighter, stable
particles. As shown in Figure 1, decay products pass through detector layers and interact with them, allowing
their direction and momentum to be measured. Among the detectable decay products, there are electrically
charged leptons (electrons and muons) and particle jets (collimated streams of particles originating from
quarks and gluons)[3].

This paper concentrates on the electromagnetic calorimeter sub-detector part, where particles such as
electrons and photons are detected. Combining the data coming from different sub-detectors, an ultimate
goal is to obtain a complete picture of the collision event and to enable the application of a wide range of
physical analyses. However, the purpose of this paper is not the physics analysis but the input data reduction,
as well as the implementation of the real-time model for signal versus background selection. Namely, the
crucial part of the CMS dataflow is the event data selection in the early stage. The detector produces tens of
terabytes of data per second, exceeding the available processing and storage resources. An event processing
system – level 1 trigger (L1T) is running, deciding which events should be kept for further analysis and
which should be discarded. The system is real-time, requiring a fast decision on the input data stream.

1

Figure 1: CMS detector overview [4]: sub-detector layers are designed to measure particles produced
in proton-proton collisions (Layers: 1. Silicon Tracker, 2. Electromagnetic Calorimeter, 3. Hadron
Calorimeter, 4. Superconducting Solenoid, 5. Iron return yoke interspersed with Muon chambers;

The decision will be even more demanding in the High Luminosity (HL) LHC phase because of the
increased luminosity, the unprecedented radiation dose, and the vast majority of uninteresting additional
proton-proton interactions referred to as pile-up (PU). The CMS is going through a major upgrade for the
HL-LHC era, and one of the most important enhancements is the design of the High Granularity Calorimeter
(HGCAL) [5], the radiation-hard replacement of endcaps. It is a sampling calorimeter characterized by
very high granularity using 6 million silicon and 400 thousand scintillator channels. Silicon cells are
fine-segmented, radiation tolerant, and fast sufficient to mitigate PU. Hence, they will be used as active
elements in high-radiation areas, and, to reduce cost, scintillator will be active element in lower-radiation
areas (Figure 2). The HGCAL consists of an electromagnetic part (CE-E) containing 14 layers of hexagonal
silicon sensors, while the hadronic part (CE-H) consists of another 8 silicon layers.

At the moment when the experiment presented in the paper started, there were in total 50 layers foreseen
in HGCAL [6], as it is used in the experiment. In the recent design revision, the number of layers is reduced
to 47 [7] but could also change till actual production.

Figure 2: The HGCAL endcap mechanical construction (left) and a single electromagnetic and hadronic
calorimeter layer (right), adjusted from [4], [5].

An expected increase in the data rate for the HL-LHC requires advanced approaches that would enable
efficient real-time analysis methods for the HGCAL L1 trigger. Artificial intelligence, especially machine
learning (ML), has become a standard tool in analyzing big data and is gradually becoming a common tool in
HEP. The development of sophisticated ML algorithms, specifically convolutional neural networks (CNN),
has been shown as a powerful tool in image recognition, solving many computer vision problems. Until
recently, the main drawback of real-time implementation was the fact that running capable ML methods

2

requires time and powerful hardware. Advanced approaches have enabled the integration of ML methods
in real-time processing tasks [8, 9, 10] . However, in restricted conditions under which the collection and
primary selection of data take place inside the LHC detectors, the standard hardware and operating systems
used for typical ML applications are not possible to use. Because of radiation exposure, restricted budget, the
possibility of material damage, and the enormous data rate, a choice has been made on field-programmable
gate arrays (FPGAs) to be used as a platform for L1 trigger algorithms. Compared to central processing units
or graphic processing units, they are very efficient because of very high throughput, low latency, and low
power budget. Recently, scientists began to explore using ML techniques, specifically neural networks (NN),
on FPGAs to improve real-time event processing. This paper deals with the same topic and presents a case
study for real-time signal/background classification of the HGCAL data using quantized neural networks
deployed on FPGAs. The reason behind network quantization is an effort to reduce the network requirements
since limited resources are available on the target FPGA, shared between multiple algorithms. Moreover,
input data reduction is applied using selection and quantization procedures to additionally decrease the
model size and reduce latency and memory requirements.

The paper is organized as follows. Section 2 describes the application of NN in HEP, particularly for
triggering purposes in particle detectors. Section 3 presents the methodology of the conducted study: the
process of the images data set is described, together with details of NN model optimization. The section
ends with the hls4ml tool introduction. Section 4 illustrates the performance of the described models via
several data refinement approaches and comparisons with baseline particle classification methods. The
results of the implementation of selected models in FPGA using hls4ml are discussed at the end of the
section. Section 5 concludes the paper, followed by the references used.

2 Previous Work
Because of their efficiency in processing large amounts of data, ML techniques have been used frequently
in HEP data analysis. High computational requirements and execution time limited their use mainly to
offline analysis. In particular, ML techniques such as NNs are applied at LHC for different purposes: event
simulation and reconstruction [11], [12], event classification [13], [14], anomaly detection [15], [16], and in
monitoring the supply current to ensure stable operation of the detector [17]. In doing so, different types of
NNs are used. Fully connected neural networks in [18] search for new long-lived particles that decay into
jets. Qasim et al. [19], using a graph neural network named GravNet, perform grouping, classification, and
regression of energy and position. Graph neural networks have also been used to track charged particles
[20]. Generative Adversarial Networks are often used as a substitute for computationally intensive parts of
Monte Carlo simulations, such as the modeling of electromagnetic showers [21] and the reconstruction of
jet images, which was shown by the authors in [22]. The group of authors in [23] based on the raw data
obtained from the CMS calorimeter reconstructs, discusses, and simulates particles (electrons, photons,
charged pions, and neutral pions) using various machine learning methods. For HGCAL sensors to function
properly, in the [24], authors suggest a deep-learning-based pre-selection algorithm that fully automates
visual inspection to ensure that sensors satisfy quality control criteria. Otherwise, defects and dust on a
sensor surface can lead to sensor failures. ML is also used in other parts of the CMS experiment, in the
Drift Tubes detector, for generating trigger primitives [25]. Guest et al. [26] provide a systematic survey on
the application of deep learning in LHC physics.

The initial use of ML methods was mainly based on manual tuning/finding high-level features, requiring
more detailed knowledge of particle decay phenomenology. Before the development of deep learning,
methods based on high-level features (which required preprocessing of the data) achieved better results than
those using raw data. Baldi in [3] found that in some classification problems in HEP, shallow NNs using
low-level data achieve almost the same performance as those using tuned features. It is shown that deep
learning techniques based on low-level data can discover the insight contained in high-level features. Cogan
et al. [27] recognized that the projection of the calorimeter structure, which is present in almost all detectors
used in HEP, is similar to image pixels. This way of data representation allowed physicists to use new
tools in image processing, such as CNNs. Andrews et al. [13] were among the first to present an approach
based on the classification of images obtained on simulated CMS detector data. The paper studies the decay
of the Standard Model Higgs boson to two photons using the 2012 CMS Open Data, simulated using the
Geant4 simulator. The images were generated using data on the deposited energy of the particles without
any processing related to the type of particles. Andrews later applied the same technique in the classification
of various types of particles: the classification of quarks and gluons [28] and boosted top quarks [29]. All
research is done on CMS Open data, collision, and simulated data that was recorded in older experiments
and is now publicly available to enable the most successful collaboration of CMS collaboration with the
ML community. Today, CNNs are widely used in HEP because of their efficiency in image processing and
pattern recognition [29][30][31].

3

The idea of using NNs to increase trigger efficiency was introduced for the first time in 1990. in [32].
Four hundred fifty samples representing the 8x8 area around the cell in the calorimeter with the largest
energy deposit were used to train the feed-forward network in the Collider Detector experiment at Fermilab.
There was a huge gap between training and testing accuracy, and the plan was to implement NN in hardware.
At that time, large-scale NNs implemented in silicon began to appear, and with latency times on the order
of 1 ms, they were suitable for the trigger systems of the time. Since then, NNs have been continuously
used in triggers, but high resource requirements (including energy constraints) did not allow their real-time
application. In high-level CMS triggers, with no such resource constraints, NNs are used for different
purposes, for example, for track seed filtering [33] or to label jets [34]. In CMS L1T, because of the limited
size, required latency, and radiation exposure, the traditional approach to NNs is not acceptable. For this
reason, work has begun on new approaches that enable NN use in limited resource environments.

The reduction of memory requirements while maintaining the NN accuracy was attempted to be achieved
by quantization of the network. The first very efficient approaches to aggressive NN quantization were given
in 2015. when Courbariaux et al. [35] presented BinaryConnect, an NN that uses binary weight values
while maintaining model accuracy. Rastegari et al. in [36] present XNOR-Net, a binary CNN, by evaluating
it on the ImageNet data set. Two different approaches were tested: in the first one, only the weights
are binarized (Binary-Weight-Networks), while in the other (XNOR-Networks), the input to the network
is also binarized. In both approaches, a memory saving of ∼32x is achieved, and the binary weights
allow performing convolutions without using the multiplication operation, which in the first case results in a
speedup of ∼2x, and in the second, even ∼58x, compared to the model where the network and data were used
in complete precision. The first approaches to network quantization were performed so that the network
is trained and then quantized, called post-training quantization, a technique that mainly suffers from a
significant loss of accuracy. In the Quantization Aware Training approach, quantization is performed during
training, which generally gives less accuracy drop compared to the previous technique. The QKeras [37] and
Larq [38] libraries are designed as a quantization extension of the Keras API. In the paper, QKeras enables
the approximation of NN weights, biases, and activation functions with low bit values that significantly
reduce the network size.

Therefore, the development of such tools and the emergence of ML-compatible FPGA devices have
opened up new possibilities for implementing classification networks on L1T. The paper investigates the
possibility of additional resource reduction using data selection and quantization. Applied methods enable
the usage of the proposed quantized models in classification within the set time limit of 12 𝜇s.

3 Materials and Methods

3.1 Data set
Simulated data are used to design and optimize the detector’s geometry, material composition, and readout
electronics and to test the performance of the suggested classifiers. They are extremely valuable during the
stages of detector development when real data are not yet available. CMS Software Components (CMSSW)
is a collection of software needed to simulate CMS detector event data so that scientists can perform different
types of analysis. It produces Monte Carlo simulation events, where primary physics processes are generated
by programs such as Pythia [39]. A detailed simulation of the CMS detector uses Geant4 [40], a tool that
simulates particle interactions with the detector material. For this study, it is necessary to generate images
to match the HGCAL structure. Hence, the data set used in the research is created based on data obtained
from CMSSW version 12.1.0.

3.1.1 Process and Simulation

An electromagnetic (EM) shower is chosen for the data that represents a signal. It is obtained by simulating
electrons with the transverse momentum (pt) between 2 and 200 GeV, where pt is a component of momentum
perpendicular to the beam line. A minimum bias (neutrino) simulation with a number of PU events of 200
is used to create the background samples. The paper also considers another type of background, quantum
chromodynamics (QCD) jets, sprays of particles produced by the hadronization of quarks and gluons. QCD
jets background is obtained by simulating the QCD sample with pt from 50 to 80, with a PU value of 200.
Electromagnetic showers, produced by electrons and photons, are processes of interest because decays of
interesting heavy particles, like Higgs boson, can produce electrons or photons, and it is necessary to isolate
them from the often generated, physically irrelevant, PU or QCD jets.

4

3.1.2 Event Selection

For EM shower, three-dimensional (3D) clusters close to generated electrons and positrons (Δ𝑅 < 0.2) are
considered, where angular distance is calculated asΔ𝑅 =

√︃
(𝜂𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − 𝜂𝑔𝑒𝑛𝑃𝑎𝑟𝑡)2 + (𝜙𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − 𝜙𝑔𝑒𝑛𝑃𝑎𝑟𝑡)2),

where 𝜂 is the pseudorapidity, the spatial coordinate describing the angle of a particle relative to the beam
axis, while 𝜙 is an angle that describes the rotation of a particle’s trajectory in the plane perpendicular to
the beamline. The requirement for the cluster’s pt is that it has to be higher than 10 GeV. If there are more
3D clusters close to the generated particle, the clusters whose pt is between 80% and 120% of the pt of the
belonging generated particle are selected, and the one with the highest pt value is picked. For PU, 3D clusters
with pt higher than 5 GeV, which are not close to generated photons, electrons, and positrons (Δ𝑅 > 0.2),
are chosen. For QCD jets, 3D clusters close (Δ𝑅 < 0.4) to genjets with 𝑝𝑡 > 30 GeV are selected. Genjets
are jets produced from generator-level Monte Carlo particles, and they contain information about fractions
from different types of generated particles (charged hadrons). Using the above description, 54 000 samples
are generated: 18 000 EM samples, 18 000 PU samples, and 18 000 QCD jets samples. In this study, only
low-level features are used: pt, position (x,y,z), layer number, pseudorapidity (𝜂), azimuthal angle (𝜙), and
particle ID given by the generator. The generated events are split into training (68%), validation (17%), and
testing (15%) data.

3.1.3 Image Formation

As shown in [27], energy deposited in calorimeter cells can be treated as pixels of an image, which allows
the usage of powerful image-processing techniques. Also, this approach has a significant advantage since
additional preprocessing needed for traditional methods for this kind of classification problem, like random
forest (RF) or boosted decision trees (BDT), is avoided. Each HGCAL layer is represented as a separate
image, resulting in 36 two-dimensional (2D) images. Considering that the first 14 layers belong to the CE-E
part of the endcap and the last 22 to CE-H, the classifier can deal with a complete 36-layer image or take
only the CE-E or CE-H part.

Passing through the calorimeter layers, the particles/decay products deposit energy in sensor cells
grouped into trigger cells (TC). Trigger cells with the highest energies are grouped into 2D clusters within a
single layer. Then, individual 2D clusters are connected into 3D ones, which gives complete 3D information
about the shower (Figure 3a). If the targeted image size is smaller than an individual 2D cluster range, not
all trigger cells participate in such image creation. It is shown in (Figure 3b), where all TCs are bordered
depending on whether they participate in image generation (black border) or not (red border).

(a) (b)

Figure 3: (a) 3D presentation of EM cluster where dot size and color are proportional to deposited pt. (b)
the same cluster; cluster points participating in 5x5x36 image generation are bordered black, and the others
have red borders.

Subsequently, from the 3D cluster data obtained from CMSSW, virtual images are created by applying
the following steps: the line between the center of mass of the 3D cluster and the center of the detector
represents the deposition axis. The intersection point of the axis with each individual layer is the center
of the region of interest (ROI) on that layer (Figure 4a). Afterward, the range along the coordinate axes
is calculated according to the center depending on the target size of the ROI. Finally, a 2D histogram of
5x5 bins, with a bin size 2𝑥2𝑐𝑚2 (adjusted to the size of the trigger cell), is applied to summarize all the
energies (Figure 4b). The study [41] has shown that with a similar data set, window size enlargement does
not significantly impact model accuracy.

5

(a) (b)

Figure 4: Example of layer 13 image generation: (a) the projection of deposited particle energies (b) the
resulting layer image.

As a result of the described image generation procedure, 3D images with a shape 5x5x36 are generated.
The 5x5 parameter represents the window size, while the third value indicates the number of displayed layers
(i.e., depth). Since every second layer is used for triggering in the electromagnetic part of the calorimeter, it
is described with 14 images (for better visualization, 14 layers of absorbers are shown with the same pixel
value as the previous layer), while the hadronic part consists of the remaining 22 layers, one for each layer.
Figure 5 represents the longitudinal profile for EM (5a), PU (5b), and QCD showers (5c). It is clear that
compared with EM showers (on average), PU and QCD start showering earlier, with a peak reached before
layer 10 and a higher energy deposit in the hadronic part. Observing the distribution of the total energy of

(a) (b) (c)

Figure 5: Histogram representing average longitudinal profile for (a) EM shower, (b) PU, (c) QCD.

EM clusters with PU and QCD clusters, shown in Figure 6, it is evident that EM clusters, on average, have
significantly higher energy than background clusters.

(a) (b)

Figure 6: Comparison of average EM and (a) PU, (b) QCD clusters energie.

The models are tested on full HGCAL image (Figure 7a), but for some of the tested approaches, like
reduction of the longitudinal profile, the HGCAL image is split into CE-E and CE-H image parts. CE-E
image has a shape 5x5x14 (Figure 7b) and shows only the electromagnetic part of the calorimeter, while
CE-H image with a shape 5x5x22 represents a hadronic part.

6

(a) (b)

Figure 7: HGCAL image example, covering (a) complete HGCAL (b) just CE-E layers.

3.1.4 Image Preprocessing

Pixel intensities can have large variations between different images; quite often, they span a few orders of
magnitude. In addition, there is a significant number of outliers, especially in the PU data set. The feature
normalization is applied to improve the numerical stability of model(s) and speed up the training process.
The standard procedure to handle outliers is to remove them. But in our case study, outliers are the highest
energy points, and deleting them would mean losing vital information. Some standard approaches in the
presence of outliers are to use (quantile-based) capping [42] or robust scaler normalization [43]. Tests are
done with both techniques, and they show similar results. Due to simplicity, capping will be applied, shown
in more detail in section 3.2.

The selection and quantization of input data are also considered to reduce the model’s memory footprint,
enabling its implementation on FPGAs and the execution of event selection in the set time frame (12.5 𝜇).
Two types of data quantizers are created: linear, where the quantization levels are evenly distributed, and
non-linear, where the relationship between the quantization levels is logarithmic.

3.2 Data refinement
In addition to the data set containing complete HGCAL images, given in full precision, different ways of
data refinement are considered. Although the size of the images is small (5x5), a high number of channels
(HGCAL layers) results in a high number of pixels - features. Depending on the studied number of layers, it
is 350 (for the CE-E part) or 900 for the complete HGCAL. Therefore, although the new detector structure
enables analysis of a detailed collision image, the possibility of dimensionality reduction (the process of
reducing the number of features) is examined. In the case where image data are observed, the number of
pixels can be considered as the number of features; each pixel represents one feature.

Two main approaches in dealing with high-dimensional data are feature extraction (FE) and feature
selection (FS). FE creates new features combining the existing ones, while FS identifies the relevant features
and removes the redundant and irrelevant features. In [44], the authors review FE methods that reduce
processing time while providing higher recognition accuracy. Although FE is the preferred approach in
image processing, because of time and resource constraints, both approaches are used to scale down the
dimensionality of the data without performance degradation. The experiment uses ad-hoc solutions suitable
for our specific physically motivated classification problem. Considering the low computational time,
two techniques are applied: filtering out the irrelevant pixel values (FS approach) and combining/summing
particular layers (FE approach). Further reduction of resource consumption is achieved by data quantization.
Data refinement is conducted in two steps: first, data selection, followed by data quantization.

3.2.1 Selection

In the first step, the selection is applied to full-precision data using one of the rules:

1. Keep energies above the threshold.
Here, a fixed threshold value of (0.1, 0.5, 1, 2) GeV is applied, all values greater than the threshold
are kept, and others are set to 0. The smallest energy values are assumed to have minimal impact

7

on determining if a cluster represents a signal or background. The reason behind the small values
proposed for the thresholds is that TC energies are much smaller than cluster pt.

2. Keep layer maximum (single sample per layer).
With this approach, just the maximum value in each layer is kept, while other values are set to 0. This
approach assumes that the highest pt deposits have a decisive role in shower classification.

3. Capping.
Data capping is a method in which the maximum value of a feature is set to a specific value. It is a
standard technique to treat outliers and is often a necessary step in executing the model in FPGA. A
preliminary test with models implemented in FPGA using hls4ml has shown a drop of the accuracy
of even 10% in dealing with no-capped data (compared with QKeras model accuracy).

4. Reduction of longitudinal profile.
Similar to the approach presented in [45] where detector images consist of three subdetector channels:
one each for CE-E, CE-H, and one for the reconstructed tracks, the following data refinement method
is based on summing pt/pixels from particular detector layers. By summing the values of individual
layers, it is possible to considerably reduce the image (channels) size, drastically decreasing the NN
model’s size. Two different solutions are examined:

• Considering the fact that EM shower leaves pt deposits mainly in the CE-E part of the HGCAL,
all CE-H layers are projected in one plane, reducing the number of CE-H layers from 22 to 1.
This approach is named E+Hf, and the same logic with the CE-H part is also applied in the next
solution.

• Here, the fact that EM starts showering in the earlier detector layers and reaches the peak between
layers 10 and 15 is used. Respectively, the CE-E is divided into three parts: layers 1-5, where
the EM shower starts; layers 6-15, where the most pt is deposited; and layers 16-28, shown in
Figure 8a. Each part is summed (Figure 8b), resulting in 3 5x5 CE-E images, and the CE-H part
is reduced, creating a 5x5 CE-H image. This approach is referred to as 3Ef+Hf.

(a) (b)

Figure 8: Distribution of pt across HGCAL layers for EM, PU and QCD showers used in 3Ef+Hf approach
(a) 3 CE-E + CE-H layers split (b) summed pt in grouped layers.

3.2.2 Quantization

The reason behind the data quantization is it enables additional limitations of resource usage. Data are
quantized in three ways, using custom quantizers:

1. Selection bit(s).
Here, all data values that have passed the previously applied selection steps have a value of 1. Using
this approach, FPGA implementation requires just 1 bit for input data layer presentation.

2. Uniform quantizer.
Min-max normalization is applied on capped data, multiplied by 2𝑛 − 1, where n is a chosen number
of bit width. The result is rounded to the nearest integer. The proposed quantizer function is presented
in Figure 9a.

𝑄(𝑥) = 𝑟𝑜𝑢𝑛𝑑 (𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
· (2𝑛 − 1)) (1)

8

3. Non-uniform quantizer. The quantizer is defined as follows

𝑄(𝑥) =
{
𝑟𝑜𝑢𝑛𝑑 (𝑙𝑜𝑔2 (𝑥) if 𝑥 > 0
−2 otherwise

(2)

The next step is to rescale data (using a min-max scaler), so it does not contain negative values. The
non-uniform quantizer function is presented in Figure 9b.

(a) (b)

Figure 9: Quantizer function y = Q(x): (a) in the case of a uniform quantizer, (b) in the case of non-uniform
quantizer .

The overview of data refinement methods described in this section is given in Table 1.

Table 1: Data refinement methods.
Refinement metods

Selection Quantization
Keep energies above the threshold Selection bit

Keep layer maximum Uniform quantizer
Capping Non-uniform quantizer

Reduction of longitudinal profile

3.3 Model Architectures
Already in 1989. Cybanko [46] proved that standard multilayer feedforward networks could approximate
any continuous function of n real variables to any desired accuracy. The same year, Hornik et al.[47] showed
that multilayer feed-forward networks with as few as one hidden layer are universal approximators. In the last
decade, state-of-the-art models like CoAtNets, ResNet, EfficientNet, YOLOv5, and many others have been
developed. They achieve excellent results, but the high computational complexity of neural network-based
classifiers and their requirements on the resources don’t allow their usage in L1T, where power consumption
is limited, as well as budget on available devices.

3.3.1 Model Size

The first strategy to reduce computational complexity is limiting the network size in the sense of several
layers and neurons while taking care of model performance. In more complex computer vision tasks, it
would lead to significantly worse performance. Still, it is shown in [41, 48] that deep multilayer perceptron
(MLP) with just three layers can be successfully used in EM shower/PU classification. Unlike in the previous
approaches, the new classification cases are added, with background represented as QCD events and a mixed
background scenario with both QCD and neutrino PU events.

Two simple NN models are considered: MLP and CNN, but because of space constraints, just the last
classification case for both models is analyzed in detail since it includes both types of backgrounds. A
hyperparameter optimization software framework Optuna [49] is used to determine the models’ structure.
Optuna uses a tree-structured Parzen estimator sampler, a Bayesian optimization technique that models
the search space. It uses the history of previously evaluated hyperparameter configurations to sample the
following ones.

9

For the CNN, the search space contains 6-16 kernels for the Conv2D layer and 8-18 nodes in the following
1-2 dense layers, so far resulting in 1452 possible network combinations. For the MLP, the search space
contains 2-3 layers, each with 4-16 nodes, which generates 2366 combinations. The proposed activation
functions for intermediate layers for both models are ReLu and sigmoid, while the output layer uses softmax
for the activation function. Search space also contains optimizers: Adam, RMSprop, and SGD, each with
a range of learning rates, which greatly increases the number of possible combinations in search space on
8712 for CNN and 14 196 for MLP. When more architectures with similar accuracies are highly ranked, the
one that minimizes the number of trainable parameters is chosen.

3.3.2 Model Quantization

The second strategy to reduce memory footprint and computational complexity is model quantization, a
process of model transformation into an equivalent representation but using parameters and computations at
a lower precision. According to [50], the usage of low-precision fixed integer values representation has the
potential to reduce the memory footprint and latency by a factor of 16x. Despite being fast and very easy to
use, the post-training quantization approach is not an option because it suffers from significant degradation
in model accuracy in case of precision lower than 8 bits [51].

QKeras library enables quantization-aware training using a simple replacement for Keras layers, greatly
simplifying the quantization process. QKeras allows heterogeneous quantization: it is possible to use
different quantization levels and different quantized activation functions on each layer. The concept of a
straight-through estimator presented in [52] is used, hence the forward pass applies the quantization functions
and the backward pass assumes the quantization as the identity function to make the gradient differentiable
[53]. After exhaustive research, it is decided to use the quantizer 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑏𝑖𝑡𝑠 defined as follows

2𝑖𝑛𝑡−𝑏+1𝑐𝑙𝑖𝑝(𝑟𝑜𝑢𝑛𝑑 (𝑥 ∗ 2𝑏−𝑖𝑛𝑡−1),−2𝑏−1, 2𝑏−1 − 1), (3)

for weights and kernels, where 𝑥=input, 𝑏=number of bits for the quantization, 𝑖𝑛𝑡=how many bits are to the
left of the decimal point.

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑟𝑒𝑙𝑢 is chosen as a quantized replacement for the ReLu activation function, used in the inner
layers of models.

3.4 Evaluation
This section presents the metrics used to demonstrate the impact of quantization, model selection, and data
refinement techniques on model performance.

3.4.1 Standard Metrics

Essential evaluation metrics usually used to illustrate the performance of the classifiers are:

• accuracy (ACC), percentage of correct classifications, calculated as

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)

• sensitivity, recall, or true positive rate (TPR)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5)

• specificity, or true negative rate (TNR)

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(6)

• false negative rate (FNR)
𝐹𝑁𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
= 1 − 𝑇𝑃𝑅 (7)

• false positive rate (FPR)
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑇𝑁𝑅 (8)

• F1 score
𝐹1 = 2

𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅
𝑃𝑃𝑉 + 𝑇𝑃𝑅

. (9)

10

where 𝑇𝑃 stands for the number of correctly predicted positive classes, 𝑇𝑁 is the number of correctly
predicted negative classes, 𝐹𝑃 is the number of samples incorrectly predicted as positive classes, and finally,
𝐹𝑁 is the number of samples incorrectly predicted as negative classes. In the case of class imbalance,
accuracy is not a good metric. Instead, the 𝐹1 score is defined as the harmonic mean of precision (PPV,
where 𝑃𝑃𝑉 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
) and recall, designed to work well on imbalanced data.

Also, it is a standard technique for summarizing classifier performance to produce a receiver operating
characteristic curve (ROC), which represents the false positive rate (FPR) versus the true positive rate (TPR),
and the corresponding area under the curve (AUC) is calculated. In the HEP, it is common to interpret
the ROC curve in terms of the signal efficiency (true positive rate) vs. background rejection (true negative
rate). Also, physicists are often interested in other metrics, like signal efficiency at some fixed background
rejection.

There exist many metrics for classification models, but for particle detector triggers, it is essential to
detect as many interesting events as possible in addition to accuracy. Therefore, the trigger algorithm
should operate at a very low FNR. On the other hand, low FPR ensures staying within the available trigger
bandwidth but does not impact the success of the analysis.

3.4.2 Classification threshold adjustment

Depending on the application, binary classification often needs to optimize specific metrics, such as the
minimization of FNR or FPR (the same as maximizing TNR or TPR). Sometimes, the default threshold (0.5)
may not represent an optimal interpretation of the predicted probabilities. It is the case when the predicted
probabilities are not calibrated, which is a known problem for modern neural networks [54]. Also, when
the cost of one type of misclassification is more important, changing the default decision threshold is one
way to handle it. According to [55], misclassifying an actual positive example into a negative is often more
expensive than an actual negative example into a positive. Thresholding is a cost-sensitive meta-learning
method described in [56], based on the selection of the probability that minimizes the total misclassification
cost on the training instances as the threshold for predicting testing instances. Therefore, when interpreting
the predictions of a model, sometimes there is a need to change the default decision threshold of 0.5. If TPR
and TNR have the same importance for the L1 trigger, one way of calculating the cut-off is using Youden’s
J statistic ([57]), defined as follows:

𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 − 1, (10)

or simplified:
𝐽 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅. (11)

Youden’s index is often used in combination with ROC curve analysis. The index is calculated for all
points of a ROC curve, and the optimal threshold with the largest J value is chosen. If both metrics, FNR
and FPR, are not equally important, using the trial and error method helps find the threshold to lower the
targeted metric.

3.5 Baseline Particle Classification Methods
As baseline methods to be compared to NN-based approaches, the simple cut-off and Random Forest (RF)
are applied.

3.5.1 Cut-off

Considering the fact that average EM cluster pt is much higher than PU or QCD cluster pt as shown in
Figure 6, the simplest approach to particle classification is to apply linear selection criteria: (pt) cut-off
value can be used to accept or reject clusters as EM, as it is likely that the low pt cluster is background. The
test is done with two cut-off values: the first is the maximum PU (QCD) cluster pt, and the second is the
third quartile PU (QCD) cluster pt value.

3.5.2 Random Forest

Another baseline method is RF, a supervised ML algorithm that combines the output of multiple decision
trees to reach a single result. Together with BDT, it is often used in particle classification, as it is shown in
[58, 59]. Both RF and BDT usually use data sets containing well-known physical parameters as features.
Because of time constraints needed for L1T selection, the same input as for NN models is used: raw detector
data - HGCAL images.

RF consists of a large number of decision trees that operate as an ensemble. Each individual tree in the
RF declares a class prediction, and the class with the most votes becomes the model’s prediction. In the RF

11

learning process, there are two major layers of randomness. The first random component is that RF uses a
random (bootstrapped) sample of the original training data set for each individual decision tree. As a result,
in the vast majority of cases, the training sets for the trees are different from one another, which reduces the
correlation between trees and improves the generalization of the predictions. Another randomness is in a
(random) selection of the features considered at each node. The method itself is introduced by Leo Breiman
([60]), and the detailed method analysis is available in [61]. RF’s simple usage and flexibility, together with
the possibility to handle classification and regression problems, have contributed to its widespread usage. It
is considered to be one of the best off-the-self-learning algorithms, requiring almost no tuning, although it
enables fine control over the model that is learned.

An open-source machine learning library for the Python programming language named scikit-learn [62]
is used for testing RF classifiers as it provides a robust implementation combining both algorithmic and code
optimizations. To improve the accuracy of the RF classifier for particular situations, there are parameters
that may be tuned. The grid search is used for performing hyper-parameter optimization, employing the
next hyperparameter search space:

• max features: maximum number of features random forest considers splitting a node, with available
values ’auto’, ’sqrt’, ’log2’. The default value is ’auto’.

• n-estimators: the number of trees in the forest, with values 100, 200, 300. Increasing this hyper-
parameter generally improves the performance of the model. The drawback is it also increases the
computational cost of training and predicting. The default value is 100.

• max depth: maximum number of levels in each decision tree, using values 8, 16, 20. The default
value is None, which means that nodes are expanded until all leaves are pure or until all leaves contain
less than 2 samples.

An addition parameter, criterion, which measures the quality of the split, with values ’gini’ and ’entropy’,
is added to the search space too, and the loss function which is optimizing is accuracy.

3.6 hls4ml
Recently, in 2018. Duarte et al. [31] presented hls4ml, a compiler that translates ML models into Register
Transfer Level for FPGAs using the High-Level Synthesis (HLS) tool. hls4ml enables models’ firmware
feasibility without comprehensive Verilog/VHDL experience, thus accelerating the development cycle. The
hls4ml authors focus on the task of FPGA triggers of the ATLAS and CMS experiment, The models described
in this study use Vivado (2020.1) for HLS synthesis with a Xilinx Kintex UltraScale FPGA (part number
xcvu13p-fhgb2104-2-e) [63] as the target device, with the synthesis clock frequency set to 200 MHz. To
achieve as low as possible latency while maintaining accuracy, different settings are considered depending
on the benchmark model. In the FPGA, hls4ml operates with fixed-point arithmetic. By adjusting the
fixed-point data type and using profiling tools, it is possible to lower resource consumption. The hls4ml
profiling tool helps to decide appropriate model precision. Without profiling, low global precision settings
that help to reduce the FPGA resource usage of a model may result in a loss of model performance if chosen
inappropriately). Another hls4ml feature that helps to optimize an NN is the possibility to determine the
parallelization of the calculations in each layer. It is done by configuring the parameter “reuse factor,” which
determines the number of times a multiplier is used to do a computation. It is clear that a fully parallelized
process results in low latency but requires more resources; respectively, latency and required resources are
inversely proportional. After setting the specified parameters, Vivado HLS is used to synthesize the model.

4 Results and Discussion
The following section presents the structure of NN used in the experiment and explains the results of the
model and data quantization and selection methods described in the previous section.

4.1 Model Architectures
Here, the architecture of used CNN and MLP models is presented, followed by the model quantization
results.

4.1.1 Base NN Models

Optimization results for the hidden layers of CNN and MLP models for each of the classification cases are
shown in Table 2. For example, the CNN model for EM vs. PU classification contains a convolutional layer

12

with 11 3x3 kernels followed by one dense layer with 12 nodes. It can be noticed that the optimizer gives
quite a similar NN structure for MLP in all classification tasks, while the suggested CNN in EM vs. MIX
(Figure 10) is somewhat bigger, it has an additional dense layer, which is expected because the classification
problem is more complex.

Table 2: The results of model structure optimization for CNN and MLP for each classification case. The
table describes just hidden layers.

case/model CNN MLP

EM vs. PU conv1 layer: 11 kernels
dense1 layer: 12 nodes

dense1 layer: 5 nodes
dense2 layer: 13 nodes

EM vs. QCD conv1 layer: 12 kernels
dense1 layer: 10 nodes

dense1 layer: 4 nodes
dense2 layer: 15 nodes

EM vs. MIX
conv1 layer: 6 kernels
dense1 layer: 12 nodes
dense2 layer: 13 nodes

dense1 layer: 8 nodes
dense2 layer: 13 nodes

Activation functions are the same in all cases, inner layers use ReLu, and classification is done using
softmax. For both models, the loss function is the binary cross-entropy, and the optimization is done using
the Adam algorithm with a lr learning rate obtained by the optimizer and a batch size of 128. Learning
rate values determined by the optimizer are in the range of 0.009 to 0.07, depending on the model and
classification case. The early stopping is implemented if no progress is seen beyond 10 epochs. Both
training and testing sets contain balanced samples of the classes in all classification tasks.

Figure 10: Vizualization of CNN (and QCNN) model used for EM vs. MIX classification.

The first group of tests is done on the full data set without any normalization, selection, or quantization.
Input images represent the full HGCAL profile, all 36 layers.

The results of baseline NN methods for different types of EM vs. background classification are shown:
for PU in Table 3, for QCD in Table 4, and for mixed background in Table 5

Table 3: The results for the base CNN and MLP model for EM vs. PU.
model acc prec rec f1 AUC fpr fnr

CNN 0.9861 0.9899 0.9822 0.9861 0.9951 0.0100 0.01781
MLP 0.9830 0.9891 0.9767 0.9829 0.9920 0.0107 0.0233

Table 4: The results for the base CNN and MLP model for EM vs. QCD.
model acc prec rec f1 AUC fpr fnr

CNN 0.9698 0.9756 0.9637 0.9696 0.9914 0.0241 0.0363
MLP 0.9639 0.9665 0.9611 0.9638 0.9884 0.0333 0.0389

It can be noticed that in all cases, CNN gives slightly better accuracy than MLP. Both models are better
at classifying between EM and neutrino PU clusters than between EM and QCD jets. EM vs. MIX classifier,

13

Table 5: The results for the base CNN and MLP model for EM vs. MIX.
model acc prec rec f1 AUC fpr fnr

CNN 0.9731 0.9758 0.9704 0.9731 0.9899 0.0241 0.0296
MLP 0.9689 0.9665 0.9715 0.9690 0.9893 0.0337 0.0285

as expected, is somewhat better than EM vs. QCD, and worse than EM vs. PU. In the rest of the paper,
the focus is put on EM vs. MIX classification problem. The models are minimized, making them suitable
for FPGA implementation and playing an important role in L1 triggering. At the same time, the methods
described in the previous section are used to improve accuracy and minimize FNR.

4.1.2 Models Quantization

To examine the effect of weights/biases/kernels quantization level on model accuracy, tests are done iterating
over the number of bits for the quantization in the range from 2 to 16, and there is no significant difference
in achieved results. A comparison of accuracy and FNR for different quantization levels given in Fig 11
shows that accuracy is very similar for all quantization levels, while FNR varies more. Therefore, given that
the goal is model minimization in the sense of memory footprint and processing requirements, aggressive
2-bit quantization of model weights/biases/kernels is chosen to be applied for model quantization, even if
FNR is higher than, for example, for 6-bit quantized models. In the rest of the paper 2-bit quantized CNN
is referred to as QCNN, and accordingly, the quantized 2-bit version of MLP is named QMLP.

(a) (b)

Figure 11: The effect of weights/biases/kernels quantization level on CNN and MLP model: (a) Accuracy
(as a function of bit width), (b) FNR (as a function of bit width).

The performance of the 2-bit quantized version of CNN and MLP is summarized in Table 6. It is evident
that the quantized models have the same discrimination power as the baseline architectures. Considering
memory and processing limited devices on which the trigger algorithms will be implemented, from now
on, the study is conducted just on quantized models. Comparing QCNN with QMLP, it is evident that
both models provide very similar results. All metrics are slightly higher for QCNNs, confirming that
convolutional layers ensure better performance in computer vision problems.

Table 6: The results for the 2-bit quantized CNN and MLP models.
model acc prec rec f1 AUC fpr fnr

QCNN 0.9737 0.9790 0.9681 0.9736 0.9875 0.0207 0.0319
QMLP 0.9713 0.9782 0.9641 0.9711 0.9812 0.0215 0.0359

4.2 Baseline Particle Classification Methods
4.2.1 Cut-off

The data set contains 18 000 samples for each of the three types of clusters, and 3628 of them, or 20.16%,
are low pt EM clusters, respectively EM clusters with pt lower than maximum PU cluster pt that would be
lost, using these criteria. Compared with QCD clusters, there are 8159, or 45.33% low pt clusters. On the
other side, using the cut-off value lower than the maximum PU (QCD) cluster pt, the number of wrongly
classified PU (QCD) clusters grows rapidly, resulting in unnecessary storage of useless data. In the case of

14

the third quartile cut-off value, 45 EM clusters (0.25 %) are lost in the case of the EM/PU classification and
87 (0.48 %) in the EM/QCD classification.

Therefore, simply accepting/rejecting clusters based on cluster pt value is not an acceptable option for
the L1T selection method.

4.2.2 Random Forest

Using the same metrics as for NN models, the RF classifier with default settings gives the results presented
in Table 7.

Table 7: The results of Random Forest classifier.
settings acc prec rec f1 AUC fpr fnr

default 0.9693 0.9731 0.9652 0.9691 0.9693 0.0267 0.0348
optimized 0.9694 0.9735 0.9652 0.9693 0.9694 0.0263 0.0348

The hyperparameters optimization gives the next combination of tuned hyperparameters: criterion:
’gini’, max depth: 40, max features: ’auto’, n estimators: 200. The achieved metrics are almost the same as
those obtained with the predefined settings, which is shown in Table 7. Even though the achieved accuracy
is similar to the NN model’s case, both FNR and FPR are slightly higher. The next attempt is to run a grid
search to optimize the recall score, but with no improvement (maximizing recall, FNR is minimized).

4.3 Classification threshold adjustment
Two popular evaluation metrics to estimate the model performance, accuracy, and AUC are for QCNN and
QMLP models above 97%, indicating good performance. Following the procedure described in section
3.4.2, for QCNN, the largest J statistic (0.947) is achieved using a threshold value of 0.939913, and for
QMLP, the maximum J value (0.944) is for the threshold of 0.851953. However, this threshold value
selection has resulted in better FPR results but increased FNR value for both models, as seen in Table 8.

On the other side, with the trial and error approach, using the threshold value of 0.1, FNR decreases to
0.02 for QCNN and to 0.03 for QMLP. Although the differences in achieved FNR are not high, it is important
to remember that the volume of the data set on which the model is intended to be used is very high, and even
small differences in percent result in high absolute values. For example, for QCNN, the difference between
the best achieved FNR and FNR obtained for the default threshold is 0.0119 (1.19%). Applied to the data set
with just 1 000 000 samples, it ends with 11 900 additionally recognized EM clusters, and any of them can
have a significant role in some new physical discovery. The comparison of results obtained using different
thresholds is given in Table 8.

Even though the obtained FNR (3.19% for QCNN and 3.59% for QMLP) and FPR (2.07% for QCNN and
2.15% for QMLP) are not high for the base quantized models with default threshold, using the thresholding
technique they can be further optimized. It should be noted that the number of FP increases by changing the
threshold to decrease the FN.

Table 8: The results for the QCNN and QMLP (gray background) with different threshold values.
threshold acc prec rec f1 AUC fpr fnr

0.1 0.9698 0.9604 0.9800 0.9701 0.9875 0.0404 0.0200
0.1 0.9689 0.9678 0.9700 0.9689 0.9812 0.0322 0.0300
0.5 0.9737 0.9790 0.9681 0.9736 0.9875 0.0207 0.0319
0.5 0.9713 0.9782 0.9641 0.9711 0.9812 0.0215 0.0359

0.939913 0.9744 0.9845 0.9641 0.9742 0.9875 0.0152 0.0359
0.851953 0.9717 0.9826 0.9604 0.9713 0.9812 0.0170 0.0396

It can be noticed there is no big difference in moving the threshold based on J-statistics or looking for
minimization of FPR and FNR difference, but depending on needs, it is clear that it is possible to optimize
targeted costs by choosing the appropriate threshold.

4.4 Data Refinement
This section describes the effect of different data refinement methods on NN model performances.

15

4.4.1 Selection

1. Keep energies above the threshold.
Before processing, in the training data set for the 5x5x36 sample, there are just 11.37% non-zero values.
Using different threshold values, for described method, the percent of non-zero values decreases: for
threshold value 0.1 GeV to5.99%, for 0.5 GeV to 1.67%, for 1 GeV to 1,01%, and finally for threshold
value 2 GeV to 0.6%. As it is visible from Table 9, as the threshold value increases, accuracy slightly
drops, but there is an increase in FNR value for the threshold values higher than 0.5. Therefore, future
tests are not done for those threshold values.

Table 9: The QCNN and QMLP (gray background) results with different thresholds applied on energie/pixel
values.

threshold
(GeV)

acc prec rec f1 AUC fpr fnr

0.1 0.9722 0.9800 0.9641 0.9720 0.9844 0.0196 0.0359
0.1 0.9674 0.9647 0.9704 0.9675 0.9835 0.0356 0.0296
0.5 0.9706 0.9711 0.9700 0.9705 0.9851 0.0289 0.0300
0.5 0.9676 0.9685 0.9667 0.9676 0.9823 0.0315 0.0333
1 0.9693 0.9774 0.9607 0.9690 0.9826 0.0222 0.0393
1 0.9667 0.9684 0.9648 0.9666 0.9851 0.0315 0.0352
2 0.9578 0.9870 0.9278 0.9565 0.9657 0.0122 0.0722
2 0.9556 0.9858 0.9244 0.9541 0.9643 0.0133 0.0756

2. Keep layer maximum (single sample per layer).
Models, where just one value per image layer is kept, show no drop in classification precision compared
with base quantized versions, according to results shown in Table 10

Table 10: The results for the keep layer maximum approach for QCNN and QMLP.
model acc prec rec f1 AUC fpr fnr

QCNN 0.9706 0.9725 0.9685 0.9705 0.9834 0.0274 0.0315
QMLP 0.9689 0.9713 0.9663 0.9688 0.9814 0.0285 0.0337

3. Capping.
Data capping is done by using different values (2, 4, 8, 16). For QMLP, there is no notable difference
in metrics, but for QCNN, there is an improvement with FNR for all capping values (Table 11),
no matter which capping value is chosen. The impact of the applied capping value on the model’s
accuracy is shown in Figure 12a and on FPR in Figure 12b.

Table 11: The results for the QCNN and QMLP (gray background) with different capping values.
c value acc prec rec f1 AUC fpr fnr

2 0.9739 0.9723 0.9756 0.9739 0.9856 0.0278 0.0244
2 0.9678 0.9688 0.9667 0.9677 0.9811 0.0311 0.0333
4 0.9741 0.9737 0.9744 0.9741 0.9860 0.0263 0.0256
4 0.9704 0.9757 0.9648 0.9702 0.9836 0.0241 0.0352
8 0.9731 0.9674 0.9793 0.9733 0.9871 0.0330 0.0207
8 0.9713 0.9775 0.9648 0.9711 0.9811 0.0222 0.0352

16 0.9744 0.9741 0.9748 0.9745 0.9861 0.0259 0.0252
16 0.9702 0.9725 0.9678 0.9701 0.9824 0.0274 0.0322

4. Reduction of longitudinal profile.
Complete HGCAL image contains 5x5x36= 900 pixels per image, resulting in 2807 parameters for
QCNN (respectively 7353 for QMLP). Here, QCNN is used as a classificator. As the result of reducing
the longitudinal profile following procedures described in Section 4, the number of model parameters
is drastically decreased. Described solutions are examined and results are shown in Table 12 :

• The QCNN model using a full HGCAL image has 2807 parameters, and with this approach
(E+Hf), the number of parameters is reduced to 1673.

16

(a) (b)

Figure 12: (a) Model accuracy and (b) FNR as a function of capping value.

• This approach (3Eh+Hf) replaces the full HGCAL image (5x5x36) with a 5x5x4 image, de-
creasing the NN parameter numbers on 1079.

Table 12: The results for the reduction of longitudinal profile approach for QCNN.
model acc prec rec f1 AUC fpr fnr

E+Hf 0.9728 0.9691 0.9767 0.9729 0.9855 0.0311 0.0233
3Ef+Hf 0.9702 0.9686 0.9719 0.9702 0.9883 0.0315 0.0281

As it is clear from the above description, in approaches 1, 2, and 4, the HGCAL layer structure image is
retained. The global picture of particle decay is kept but simplified, emphasizing the importance of high pt
points above very small pt deposits. Theoretically, instead of sending the complete image, just the position
and value kept after the applied selection could be sent, notably cutting back the number of parameters in
the NN’s input layer. Using the approach 4, the number of layers can be drastically decreased, ultimately
significantly reducing the number of neural network parameters.

4.4.2 Data Quantization

In this section, different data quantization approaches are presented.

1. Selection bit(s).
The combination of data thresholding and selection bit method would simplify/reduce the amount of
data needed for acceptance/rejection decision even more. According to performance metrics shown
in Table 13, for the threshold value 0.1, there is a drop of accuracy for both models, while a threshold
value of 0.5 followed by selection bits method for QCNN gives results comparable with complete full
precision data.

Table 13: The results of the selection bit method applied after thresholding, for the QCNN and QMLP (gray
background) model.

threshold
(GeV)

acc prec rec f1 AUC fpr fnr

0.1 0.9611 0.9615 0.9607 0.9611 0.9832 0.0385 0.0393
0.1 0.9302 0.9029 0.9641 0.9325 0.9752 0.1037 0.0359
0.5 0.9659 0.9611 0.9711 0.9661 0.9784 0.0393 0.0289
0.5 0.9676 0.9664 0.9689 0.9676 0.9839 0.0337 0.0311

2. Uniform quantizer.
A mandatory step to use uniform quantization is capping. Otherwise, as there is a big range of values
used for image presentation, most of them would become 0 after applied quantization. Fig 13 shows
model accuracies and FNR depending on the capping value applied before uniform quantization.
According to Fig 11, for a lower number of chosen bit widths (2-4) for data quantization, both QCNN
and QMLP achieve better results for accuracy and FNR. Capping values 2 and 4 give better results

17

Figure 13: Model accuracy and FNR as a function of data bit width and capping value

Table 14: Uniform quantizer with different quantization levels, QCNN and QMLP (gray background) model.
bit width acc prec rec f1 AUC fpr fnr

2 0.9676 0.9727 0.9622 0.9674 0.9844 0.0270 0.0378
2 0.9598 0.9461 0.9752 0.9604 0.9825 0.0556 0.0248
3 0.9711 0.9757 0.9663 0.9710 0.9870 0.0241 0.0337
3 0.9633 0.9689 0.9574 0.9631 0.9816 0.0307 0.0426
4 0.9672 0.9723 0.9619 0.9670 0.9789 0.0274 0.0381
4 0.9593 0.9606 0.9578 0.9592 0.9791 0.0393 0.0422
8 0.9339 0.9383 0.9289 0.9336 0.9573 0.0611 0.0711
8 0.9330 0.9438 0.9207 0.9321 0.9635 0.0548 0.0793

than 8 and 16; hence 4 is applied as the capping value whenever uniform quantization is used, and
results are given in Table 14.
According to Table 14, models with 2 and 3 input data bit width outperform models with wider data
precision.

3. Non-uniform quantizer.
The models based on non-uniformly quantized data with results in Table 15 show somewhat lower
performances than models based on 2-bit uniformly quantized input.

Table 15: Non uniform quantizer
model acc prec rec f1 AUC fpr fnr

QCNN 0.9685 0.9766 0.9600 0.9682 0.9860 0.0230 0.0400
QMLP 0.9678 0.9730 0.9622 0.9676 0.9834 0.0267 0.0378

4.5 hls4ml
Considering model accuracy and FNR, along with model size (in terms of the number of parameters and
precision of input data), the first model implemented in hls4ml is QCNN with full precision data, with
capping value 8, referred to as QCNN FP. It is compared with QCNN with 2-bit quantized input data, from
now on referred to as QCNN U2. The last model implemented in hls4ml is QMLP with 2-bit quantized
input data, named QMLP U2E. It must be emphasized that because of some restrictions in Vivado/hls4ml
on the number of parameters, the input data are images covering just the CE-E part of the HGCAL. The
FPGA implementation results for each of the models are reported in Table 16. It is important to bring
attention to the fact that, in this case, (hls4ml) models are not optimized in the sense that the precision is
adjusted by layers. They use the precision defined at the model level, with settings necessary to preserve the
accuracy of the QKeras model. It is clear that all models satisfy the required latency constraint (< 12𝜇𝑠).
FPGA resource usage metrics show flip-flops (FF) employment in all cases is under 2.5%, and lookup tables
(LUT) utilization is under 15%. For all models, the number of used digital signal processors (DSP) is 2,
which, compared to available DSPs (3072), makes 0.065%.

18

Table 16: The results of FPGA implementation for different models.
Model Time [ns] Interval

[Cycles]
Latency [𝜇s]

(Cycles)
FF # (%) LUT # (%)

QCNN FP 4.374 30 0.170 (34) 19655 (2.27) 63874 (14.79)
QCNN U2 4.37 30 0.170 (34) 20594 (2.38) 63261 (14.64)

QMLP U2E* 4.320 5 0.085 (17) 1134 (0.13) 43401 (10.05)

Using low precision (settings) can help reduce the FPGA resource usage of a model but may result in loss
of model performance if chosen inappropriately. In addition to setting the model precision, hls4ml allows
per-layer optimization. The profiling tools in hls4ml help to decide the appropriate model/layer precision.
Each layer in the QNN is evaluated using the given test data, and the distribution of values is shown with a
box and whisker diagram. The grey shaded boxes show the range which can be represented with the used
hls4ml configuration settings.

When the test is done with QCNN UNIQ2, using default hls4ml precision < 16, 6 >, there was a gap
between QKeras (0.968148) and hls4ml (0.9409259) accuracy. The profiling tool has shown that first-layer
output precision has to be extended from the default (Fig 14a). With models extended precision < 18, 8 >,
accuracy is improved (0.9679629).

(a) (b)

Figure 14: hls4ml profiling, plots show examples of the distributions of the QCNN UNIQ2 model layers:
(a) before optimization, (b) after optimization.

To show the effect of input data quantization together with the possibility of per-layer optimization, the
model QCNN UNIQ2 is implemented in three different ways: 1st using default settings, 2nd optimizing
hidden layers precision, and finally also optimizing input layer precision, as is shown in Fig 14b. Afterward,
the resource usage for those three cases is compared, which is shown in Table 17. With per-layer optimization
for model inner layers, FF # goes down 4.5% (from 20594 to 19670) and LUT # 3% (from 63261 to 61387)
Compared with the model where the input layer is also adjusted, saving in FF # is 36.8% and 8.5% in LUT
#. The other metrics (Time, Interval, and Latency) are the same in all three cases, corresponding to the
default model implementation, shown in Table 16.

Table 17: The results of different types of optimizations for the QCNN-UNIQ2 model.
settings FF # FF % LUT # LUT %

default 20594 2.38 63261 14.64
hidden layers

precision adjusted
19670 2.28 61387 14.21

input + hidden
layers precision

adjusted

13008 1.51 57884 13.40

5 Conclusion and future work
The paper describes a neural network (NN) model for classifying electromagnetic (EM) showers from the
mixed background made of pile-up (PU) and quantum chromodynamics (QCD) jets at level 1 trigger within

19

a given time limit of a few 𝜇s. Recent advances have made it possible to adjust the NN models to limitations
caused by the targeted hardware, field programmable gate arrays (FPGAs).

The first tests are done with a data set containing ideal signal (EM) images; in the data simulation step,
it was chosen to generate EM showers without PU. The NN classifiers distinguishing between idealistic
EM shower and PU achieve 99% accuracy. The EM shower with included PU is generated to get closer
to a more realistic situation. As there is a big difference in average EM and PU clusters pt, which
simplifies the classification process, another type of particle, QCD jets, is also added to background
samples. Simple convolutional neural network and multi-layer perceptron models with signal/background
classification accuracy between 96 and 99% and false negative rate (FNR) between 2 and 4%, depending on
the background case, are developed. The achieved results could eventually be improved by adding physical
features to input data, but it would be difficult to incorporate into level 1 trigger latency requirements. The
rest of the paper considers the EM versus mixed background, One-vs-All classification problem. Using the
QKeras quantization library, NN models are aggressively quantized, representing the weights and activations
with 2 bits, reducing computational and memory costs (in inference time), with accuracy degradation of
less than 1%. Further, different approaches to data refinement are presented. The methods that affect the
range of input data, like capping, using appropriate values, can significantly lower FPR (for a quantized
convolutional neural network with capping value 8, for 34%). Image size reduction methods also decrease
the FNR value, lowering the number of NN parameters. The quantization methods, uniform quantization,
and selection bit approach achieve performances comparable with a base model, with a large reduction
in the precision required for the data storage. As shown, the presented data refinement methods have
enabled further reduction of the model resource consumption. Using the hls4ml library, model examples
are converted into the firmware to be implemented on FPGA. All implemented models can be executed with
a latency lower than 1 𝜇s and flip-flops and lookup tables utilization under 2.5%, respectively 15%. Using
variances of implementation of the proposed quantized convolutional neural network, it is shown that model
and data quantization enable additional savings of resources when implementing the model in FPGA: the
number of used flip-flops is reduced by 36.8% and the number of lookup tables by 8.5%.

Future work could be based on searching for an efficient method for exploiting the sparse nature of
calorimeter images.

Author Contributions: Conceptualization, A.B.M and J.M.; methodology, A.B.M., J.M. and M.P.;
software, A.B.M.; validation, J.M. and M.P.; formal analysis, D.L.; investigation, A.B.M.; resources,
A.B.M., J.M. and M.P.; data curation, D.L. and A.B.M.; writing—original draft preparation, A.B.M.;
writing—review and editing, J.M. and M.P.; visualization, A.B.M; supervision, J.M. and M.P.; project
administration,J.M., and D.L.. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank our HGCAL colleagues for their contributions and help with this project, es-
pecially Jean-Baptiste Sauvan (Laboratoire Leprince-Ringuet: Palaiseau) and HGCAL Reco+L1 algorithms
team for their valuable comments and suggestions during the development of the experiment.

Abbreviations The following abbreviations are used in this manuscript:

20

3D Three-Dimensional
ACC Accuracy
AUC Area Under the Curve
BDT Boosted Decision Tree
CE-E Electromagnetic Section
CE-H Hadronic Section
CMS Compact Muon Solenoid
CMSSW CMS Software Components
CNN Convolutional Neural Network
EM Electromagnetic
FE Feature Extraction
FN False Negative
FNR False Negative Rate
FP False Positive
FPGA Field Programmable Gate Array
FPR False Positive Rate
FS Feature Selection
HDL Hardware Description Language
HEP High Energy Physics
HGCAL High Granularity Calorimeter
HL-LHC High Luminosity LHC
HLS High-Level Synthesis
LHC Large Hadron Collider
L1T Level 1 Trigger
PU Pile Up
ML Machine Learning
MLP Multilayer Perceptron
NN Neural Network
QCD Quantum Chromodynamics
RF Random Forrest
ROC Receiver Operating Characteristic
ROI Region of Interest
TC Trigger Cell
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate

References
[1] G. Apollinari, Béjar Alonso I., O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, editors.

High-Luminosity Large Hadron Collider (HL-LHC): Technical design report. CERN Yellow Reports:
Monographs. CERN, Geneva, 2020.

[2] CMS Collaboration. The CMS experiment at the CERN LHC. Journal of Instrumentation,
3(08):S08004, 2008.

[3] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature communications, 5:4308, 07 2014.

[4] P. Paulitsch. The silicon sensors for the high granularity calorimeter of CMS. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 978:164428, 07 2020.

[5] CMS Collaboration. The Phase-2 Upgrade of the CMS Endcap Calorimeter. Technical report, CERN,
Geneva, 2017.

[6] M Noy. The CMS HGCAL silicon region architecture specification and optimisation. JINST,
17(03):C03010, 2022.

[7] H. Gerwig. Engineering challenges in mechanics and electronics in the world’s first particle-flow
calorimeter at a hadron collider: The CMS high-granularity calorimeter. Nuclear Instruments and

21

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 1044:167493, 2022.

[8] S. Summers et al. Fast inference of boosted decision trees in FPGAs for particle physics. Journal of
Instrumentation, 15:P05026–P05026, 05 2020.

[9] D. Acosta, A. Brinkerhoff, E. Busch, A. Carnes, I. Furic, S. Gleyzer, K. Kotov, J. Low, A. Madorsky,
J. Rorie, B. Scurlock, and W. Shi. Boosted decision trees in the level-1 muon endcap trigger at CMS.
Journal of Physics: Conference Series, 1085:042042, 09 2018.

[10] Y. Iiyama et al. Distance-weighted graph neural networks on FPGAs for real-time particle reconstruc-
tion in high energy physics. Frontiers in Big Data, 3, 01 2021.

[11] J. Pata, J. Duarte, F. Mokhtar, E. Wulff, J. Yoo, J. Vlimant, M. Pierini, and M. on behalf of the
CMS Collaboration Girone. Machine learning for particle flow reconstruction at CMS. Journal of
Physics: Conference Series, 2438(1):012100, feb 2023.

[12] M. Touranakou, N. Chernyavskaya, J. Duarte, D. Gunopulos, R. Kansal, B. Orzari, M. Pierini, T. Tomei,
and J. Vlimant. Particle-based fast jet simulation at the LHC with variational autoencoders. Machine
Learning: Science and Technology, 3.

[13] M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos. Exploring end-to-end deep learning applications
for event classification at CMS. EPJ Web of Conferences, 214:06031.

[14] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psi-
has, A. Sousa, and P. Vahle. A convolutional neural network neutrino event classifier. Journal of
Instrumentation, 11(9):P09001–P09001.

[15] J.H. Collins, K. Howe, and B. Nachman. Anomaly detection for resonant new physics with machine
learning. Physical Review Letters, 121(24):241803.

[16] A. Pol, V. Azzolini, G. Cerminara, F. Guio, G. Franzoni, M. Pierini, F. Siroký, and J. Vlimant. Anomaly
detection using deep autoencoders for the assessment of the quality of the data acquired by the CMS
experiment. EPJ Web of Conferences, 214:06008.

[17] E. Shumka et al. Machine learning based tool for CMS RPC currents quality monitoring. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 1054:168449, September 2023.

[18] CMS Collaboration. A deep neural network to search for new long-lived particles decaying to jets.
Machine Learning: Science and Technology, 1(3):035012.

[19] S.R. Qasim, K. Long, J. Kieseler, M. Pierini, and R. Nawaz. Multi-particle reconstruction in the high
granularity calorimeter using object condensation and graph neural networks. EPJ Web of Conferences,
251:03072.

[20] A. Elabd, V. Razavimaleki, S.Y. Huang, J. Duarte, M. Atkinson, G. DeZoort, P. Elmer, S. Hauck, J.X.
Hu, S.C. Hsu, B. Lai, M. Neubauer, I. Ojalvo, S. Thais, and M. Trahms. Graph neural networks for
charged particle tracking on FPGAs. Frontiers in Big Data, 5:828666.

[21] M. Paganini, L. de Oliveira, and B. Nachman. CaloGAN: Simulating 3d high energy particle showers
in multi-layer electromagnetic calorimeters with generative adversarial networks. Physical Review D,
97(1):014021.

[22] P. Musella and F. Pandolfi. Fast and accurate simulation of particle detectors using generative adver-
sarial networks. Computing and Software for Big Science, 2(1):8.

[23] D. Belayneh, F. Carminati, A. Farbin, B. Hooberman, G. Khattak, M. Liu, J. Liu, D. Olivito,
V. Barin Pacela, M. Pierini, A. Schwing, M. Spiropulu, S. Vallecorsa, J.R. Vlimant, W. Wei, and
M. Zhang. Calorimetry with deep learning: particle simulation and reconstruction for collider physics.
European Physical Journal C, 80(7), 2020.

[24] S. Grönroos, M. Pierini, and N. Chernyavskaya. Automated visual inspection of CMS HGCAL silicon
sensor surface using an ensemble of a deep convolutional autoencoder and classifier.

[25] CMS Collaboration. The analytical method algorithm for trigger primitives generation at the LHC
drift tubes detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 1049:168103.

22

[26] D. Guest, K. Cranmer, and D. Whiteson. Deep learning and its application to LHC physics. Annual
Review of Nuclear and Particle Science, 68(1):161–181.

[27] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman. Jet-images: Computer vision inspired techniques
for jet tagging. Journal of High Energy Physics, 2015, 07 2014.

[28] M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos. End-to-end physics event classification with CMS
open data: Applying image-based deep learning to detector data for the direct classification of collision
events at the LHC. Computing and Software for Big Science, 4(1):6.

[29] M. Andrews, B. Burkle, Y. Chen, D. DiCroce, S. Gleyzer, U. Heintz, M. Narain, M. Paulini, N. Pervan,
Y. Shafi, W. Sun, E. Usai, and K. Yang. End-to-end jet classification of boosted top quarks with the
CMS open data. Phys. Rev. D, 105:052008, Mar 2022.

[30] T. Aarrestad et al. Fast convolutional neural networks on FPGAs with hls4ml. Machine Learning:
Science and Technology, 2(4):045015, 2021.

[31] J. Alimena, Y. Iiyama, and J. Kieseler. Fast convolutional neural networks for identifying long-lived
particles in a high-granularity calorimeter. Journal of Instrumentation, 15(12):P12006, 2020.

[32] B. Denby, M. Campbell, F. Bedeschi, N. Chriss, C. Bowers, and F. Nesti. Neural networks for
triggering. IEEE Transactions on Nuclear Science, 37(2):248–254, 1990.

[33] A. Di Florio, F. Pantaleo, and A. Carta. Convolutional Neural Network for Track Seed Filtering at the
CMS High-Level Trigger. J. Phys.: Conf. Ser., 1085(4):042040, 2018.

[34] A.M. Sirunyan et al. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13
tev. Journal of Instrumentation, 13:P05011–P05011, 05 2018.

[35] M. Courbariaux, Y. Bengio, and J.P. David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15, page 3123–3131, Cambridge, MA, USA, 2015.
MIT Press.

[36] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-net: ImageNet classification using
binary convolutional neural networks, 10 2016.

[37] Google. QKeras: a quantization deep learning library for tensorflow keras (software), 2019.

[38] Plumerai. Larq: open-source deep learning library for training neural networks with extremely low
precision weights and activations (software), 2023.

[39] K. Pedro. Current and future performance of the CMS simulation. EPJ Web of Conferences, 214:02036,
01 2019.

[40] Geant4 Collaboration. Geant4: Geant4 is a toolkit to create simulations of the passage of particles or
radiation through matter. (software), 2006.

[41] M. Prvan. Algorithms for the Level-1 trigger with the HGCAL calorimeter for the CMS HL-LHC
upgrade. PhD thesis, University of Split. Faculty of Electrical Engineering, Mechanical . . . , 2020.

[42] M. Maleki Tehrani, N. Madani, and Xa. Emery. Capping and kriging grades with longtailed distribu-
tions. Journal of the Southern African Institute of Mining and Metallurgy, 114, 03 2014.

[43] L.B.V. de Amorim, G.D.C. Cavalcanti, and R.M.O. Cruz. The choice of scaling technique matters for
classification performance. Applied Soft Computing, 133:109924, 2023.

[44] G. Kumar and P.K. Bhatia. A detailed review of feature extraction in image processing systems.
In 2014 Fourth International Conference on Advanced Computing & Communication Technologies,
pages 5–12, 2014.

[45] M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini, B. Poczos, and E. Usai.
End-to-end jet classification of quarks and gluons with the CMS open data. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 977:164304, 2020.

[46] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems (MCSS), 2(4):303–314, 1989.

23

[47] Hornik. K., Stinchcombe M.B., and White. H.L. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[48] A.B. Mišura, J. Musić, J. Ožgović, and D. Lelas. Performance comparison of generic and quantized
fully connected and convolutional neural networks for real- time signal/background classification. In
2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM),
pages 1–6, 2022.

[49] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, page 2623–2631, New York, NY, USA, 2019.
Association for Computing Machinery.

[50] A. Gholami, S. Kim, Z. Dong, Z.i Yao, M. Mahoney, and K. Keutzer. A Survey of Quantization
Methods for Efficient Neural Network Inference, pages 291–326. 01 2022.

[51] G. Shomron, F. Gabbay, S. Kurzum, and U. Weiser. Post-training sparsity-aware quantization, 2021.

[52] Y. Bengio, N. Léonard, and A.C. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. CoRR, abs/1308.3432, 2013.

[53] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, T. Aarrestad, V. Loncar, J. Ngadiuba, M. Pierini, A. Pol,
and S. Summers. Automatic heterogeneous quantization of deep neural networks for low-latency
inference on the edge for particle detectors. Nature Mach. Intell., 3:675–686, 2021.

[54] C. Guo, G. Pleiss, Y. Sun, and K.Q. Weinberger. On calibration of modern neural networks. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
1321–1330. JMLR.org, 2017.

[55] C. Sammut and G.I. Webb. Encyclopedia of Machine Learning. Springer Publishing Company,
Incorporated, 1st edition, 2011.

[56] V. Sheng and C. Ling. Thresholding for making classifiers cost sensitive. In AAAI Conference on
Artificial Intelligence, volume 1, 01 2006.

[57] W. J. Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

[58] T. Trzciński, L. Graczykowski, and M. Glinka. Using random forest classifier for particle identification
in the alice experiment. In Piotr Kulczycki, Janusz Kacprzyk, László T. Kóczy, Radko Mesiar, and
Rafal Wisniewski, editors, Information Technology, Systems Research, and Computational Physics,
pages 3–17, Cham, 2020. Springer International Publishing.

[59] S. Kuzu. Random forest based multiclass classification approach for highly skewed particle data.
Journal of Scientific Computing, 95, 02 2023.

[60] L. Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

[61] A. Cutler, D. Cutler, and J. Stevens. Random forests. Machine Learning - ML, 45:157–176, 01 2011.

[62] F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[63] UltraScale and UltraScale+ FPGAs Packaging and Pinouts product specification, 2022.

24

