Measurements of Higgs boson properties with the ATLAS experiment

Ang LI On behalf of the ATLAS Collaboration December 16, 2023

Miami 2023

Introduction and Outline

Since its discovery in 2012, the Higgs boson has been one of the focus at the ATLAS

- test the Standard Model (SM) prediction,
- any deviation could indicate Beyond Standard Model (BSM) physics

Higgs boson is fundamental and the only known scalar particle

We need knowledge on its properties With LHC Run 2 data (and early Run 3), ATLAS has measured **ATLAS Luminosity** Higgs boson mass, Delivered Luminosity [fb⁻¹] width, 70 60 production cross-sections, couplings, 40 **CP** structure, 30 **Self-couplings** 20

The Higgs Boson at LHC

Higgs Production mechanisms:

- Gluon-gluon fusion (ggF)
- Vector Boson fusion (VBF)

а

С

q

- Associated production with a vector boson (VH)
- \blacktriangleright Associated production with top quark pair (ttH)

b

Decay channels:

- \blacktriangleright $H \rightarrow ZZ^*$: low BR, good S/B ratio, high mass resolution
- \blacktriangleright $H \rightarrow \gamma \gamma$: low BR, large background, high mass resolutions
- \succ $H \rightarrow WW^*$: high BR, low mass resolution
- \blacktriangleright $H \rightarrow b\overline{b}$ and $H \rightarrow \tau^+\tau^-$: high BR, large background, low mass resolution

$$\succ$$
 $H \rightarrow \mu^+ \mu^-$ and $H \rightarrow Z\gamma$: very low BR

WΜ

180

M_н [GeV]

160

The latest ATLAS $H \rightarrow \gamma \gamma$

- Full Run 2 dataset (140 fb^{-1})
- * Categorization by detector region, γ conversion type, and $p_{Tt}^{\gamma\gamma}$ improves the expected statistical and photon energy scale systematic uncertainties by **17%** compared with inclusive case
- ✤ Reduction of systematic uncertainty by factor of 4 compared with previous iteration based on partial Run 2 data (36 fb^{-1})
 - ➤ Improved photon energy scale calibration and resolution Total expected systematic uncertainty 340 MeV → 90 MeV

arXiv:2309.05471

Phys. Lett. B 847 (2023) 138315

 $m_{\gamma\gamma}$ [GeV]

Phys. Lett. B 847 (2023) 138315

Phys. Lett. B 843 (2023) 137880

The latest ATLAS $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell = e, \mu$)

> Full Run 2 dataset (139 fb^{-1})

ATLAS Combined $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$

- > Full Run 2 dataset (140 fb^{-1})
- > 18% compatibility among input measurements
- \succ The most precise m_H measurement to date
- ATLAS+CMS combination under preparation

Full Run 2 result:

 $m_H = 125.10 \pm 0.09 \text{ (stat.)} \pm 0.07 \text{ (syst.)} = 125.10 \pm 0.11 \text{ GeV}$

Run 1 + Run 2 result:

 $m_H = 125.11 \pm 0.09 \text{ (stat.)} \pm 0.06 \text{ (syst.)} = 125.11 \pm 0.11 \text{ GeV}$

arXiv:2308.04775

Higgs Boson Width Measurement

Phys. Lett. B 846 (2023) 138223

SM Theoretical prediction Higgs width of 4.1 MeV is much smaller than the detector resolution (GeV level)
 Indirect measurement from the ratio of the off-shell/on-shell Higgs boson production
 H → ZZ* → 4ℓ and 2ℓ2ν, full Run 2

The Higgs boson cross-section and couplings

Nature 607, 52 (2022)

- Production cross-sections and decay branching ratio are a way to probe the strength of the Higgs boson coupling with SM particles and possible BSM effects
- > After 10 years from the discovery, ATLAS provided the combined measurements of its couplings

The *p*-value for compatibility of the measurement and the SM prediction is 72%

Evidence of VH, $H \rightarrow \tau^+ \tau^-$

<u>HIGG-2018-20</u>

VH final states:

16/12/2023

- \succ $H \rightarrow \tau^+ \tau^-$ at least one τ decaying hadronically ($\tau_{lep} \tau_{had}$ and $\tau_{had} \tau_{had}$, at least one τ decaying hadronically)
- $\blacktriangleright W \rightarrow \ell \nu, Z \rightarrow \ell \ell, V$ decaying leptonically (with $\ell = e, \mu$)

Results extracted from a simultaneous fit of the NN score in all final states

- > Observed (expected) significance of 4.2 (3.6) σ : evidence of $VH, H \rightarrow \tau^+\tau^-$ process
- > Measured signal strength $\mu_{VH} = 1.28^{+0.39}_{-0.36}$ (Corresponding cross-section $8.5^{+2.6}_{-2.4} fb$, SM prediction $6.59 \pm 0.03 fb$)

Higgs Rare decay: $H \rightarrow Z\gamma$

 \succ $H \rightarrow Z\gamma$ Rare decay

Phys. Lett. B 809 (2020) 135754 arXiv:2309.03501

Uncert

Total

Higgs BR

Probing the Higgs properties and for validating SM/BSM theories

> Using full Run 2 data, observed an excess

- ✤ Z reconstructed from $\ell^+\ell^-$ ($\ell = e \text{ or } \mu$) decay
- Photon well isolated

Sensitivity enhanced studying the S/B in different categories to exploit different production modes

Higgs decay to invisible

Phys. Lett. B 842 (2023) 137963

- Probe possible Higgs decay to WIMPs (Higgs portal dark matters)
- > Missing transverse momentum (E_T^{miss}) in the interaction
- Run 1 + 2 Combination

At 95% CL:

 $BR(H \to \text{inv.}) < 0.107 \text{ (0.077 expected)}$ SM: $BR(H \to \text{inv.}) = 0.1\%$

Constraints on Higgs portal WIMP cross-section as function of the WIMP candidate mass

The Higgs boson couplings

Results interpreted in terms of Higgs boson coupling strength multipliers k in multiple scenarios

Universal coupling strength modifiers κ_V (vector bosons) and κ_F (fermions)

The coupling strength modifiers for W, Z, t, b, c, τ and μ are treated independently

Allows for the presence of nonstandard model particles in the loopinduced processes

The p-value for compatibility with the SM is 61%

The p-value for compatibility of the combined measurement and the SM prediction is 14%

16/12/2023 A.LI--APC-Paris

Compatible with their SM prediction **Coupling with charm quark:** $\kappa_c < 5.7 @ 95\%$ C.L. Nature 607, 52 (2022)

The Higgs boson Simplified Template Cross Section

Nature 607, 52 (2022)

- STXS framework defines exclusive regions in the Higgs phase space of the Higgs production processes
- > Based on the kinematics of the Higgs and of the particles produced in association
 - Minimizing the dependence on theoretical uncertainties
 - Maximizing experimental sensitivity also to possible BSM effects

- Simultaneous measurement in 36 kinematic regions
- Combining the results in the 5 observed decay channels
- All measurements are consistent with the standard model predictions, *p*-value 94%

BSM/EFT

- The STXS measurements and differential cross sections are interpreted Effective Field Theory (EFT)
- > The production cross section and decay branching ratio measurements are interpreted BSM scenarios: Two-Higgs-Doublet Model (2HDM) or Minimal Supersymmetric Extension of the SM (MSSM)

2HDM interpretation: Plane of excluded regions at 95%CL for Type-I model (all fermions couple to same Higgs doublet)

к Obs. 95% CL

к Ехр. 95% CL

--- SM-like coupling

0.2

0.4

 κ Obs. 95% CL (inc. κ_{λ})

 κ Exp. 95% CL (inc. κ_{λ})

The Higgs boson Fiducial Cross-sections

Fiducial phase space definition based on detector acceptance to minimize the model dependency

Different phase space definition to target different production modes

 $\sigma^{
m fid} = rac{N^{
m SR}_{
m data} - N^{
m SR}_{
m bkg}}{C imes \mathcal{L}}$

gluon-gluon Fusion (ggF) Fiducial Cross-sections

 $H \rightarrow WW^* \rightarrow e \nu \mu \nu$

- C: accounts for detector inefficiencies
 - Vector Boson Fusion (VBF) Fiducial Cross-sections

 $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ and $H \rightarrow ZZ^* \rightarrow 4\ell + H \rightarrow \gamma \gamma$

Eur. Phys. J. C 83 (2023) 774

Phys. Rev. D 108, 072003

arXiv:2304.09612

The Higgs boson Cross-sections at 13.6 TeV

Measurements at 13.6 TeV, early Run 3

 $H \rightarrow \gamma \gamma$ channel: Luminosity 31.4 $f b^{-1}$

Luminosity 31.4 fb^{-1} Fiducial cross-section $\sigma_{\text{fid},\gamma\gamma} = 76^{+14}_{-13} fb$

$H \rightarrow ZZ^* \rightarrow 4\ell$ channel:

Luminosity 29.0 fb^{-1} Fiducial cross-section $\sigma_{\text{fid},4\ell} = 2.80 \pm 0.74 fb$

Assuming SM acceptances and branching fractions

Total cross-sections $\sigma(pp \to H) = 67^{+12}_{-11} pb$ Total cross-sections $\sigma(pp \to H) = 46 \pm 12 pb$

Combined total cross-section: Standard Model prediction:

$$\begin{aligned} \sigma(pp \to H) &= 58.2 \pm 8.7 \ pb \\ \sigma(pp \to H)_{SM} &= 59.9 \pm 2.6 \ pb \end{aligned}$$

Measurement in agreement with the SM prediction!!!

arXiv:2306.11379

16/12/2023 A.LI--APC-Paris

The Higgs boson CP Structure: Higgs-Vector Boson

Looking for signs of CP-violation in the Higgs sector

- SM Higgs boson is a CP-even scalar particle
- Look for possible CP-odd couplings
- \blacktriangleright Study the coupling with vector bosons (*HVV*) and fermions (*Hff*)
- > Use of Effective Field Theory to discriminate different CP hypothesis

HVV vertex in the VBF production

16/12/2023 A.LI--APC-Paris

Warsaw basis

Operator

 $\mathcal{O}_{\Phi \widetilde{W}}$

 $\mathcal{O}_{\Phi \widetilde{W} B}$

 $\mathcal{O}_{\Phi \tilde{B}}$

Phys. Rev. Lett. 131 (2023) 061802

arXiv:2304.09612

The Higgs boson CP Structure: Higgs- τ

 $' \rightarrow \tau \tau$ (best-fit) Misidentified τ

VBF 0

Hff vertex studies in the $H \rightarrow \tau^+ \tau^-$ decay

- \succ The CP-mixing angle ϕ_{τ} is reflected in τ decay kinematics
- \blacktriangleright Rejection of the CP-odd hypothesis at 3.4 σ (2.1 σ expected)

Events

10

10

ŏ

5

10

15

20

Data / Pred.

(s = 13 TeV, 139 fb $\tau_{lep} \tau_{had}$ High

Boost 0

 φ_{CP}^*

 \mathbf{n}^{*+}

 π^{-}

 π^+

 $H \rightarrow \tau^+ \tau^- \rightarrow \pi^+ \pi^- + 2\nu$

 n^{*-}

The Higgs boson CP Structure: Higgs-top quark

Hff vertex studies in the ttH/tH production

 \blacktriangleright Measure the CP structure of H-top interaction in *ttH* and *tH* production using $H \rightarrow bb$ decays $(H \rightarrow \gamma \gamma \text{ done in } Phys. Rev. Lett. 125 (2020) 061802)$

arXiv:2303.05974

The Higgs boson Self-couplings

Phys. Lett. B 843 (2023) 137745

The Higgs boson Self-couplings

Phys. Lett. B 843 (2023) 137745

$b\overline{b}\gamma\gamma, b\overline{b}\tau^+\tau^-, b\overline{b}b\overline{b}$

Higgs boson self-coupling λ_3 is a fundamental parameter of the SM

- Combined results from di-Higgs searches
- ➤ Constraint on σ_{HH} and κ_{λ} $\mu_{HH} < 2.4 @ 95 \%$ C.L. -0.4 < κ_{λ} < 6.3 @ 95 % C.I.</p>

The Higgs boson Self-couplings, Updates

Introduce VBF signal region to further constraint κ_{2V}

Kλ

Conclusion

→ Using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, the Run 1 + 2, combined Higgs mass results is: $m_H = 125.11 \pm 0.09 \text{ (stat.)} \pm 0.06 \text{ (syst.)} = 125.11 \pm 0.11 \text{ GeV}$

Evidence of off-shell Higgs boson production

> The Higgs boson width is measured to be: $\Gamma_H = 4.5^{+3.3}_{-2.5}$ MeV

➢ Higgs cross-section first measurement at 13.6 TeV

> First constraint on Higgs coupling with charm quark

> CP properties of the Higgs boson found to be consistent with the Standard Model (CP-even)

➢ Higgs Self-couplings constrained

Run 3 data at 13.6 TeV has started, more precise results are coming!

Thank you for your attention

The Higgs boson Cross-sections at 13 TeV

Measurements at 13 TeV

$H \rightarrow \gamma \gamma$ channel:

Fiducial cross-section $\sigma_{\text{fid},\gamma\gamma} = 67 \pm 6 \, fb$ SM prediction $\sigma_{\text{fid},\gamma\gamma}^{\text{SM}} = 64 \pm 4 \, fb$ Total cross-sections $\sigma(pp \rightarrow H) = 58.1^{+5.7}_{-5.4} \, pb$

> **Combined** total cross-section: Standard Model prediction:

$H \rightarrow ZZ^* \rightarrow 4\ell$ channel:

Fiducial cross-section $\sigma_{\text{fid},4\ell} = 3.28 \pm 0.32 \ fb$ SM prediction $\sigma_{\text{fid},4\ell}^{\text{SM}} = 3.41 \pm 0.18 \ fb$ Total cross-sections $\sigma(pp \rightarrow H) = 53.0^{+5.3}_{-5.1} \ pb$

Eur. Phys. J. C 80 (2020) 942

<u>JHEP 08 (2022) 027</u>

JHEP 05 (2023) 028

 $\begin{aligned} \sigma(pp \rightarrow H) &= 55.5^{+4.0}_{-3.8} pb \\ \sigma(pp \rightarrow H)_{SM} &= 55.6 \pm 2.5 \ pb \end{aligned}$

