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1 Introduction

It is well understood that defining a theory in terms of fields introduces a tremendous
redundancy. In particular, one of the most fundamental quantities that can be computed
from a field theory are the S-matrix elements or amplitudes. Amplitudes are known to be
invariant under field redefinitions of the form [1–4]

ϕ(x) −→ ϕ(x) + f
(
ϕ(x), ∂µϕ(x), ∂µ∂νϕ(x), · · ·

)
, (1.1)

where f is an arbitrary polynomial function of the field(s) and its derivatives evaluated at the
spacetime point x.1 This field redefinition invariance plays a minor role for “renormalizable”
theories (with the important exception of gauge theory). However, this redundancy becomes
a significant source of technical complexity when one studies “non-renormalizable” Effective
Field Theories (EFTs) that include irrelevant operators. In the case of EFTs, the ability to
perform field redefinitions, often expressed as an iterative equation of motion redundancy
(along with the application of integration by parts) implies that the space of allowed operators

1f is often said to start with O(ϕ2) in the literature. This is because lower order terms are relatively trivial
— a constant term in f simply redefines the vev of the field, while a linear ϕ term in f can be absorbed by a
rescaling (when restricted to non-derivative field redefinitions). Here we clarify that in general, f can be an
arbitrary polynomial of ϕ and its derivatives, as long as the functional derivative δϕ(x)

δϕ̃(y) is an invertible matrix.
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is highly redundant, so that Lagrangians which appear different actually describe the same
underlying scattering physics.

In this paper, we build upon and explore the results in ref. [5] to provide a new perspective
on the notion of field redefinition invariance of amplitudes. In particular, we prove a
“transformation lemma” for an off-shell generalization of the amplitudes. We then apply
this result to show that the on-shell amplitudes are invariant under field redefinitions (up
to one-loop order). This new approach follows as a direct consequence of a new off-shell
recursion relation that we prove in this paper.

The study of field redefinitions and EFTs has undergone something of a renaissance in
recent years. The determination of the size of the operator basis using the Hilbert series
has been developed and applied to many examples [6–23]. This is closely related to the
approach of constructing EFT amplitudes directly [24–55], which again avoids the issues
of operator redundancies. In both approaches, the full set of field redefinitions included
in eq. (1.1) are accommodated.

Another fruitful approach is to work with the Lagrangian directly, but to express it in
terms of geometric objects defined on a Riemannian field space manifold [56–63]. In this
case, the key insight is to identify that field redefinitions without derivatives are equivalent
to coordinate changes on the field space manifold. One can then express amplitudes directly
in terms of well known geometric quantities built out of the Riemannian metric. This
makes the invariance of amplitudes under the restricted set of field redefinitions completely
manifest. This approach has seen recent applications to the scalar sector of the Standard
Model [64–74], and has also led to new insights into the properties of amplitudes for both
scalars and particles of higher spins [75–86].

However, the geometric picture that can accommodate the full set of field redefinitions
has remained elusive [5, 87–90]. It is this search for a generalized notion of geometry that
has prompted us to revisit the field redefinition properties of amplitudes. In particular, we
will show that our new perspective has a natural geometry-like interpretation, that we call
“functional geometry.” We are able to find hints that functional geometry exists and has the
desired features to be associated with a generalized manifold. However, we also show that it
fails to fully generalize field space geometry in a number of important ways. Nevertheless,
we are optimistic that the ideas presented here represent genuine progress towards what
will eventually be the discovery of a new notion of geometry that accommodates the full
set of allowed field redefinitions.

The rest of this paper is organized as the following. In section 2, we review the well-known
path integral formalism of QFTs and use it to derive a recursion relation for the off-shell
amplitudes that holds at all loop orders. We then make use of it to prove a transformation
lemma in section 3, which is the main result of this paper. We demonstrate that up to
one-loop level, this lemma applies when a general field redefinition that accommodates
derivatives is taken, which then immediately implies the invariance of the on-shell amplitudes.
In section 4, we present an attempt to introduce a geometric interpretation, motivated by
the tensor-like structure of the recursion relation derived in section 2. In particular, we
discuss the successes and failures of this interpretation, and comment on its relation with the
well-established field space geometry picture. Conclusions and future directions are given in
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section 5. Two appendices are provided, one reviewing the path integral based derivation of
field redefinition invariance and a second showing how a derivative field redefinition changes
the field space geometry.

2 Off-shell recursion for amplitudes

We begin with a brief review of the formalism for computing correlation functions from
the path integral (section 2.1). The partition function Z[J ] spans a set of theories that
are parameterized by different choices of the source fields J(x), and the original theory
corresponds to taking J(x) = 0, i.e., the “zero source condition.” We then review the LSZ
formalism for projecting amplitudes from the correlation functions (section 2.2). The LSZ
formula provides a general definition of “amplitudes” which allow for the external states to
be off-shell; the limit where the external states are on-shell defines the “S-matrix elements.”
Although these first two subsections contain material typically covered in QFT textbooks, our
purpose here is to express these well-known results in a notation that is convenient for deriving
a recursion relation for off-shell amplitudes that holds at all loop orders [5] (section 2.3).

2.1 Correlation functions from the path integral

Given a scalar field η(x), whose action is given by S[η], one can define the partition function
as a path integral

Z[J ] ≡ eiW [J ] ≡
∫
Dη eiS[η]+i

∫
d4x J(x)η(x) , (2.1)

and we have defined iW [J ] ≡ logZ[J ] as usual. The partition function Z[J ] is a generating
functional of the (time-ordered) J-dependent correlation functions

⟨ηx1 · · · ηxn⟩J ≡
∫
Dη eiS[η]+iJxηx

η(x1) · · · η(xn)∫
Dη eiS[η]+iJxηx = 1

Z[J ] (−i)
n δnZ

δJx1 · · · δJxn

, (2.2)

where we have introduced the concise notation2

η(x) = ηx , (2.3a)
J(x) = Jx , (2.3b)

so that an integral over spacetime is represented as a sum over a dummy index∫
d4xJ(x) η(x) = Jxη

x . (2.4)

It is well known that the path integral formalism and the use of generating functionals
being reviewed in this section generalizes to an arbitrary set of bosonic and fermionic fields [91–
93]. When dealing with fermionic fields, one needs to keep track of the signs carefully. In
the case of a general field, the index x in eq. (2.3) is understood to collectively label the
spacetime position, the spin indices, as well as any of its internal flavor indices, all of which
are summed over when the dummy index x is contracted.

2We will use both notations in what follows based on convenience.
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Source dependence.
The J-dependent correlation functions ⟨ηx1 · · · ηxn⟩J can be viewed as the correlation

functions of a modified theory with the action SJ [η]:

S[η] −→ SJ [η] ≡ S[η] + Jxη
x . (2.5)

The partition function Z[J ] generates correlation functions for these generalized theories
that include non-trivial dependence on the sources. The correlation functions of the original
theory S[η] can be extracted from their generalized counterparts by taking the zero source
condition J(x) = 0:

⟨ηx1 · · · ηxn⟩J=0 =
∫
Dη eiS[η] η(x1) · · · η(xn)∫

Dη eiS[η] = 1
Z[J = 0](−i)

n δnZ

δJx1 · · · δJxn

∣∣∣∣
J=0

. (2.6)

Meanwhile, it is useful to work with the source dependent theories, whose correlation functions
are given in eq. (2.2). Their functional dependence on J is key to the off-shell recursion relation.

Connected and 1PI correlation functions.
It is more convenient to work with W [J ] defined in eq. (2.1), since this is the generating

functional for the contributions from the connected diagrams

⟨ηx1 · · · ηxn⟩J, conn = (−i)n δn(iW )
δJx1 · · · δJxn

. (2.7)

The one-particle-irreducible (1PI) effective action Γ[ϕ] is then defined as a Legendre transform
of W [J ]:

ϕx[J ] ≡ δW

δJx
=⇒ Γ[ϕ] ≡W

[
J [ϕ]

]
− ϕxJx[ϕ] . (2.8)

To implement the Legendre transform, one introduces a new set of variables, the set of fields
ϕ(x) defined as in eq. (2.8). By construction, these are “conjugate variables” to the source
fields J(x), in that there is an invertible map between them determined by eq. (2.8):

J(x) ←→ ϕ(x) . (2.9)

We emphasize that the fields ϕ(x) are not the scalar fields η(x) of the theory. However,
making use of the n = 1 case of eq. (2.7), one derives a relation between ϕ(x) and η(x); ϕ(x)
are the J-dependent quantum vacuum expectation values (vev) of the fields η(x):

ϕx[J ] ≡ δW

δJx
= ⟨ηx⟩J . (2.10)

Some other relations also follow from the general properties of the Legendre transform

δΓ
δϕx

= −Jx , and δ2(iΓ)
δϕxδϕy

=
[
δ2(iW )
δJxδJy

]−1

. (2.11)

It is well known that iΓ[ϕ] is the generating functional of the J-dependent 1PI correlation
functions

⟨η(x1) · · · η(xn)⟩J, 1PI =
δn(iΓ)

δϕ(x1) · · · δϕ(xn)
for n ≥ 3 . (2.12)
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The 1PI correlation functions for the original theory are then recovered by taking the zero
source condition J(x) = 0. Through the one-to-one map in eq. (2.9), this corresponds to
evaluating the right-hand side of eq. (2.12) at a specific choice of ϕ(x):

J(x) = 0 ←→ ϕ(x)|J=0 = ϕv(x) ≡ ⟨ηx⟩J=0 . (2.13)

We see that ϕv(x) is the quantum vev of the fields η(x) for the original theory. According
to eq. (2.11), it satisfies the condition

δΓ
δϕx

∣∣∣∣
ϕ=ϕv

= 0 . (2.14)

Let us pause here to clarify the precise meaning of Γ[ϕ]. As it is a generating functional
for the 1PI correlation functions (see eq. (2.12)), one can in practice compute it perturbatively
by adding a series of “1PI diagrams.” Here we clarify that these are diagrams with the
property that they cannot be separated into two disconnected parts that each contains a
nonzero number of external legs by cutting a single internal leg. One subtle case is that
diagrams with tadpoles can be consistent with the 1PI requirement; cutting off the tadpole
could separate the diagram into two disconnected parts, but the part including the tadpole
does not contain any external legs. Therefore, when computing the 1PI effective action Γ[ϕ]
diagrammatically, one must include diagrams with tadpoles (when they are nonzero), see
e.g. [94]. We stress, however, that the results in this section are non-perturbative: they hold
regardless of whether a perturbative expansion is used to evaluate Γ[ϕ], or not.

2.2 Amplitudes from correlation functions

To compute the amplitudes from the correlation functions, we first define the on-shell momenta.
For this purpose, we study the connected two-point functions, namely the propagators:

Dxy[J ] ≡ ⟨ηxηy⟩J, conn = −δ
2(iW )
δJxδJy

= −
[
δ2(iΓ)
δϕxδϕy

]−1

, (2.15)

where the second-to-last expression comes from eq. (2.7), while the last equality is due to
the property of the Legendre transform in eq. (2.11). Again, this is the propagator for the
J-dependent theory SJ [η] = S[η] + Jxη

x. Taking the zero source condition, J(x) = 0 or
equivalently ϕ(x) = ϕv(x), recovers the propagator of the original theory S[η]. Its momentum
space form is the familiar one:∫

d4x1d4x2 eip1x1eip2x2 Dx1x2 [J = 0] = (2π)4δ4(p1 + p2)∆(p1) , (2.16)

with
∆(p) = iRη

p2 −m2
p + iϵ

+ regular , (2.17)

where mp denotes the pole mass of the particle and Rη denotes the residue. Using eq. (2.15),
one can write eq. (2.16) alternatively as∫

d4x1 eip(x1−x2) δ2Γ
δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

=
∫

d4x1 eip(x1−x2) iD−1
x1x2 [J = 0] = i

∆(p) . (2.18)
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Note that eq. (2.15) is the fully connected two-point function, or the full interacting
propagator. Specifically, if we denote the 1PI two-point function as −iΣ(p2), we have

∆(p) = i

p2 −m2 + iϵ
+ i

p2 −m2 + iϵ

[
− iΣ(p2)

] i

p2 −m2 + iϵ
+ · · ·

= i

p2 −m2 − Σ(p2) + iϵ
, (2.19)

where m2 is the tree-level mass parameter, and the pole mass m2
p is determined by the

condition m2
p = m2 + ReΣ(m2

p).

On-shell condition.
A momentum pµ is said to be on-shell when it sits on the pole of the propagator

1
∆(p̄) = 0 =⇒ p̄2 = m2

p , (2.20)

where we are introducing the notation p̄ to denote on-shell momenta. Using eq. (2.18), we
can equivalently state the on-shell condition as∫

d4x1 eip̄x1 δ2Γ
δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

= 0 . (2.21)

Amplitudes from LSZ and external wavefunctions.
To compute the amplitudes following the LSZ prescription [95, 96], one can first compute

the J-dependent amputated correlation functions

−iMx1···xn [J ] ≡
(
D−1

x1y1

)
· · ·
(
D−1

xnyn

)
⟨ηy1 · · · ηyn⟩J, conn . (2.22)

Then the momentum space amplitudes A follow by evaluating M at J = 0, taking a Fourier
transform, and including the appropriate residue factors for the external legs:

(2π)4δ4(p1 + · · ·+ pn)A (p1, · · · , pn)

= (R1/2
η )n

∫ [ n∏
i=1

d4xi e
ipixi

] (
−iMx1···xn |J=0

)
. (2.23)

This defines general amplitudes for off-shell momenta p2i ̸= m2
p,i. The on-shell amplitudes

(the usual S-matrix elements) are then given by taking all external momenta to be on shell.
It is convenient to introduce the external wavefunction3

ψx(p) = R1/2
η eipx , (2.24)

which is an eigenstate of the inverse propagator (cf. eq. (2.18)):

δ2Γ
δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

ψx2(p) = i

∆(p) ψ
x1(p) . (2.25)

3In general, the external wavefunctions are ψi = ⟨0|ηxi |pi, hi, · · ·⟩J=0, which represent the overlap of the
fields with the ith external states of given momentum pi, helicity hi, etc. For an external scalar, it has the form
in eq. (2.24), whereas for a gauge boson, it would also include a polarization vector, i.e., ψi = ϵµi

hi
(pi) eipixi .
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Note that when the momentum is on-shell, the eigenvalue vanishes

δ2Γ
δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

ψx2(p̄) = 0 . (2.26)

With the external wavefunctions, we can write the LSZ formula in eq. (2.23) more concisely as

(2π)4δ4(p1 + · · ·+ pn) iA (p1, · · · , pn) =
[
ψx1(p1) · · ·ψxn(pn)

] (
−iMx1···xn |J=0

)
, (2.27)

compare analogous equations in [77, 78]. We emphasize here that A (p1, · · · , pn) defines a
generalized momentum space amplitude where the external momenta can be off-shell.

Computing amputated correlation functions.
In order to compute amplitudes, eq. (2.27) implies that we can focus on calculating

the amputated correlation functions −iMx1···xn [J ] defined in eq. (2.22). These can be
obtained by gluing together the 1PI correlation functions (eq. (2.12)) using the propagators
(eq. (2.15)). As discussed above, these two types of building blocks for −iMx1···xn are both
conveniently expressed in terms of the 1PI effective action. Concretely, the three-point
amputated correlation function can be expressed as

−iMx1x2x3 = δ3(iΓ)
δϕx1δϕx2δϕx3

, (2.28)

while at four-points we have

−iMx1x2x3x4 = δ4(iΓ)
δϕx1δϕx2δϕx3δϕx4

+ δ3(iΓ)
δϕx1δϕx2δϕy

Dyz δ3(iΓ)
δϕzδϕx3δϕx4

+ δ3(iΓ)
δϕx1δϕx3δϕy

Dyz δ3(iΓ)
δϕzδϕx2δϕx4

+ δ3(iΓ)
δϕx1δϕx4δϕy

Dyz δ3(iΓ)
δϕzδϕx2δϕx3

. (2.29)

Similar expressions can be worked out for higher-point functions. As we will explain next,
they can more efficiently be built recursively out of lower-point functions.

2.3 Recursion relation for amplitudes

We now explain how to derive higher point generalizations of eqs. (2.28) and (2.29) recursively.
For convenience, we introduce notation for the following combination of the three-point
function and the propagator:

Gy
x1x2 ≡ iMx1x2z D

zy . (2.30)

With this, one can rewrite eq. (2.29) as

Mx1x2x3x4 = δ

δϕx4
Mx1x2x3 −Gy

x4x1Myx2x3 −Gy
x4x2Mx1yx3 −Gy

x4x3Mx1x2y . (2.31)

This way of writing the four-point function exposes a relation to the three-point function.
We will now argue that this pattern persists to any number of external legs as a recursion
relation of the form [5]

Mx1···xnxn+1 = δ

δϕxn+1
Mx1···xn −

n∑
i=1

Gy
xn+1xi

Mx1···x̂iy···xn , (2.32)
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where a hat denotes the absence of an index in the sequence. Note that the form of eq. (2.32)
is suggestive of a covariant derivative where G is the connection; we return to this point
in section 4.

To derive this recursion relation, we first use the definition of Mx1···xn in eq. (2.22)
together with eq. (2.7) to obtain

−iMx1···xn = D−1
x1y1 · · ·D

−1
xnyn

(−i)n δn(iW )
δJy1 · · · δJyn

. (2.33)

This implies the following relation between Mx1···xnxn+1 and Mx1···xn :

Mx1···xnxn+1 = D−1
x1y1 · · ·D

−1
xnyn

D−1
xn+1yn+1 (−i)

δ

δJyn+1
Dy1z1 · · ·DynznMz1···zn

= D−1
x1y1 · · ·D

−1
xnyn

δ

δϕxn+1
Dy1z1 · · ·DynznMz1···zn , (2.34)

where we have used eqs. (2.8) and (2.15) to obtain the second line. We can simplify this
expression using the commutator between the functional derivative δ

δϕxn+1 and the propagators.
Using eq. (2.15) again, together with eq. (2.28) and the definition in eq. (2.30), we get

[
δ

δϕxn+1
, Dyizi

]
=
(

δ

δϕxn+1
Dyizi

)
= −

 δ

δϕxn+1

[
δ2(iΓ)
δϕyiδϕzi

]−1


=
[
δ2(iΓ)
δϕyiδϕu

]−1
δ3(iΓ)

δϕuδϕxn+1δϕv

[
δ2(iΓ)
δϕvδϕzi

]−1

= −Dyiu iMxn+1uv D
vzi = −DyiuGzi

xn+1u . (2.35)

Using this repeatedly, we obtain the following relation

D−1
x1y1 · · ·D

−1
xnyn

δ

δϕxn+1
Dy1z1 · · ·Dynzn

= δz1
x1 · · · δ

zn
xn

δ

δϕxn+1
−

n∑
i=1

(
δz1

x1 · · · δ̂
zi
xi
· · · δzn

xn

)
Gzi

xn+1xi
, (2.36)

where δz
x = δϕz

δϕx = δ4(z − x) and the hat indicates the absence of a quantity in the sequence
as before. With this relation, eq. (2.34) simplifies to the recursion relation in eq. (2.32). Note
that no step in this derivation relied on any reference to perturbation theory. Therefore, the
recursion relation for Mx1···xn in eq. (2.32) holds to all loop orders.

2.3.1 Diagrammatic derivation

The above derivation of the recursion relation eq. (2.32) is purely algebraic. To provide
a more intuitive perspective, we present a diagrammatic derivation in this section, which
repeats the argument given in [5] with more details.

Consider the diagrammatic representation of the amputated correlation functions
−iMx1···xn . They can be obtained by gluing together the 1PI vertices with the full propa-
gators; both ingredients are conveniently expressed in terms of the 1PI effective action, as

– 8 –
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shown in eqs. (2.12) and (2.15). Here we recap the dictionary between diagram components
and algebraic factors for our convenience:

k-point 1PI vertices : δk(iΓ)
δϕx1 · · · δϕxk

, k ≥ 3 , (2.37a)

full propagators : Dxy = −
[
δ2(iΓ)
δϕxδϕy

]−1

. (2.37b)

As usual, we group all the contributing Feynman diagrams into different “gluing topologies,”
which characterize all possible ways of gluing together 1PI vertices. For example, at n = 3
there is a unique gluing topology:

−iMx1x2x3 = 1PI

x1

x2 x3

. (2.38)

This corresponds to the single term in eq. (2.28). At n = 4, there are four distinct gluing
topologies, each corresponding to a term in eq. (2.29):

−iMx1x2x3x4 = 1PI

x1

x2 x3

x4

+ 1PI 1PI

x1

x2 x3

x4

y z
+ 1PI 1PI

x1

x3 x2

x4

y z

+ 1PI 1PI

x1

x4 x3

x2

y z
. (2.39)

Now let us consider the gluing topologies for −iMx1···xn and −iMx1···xnxn+1 , with n ≥ 3.
The latter has one more leg, xn+1, and hence receives contributions from more gluing
topologies. We can examine each of them, paying attention to where the extra leg xn+1
is attached. In this way, for each gluing topology Tn+1 of −iMx1···xnxn+1 , one can first
identify a corresponding gluing topology Tn of −iMx1···xn , and then figure out how one
can calculate Tn+1 from Tn.

Let us elaborate this procedure in detail. Specifically, there are three scenarios for the
position of the leg xn+1 in Tn+1:

1. xn+1 is part of a four- (or higher-) point 1PI vertex in the gluing topology Tn+1. In this
case, if one removes xn+1, the 1PI vertex that it is attaching to will remain as a 1PI
vertex, and Tn+1 will become a gluing topology Tn for −iMx1···xn . Diagrammatically,
one identifies the corresponding Tn from Tn+1 as

Tn+1 = 1PI1PI

1PI

y1

ym

ym+1

yk

xn+1 =⇒ Tn = 1PI1PI

1PI

y1

ym

ym+1

yk

. (2.40)
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Next, from the dictionary in eq. (2.37a), we see that Tn+1 can be calculated from Tn by
taking a functional derivative δ

δϕxn+1 of the corresponding vertex factor in Tn, because

δk+1(iΓ)
δϕy1 · · · δϕykδϕxn+1

= δ

δϕxn+1

(
δk(iΓ)

δϕy1 · · · δϕyk

)
. (2.41)

2. xn+1 is part of a three-point 1PI vertex in the gluing topology Tn+1, and none of
the other two lines from this 1PI vertex is a leg. In this case, one can remove xn+1
by replacing the three-point 1PI vertex with a propagator, and thus obtain a gluing
topology Tn for −iMx1···xn . Diagrammatically, one identifies the corresponding Tn from
Tn+1 as

Tn+1 = 1PI 1PI
1PI

y1
z1 y2

z2

xn+1

=⇒ Tn = 1PI 1PIy1 y2
. (2.42)

Next, from the dictionary in eq. (2.37b), we see that Tn+1 can be calculated from Tn

by taking a functional derivative δ
δϕxn+1 of the corresponding propagator factor in Tn,

because
Dy1z1 δ3(iΓ)

δϕz1δϕxn+1δϕz2
Dz2y2 = δ

δϕxn+1
(Dy1y2) . (2.43)

3. xn+1 is part of a three-point 1PI vertex in the gluing topology Tn+1, and one of the
other two lines from this 1PI vertex is a leg xi. (For n ≥ 3, one cannot have both
the other two lines being legs.) In this case, one can remove xn+1 by cutting off the
three-point 1PI vertex from the diagram and relabeling the leg from the cut as xi to get
a gluing topology Tn for −iMx1···xn . Diagrammatically, one identifies the corresponding
Tn from Tn+1 as

Tn+1 = M1PI yz

x1

xn

xn+1

xi

=⇒ Tn = Mxi

x1

xn

. (2.44)

Next, from the definition in eq. (2.30), we see that Tn+1 can be calculated from Tn by
first taking the replacement xi → y and then contracting with the factor −Gy

xn+1xi
,

because
δ3(iΓ)

δϕxn+1δϕxiδϕz
DzyMx1···x̂iy···xn = −Gy

xn+1xi
Mx1···x̂iy···xn . (2.45)

In summary, scenarios 1 and 2 together gives the functional derivative term in eq. (2.32),
and scenario 3 gives us the terms involving the contraction with Gy

xn+1xi
. This completes

the diagrammatic proof of the recursion relation in eq. (2.32).

2.3.2 Connection with Berends-Giele recursion relation

Since it involves off-shell building blocks, the recursion relation in eq. (2.32) can be related
to the Berends-Giele off-shell recursion relation for computing the amplitudes [97–99] as we
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now explain. First, all the amputated correlation functions (and therefore the amplitudes)
are encoded in the functional relation ϕx[J ]. Specifically, using our definition of the field
ϕx in eq. (2.8), we can rewrite eq. (2.33) as

−iMx1···xn =
(
D−1

x1y1

)
· · ·
(
D−1

xnyn

)
(−i)n−1 δn−1ϕy1

δJy2 · · · δJyn

. (2.46)

Note also from eq. (2.15) that

iDxiyi =
δϕxi

δJyi

. (2.47)

Therefore, by rearranging terms and evaluating them at J = 0, we can obtain the relation
between Mx1···xn |J=0 and the Taylor expansion coefficients of ϕx[J ] at J = 0:

δn−1ϕy1

δJy2 · · · δJyn

∣∣∣∣
J=0

=
(
−Mx1···xn |J=0

)(δϕx1

δJy1

∣∣∣∣
J=0

)
· · ·
(
δϕxn

δJyn

∣∣∣∣
J=0

)
. (2.48)

The Berends-Giele approach [97–99] is to iteratively solve the equation of motion condition

δΓ
δϕx

= −Jx , (2.49)

to obtain the functional relation ϕx[J ] order by order in J . Alternatively it is possible to
construct ϕx[J ] order by order in J via the “perturbiner method” [100–103]. In both cases,
this is computing the Taylor expansion coefficients of ϕx[J ] at J = 0 in eq. (2.48). One can
then obtain Mx1···xn |J=0 through eq. (2.48). This is in contrast with our recursion relation
in eq. (2.32), which directly constructs Mx1···xn [J ] recursively for J ̸= 0.

3 Invariance of amplitudes under general field redefinitions

In section 2, we reviewed how the n-point amplitudes A (p1, · · · , pn), for both on-shell and
off-shell kinematics, can be obtained from the n-point amputated correlation functions
Mx1···xn [J ] using LSZ reduction (eq. (2.27)), and we derived an off-shell recursion relation
for Mx1···xn [J ] (eq. (2.32)). Both of these results are well known; the novelty here is how we
organize the terms. As we will show in this section, this organization of the results facilitates
a new proof of the invariance of on-shell amplitudes under general field redefinitions, including
those involving derivatives. Our results here are complementary to the traditional approach
that makes the argument directly from the path integral (see e.g. section 6.2 of [4], which
we also reproduce in appendix A for completeness).

An important lesson learned from section 2 is that the amplitudes A (p1, · · · , pn) are
encoded in a given 1PI effective action Γ[ϕ]:

Γ[ϕ] −→ Mx1···xn [J ] −→ A (p1, · · · , pn) . (3.1)

This is independent of the loop order; for a given theory S[η], the truncation in terms of
loop order only impacts the computation of the 1PI effective action Γ[ϕ] itself. One can
therefore explore the properties of amplitudes by analyzing the behavior of the 1PI effective
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action.4 In particular, we will make use of the recursion relation in eq. (2.32) to prove the
following transformation lemma in section 3.1:

Define the 1PI effective action Γ̃[ϕ̃] as a transformation of Γ[ϕ] that results from
substituting in a given analytic functional relation ϕ[ϕ̃]:

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
. (3.2)

Then the amputated correlation functions encoded in these two 1PI effective actions,
M̃ and M respectively, are related by

M̃x1···xn = δϕy1

δϕ̃x1
· · · δϕ

yn

δϕ̃xn
My1···yn + Ux1···xn , (3.3)

where Ux1···xn is an “evanescent term”5(see eq. (3.18) below for a detailed expression),
which satisfies

ψ̃x1(p̄1) · · · ψ̃xn(p̄n)
(
Ux1···xn |J=0

)
= 0 , (3.4)

where p̄i is an on-shell momentum. Therefore, Ux1···xn does not contribute to
on-shell amplitudes. As a consequence, the on-shell amplitudes encoded in Γ̃[ϕ̃]
and Γ[ϕ] are the same:

Ã (p̄1, · · · , p̄n) = A (p̄1, · · · , p̄n) . (3.5)

This is the main result of this paper. We emphasize that this result holds to all loop
orders, since eq. (3.1) holds to all loop orders.

In section 3.2, we will apply the above statement to show that tree-level and one-loop
amplitudes are invariant under general field redefinitions. Concretely, we will parameterize a
general field redefinition by writing the old fields η(x) and the new fields η̃(x) as functionals
of each other:6

η −→ η̃ : η(y) = fy
[
η̃(x)

]
. (3.6)

This accommodates all field redefinitions that are expected to leave the S-matrix elements
invariant, and in particular includes field redefinitions that involve derivatives. Such a field
redefinition leads to a new Lagrangian, which gives a new 1PI effective action Γ̃[ϕ̃]. In
section 3.2, we will show that up to one-loop order, one can find an analytic functional

4We mention that this is the exact same spirit of functional methods for EFT matching calculations
(e.g. [104, 105]), where the matching of amplitudes are efficiently achieved/guaranteed through the matching
of the 1PI effective actions.

5We stress that our use of “evanescent” in this context is unrelated to the evanescent operators found when
dimensionally regularizing loop integrals involving fermions.

6Note that fy[η̃] is a family of functionals parameterized by y. Specifically, for each given y, it maps the
function η̃(x) to a number:

fy[η̃] : η̃(x) → f
(
η̃(x) , ∂µη̃(x) , ∂µ∂ν η̃(x) , · · ·

)∣∣∣
x=y

.
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relation ϕ[ϕ̃], such that the new 1PI effective action is related to the old one as in eq. (3.2),
Γ̃[ϕ̃] = Γ

[
ϕ[ϕ̃]

]
. Therefore, the transformation lemma applies, which leads to the conclusion

that the on-shell amplitudes are the same.

3.1 Proof of the transformation lemma

Given a relation between two 1PI effective actions Γ̃[ϕ̃] and Γ[ϕ] as in eq. (3.2):

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
, (3.7)

we now address how their corresponding amplitudes would be related. Specifically, we
will prove the transformation lemma described above; see eqs. (3.2)–(3.4). Following the
procedure in eq. (3.1), we will first use eq. (3.7) to derive the relations between their functional
derivatives, and then the relations between the amputated correlation functions M̃x1···xn and
Mx1···xn , and eventually the relations between the amplitudes.

Zero source condition.
We begin by relating the first functional derivatives of the two effective actions. They

are related by the chain rule

δΓ̃
δϕ̃x

= δϕy

δϕ̃x

δΓ
δϕy

. (3.8)

It means that for analytic functional relations ϕ[ϕ̃] in eq. (3.7), where the matrix δϕy/δϕ̃x

is invertible, the zero source condition eq. (2.14) is unchanged:

δΓ̃
δϕ̃x

∣∣∣∣
ϕ̃=ϕ̃v

= 0 ⇐⇒ δΓ
δϕx

∣∣∣∣
ϕ=ϕ[ϕ̃v ]

= 0 . (3.9)

Put in other words, ϕv(x) is given by plugging ϕ̃v(x) into the functional relation ϕ[ϕ̃]:

ϕv(x) = ϕ
[
ϕ̃v
]
(x) . (3.10)

Note that this would not be true if there were an inhomogeneous piece in eq. (3.8).

On-shell condition.
Now we move onto the relation between the second derivatives. Following eq. (3.8), we

derive the relation between the second functional derivatives again using the chain rule:

δ2Γ̃
δϕ̃x1δϕ̃x2

= δϕy1

δϕ̃x1

δϕy2

δϕ̃x2

δ2Γ
δϕy1δϕy2

+ δ2ϕy1

δϕ̃x1δϕ̃x2

δΓ
δϕy1

. (3.11)

From eq. (3.9), we see that the inhomogeneous piece vanishes when this expression is
evaluated at ϕ̃(x) = ϕ̃v(x):

δ2Γ̃
δϕ̃x1δϕ̃x2

∣∣∣∣
ϕ̃v

=
(
δϕy1

δϕ̃x1

∣∣∣∣
ϕ̃v

)(
δϕy2

δϕ̃x2

∣∣∣∣
ϕ̃v

)(
δ2Γ

δϕy1δϕy2

∣∣∣∣
ϕv

)
, (3.12)
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where we have used eq. (3.10) for the last factor. This tells us that the on-shell momentum
condition eq. (2.21) is unchanged:

∫
d4x1 eip̄x1 δ2Γ

δϕx1δϕx2

∣∣∣∣
ϕv

= 0 ⇐⇒
∫

d4x1 eip̄x1 δ2Γ̃
δϕ̃x1δϕ̃x2

∣∣∣∣
ϕ̃v

= 0 , (3.13)

again for analytic functional relations ϕ[ϕ̃] such that the matrix δϕy/δϕ̃x is invertible. More-
over, from eq. (2.26) we see that eq. (3.12) also implies the following relation between the
on-shell external wavefunctions

ψy(p̄) =
(
δϕy

δϕ̃x

∣∣∣∣
ϕ̃v

)
ψ̃x(p̄) . (3.14)

Note however that eigenstates with nonzero eigenvalues ψy(p) and ψ̃x(p) with off-shell
momentum pµ are not related in such a simple way. This is because eq. (3.12) is a congru-
ence transform instead of a similarity transform between the two matrices δ2Γ̃

δϕ̃x1 δϕ̃x2

∣∣
ϕ̃v

and
δ2Γ

δϕy1 δϕy2

∣∣
ϕv

. Under such a transform, the nonzero eigenvalues are not preserved/invariant,
which is also inferred by the mismatch regarding the upper/lower index structure between
the two sides of eq. (2.25).

Three-point function.
Following eq. (3.11), one can further move on to the third functional derivatives of Γ[ϕ],

which are of course the three-point amputated correlation functions (cf. eq. (2.28)):

M̃x1x2x3 = δϕy1

δϕ̃x1

δϕy2

δϕ̃x2

δϕy3

δϕ̃x3
My1y2y3 −

δ3ϕy1

δϕ̃x1δϕ̃x2δϕ̃x3

δΓ
δϕy1

−
(

δ2ϕy1

δϕ̃x2δϕ̃x3

δϕy2

δϕ̃x1
+ δ2ϕy1

δϕ̃x1δϕ̃x3

δϕy2

δϕ̃x2
+ δ2ϕy1

δϕ̃x1δϕ̃x2

δϕy2

δϕ̃x3

)
δ2Γ

δϕy1δϕy2
. (3.15)

We see that this expression involves more inhomogeneous pieces as compared to the sec-
ond functional derivatives. However, these terms will drop out when computing on-shell
amplitudes:

(2π)4δ4(p̄1 + p̄2 + p̄3) iÃ (p̄1, p̄2, p̄3) = ψ̃x1(p̄1) ψ̃x2(p̄2) ψ̃x3(p̄3)
(
−iM̃x1x2x3

∣∣
ϕ̃v

)
. (3.16)

This is because the inhomogeneous pieces in the first and second lines of eq. (3.15) respectively
contain the following two types of factors:

δΓ
δϕy

: δΓ
δϕy

∣∣∣∣
ϕv

= 0 , (3.17a)

δϕy2

δϕ̃xi

δ2Γ
δϕy1δϕy2

: ψ̃xi(p̄i)
(
δϕy2

δϕ̃xi

∣∣∣∣
ϕ̃v

)(
δ2Γ

δϕy1δϕy2

∣∣∣∣
ϕv

)
= 0 , (3.17b)

where xi refers to an index in M̃x1···xn , corresponding to an external leg of the diagram. As
indicated above, terms with the first type of factors vanish upon enforcing the zero source
condition ϕ̃(x) = ϕ̃v(x); terms with the second type of factors are nonzero at ϕ̃(x) = ϕ̃v(x),
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but will vanish upon a further contraction with the on-shell external wavefunctions ψ̃xi(p̄i),
due to eqs. (2.26) and (3.14). Since they do not change the observable (on-shell) physics,
we refer to these quantities as “evanescent.”

From the above discussion, we see that in general, an evanescent term would have to
contain either the factor in eq. (3.17a), or the factor in eq. (3.17b). Therefore, a general
parameterization of the evanescent terms is

Ux1···xn = ay1
x1···xn

δΓ
δϕy1

+
n∑

i=1
by1

x1···x̂i···xn

δϕy2

δϕ̃xi

δ2Γ
δϕy1δϕy2

. (3.18)

By construction, it satisfies the condition in eq. (3.4). Below, we will show by induction
that all the inhomogeneous terms in eq. (3.3) are evanescent terms, i.e., they can be written
in the form eq. (3.18).

The proof for the n = 3 case is straightforward. One can simply rewrite eq. (3.15):

M̃x1x2x3 = δϕy1

δϕ̃x1

δϕy2

δϕ̃x2

δϕy3

δϕ̃x3
My1y2y3 + Ux1x2x3 , (3.19)

because all the inhomogeneous terms in eq. (3.15) manifestly take the form in eq. (3.18).
This proves the n = 3 case of the transformation lemma around eqs. (3.3) and (3.4). It
says that the three-point amputated correlation functions M̃x1x2x3 and My1y2y3 are related
homogeneously by the transformation matrices δϕyi/δϕ̃xi , up to an evanescent term Ux1x2x3

that would not change the on-shell amplitudes Ã (p̄1, p̄2, p̄3).

n-point functions.
The relation in eq. (3.19) (with the structure of the evanescent term given in eq. (3.18))

holds also for higher-point amputated correlation functions, i.e., eq. (3.3). To show this,
one can derive the higher-point analog of eq. (3.15), and then check if the inhomogeneous
pieces are evanescent.

In order to organize the proof, we will use the recursive expression of the n-point functions
in eqs. (2.31) and (2.32), where an (n+ 1)-point amputated correlation function is concisely
written in terms of the n-point ones. The n = 3 case that we proved above in eq. (3.19)
(with eq. (3.18)) serves as the base case for the induction. To further prove the result for
arbitrary integer n ≥ 3, we need to prove the induction step: if eq. (3.3) (with eq. (3.18))
holds for k, then it will also hold for k + 1.

To show this, we assume that M̃x1···xk
and My1···yk

are related as in eq. (3.3):

M̃x1···xk
= δϕy1

δϕ̃x1
· · · δϕ

yk

δϕ̃xk
My1···yk

+ Ux1···xk
, (3.20)

where Ux1···xk
is an evanescent term that has the form in eq. (3.18):

Ux1···xk
= ay1

x1···xk

δΓ
δϕy1

+
k∑

i=1
by1

x1···x̂i···xk

δϕy2

δϕ̃xi

δ2Γ
δϕy1δϕy2

. (3.21)
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We then make use of the recursion relations for both M̃ and M

M̃x1···xk
−→ M̃x1···xkxk+1 = δ

δϕ̃xk+1
M̃x1···xk

−
k∑

i=1
G̃y

xk+1xi
M̃x1···x̂iy···xk

, (3.22a)

My1···yk
−→ My1···ykyk+1 = δ

δϕyk+1
My1···yk

−
k∑

i=1
Gz

yk+1yi
My1···ŷiz···yk

, (3.22b)

to show that consequently M̃x1···xkxk+1 and My1···ykyk+1 will also be related as in eq. (3.3).
To this end, we compute the inhomogeneous pieces at k + 1:

M̃x1···xkxk+1 −
δϕy1

δϕ̃x1
· · · δϕyk

δϕ̃xk

δϕyk+1

δϕ̃xk+1 My1···ykyk+1

= −
k∑

i=1

(
δϕy1

δϕ̃x1
· · · δ̂ϕyi

δϕ̃xi
· · · δϕyk

δϕ̃xk

)
My1···ŷiz···yk

×
(

δϕz

δϕ̃y G̃
y
xk+1xi

− δϕyk+1

δϕ̃xk+1
δϕyi

δϕ̃xi
Gz

yk+1yi
− δ2ϕz

δϕ̃xk+1 δϕ̃xi

)
+
(

δ

δϕ̃xk+1
Ux1···xk

−
k∑

i=1
G̃y

xk+1xi
Ux1···x̂iy···xk

)
. (3.23)

To obtain this result, we have used eqs. (3.20) and (3.22). Our goal is to show that the right
hand side has the general structure given in eq. (3.18), so that it is an evanescent term. Let
us check that this is true for the first and the second terms in turn.

To check the evanescence of the first term in eq. (3.23), we need to study the relation
between G̃y

xk+1xi
and Gz

yk+1yi
. Recalling the definition in eq. (2.30) and the relation in

eq. (2.15), we get

Gy
x1x2 = iMx1x2z D

zy = −Mx1x2z

(
δ2Γ

δϕzδϕy

)−1

. (3.24)

Therefore, using the relations in eqs. (3.11) and (3.15), we have

G̃y
xk+1xi

=−M̃xk+1xiu

(
δ2Γ̃

δϕ̃uδϕ̃y

)−1

=−
(

δϕyk+1

δϕ̃xk+1
δϕyi

δϕ̃xi

δϕv

δϕ̃uMyk+1yiv−
δ2ϕy1

δϕ̃xk+1 δϕ̃xi

δϕy2

δϕ̃u
δ2Γ

δϕy1 δϕy2

)
δϕ̃u

δϕw

(
δ2Γ

δϕwδϕz

)−1 δϕ̃y

δϕz +Uy
xk+1xi

= δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δϕ̃y

δϕz
Gz

yk+1yi
+ δ2ϕz

δϕ̃xk+1δϕ̃xi

δϕ̃y

δϕz
+Uy

xk+1xi
, (3.25)

where Uy
xk+1xi

collects terms that contain the evanescent factors in eq. (3.17), in a similar
fashion as in eq. (3.18). We emphasize that in the parentheses of the second line above, the
second term is not evanescent and hence did not get collected into Uy

xk+1xi
. This is because

unlike xk+1 or xi, the index u is not a leg, since it not an index in M̃x1···xk+1 . It yields the
non-evanescent inhomogeneous piece in the last line. With the relation in eq. (3.25), the
first line of the result in eq. (3.23) simplifies into

−
k∑

i=1

(
δϕy1

δϕ̃x1
· · · δ̂ϕ

yi

δϕ̃xi
· · · δϕ

yk

δϕ̃xk

)
My1···ŷiz···yk

δϕz

δϕ̃y
Uy

xk+1xi
∈ Ux1···xk+1 . (3.26)

As indicated here, this is clearly an evanescent term, because of the Uy
xk+1xi

factor.
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Now let us move on to the second term in eq. (3.23). This term contains the evanescent
term Ux1···xk

, whose general form — given in eq. (3.21) — comprises “a-type” and “b-type”
evanescent factors in eqs. (3.17a) and (3.17b), respectively. However, if one takes a functional
derivative δ

δϕ̃xk+1 , and/or makes an index replacement xi → y, an evanescent term of the
a-type or b-type might become non-evanescent. In what follows, we show that despite this,
the combination in the second term of eq. (3.23) is still evanescent.

Since the second term of eq. (3.23) is linear in Ux1···xk
, we can examine its a-type and

b-type terms separately. Let us begin with the a-type terms. The evanescence of an a-type
term does not rely on any of its indices being a leg xi, so the index replacement xi → y

would not cause any problems. On the other hand, it does rely on containing a factor of
the first functional derivative of Γ, so the additional functional derivative could potentially
be a problem. However, since this additional functional derivative is at a leg xk+1, any
potentially problematic term that arises from an a-type term will simply be a b-type term,
which is still evanescent:

δ

δϕ̃xk+1

(
ay1

x1···xk

δΓ
δϕy1

)
⊃ ay1

x1···xk

δϕy2

δϕ̃xk+1

δ2Γ
δϕy1δϕy2

∈ Ux1···xk+1 . (3.27)

Therefore, for a-type terms in Ux1···xk
, the second term in eq. (3.23) remains evanescent for

each individual term in its parentheses.
Now let us check the b-type terms. Acting the additional functional derivative on them

yields the following non-evanescent terms

δ

δϕ̃xk+1
Ux1···xk

⊃ δ

δϕ̃xk+1

(
k∑

i=1
by1

x1···x̂i···xk

δϕy2

δϕ̃xi

δ2Γ
δϕy1δϕy2

)

⊃
k∑

i=1
by1

x1···x̂i···xk

(
δ2ϕy2

δϕ̃xk+1δϕ̃xi

δ2Γ
δϕy1δϕy2

+ δϕy2

δϕ̃xi

δϕyk+1

δϕ̃xk+1

δ3Γ
δϕy1δϕy2δϕyk+1

)
. (3.28)

On the other hand, the external-to-internal index replacement xi → y yields the following
non-evanescent terms

−
k∑

i=1
G̃y

xk+1xi
Ux1···x̂iy···xk

⊃ −
k∑

i=1
G̃y

xk+1xi
by1

x1···x̂i···xk

δϕy2

δϕ̃y

δ2Γ
δϕy1δϕy2

⊃ −
k∑

i=1

(
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δϕ̃y

δϕz
Gz

yk+1yi
+ δ2ϕz

δϕ̃xk+1δϕ̃xi

δϕ̃y

δϕz

)
by1

x1···x̂i···xk

δϕy2

δϕ̃y

δ2Γ
δϕy1δϕy2

⊃ −
k∑

i=1
by1

x1···x̂i···xk

(
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi
Gy2

yk+1yi
+ δ2ϕy2

δϕ̃xk+1δϕ̃xi

)
δ2Γ

δϕy1δϕy2

⊃ −
k∑

i=1
by1

x1···x̂i···xk

(
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δ3Γ
δϕyk+1δϕyiδϕy1

+ δ2ϕy2

δϕ̃xk+1δϕ̃xi

δ2Γ
δϕy1δϕy2

)
, (3.29)

where we have used the results in eq. (3.25), eq. (3.24), and then eq. (2.28). We see that
the non-evanescent terms in eq. (3.29) precisely cancel those from eq. (3.28). Therefore,
for b-type terms in Ux1···xk

, the second term in eq. (3.23) remains evanescent as a sum of
the two terms in its parentheses.
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Combining our investigations on a-type and b-type terms in Ux1···xk
, we conclude that

the second term of the result in eq. (3.23) remains evanescent:

δ

δϕ̃xk+1
Ux1···xk

−
k∑

i=1
G̃y

xk+1xi
Ux1···x̂iy···xk

∈ Ux1···xk+1 . (3.30)

eqs. (3.26) and (3.30) together then complete our proof of the induction step, namely that
the following relation for (k + 1)-point amputated correlation functions holds

M̃x1···xkxk+1 = δϕy1

δϕ̃x1
· · · δϕ

yk

δϕ̃xk

δϕyk+1

δϕ̃xk+1
My1···ykyk+1 + Ux1···xkxk+1 , (3.31)

provided that it holds for k-point functions (eq. (3.20)). Combining this induction step with
the base case that we proved for n = 3 in eq. (3.19), this proves that eq. (3.3) (together
with eq. (3.18)) holds for an arbitrary integer n ≥ 3.

To complete our proof of the transformation lemma, let us show that eqs. (3.3) and (3.18)
imply that the on-shell amplitudes are the same:

(2π)4δ4(p̄1 + · · ·+ p̄n) iÃ (p̄1, · · · , p̄n)

=
[
ψ̃x1(p̄1) · · · ψ̃xn(p̄n)

] (
−iM̃x1···xn |ϕ̃v

)
=
[
ψ̃x1(p̄1) · · · ψ̃xn(p̄n)

] ( δϕy1

δϕ̃x1

∣∣∣∣
ϕ̃v

)
· · ·
(
δϕyn

δϕ̃xn

∣∣∣∣
ϕ̃v

)(
−iMy1···yn |ϕv

)
=
[
ψy1(p̄1) · · ·ψyn(p̄n)

] (
−iMy1···yn |ϕv

)
= (2π)4δ4(p̄1 + · · ·+ p̄n) iA (p̄1, · · · , p̄n) , (3.32)

where we have used the relation in eq. (3.14). ■

3.2 Applications to tree and one-loop amplitudes

We now apply the transformation lemma to show that tree-level and one-loop amplitudes
are invariant under a general field redefinition that accommodates derivatives:

η −→ η̃ : η = f
[
η̃
]
. (3.33)

Our task is to show that under such a field redefinition, the change of the 1PI effective action
can be described by eq. (3.2), i.e., Γ̃[ϕ̃] = Γ

[
ϕ[ϕ̃]

]
for some ϕ[ϕ̃].

Tree-level amplitudes.
We begin with the tree-level case. When we perform a field redefinition described by

eq. (3.33), the new action at tree level is simply given by substituting in that relation (see
eq. (A.6) for a general expression):

S̃
[
η̃
]
= S

[
f
[
η̃
]]
. (3.34)

Meanwhile, the tree-level 1PI effective action is just given by the action of the theory

Γ[ϕ] = S[ϕ] , and Γ̃[ϕ̃] = S̃[ϕ̃] . (3.35)
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Putting eqs. (3.34) and (3.35) together, we get the relation between the new and old 1PI
effective actions at the tree level:

Γ̃
[
ϕ̃
]
= S̃

[
ϕ̃
]
= S

[
f
[
ϕ̃
]]

= Γ
[
f
[
ϕ̃
]]
. (3.36)

We see that they do satisfy the transformation relation in eq. (3.2), with the functional ϕ[ϕ̃]
identified to be the field redefinition functional itself:

ϕ[ϕ̃] = f [ϕ̃] . (3.37)

The transformation lemma then implies that tree-level on-shell amplitudes are invariant
under the general field redefinition in eq. (3.33).

One-loop amplitudes.
In the one-loop case, both eqs. (3.34) and (3.35) become more complicated. As elaborated

in appendix A, under a general field redefinition in eq. (3.33), the action in terms of the
new field at the loop level is (see eq. (A.6))

S̃
[
η̃
]
= S

[
f
[
η̃
]]
− i log det

(
δηy

δη̃x

)
. (3.38)

Note the extra one-loop sized Jacobian term compared to eq. (3.34). Apart from anomalous
fermion chiral transformations, this term vanishes if one works with dimensional regulariza-
tion [3, 4]. However, we keep it here to make our argument independent of the choice of
the regularization scheme. On the other hand, up to one-loop level, the relation between
Γ[ϕ] and S[ϕ] is also modified:

Γ[ϕ] = S[ϕ] + i

2 log det
(

δ2S

δηx1δηx2

∣∣∣∣
η=ϕ

)
. (3.39)

With eqs. (3.38) and (3.39), we can obtain the relation between Γ̃[ϕ̃] and Γ[ϕ]. The
second functional derivatives of the new action are

δ2S̃

δη̃x1δη̃x2
= δηy1

δη̃x1

δηy2

δη̃x2

δ2S

δηy1δηy2
+ δ2ηy1

δη̃x1δη̃x2

δS

δηy1
+ (one-loop terms) . (3.40)

Plugging this in, we obtain the following relation up to one-loop level

Γ̃
[
ϕ̃
]
= S̃

[
ϕ̃
]
+ i

2 log det
(

δ2S̃

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

)

= S
[
f
[
ϕ̃
]]
− i log det

(
δηy

δη̃x

∣∣∣∣
ϕ̃

)

+ i

2 log det
(
δηy1

δη̃x1

δηy2

δη̃x2

∣∣∣∣
ϕ̃

δ2S

δηy1δηy2

∣∣∣∣
f [ϕ̃]

+ δ2ηy1

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

δS

δηy1

∣∣∣∣
f [ϕ̃]

)

= S
[
f
[
ϕ̃
]]

+ i

2 log det
(

δ2S

δηy1δηy2

∣∣∣∣
f [ϕ̃]

+ δ2ηy

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

δη̃x1

δηy1

δη̃x2

δηy2

δS

δηy

∣∣∣∣
f [ϕ̃]

)

= Γ
[
f
[
ϕ̃
]]

+ i

2 Tr log
[
1 + δ2ηy

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

( δ2S

δηy1δηz1

)−1 δη̃x1

δηy1

δη̃x2

δηy2

δS

δηy

∣∣∣∣
f [ϕ̃]

]
. (3.41)
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We see that there is an extra term compared to eq. (3.36). Although this term looks
complicated, after expanding the log it will yield a series of terms that are proportional to
the tree-level equation of motion δS/δηy, with some one-loop order coefficients ay:

Γ̃
[
ϕ̃
]
= Γ

[
f
[
ϕ̃
]]

+ ay[ϕ̃] ( δS
δηy

∣∣∣∣
f [ϕ̃]

)
. (3.42)

Since ay[ϕ̃] are one-loop order, we can replace S with Γ, as the difference introduced will
be two-loop order. For the same reason, we can keep the accuracy only to the first power
of ay[ϕ̃]. Carrying out these manipulations, we get

Γ̃
[
ϕ̃
]
= Γ

[
f
[
ϕ̃
]]

+ ay[ϕ̃] ( δΓ
δϕy

∣∣∣∣
f [ϕ̃]

)
= Γ

[
f
[
ϕ̃
]
+ a

[
ϕ̃
]]
. (3.43)

This shows that up to one-loop order, the 1PI effective actions Γ̃[ϕ̃] and Γ[ϕ] again satisfy
the transformation relation in eq. (3.2), where the functional ϕ[ϕ̃] is identified as

ϕ[ϕ̃] = f
[
ϕ̃
]
+ a

[
ϕ̃
]
. (3.44)

The transformation lemma then implies that on-shell amplitudes up to one-loop order are
invariant under the field redefinition in eq. (3.33).

4 Towards a geometric interpretation

In the previous section, we used the transformation lemma to show that the tree-level
and one-loop amputated correlation functions transform as tensors under generalized field
redefinitions up to terms that vanish when the sources are set to zero and the external states
are taken to be on shell. Since the proof of the transformation lemma in section 3.1 is rather
technical, it would be useful to have a more intuitive explanation of these results. With
this motivation in mind, we note that the recursion relation eq. (2.32) appears to have a
tensor-like structure — the relation between the n+ 1 and the n leg results resembles that
of a covariant derivative acting on a tensor:

Mx1···xnxn+1 = δ

δϕxn+1
Mx1···xn −

n∑
i=1

Gy
xn+1xi

Mx1···x̂iy···xn

?= ∇xn+1Mx1···xn . (4.1)

Having the notion of a covariant derivative evokes the expectation that this can be used to
define parallel transport along some kind of geometric space.

However, such a geometric interpretation requires that we can identify a manifold
such that

a) The functional derivative δ

δϕx
can be interpreted as a coordinate derivative. (4.2a)

b) The factor Gy
x1x2 serves as a connection. (4.2b)

c) The amputated correlation functions Mx1···xn transform as tensors. (4.2c)
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We already know that the third condition fails. When the transformation lemma applies, the
amputated correlation functions do not transform as tensors, due to the extra evanescent term:

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
=⇒ M̃x1···xn = δϕy1

δϕ̃x1
· · · δϕ

yn

δϕ̃xn
My1···yn + Ux1···xn . (4.3)

Nevertheless, one could imagine that some sort of procedure to quotient out the evanescent
terms exists, leaving behind a well defined “projective” geometry, that we will refer to as
“functional geometry.” This section is devoted to exploring the possibility that the resulting
“functional manifold” could be constructed. In particular, we will discuss aspects where this
approach appears to be successful, and we will highlight some ways in which it fails. We
will also comment on the relation between functional geometry and the well-established field
space geometry formalism (which does not incorporate derivative field redefinitions).

4.1 Evidence for a functional manifold: success and failure

We begin by checking the condition in eq. (4.2a). Our goal is to find a manifold on which
the functional derivatives δ

δϕ(x) can be identified with coordinate derivatives. To this end,
we consider the so-called “field configuration space,” which is the collection of all the ϕ(x)
field configurations that are integrated over when computing the path integral. This space
is naturally endowed with a functional differentiable structure, and hence can be viewed as
a differential manifold, albeit an infinite dimensional one [61, 106, 107]. We refer to this
manifold as the “functional manifold.”

One way to parameterize the field configuration space is to simply specify the values
of the field at all the spacetime points:{

ϕx
∣∣ x ∈ spacetime

}
. (4.4)

Each allowed value of the set of variables in eq. (4.4) gives a specific field configuration
ϕ(x), and by our construction, corresponds to a specific point on the functional manifold.
The whole functional manifold is a collection of all such points. The functional manifold is
therefore charted by {ϕx}. Functions on this manifold are functions of the field configurations,
or equivalently functionals of the field ϕx, for example the 1PI effective action Γ[ϕ]. Therefore,
functional derivatives with respect to the field ϕx are just coordinate derivatives on this
manifold, and they form a basis for the tangent space:{

δ

δϕx
with ϕx parameterizing the configuration space

}
. (4.5)

4.1.1 Success: 1PI effective action as a scalar

We argued in section 3.2 that under a general field redefinition parameterized by eq. (3.6),
the 1PI effective action (up to one-loop level) transforms as in eq. (4.3):

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
. (4.6)

As a functional relation, ϕ[ϕ̃] is a map between the two field configurations, {ϕx} and {ϕ̃x}.
Alternatively, one can view this map as reparameterizing a point on the functional manifold
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{ϕx} to the same point using the new set of variables {ϕ̃x}. Therefore, it is a re-charting
or coordinate change on the functional manifold.7 From this point of view, eq. (4.6) means
that the 1PI effective action transforms as a scalar on the functional manifold.

4.1.2 Success: physical vacuum as a geometric point

Since the 1PI effective action transforms as a scalar, its first functional derivative transforms
as a vector on the functional manifold (cf. eq. (3.8)):

δΓ̃
δϕ̃x

∣∣∣∣
ϕ̃

= δϕy

δϕ̃x

∣∣∣∣
ϕ̃

δΓ
δϕy

∣∣∣∣
ϕ[ϕ̃]

. (4.7)

Recall from eq. (2.14) that the physical vacuum field configuration ϕv(x) (for the original
theory S[η]) is determined by

δΓ
δϕx

∣∣∣∣
ϕ=ϕv

= 0 . (4.8)

The transformation law in eq. (4.7) then implies that the physical vacuum is a geometric
point on the functional manifold — it is independent of the chart chosen, and its coordinates
changing accordingly:

ϕv(x) = ϕ
[
ϕ̃v
]
(x) . (4.9)

4.1.3 Failure: evanescent terms ruin covariance

Given these successes, we move on to check the conditions in eqs. (4.2b) and (4.2c). Un-
fortunately, it turns out that the functional manifold considered above fails to satisfy these
conditions. However, it is still enlightening to see how it fails, since this can provide guidance
for alternative constructions.

First, we can check the properties of Gy
x1x2 . We will argue that it does not have the

appropriate transformation rules to be interpreted as a connection. Following standard
methodology, we use { δ

δϕx , δϕx} as the bases of the tangent and cotangent spaces of the
functional manifold. Then a connection Γ can be defined using

δ

(
δ

δϕy3

)
≡ δϕy2 ∇ϕy2

(
δ

δϕy3

)
≡ δϕy2 Γy1

y2y3

(
δ

δϕy1

)
, (4.10)

where Γy1
y2y3 are components of the connection (not to be confused with the 1PI effective

action). Now consider a coordinate change ϕ[ϕ̃]. The bases transform as tensors

δ

δϕ̃x
= δϕy

δϕ̃x

δ

δϕy
, (4.11a)

δϕ̃x = δϕ̃x

δϕy
δϕy . (4.11b)

7Note that this coordinate change ϕ[ϕ̃] is not necessarily the same as the field redefinition relation η = f [η̃],
cf. eqs. (3.37) and (3.44).
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This leads to the following standard transformation law for a connection:

Γ̃x1
x2x3 = δϕy2

δϕ̃x2

δϕy3

δϕ̃x3

δϕ̃x1

δϕy1
Γy1

y2y3 +
δ2ϕy1

δϕ̃x2δϕ̃x3

δϕ̃x1

δϕy1
. (4.12)

Now comparing with the transformation property of Gy
x1x2 derived in eq. (3.25), we see

that Gy
x1x2 does not satisfy eq. (4.12). Therefore, it cannot serve as a connection on the

functional manifold. However, it is worth mentioning that the transformation property of
Gy

x1x2 in eq. (3.25) is very close to that in eq. (4.12); the only difference is that eq. (3.25)
contains an extra evanescent term. Given that Gy

xn+1xi
does not serve as a connection on

the functional manifold, the right-hand side of the recursion relation in eq. (4.1) cannot be
interpreted as a covariant derivative “∇xn+1”.

The same essential obstruction holds for the amputated correlation functions. As derived
in section 3, the transformation property of the amputated correlation functions are given
in eq. (4.3). Clearly, they do not transform as tensors on the functional manifold, again
due to the extra evanescent term. So similar to the situation of eq. (4.2b), the condition
in eq. (4.2c) is almost satisfied, except for the evanescent term.

4.1.4 Failure: vanishing curvature tensor

We will now identify another fundamental issue with the functional geometry picture as
defined above. We show that if we ignore the evanescent term issue discussed above and
mindlessly use Gy

x1x2 defined in eq. (2.30) as a connection to compute the Riemann curvature
tensor, then it vanishes. One straightforward way to see this follows directly from the
recursion relation eq. (4.1) — using it twice, we find

Mx1···xnyz = ∇z∇yMx1···xn . (4.13)

Then the crossing symmetry of Mx1···xnyz between the legs y and z implies that

[∇y,∇z]Mx1···xn = 0 , (4.14)

namely that there is no curvature. We will provide a bit more insight into this issue in
section 4.2.5 below, in terms of so-called field space geometry.

4.2 Relation to the field space geometry

There is a well-established geometric picture for amplitudes in the literature [56–66], based on
the idea of the “field space manifold,” which accommodates a narrower set of field redefinitions,
namely those that do not involve derivatives. In this section, we comment on the relation
between the functional manifold and the field space manifold. We will also discuss how a
variety of quantities on the functional manifold reproduce geometric statements that have
been derived using the field space geometry picture. Some of these have been shown in [5].
Here we give a more detailed discussion.
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4.2.1 Review of field space geometry

We briefly review the field space geometry picture. For this purpose, we again focus on the
case of scalar fields, similar with section 2.1. We consider an EFT of scalar fields {ϕa}. The
most general Lagrangian involving up to two derivatives is:

L = −V (ϕ) + 1
2 gab(ϕ)

(
∂µϕ

a)(∂µϕb)+O(∂4) . (4.15)

V (ϕ) and gab(ϕ) can be interpreted as functions on the so-called “field space manifold,” which
consists of all the allowed field space (or target space) points. Note that each point on
the field space manifold is specified by the set of values {ϕa}, so it is a finite dimensional
manifold, with its dimension being the number of field flavors. The field space geometry
deals with the differential geometry on this manifold.

A field redefinition without derivatives

ϕ = f
(
ϕ̃
)
, (4.16)

can be viewed as a coordinate change on the field space manifold. As usual, the bases of
its tangent and cotangent spaces { ∂

∂ϕa ,dϕa} transform as tensors

∂

∂ϕ̃a
= ∂ϕb

∂ϕ̃a

∂

∂ϕb
, (4.17a)

dϕ̃a = ∂ϕ̃a

∂ϕb
dϕb . (4.17b)

Using these bases, a connection on the manifold can be introduced as

d
(
∂

∂ϕc

)
≡ dϕb∇ϕb

(
∂

∂ϕc

)
≡ dϕb Γa

bc

(
∂

∂ϕa

)
, (4.18)

where Γa
bc are the connection components (not to be confused with 1PI effective actions).

A covariant derivative of a general tensor is then given by

∇c T
a···

b··· = ∂c T
a···

b··· +
(
Γa

ck T
k···

b··· + · · ·
)
−
(
Γk

cb T
a···

k··· + · · ·
)
. (4.19)

We note that the function gab(ϕ) transforms as a (0, 2)-tensor under the non-derivative
field redefinition in eq. (4.16):

g̃ab

(
ϕ̃
)
= ∂ϕc

∂ϕ̃a

∂ϕd

∂ϕ̃b
gcd(ϕ) . (4.20)

This object is a natural choice of a metric on the field space manifold. If we require the
connection in eq. (4.18) to be compatible with this metric, i.e., ∇c gab = 0, we get the
usual Levi-Civita connection:

Γa
bc =

1
2 g

ak (gkb,c + gkc,b − gbc,k) , (4.21)

where indices following a comma denote partial derivatives.
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The field space geometry is a Riemannian geometry. On-shell amplitudes can be written
in terms of geometric tensors on the field space manifold, multiplied by additional kinematic
factors. For example, for the theory up to two-derivative interactions given in eq. (4.15),
the three-point amplitudes can be written as

−
( 3∏

i=1
g1/2

aiai

)
A a1a2a3 (p̄1, p̄2, p̄3) = V ; (a1a2a3) . (4.22)

Here indices following a semicolon denote covariant derivatives under the Levi-Civita con-
nection in eq. (4.21), and the parentheses denote a normalized symmetrization of these
indices. The bars on the geometric quantities, gab, V , etc. indicates evaluating them at
the physical vacuum point on the field space manifold. The four-point amplitudes have
a similar but richer expression:

−
( 4∏

i=1
g1/2

aiai

)
A a1a2a3a4 (p̄1, p̄2, p̄3, p̄4) = V ; (a1a2a3a4) +

1
3
∑
i<j

sijRai(akal)aj

+
[
V ; (a1a2b)

gbc

s12 −m2
b

V ; (a3a4c)

]
3 perms

. (4.23)

where Rabcd denotes the Riemann curvature tensor derived from the metric gab in the standard
way. We see from these examples that the field space geometry does not address the kinematic
factors in the amplitudes. It only provides a geometric interpretation for the coefficients of
each kinematic combination that can appear.8 Moreover, the geometric interpretation of these
coefficients is spoiled by derivative field redefinitions; in appendix B we give a simple example
of how the curvature of the field space manifold can be changed by derivative field redefinitions.

4.2.2 Embedding the field space manifold into the functional manifold

The field space geometry is constructed on the manifold of the field space, while the functional
manifold discussed in section 4.1 consists of the field configuration space. Therefore, the
finite dimensional field space manifold could be identified with a submanifold of the infinite
dimensional functional manifold, defined by the restriction that it only contains the constant
field configurations.

However, this is not to say that the field space geometry only handles constant field
configurations. It addresses arbitrary field configurations by invoking the field maps ϕa(x)
from the spacetime manifold to the field space manifold, inducing a factorized structure
of the connection (cf. eq. (4.18)):

dϕb = dxµ
(
∂µϕ

b
)

=⇒ d
(
∂

∂ϕc

)
= dxµ

[ (
∂µϕ

b
)
Γa

bc

] ( ∂

∂ϕa

)
. (4.24)

The term in the squared bracket can be viewed as a connection that defines a covariant
derivative Dµ on the spacetime manifold; see e.g. [66]. For example, the first derivative of

8Note that eqs. (4.22) and (4.23) assume w.l.o.g. that gab and V ;ab = m2
agab are diagonal. See [77, 78] for

details of how to avoid this assumption with the use of vielbeins.
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the potential V, a = V; a is a (0, 1)-tensor on the field space manifold. Its spacetime covariant
derivative is then given by

DµV; a = ∂µV; a − Γc
ba

(
∂µϕ

b
)
V; c =

(
∂µϕ

b
)
∇bV; a =

(
∂µϕ

b
)
V; ab . (4.25)

On the other hand, the functional manifold is formed by all the field maps {ϕa(x)}.
The bases of its tangent and cotangent space are “promoted” from the field space manifold
version into (cf. eq. (4.11))

∂

∂ϕa
−→ δ

δϕa(x) , (4.26a)

dϕa −→ δϕa(x) . (4.26b)

4.2.3 Reproducing the connection on the field space manifold

We would like to reproduce geometric quantities on the field space manifold from quantities
on the functional manifold. To this end, we should restrict the functional manifold quantities
onto the submanifold formed by constant field configurations, namely by taking

∂µϕ
a = 0 . (4.27)

In what follows, we will show how to reproduce the field space manifold connection Γa
bc from

Gy
x1x2 , even though the latter does not serve as a connection on the functional manifold. More

specifically, we will take the definition of Gy
x1x2 in eq. (2.30) and apply it to the theory given

by the Lagrangian in eq. (4.15) at the tree level. We then restrict the resulting expression
onto the submanifold formed by constant field configurations, and show that this gives us Γa

bc.
We begin with the 1PI effective action at tree level, which is just the action:

Γ[ϕ] = S[ϕ] =
∫

d4x
[
−V (ϕ) + 1

2 gab(ϕ) (∂µϕ
a)
(
∂µϕb

)]
x
. (4.28)

Here everything in the squared bracket is evaluated at the spacetime point x, as indicated by
the subscript x shorthand. Note that without following a comma or semicolon, this subscript
x is not denoting a functional derivative, but simply denotes evaluating the function at
x, as in the cases of ϕx and Jx. Note that we are keeping the flavor indices explicit. We
need its first functional derivative

δΓ
δϕa(x1)

= −
[
gai

(
∂2ϕi

)
+
(
gai,j − 1

2gij,a

)
(∂µϕ

i)(∂µϕj) + V,a

]
x1
, (4.29)

its second functional derivative

δ2Γ
δϕa(x1)δϕb(x2)

= −
{
(gab)x1

[
∂2δ4(x1 − x2)

]
+
(
gai,b∂

2ϕi
)

x1
δ4(x1 − x2)

+
[
(gab,i − gib,a + gai,b)(∂µϕ

i)
]
x1

[
∂µδ4(x1 − x2)

]
+
[(
gai,jb − 1

2gij,ab

)
(∂µϕ

i)(∂µϕj)
]

x1
δ4(x1 − x2)

+ (V,ab)x1δ
4(x1 − x2)

}
, (4.30)
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and its third functional derivative

δ3Γ
δϕa(x1)δϕb(x2)δϕk(z) = −

{
(gab,k)x1

[
∂2δ4(x1 − x2)

]
δ4(x1 − z)

+ (gak,b)x1δ
4(x1 − x2)

[
∂2δ4(x1 − z)

]
+ (gab,k − gkb,a + gak,b)x1

[
∂µδ

4(x1 − x2)
][
∂µδ4(x1 − z)

]
+
[
(gab,ik − gib,ak + gai,bk)(∂µϕ

i)
]
x1

[
∂µδ4(x1 − x2)

]
δ4(x1 − z)

+
[
(gai,kb − gik,ab + gak,ib)(∂µϕ

i)
]
x1
δ4(x1 − x2)

[
∂µδ4(x1 − z)

]
+
[
gai,bk(∂2ϕi) +

(
gai,jbk − 1

2gij,abk

)
(∂µϕ

i)(∂µϕj)
]

x1
δ4(x1 − x2)δ4(x1 − z)

+ (V,abk)x1δ
4(x1 − x2)δ4(x1 − z)

}
. (4.31)

Now using the definition in eq. (2.30) and restricting to the constant field configurations, we get

Gc
ab(x1, x2; y)

∣∣
∂µϕa=0 ≡ −

δ3Γ
δϕa(x1)δϕb(x2)δϕk(z) iD

kc(z, y)
∣∣∣∣∣
∂µϕa=0

=
∫

d4z
{
gab,k

[
∂2δ4(x1 − x2)

]
δ4(x1 − z) + gak,bδ

4(x1 − x2)
[
∂2δ4(x1 − z)

]
+ (gab,k − gkb,a + gak,b)

[
∂µδ

4(x1 − x2)
][
∂µδ4(x1 − z)

]
+ V,abkδ

4(x1 − x2)δ4(x1 − z)
}∫ d4p

(2π)4 e
−ip(z−y) −1

gkcp2 − V,kc
. (4.32)

It is more convenient to take a Fourier transform∫
d4x1 d4x2 d4y eip1x1+ip2x2e−iqy

[
Gc

ab (x1, x2; y)
∣∣
∂µϕa=0

]
= (2π)4δ4(p1 + p2 − q)

1
gkcq2 − V,kc

[
1
2(gka,b + gkb,a − gab,k) q2 + 1

2(gab,k − gkb,a + gka,b) p21

+ 1
2(gab,k + gkb,a − gka,b) p22 − V,abk

]
. (4.33)

We see that when the potential is absent in the theory, and the external momenta p1, p2 are
on shell p̄21 = p̄22 = 0, we indeed reproduce the field space manifold connection:∫

d4x1 d4x2 d4y eip̄1x1+ip̄2x2e−iqy
[
Gc

ab (x1, x2; y)
∣∣
∂µϕa=0

]
= (2π)4δ4(p̄1 + p̄2 − q) Γc

ab , (4.34)

or equivalently written with the external wavefunctions (eq. (2.24)) as

ψx1(p̄1)ψx2(p̄2)
[
Gc

ab (x1, x2; y)
∣∣
∂µϕa=0

]
= R1/2

η ψy(p̄1 + p̄2) Γc
ab . (4.35)

When the potential is present, Γc
ab is reproduced from Gc

ab (x1, x2; y) in the kinematic limit of
large q2. These results demonstrate that Gy

x1x2 serves as a generalization of Γa
bc, even though

it does not have a geometric meaning on the functional manifold.
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4.2.4 Reproducing the geometric soft theorem
A nice result obtained from the field space geometry picture is the so-called geometric soft
theorem [77]. When applied to the scalar field theory in eq. (4.15) with only the two-derivative
term,9 it states that in the soft kinematic limit of the (n + 1)th leg (labeled by the flavor
index b below), the on-shell amplitudes satisfy the following recursion relation

lim
q̄→0
Aa1···anb (p̄1, · · · , p̄n, q̄) = R1/2

η ∇bAa1···an (p̄1, · · · , p̄n) , (4.36)

where ∇b is the covariant derivative on the field space manifold; see eq. (4.19) for explicit
expression. In this subsection, we show that the tensor-like recursion relation in eq. (4.1)
serves as a generalized version of eq. (4.36), in the sense that it reproduces eq. (4.36) when
restricted to the submanifold of constant field configurations.10

We begin with the functional derivative part of eq. (4.1). When restricted to the
submanifold of constant field configurations, and taking the q → 0 limit, we have

lim
q→0

ψy(q) δ
δϕb(y)

[
Ma1···an(x1, · · · , xn)

∣∣
∂µϕa=0

]
= R1/2

η
∂

∂ϕb Ma1···an (x1, · · · , xn) . (4.37)

Now using eq. (2.27), we get

lim
q→0

[
(2π)4δ4(p1 + · · ·+ pn + q) iAa1···anb (p1, · · · , pn, q)

]
=
[
ψx1(p1) · · ·ψxn(pn)ψy(q)

] [
−iMa1···anb (x1, · · · , xn, y)

∣∣
J=0

]
⊃
[
ψx1(p1) · · ·ψxn(pn)ψy(q)

] [
−i δ

δϕb(y)Ma1···an (x1, · · · , xn)
] ∣∣∣∣

J=0

= R1/2
η

[
ψx1(p1) · · ·ψxn(pn)

] [
−i ∂
∂ϕb
Ma1···an (x1, · · · , xn)

] ∣∣∣∣
J=0

= (2π)4δ4(p1 + · · ·+ pn)R1/2
η

∂

∂ϕb
iAa1···an (p1, · · · , pn) , (4.38)

or simply

lim
q→0
Aa1···anb (p1, · · · , pn, q) ⊃ R1/2

η

∂

∂ϕb
Aa1···an (p1, · · · , pn) . (4.39)

Next let us work out the connection part of eq. (4.1). Taking the momenta to be on-shell,
i.e., pi = p̄i and q = q̄, we can make use of eq. (4.35) to get

(2π)4δ4(p̄1 + · · ·+ p̄n + q̄) iAa1···anb (p̄1, · · · , p̄n, q̄)
⊃
[
ψx1(p̄1) · · ·ψxn(p̄n)ψy(q̄)

]
×
∫

d4z
[
−Gc

ba1 (y, x1; z)
∣∣
∂µϕa=0

][
−iMca2···an (z, x2, · · · , xn)

∣∣
J=0

]
= R1/2

η

[
ψz(p̄1 + q̄)ψx2(p̄2) · · ·ψxn(p̄n)

]
Γc

ba1

[
iMca2···an (z, x2, · · · , xn)

∣∣
J=0

]
= (2π)4δ4(p̄1 + · · ·+ p̄n + q̄)R1/2

η

(
−Γc

ba1

)
iAca2···an (p̄1 + q̄, p̄2, · · · , p̄n) . (4.40)

9We focus on the zero potential case here for simplicity of the presentation. When the potential term
is turned on, the geometric soft theorem is slightly more complicated; see eq. (17) in [77]. It can be also
reproduced in a similar way.

10Note that the residue factor R1/2
η in eq. (4.36) can be extracted from the analogous all-order expression

in [77] by changing from a mass basis to a flavor basis index. We assume no mass mixing between flavor
eigenstates.
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Taking the soft limit, this reads

lim
q̄→0
Aa1···anb (p̄1, · · · , p̄n, q̄) ⊃ R1/2

η

(
−Γc

ba1

)
Aca2···an (p̄1, p̄2, · · · , p̄n) . (4.41)

Combining eqs. (4.39) and (4.41), we obtain eq. (4.36).

4.2.5 Revisiting vanishing curvature for functional geometry
We can gain some insight into why we are finding that functional geometry has zero curvature
(see section 4.1.4) by comparing with the case of field space geometry. Consider the expression
in eq. (4.23) for the four-point amplitude written using field space geometry. The amplitude
is written as a sum of several terms, and each can be expressed as a geometric quantity
multiplied by kinematic dependence. Under a non-derivative field redefinition, each term here
is individually invariant. On the other hand, when a derivative field redefinition is carried
out, each term alone will no longer have a well-defined geometric meaning. However, the total
amplitude is of course still invariant. A repackaged expression of eq. (4.23) is desired to make
this invariance manifest, which would serve as a generalization of the field space geometry.
This is what we hoped (and failed) to accomplish by introducing functional geometry.

Taking a closer look at the expression in eq. (4.23), we note that it contains two types of
geometric quantities: some of its terms are fully determined by the Riemann curvature tensor,
which is the intrinsic geometry of the field space manifold endowed with the metric gab(ϕ),
while others depend on external input functions on the manifold, such as the potential V (ϕ).
From this point of view, a generalization of the field space geometry will repackage eq. (4.23)
still into these two types of geometric quantities, under the new notion of geometry. Apparently,
what the functional geometry picture has done is to package everything into the second type.
The intrinsic geometry is trivialized since the curvature vanishes, and the amplitude is fully
determined by an external input function, namely the 1PI effective action Γ[ϕ].

4.3 Exploring modified source terms

In this section we consider if modifications of the source term that appears in the path
integral can change the conclusions about the lack of curvature for functional geometry.
Modifications of the source term in the partition function change the off-shell behavior of
correlators but leave amplitudes invariant. This statement is a key feature of the traditional
argument for field redefinition invariance of amplitudes, see e.g. [4] and appendix A. The
freedom to modify the source term has also been used by Vilkovisky [60] and DeWitt [61, 63]
to define specific effective actions whose correlators transform covariantly with respect to
transformations in field space; the same freedom may be useful here for removing evanescent
terms in configuration space.

We define a new partition function Z̃[J ], which differs from eq. (2.1) by an additional
source term δT [η, J ]:

Z̃[J ] ≡
∫
Dη eiS+iJxηx+iδT [η,J ] . (4.42)

We assume that δT [η, J ] has a smooth dependence on η, which admits the following functional
expansion

δT = J̃ (1)
y1 (ϕ̃−η)y1+J̃ (2)

y1y2(ϕ̃−η)
y1(ϕ̃−η)y2+J̃ (3)

y1y2y3(ϕ̃−η)
y1(ϕ̃−η)y2(ϕ̃−η)y3+. . . (4.43)
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where the coefficients J̃ (i) are η independent, but functionals of J . Note that ϕ̃ here is a
functional of J , which is implicitly determined through its definition

ϕ̃y ≡ ⟨ηy⟩δT,J ≡
∫
Dη ηy eiS+iJxηx+iδT∫
Dη eiS+iJxηx+iδT

. (4.44)

It is expected that the J̃ (i)
y1...yk are local, in that they are only supported when y1 = y2 =

. . . = yk, but the following analysis does not rely on this.
Therefore, eq. (4.43) is an expansion of the η dependence about its quantum vev. This is

done to reduce the size of the ensuing expressions, and we can make this shift without loss of
generality. eq. (4.43) could be rewritten as an expansion about η = 0: as ϕ̃ is a functional
of J , the ϕ̃ terms can be absorbed in eq. (4.43) through redefinitions of the J̃ (i), up to an
η-independent phase which drops out of all correlators.11

We define a set of analogous tilded quantities that are modified with respect to the
quantities in previous sections due to the presence of the extra source terms:

D̃xy ≡ ⟨ηxηy⟩δT,J, conn , (4.45a)

−iM̃x1···xn ≡
(∏

i

D̃−1
xiyi

)
⟨ηy1 · · · ηyn⟩δT,J, conn , (4.45b)

G̃z
x1x2 ≡ iD̃

zy M̃yx1x2 , (4.45c)

∇̃y M̃x1···xn ≡
δ

δϕ̃y
M̃x1···xn −

n∑
i=1

G̃z
yxi
M̃x1···x̂iz···xn . (4.45d)

Working to first order in the extra source terms, any modified correlator can be expanded
in terms of unmodified ones

⟨(· · · )⟩δT,J ≡
∫
Dη (· · · ) eiS+iJxηx+iδT∫
Dη eiS+iJxηx+iδT

=
∫
Dη (· · · )(1 + iδT ) eiS+iJxηx∫
Dη (1 + iδT ) eiS+iJxηx +O

(
δT 2)

= ⟨(· · · )⟩J + ⟨(· · · )iδT ⟩J − ⟨(· · · )⟩J ⟨iδT ⟩J +O
(
δT 2) . (4.46)

By further expanding M̃, G̃, and ∇̃M̃ (which depend on products of correlators), the
linear dependence in δT of the quantities in eq. (4.45) then follows. We test the resulting
modifications to the recursion relation by computing the difference

D = −i
(
∇̃x4 M̃x1x2x3 − M̃x1x2x3x4

)
, (4.47)

11Note that the definition of ϕ̃y, eq. (4.44), is self-referential, but it can be iteratively solved to an arbitrarily
high power of J and J̃(i).
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which is zero in the unmodified path integral. This gives

D =
{
J̃ (2)

y1y2,x4 + 3J̃ (3)
y1y2x4

}
Dy1d1Dy2d2

(
iMd1d2f1D

f1f2Mf2x1x2x3 +Md1d2x1x2x3

−
[
Md1d2f1D

f1f2Mf2f3x1D
f3f4Mf4x2x3 − iMd1d2f1x1D

f1f2Mf2x2x3 + cycs
] )

−
{
J̃ (3)

y1y2y3,x4 + 4J̃ (4)
y1y2y3x4

}
Dy1d1Dy2d2Dy3d3

×
(
iMd1d2d3f1D

f1f2Mf2x1x2x3 +Md1d2d3x1x2x3

−
[
Md1d2d3f1D

f1f2Mf2f3x3D
f3f4Mf4x1x2 − iMd1d2d3f1x1D

f1f2Mf2x2x3 + cycs
] )

−
[
3
{
J̃ (3)

y1y2x1,x4 + 4J̃ (4)
y1y2x1x4

}
Dy1d1Dy2d2

×
(
Md1d2x2x3 + iMd1d2f1D

f1f2Mf2x2x3

)
+ cycs

]
− 6

{
J̃ (3)

x1x2x3,x4 + 4J̃ (4)
x1x2x3x4

}
+ [terms ∝ derivatives of J̃ (4)] + [terms ∝ J̃ (i) for i > 4] +O

(
δT 2) , (4.48)

where ‘cycs’ refers to the terms generated by cyclically permuting x1, x2, x3, and an index after
a comma denotes a functional derivative with respect to ϕ̃, for example J̃ (2)

y1y2,x4 ≡ δ
δϕ̃x4

J̃
(2)
y1y2 .

(The underlining in this expression has no mathematical meaning and will be used simply
to identify terms in the discussion below.)

We note that the non-zero right-hand side of eq. (4.48) cannot be wholly absorbed by a
redefinition of the “connection” G̃z

x1x2 → G̃z
x1x2 + δG̃z

x1x4 , for some δG̃z
x1x2 linear in δT . This

redefinition would exclusively generate terms of the form −δG̃z
x1x4Mzx2x3 + cycs. However,

the underlined terms in eq. (4.48) do not contain a piece Mzx2x3 for some dummy index
z, so they could not be set to zero by such a redefinition.

Nonetheless, the parts of D shown in eq. (4.48) can be set to zero for J̃ (i) satisfying
the conditions

J̃ (2)
y1y2,y3 + 3J̃ (3)

y1y2y3 = O
(
δT 2) , (4.49a)

J̃ (3)
y1y2y3,y4 + 4J̃ (4)

y1y2y3y4 = O
(
δT 2) . (4.49b)

These describe some necessary conditions that additional source terms must satisfy to maintain
the recursion relation between correlators. These modifications, in analog with the Vilkovisky
and DeWitt effective actions, have the potential to change the transformations of correlators
under field redefinitions. This leaves open the exciting possibility that a judicious choice
of J̃ (i) can remove the evanescent terms in G and M, which prevent a clear geometric
interpretation of this formalism. We leave this for future work.

5 Conclusions and outlook

In this paper, we provided a new perspective on the covariance properties of generalized
amplitudes under field redefinitions. We proved a result that connects the transformation
properties of the 1PI effective action to the transformation of the generalized amplitudes,
which we called the transformation lemma. We then showed that this result can be applied
to demonstrate the invariance of on-shell amplitudes under field redefinitions for scalar field
theories up to one-loop order.

– 31 –



J
H
E
P
0
6
(
2
0
2
4
)
1
4
9

The covariance properties of these objects is highly suggestive of an underlying geometric
interpretation, that we refer to as functional geometry. We explored the ways in which this
functional geometry construction succeeds and where it does not. In particular, the curvature
invariants (as computed by naively following the strategy for Riemannian geometry) vanish,
and it is currently unclear if a modified approach (for example, adjusting the source term
in the path integral) can resolve this issue. Nonetheless, we showed that the functional
geometry does reduce to the field space geometry in the appropriate limits, which provides
some evidence that this approach is on the right track. See also [108] for recent progress on
using n-particle irreducible effective actions to study a geometric interpretation.

Generally speaking, any improved understanding of field redefinition freedom in quantum
field theory improves our understanding of the physical content of its Lagrangian. It also
provides insight into the intricate structure of its amplitudes, which project out these field
redefinition redundancies in a non-trivial way. There are many open questions that we
would like to explore in the future.

We expect that the condition on the transformation of the effective action, eq. (3.2),
should hold to all orders in perturbation theory. Since we have only shown this up to one loop,
it would be very interesting to understand how this holds at two loops (and beyond), which
could help lead to an all-orders result. It is possible that a looser assumption than eq. (3.2)
would still result in the transformation of the correlator given in eq. (3.3); understanding
the minimal possible conditions on the transformation of the effective action could further
constrain the edge cases of the allowed space of field redefinitions. It would also be useful to
extend our results explicitly to fermionic theories, as well as to understand how the gauge
redundancy in gauge theories (whose behavior is in many ways similar to the field redefinition
freedom in an ungauged theory) can be included in our framework.

It is worth considering the assumptions we have imposed on the possible space of field
redefinitions. In principle, the transformation lemma, eq. (3.3), holds for any invertible,
infinitely differentiable (i.e. smooth) functional ϕ[ϕ̃]. However, in order for the “evanescent
term” U to be projected out in the amplitude by LSZ reduction, we have assumed many
properties in our treatment of the on-shell states. In particular, in section 2.2, we assume
properties of the pole structure of two-point correlator (whence the usual restriction that field
redefinitions should be local, in order not to disturb said pole structure), as well as Poincaré
invariance. This latter requirement of preserving spacetime symmetry is unnecessary, and
there are many examples of non-Poincaré invariant field theories that have a well-defined
S-matrix. It would be interesting to extend the results of this paper to such non-Poincaré
invariant theories.

One interesting intermediate step would be to define the wavefunctions ψ for J ̸= 0, and
therefore define a J-dependent amplitude via the LSZ reduction formula eq. (2.27), which
would describe scattering about an arbitrary spatially-dependent background. Understanding
the background dependence could be useful for investigating various IR constraints on EFTs.
Knowing the J-dependence of the amplitude would also allow us to write a functional
recursion relation for the amplitudes themselves, i.e., A in addition to M, which could
serve as a generalization of the expressions in [77] away from the soft and spatially constant
background limit.
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Finally, the true nature of the functional geometry remains to be discovered. Perhaps
this can be accomplished by finding the appropriate source term in the path integral as
explored above. Another approach would be to find a way to quotient out the evanescent
terms in order to construct the functional manifold directly. It would also be fascinating
to understand if there is a connection between functional geometry and recent progress
understanding EFTs in terms of Lagrange space [88] and/or jet bundles [89, 90]. Similarly,
there is a possible connection of our recursion relation on correlators to the L∞-algebra of
the functional formalism of QFT, for which the correlators are the structure constants, as
shown in [109, 110].12 Clearly, we have only begun to address some of the most fundamental
questions regarding the connections between EFTs and geometry.
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A Amplitude invariance from the path integral

In this appendix, we briefly review the argument for amplitude invariance under field
redefinitions from the path integral point of view. This is largely repeating section 6.2 in [4].
We include this appendix to make this paper self-contained.

To compute the amplitudes for a theory given by S[η], one can start with the generating
functional W [J ] defined in eq. (2.1):

eiW [J ] ≡
∫
Dη exp

{
iS[η] + i

∫
d4xJ(x)η(x)

}
, (A.1)

which generates the connected correlation functions. Making an integration variable change

η = f
[
η̃
]
, (A.2)

we get the same quantity rewritten as

eiW [J ] =
∫

det
(
δη

δη̃

)
Dη̃ exp

{
iS
[
f
[
η̃
]]

+ i

∫
d4xJ(x)f

[
η̃
]
(x)
}

=
∫
Dη̃ exp

{
i

(
S
[
f
[
η̃
]]
− i log det

(
δη

δη̃

))
+ i

∫
d4xJ(x)f

[
η̃
]
(x)
}
. (A.3)

Now, consider a slightly different generating functional W1[J ]:

eiW1[J ] =
∫
Dη̃ exp

{
i

(
S
[
f
[
η̃
]]
− i log det

(
δη

δη̃

))
+ i

∫
d4xJ(x)η̃(x)

}
, (A.4)

12We thank A. Arvanitakis for pointing this out to us.
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where the difference is due to the last term in the exponent. As W1[J ] ̸=W [J ], it generates
a set of connected correlation functions that are different from the original theory S[η].
However, the only difference between W1[J ] and W [J ] is how the source field J(x) is coupled
to the theory: ∫

d4xJ(x) f
[
η̃
]
(x) versus

∫
d4xJ(x) η̃(x) . (A.5)

In such cases, for legitimate field redefinitions f
[
η̃
]
, it is understood [3, 4] that upon the

LSZ reduction procedure, they yield the same on-shell amplitudes. Therefore, we see from
eq. (A.4) that for the purposes of computing the on-shell amplitudes for the theory S[η], one
can alternatively work with a new theory given by the action S̃[η̃]:

S̃[η̃] = S
[
f
[
η̃
]]
− i log det

(
δη

δη̃

)
. (A.6)

Note that the second piece from the Jacobian is one-loop sized. For tree-level calculations, one
can ignore it and simply use the first term above as the new theory. For loop-level calculations,
if one works with dimensional regularization, the second piece above also vanishes due to
it being a scaleless integral (except for anomalous fermion chiral transformations); see e.g.
ref. [3] for more detailed discussions. In this paper, to make our statement independent of the
choice of regularization scheme, we keep the second piece above for the loop-level discussions.

B An example of derivative field redefinitions

In this appendix, we provide a simple example demonstrating how a derivative field redefinition
invalidates the field space geometry picture that we reviewed in section 4.2.1. Let us consider
the free theory of two real scalar fields φ and χ:

L = 1
2 (∂µφ)(∂µφ) + 1

2 (∂µχ)(∂µχ)− 1
2 m

2
1 φ

2 − 1
2 m

2
2 χ

2 . (B.1)

Following eq. (4.15), one can read off the components of the metric:

gφφ = gχχ = 1 , (B.2a)
gφχ = gχφ = 0 . (B.2b)

All these components are constants, so they lead to vanishing Christoffel symbols:

Γa
bc =

1
2 g

ak (gkb,c + gkc,b − gbc,k) = 0 , (B.3)

and subsequently vanishing curvature

Rφχφχ = 0 and R = 2 (gφφgχχ − gφχgφχ)Rφχφχ = 0 . (B.4)

Now, let us consider a simple field redefinition parameterized by two dimensionless
parameters α and β and a dimensionful scale Λ:

φ = φ̃+ 1
2
α

Λ χ̃2 + 1
2
β

Λ3 (∂µχ̃)(∂µχ̃) , (B.5a)

χ = χ̃ . (B.5b)
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When β ̸= 0, this field redefinition involves derivatives. Plugging this field redefinition into
eq. (B.1), we get the Lagrangian rewritten in terms of the new fields φ̃ and χ̃:

L = 1
2 (∂µφ̃)(∂µφ̃) + α

Λ χ̃ (∂µφ̃)(∂µχ̃) + 1
2

[
1 + α2

Λ2 χ̃
2 − βm2

1
Λ3

(
φ̃+ α

Λ
1
2 χ̃

2
)]

(∂µχ̃)(∂µχ̃)

− 1
2 m

2
1

(
φ̃2 + α

Λ φ̃χ̃
2 + 1

4
α2

Λ2 χ̃
4
)
− 1

2 m
2
2 χ̃

2 +O(∂4) . (B.6)

Following eq. (4.15) again, one would read off the new metric components as

g̃φ̃φ̃ = 1 , (B.7a)

g̃χ̃χ̃ = 1− βm2
1

Λ3 φ̃+
(α2

Λ2 −
1
2
αβm2

1
Λ4

)
χ̃2 , (B.7b)

g̃φ̃χ̃ = g̃φ̃χ̃ = α

Λ χ̃ . (B.7c)

The determinant of this metric matrix is

detg̃ = g̃φ̃φ̃g̃χ̃χ̃ − g̃φ̃χ̃g̃χ̃φ̃ = 1− βm2
1

Λ3 φ̃− 1
2
αβm2

1
Λ4 χ̃2 . (B.8)

With this, one can conveniently express the components of the inverse metric:

g̃φ̃φ̃ = 1
detg̃

g̃χ̃χ̃ , (B.9a)

g̃χ̃χ̃ = 1
detg̃

g̃φ̃φ̃ , (B.9b)

g̃φ̃χ̃ = g̃χ̃φ̃ = − 1
detg̃

g̃φ̃χ̃ , (B.9c)

and subsequently those of the Christoffel symbol:

Γ̃φ̃
φ̃φ̃ = 0 , (B.10a)

Γ̃φ̃
χ̃χ̃ = 1

2

[
g̃φ̃φ̃

(2α
Λ + βm2

1
Λ3

)
+ g̃φ̃χ̃

(2α
Λ −

βm2
1

Λ3

)α
Λ χ̃

]
, (B.10b)

Γ̃φ̃
φ̃χ̃ = Γφ̃

χ̃φ̃ = −1
2 g̃

φ̃χ̃ βm
2
1

Λ3 , (B.10c)

Γ̃χ̃
φ̃φ̃ = 0 , (B.10d)

Γ̃χ̃
χ̃χ̃ = 1

2

[
g̃χ̃φ̃

(2α
Λ + βm2

1
Λ3

)
+ g̃χ̃χ̃

(2α
Λ −

βm2
1

Λ3

)α
Λ χ̃

]
, (B.10e)

Γ̃χ̃
φ̃χ̃ = Γχ̃

χ̃φ̃ = −1
2 g̃

χ̃χ̃ βm
2
1

Λ3 . (B.10f)

Finally, we obtain the new Ricci scalar

R̃ = 2
(
g̃φ̃φ̃g̃χ̃χ̃ − g̃φ̃χ̃g̃φ̃χ̃

)
R̃φ̃χ̃φ̃χ̃ = 1

det2g̃
1
2
β2m4

1
Λ6

=
(
1− βm2

1
Λ3 φ̃− 1

2
αβm2

1
Λ4 χ̃2

)−2 1
2
β2m4

1
Λ6 . (B.11)
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This result demonstrates our point. When β = 0, the field redefinition in eq. (B.5) is a
non-derivative field redefinition, and as expected from the field space geometry picture,
the Ricci scalar is indeed unchanged, R̃ = R. On the other hand, when β ̸= 0, the field
redefinition in eq. (B.5) involves derivatives. In this case, our result above shows that R̃ ̸= R,
which is an indication that the field space geometry picture breaks down.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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