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Abstract: We derive an off-shell recursion relation for correlators that holds at all
loop orders. This allows us to prove how generalized amplitudes transform under generic
field redefinitions, starting from an assumed behavior of the one-particle-irreducible
effective action. The form of the recursion relation resembles the operation of raising
the rank of a tensor by acting with a covariant derivative. This inspires a geometric
interpretation, whose features and flaws we investigate.
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1 Introduction

It is well understood that defining a theory in terms of fields introduces a tremendous
redundancy. In particular, one of the most fundamental quantities that can be com-
puted from a field theory are the S-matrix elements or amplitudes. Amplitudes are
known to be invariant under field redefinitions of the form [1–4]

ϕ(x) −→ ϕ(x) + f
(
ϕ(x), ∂µϕ(x), ∂µ∂νϕ(x), · · ·

)
, (1.1)

where f is an arbitrary polynomial function of the field(s) and its derivatives evaluated
at the spacetime point x. This field redefinition invariance plays a minor role for
“renormalizable” theories (with the important exception of gauge theory). However,
this redundancy becomes a significant source of technical complexity when one studies
“non-renormalizable” Effective Field Theories (EFTs) that include irrelevant operators.
In the case of EFTs, the ability to perform field redefinitions, often expressed as an
iterative equation of motion redundancy (along with the application of integration
by parts) implies that the space of allowed operators is highly redundant, so that
Lagrangians which appear different actually describe the same underlying scattering
physics.

In this paper, we build upon and explore the results in Ref. [5] to provide a new
perspective on the notion of field redefinition invariance of amplitudes. In particular,
we prove a “transformation lemma” for an off-shell generalization of the amplitudes.
We then apply this result to show that the on-shell amplitudes are invariant under field
redefinitions (up to one-loop order). This new approach follows as a direct consequence
of a new off-shell recursion relation that we prove in this paper.

The study of field redefinitions and EFTs has undergone something of a renaissance
in recent years. The determination of the size of the operator basis using the Hilbert
series has been developed and applied to many examples [6–23]. This is closely related
to the approach of constructing EFT amplitudes directly [24–55], which again avoids
the issues of operator redundancies. In both approaches, the full set of field redefinitions
included in Eq. (1.1) are accommodated.

Another fruitful approach is to work with the Lagrangian directly, but to express
it in terms of geometric objects defined on a Riemannian field space manifold [56–63].
In this case, the key insight is to identify that field redefinitions without derivatives
are equivalent to coordinate changes on the field space manifold. One can then express
amplitudes directly in terms of well known geometric quantities built out of the Rie-
mannian metric. This makes the invariance of amplitudes under the restricted set of
field redefinitions completely manifest. This approach has seen recent applications to
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the scalar sector of the Standard Model [64–74], and has also led to new insights into
the properties of amplitudes for both scalars and particles of higher spins [75–86].

However, the geometric picture that can accommodate the full set of field redef-
initions has remained elusive [5, 87–90]. It is this search for a generalized notion of
geometry that has prompted us to revisit the field redefinition properties of ampli-
tudes. In particular, we will show that our new perspective has a natural geometry-like
interpretation, that we call “functional geometry.” We are able to find hints that func-
tional geometry exists and has the desired features to be associated with a generalized
manifold. However, we also show that it fails to fully generalize field space geometry in
a number of important ways. Nevertheless, we are optimistic that the ideas presented
here represent genuine progress towards what will eventually be the discovery of a new
notion of geometry that accommodates the full set of allowed field redefinitions.

The rest of this paper is organized as the following. In Sec. 2, we review the well-
known path integral formalism of QFTs and use it to derive a recursion relation for the
off-shell amplitudes that holds at all loop orders. We then make use of it to prove a
transformation lemma in Sec. 3, which is the main result of this paper. We demonstrate
that up to one-loop level, this lemma applies when a general field redefinition that
accommodates derivatives is taken, which then immediately implies the invariance of
the on-shell amplitudes. In Sec. 4, we present an attempt to introduce a geometric
interpretation, motivated by the tensor-like structure of the recursion relation derived
in Sec. 2. In particular, we discuss the successes and failures of this interpretation,
and comment on its relation with the well-established field space geometry picture.
Conclusions and future directions are given in Sec. 5.

2 Off-shell Recursion for Amplitudes

We begin with a brief review of the formalism for computing correlation functions
from the path integral (Sec. 2.1). The partition function Z[J ] spans a set of theories
that are parameterized by difference choices of the source fields J(x), and the original
theory corresponds to taking J(x) = 0, i.e., the “zero source condition.” We then
review the LSZ formalism for projecting amplitudes from the correlation functions
(Sec. 2.2). The LSZ formula provides a general definition of “amplitudes” which allow
for the external states to be off-shell; the limit where the external states are on-shell
defines the “S-matrix elements.” Although these first two subsections contain material
typically covered in QFT textbooks, our purpose here is to express these well-known
results in a notation that is convenient for deriving a recursion relation for off-shell
amplitudes that holds at all loop orders [5] (Sec. 2.3).
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2.1 Correlation Functions From the Path Integral

Given a scalar field η(x), whose action is given by S[η], one can define the partition
function as a path integral

Z[J ] ≡ eiW [J ] ≡
∫
Dη eiS[η]+i

∫
d4x J(x)η(x) , (2.1)

and we have defined iW [J ] ≡ logZ[J ] as usual. The partition function Z[J ] is a
generating functional of the (time-ordered) J-dependent correction functions

⟨ηx1 · · · ηxn⟩J ≡
∫
Dη eiS[η]+iJxηx η(x1) · · · η(xn)∫

Dη eiS[η]+iJxηx
=

1

Z[J ]
(−i)n δnZ

δJx1 · · · δJxn

, (2.2)

where we have introduced the concise notation1

η(x) = ηx , (2.3a)

J(x) = Jx , (2.3b)

so that an integral over spacetime is represented as a sum over a dummy index∫
d4x J(x) η(x) = Jxη

x . (2.4)

It is well known that the path integral formalism and the use of generating func-
tionals being reviewed in this section generalizes to an arbitrary set of bosonic and
fermionic fields [91–93]. When dealing with fermionic fields, one needs to keep track of
the signs carefully. In the case of a general field, the index x in Eq. (2.3) is understood
to collectively label the spacetime position, the spin indices, as well as any of its internal
flavor indices, all of which are summed over when the dummy index x is contracted.

Source Dependence

The J-dependent correlation functions ⟨ηx1 · · · ηxn⟩J can be viewed as the correlation
functions of a modified theory with the action SJ [η]:

S[η] −→ SJ [η] ≡ S[η] + Jxη
x . (2.5)

The partition function Z[J ] generates correlation functions for these generalized the-
ories that include non-trivial dependence on the sources. The correlation functions of

1We will use both notations in what follows based on convenience.
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the original theory S[η] can be extracted from their generalized counterparts by taking
the zero source condition J(x) = 0:

⟨ηx1 · · · ηxn⟩J=0 =

∫
Dη eiS[η] η(x1) · · · η(xn)∫

Dη eiS[η]
=

1

Z[J = 0]
(−i)n δnZ

δJx1 · · · δJxn

∣∣∣∣
J=0

. (2.6)

Meanwhile, it is useful to work with the source dependent theories, whose correlation
functions are given in Eq. (2.2). Their functional dependence on J is key to the off-shell
recursion relation.

Connected and 1PI Correlation Functions

It is more convenient to work with W [J ] defined in Eq. (2.1), since this is the generating
functional for the contributions from the connected diagrams

⟨ηx1 · · · ηxn⟩J, conn = (−i)n δn(iW )

δJx1 · · · δJxn

. (2.7)

The one-particle-irreducible (1PI) effective action Γ[ϕ] is then defined as a Legendre
transform of W [J ]:

ϕx[J ] ≡ δW

δJx
=⇒ Γ[ϕ] ≡ W

[
J [ϕ]

]
− ϕxJx[ϕ] . (2.8)

To implement the Legendre transform, one introduces a new set of variables, the set of
fields ϕ(x) defined as in Eq. (2.8). By construction, these are “conjugate variables” to
the source fields J(x), in that there is an invertible map between them determined by
Eq. (2.8):

J(x) ←→ ϕ(x) . (2.9)

We emphasize that the fields ϕ(x) are not the scalar fields η(x) of the theory.
However, making use of the n = 1 case of Eq. (2.7), one derives a relation between ϕ(x)
and η(x); ϕ(x) are the J-dependent quantum vacuum expectation values (vev) of the
fields η(x):

ϕx[J ] ≡ δW

δJx
= ⟨ηx⟩J . (2.10)

Some other relations also follow from the general properties of the Legendre transform

δΓ

δϕx
= −Jx , and

δ2(iΓ)

δϕxδϕy
=

[
δ2(iW )

δJxδJy

]−1

. (2.11)

It is well known that iΓ[ϕ] is the generating functional of the J-dependent 1PI
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correlation functions

⟨η(x1) · · · η(xn)⟩J, 1PI =
δn(iΓ)

δϕ(x1) · · · δϕ(xn)
for n ≥ 3 . (2.12)

The 1PI correlation functions for the original theory are then recovered by taking
the zero source condition J(x) = 0. Through the one-to-one map in Eq. (2.9), this
corresponds to evaluating the right-hand side of Eq. (2.12) at a specific choice of ϕ(x):

J(x) = 0 ←→ ϕ(x)|J=0 = ϕv(x) ≡ ⟨ηx⟩J=0 . (2.13)

We see that ϕv(x) is the quantum vev of the fields η(x) for the original theory. According
to Eq. (2.11), it satisfies the condition

δΓ

δϕx

∣∣∣∣
ϕ=ϕv

= 0 . (2.14)

The 1PI effective action Γ[ϕ] can be computed as a series of “1PI diagrams,” which
are diagrams with the property that they cannot be separated into two disconnected
parts that each contains a nonzero number of external legs by cutting a single internal
leg. One subtle case is that diagrams with tadpoles can be consistent with the 1PI
requirement; cutting off the tadpole could separate the diagram into two disconnected
parts, but the part including the tadpole does not contain any external legs. There-
fore, when computing the 1PI effective action Γ[ϕ] diagrammatically, one must include
diagrams with tadpoles (when they are nonzero), see e.g. [94].

2.2 Amplitudes From Correlation Functions

To compute the amplitudes from the correlation functions, we first define the on-shell
momenta. For this purpose, we study the connected two-point functions, namely the
propagators:

Dxy[J ] ≡ ⟨ηxηy⟩J, conn = −δ
2(iW )

δJxδJy
= −

[
δ2(iΓ)

δϕxδϕy

]−1

, (2.15)

where the second-to-last expression comes from Eq. (2.7), while the last equality is due
to the property of the Legendre transform in Eq. (2.11). Again, this is the propagator
for the J-dependent theory SJ [η] = S[η] + Jxη

x. Taking the zero source condition,
J(x) = 0 or equivalently ϕ(x) = ϕv(x), recovers the propagator of the original theory
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S[η]. Its momentum space form is the familiar one:∫
d4x1d

4x2 e
ip1x1eip2x2 Dx1x2 [J = 0] = (2π)4δ4(p1 + p2)∆(p1) , (2.16)

with
∆(p) =

iRη

p2 −m2
p + iϵ

+ regular , (2.17)

where mp denotes the pole mass of the particle and Rη denotes the residue. Using
Eq. (2.15), one can write Eq. (2.16) alternatively as∫

d4x1 e
ip(x1−x2)

δ2Γ

δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

=

∫
d4x1 e

ip(x1−x2) iD−1
x1x2

[J = 0] =
i

∆(p)
. (2.18)

Note that Eq. (2.15) is the fully connected two-point function, or the full interacting
propagator. Specifically, if we denote the 1PI two-point function as −iΣ(p2), we have

∆(p) =
i

p2 −m2 + iϵ
+

i

p2 −m2 + iϵ

[
− iΣ(p2)

] i

p2 −m2 + iϵ
+ · · ·

=
i

p2 −m2 − Σ(p2) + iϵ
, (2.19)

where m2 is the tree-level mass parameter, and the pole mass m2
p is determined by the

condition m2
p = m2 +ReΣ(m2

p).

On-shell Condition

A momentum pµ is said to be on-shell when it sits on the pole of the propagator

1

∆(p̄)
= 0 =⇒ p̄2 = m2

p , (2.20)

where we are introducing the notation p̄ to denote on-shell momenta. Using Eq. (2.18),
we can equivalently state the on-shell condition as∫

d4x1 e
ip̄x1

δ2Γ

δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

= 0 . (2.21)
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Amplitudes From LSZ and External Wavefunctions

To compute the amplitudes following the LSZ prescription [95, 96], one can first com-
pute the J-dependent amputated correlation functions

−iMx1···xn [J ] ≡
(
D−1

x1y1

)
· · ·
(
D−1

xnyn

)
⟨ηy1 · · · ηyn⟩J, conn . (2.22)

Then the momentum space amplitudes A follow by evaluating M at J = 0, taking a
Fourier transform, and including the appropriate residue factors for the external legs:

(2π)4δ4(p1 + · · ·+ pn) iA (p1, · · · , pn)

= (R1/2
η )n

∫ [ n∏
i=1

d4xi e
ipixi

](
−iMx1···xn|J=0

)
. (2.23)

This defines general amplitudes for off-shell momenta p2i ̸= m2
p,i. The on-shell ampli-

tudes (the usual S-matrix elements) are then given by taking all external momenta to
be on shell.

It is convenient to introduce the external wavefunction2

ψx(p) = R1/2
η eipx , (2.24)

which is an eigenstate of the inverse propagator (c.f. Eq. (2.18)):

δ2Γ

δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

ψx2(p) =
i

∆(p)
ψx1(p) . (2.25)

Note that when the momentum is on-shell, the eigenvalue vanishes

δ2Γ

δϕx1δϕx2

∣∣∣∣
ϕ=ϕv

ψx2(p̄) = 0 . (2.26)

With the external wavefunctions, we can write the LSZ formula in Eq. (2.23) more
concisely as

(2π)4δ4(p1 + · · ·+ pn) iA (p1, · · · , pn) =
[
ψx1(p1) · · ·ψxn(pn)

] (
−iMx1···xn|J=0

)
, (2.27)

2In general, the external wavefunctions are ψi = ⟨0|ηxi |pi, hi, · · ·⟩J=0, which represent the overlap
of the fields with the ith external states of given momentum pi, helicity hi, etc. For an external scalar,
it has the form in Eq. (2.24), whereas for a gauge boson, it would also include a polarization vector,
i.e., ψi = ϵµi

hi
(pi) e

ipixi .
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compare analogous equations in [77, 78]. We emphasize here that A (p1, · · · , pn) defines
a generalized momentum space amplitude where the external momenta can be off-shell.

Computing Amputated Correlation Functions

In order to compute amplitudes, Eq. (2.27) implies that we can focus on calculating
the amputated correlation functions −iMx1···xn [J ] defined in Eq. (2.22). These can
be obtained by gluing together the 1PI correlation functions (Eq. (2.12)) using the
propagators (Eq. (2.15)). As discussed above, these two types of building blocks for
−iMx1···xn are both conveniently expressed in terms of the 1PI effective action. Con-
cretely, the three-point amputated correlation function can be expressed as

−iMx1x2x3 =
δ3(iΓ)

δϕx1δϕx2δϕx3
, (2.28)

while at four-points we have

−iMx1x2x3x4 =
δ4(iΓ)

δϕx1δϕx2δϕx3δϕx4
+

δ3(iΓ)

δϕx1δϕx2δϕy
Dyz δ3(iΓ)

δϕzδϕx3δϕx4

+
δ3(iΓ)

δϕx1δϕx3δϕy
Dyz δ3(iΓ)

δϕzδϕx2δϕx4
+

δ3(iΓ)

δϕx1δϕx4δϕy
Dyz δ3(iΓ)

δϕzδϕx2δϕx3
. (2.29)

Similar expressions can be worked out for higher-point functions. As we will explain
next, they can more efficiently be built recursively out of lower-point functions.

2.3 Recursion Relation for Amplitudes

We now explain how to derive higher point generalizations of Eqs. (2.28) and (2.29)
recursively. For convenience, we introduce notation for the following combination of
the three-point function and the propagator:

Gy
x1x2
≡ iMx1x2zD

zy . (2.30)

With this, one can rewrite Eq. (2.29) as

Mx1x2x3x4 =
δ

δϕx4
Mx1x2x3 −Gy

x4x1
Myx2x3 −Gy

x4x2
Mx1yx3 −Gy

x4x3
Mx1x2y . (2.31)

This way of writing the four-point function exposes a relation to the three-point func-
tion. We will now argue that this pattern persists to any number of external legs as a
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recursion relation of the form [5]

Mx1···xnxn+1 =
δ

δϕxn+1
Mx1···xn −

n∑
i=1

Gy
xn+1xi

Mx1···x̂iy···xn , (2.32)

where a hat denotes the absence of an index in the sequence. Note that the form of
Eq. (2.32) is suggestive of a covariant derivative where G is the connection; we return
to this point in Sec. 4.

To derive this recursion relation, we first use the definition ofMx1···xn in Eq. (2.22)
together with Eq. (2.7) to obtain

−iMx1···xn = D−1
x1y1
· · ·D−1

xnyn(−i)
n δn(iW )

δJy1 · · · δJyn
. (2.33)

This implies the following relation betweenMx1···xnxn+1 andMx1···xn :

Mx1···xnxn+1 = D−1
x1y1
· · ·D−1

xnynD
−1
xn+1yn+1

(−i) δ

δJyn+1

Dy1z1 · · ·DynznMz1···zn

= D−1
x1y1
· · ·D−1

xnyn

δ

δϕxn+1
Dy1z1 · · ·DynznMz1···zn , (2.34)

where we have used Eqs. (2.8) and (2.15) to obtain the second line. We can simplify
this expression using the commutator between the functional derivative δ

δϕxn+1 and the
propagators. Using Eq. (2.15) again, together with Eq. (2.28) and the definition in
Eq. (2.30), we get[

δ

δϕxn+1
, Dyizi

]
=

(
δ

δϕxn+1
Dyizi

)
= −

(
δ

δϕxn+1

[
δ2(iΓ)

δϕyiδϕzi

]−1
)

=

[
δ2(iΓ)

δϕyiδϕu

]−1
δ3(iΓ)

δϕuδϕxn+1δϕv

[
δ2(iΓ)

δϕvδϕzi

]−1

= −Dyiu iMxn+1uvD
vzi = −DyiuGzi

xn+1u
. (2.35)
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Using this repeatedly, we obtain the following relation

D−1
x1y1
· · ·D−1

xnyn

δ

δϕxn+1
Dy1z1 · · ·Dynzn

= δz1x1
· · · δznxn

δ

δϕxn+1
−

n∑
i=1

(
δz1x1
· · · δ̂zixi

· · · δznxn

)
Gzi

xn+1xi
, (2.36)

where δzx = δϕz

δϕx = δ4(z − x) and the hat indicates the absence of a quantity in the
sequence as before. With this relation, Eq. (2.34) simplifies to the recursion relation in
Eq. (2.32). Note that no step in this derivation relied on any reference to perturbation
theory. Therefore, the recursion relation for Mx1···xn in Eq. (2.32) holds to all loop
orders.

2.3.1 Diagrammatic Derivation

The above derivation of the recursion relation Eq. (2.32) is purely algebraic. To provide
a more intuitive perspective, we present a diagrammatic derivation in this section, which
repeats the argument given in [5] with more details.

Consider the diagrammatic representation of the amputated correlation functions
−iMx1···xn . They can be obtained by gluing together the 1PI vertices with the full
propagators; both ingredients are conveniently expressed in terms of the 1PI effective
action, as shown in Eqs. (2.12) and (2.15). Here we recap the dictionary between
diagram components and algebraic factors for our convenience:

k-point 1PI vertices :
δk(iΓ)

δϕx1 · · · δϕxk
, k ≥ 3 , (2.37a)

full propagators : Dxy = −
[
δ2(iΓ)

δϕxδϕy

]−1

. (2.37b)

As usual, we group all the contributing Feynman diagrams into different “gluing topolo-
gies,” which characterize all possible ways of gluing together 1PI vertices. For example,
at n = 3 there is a unique gluing topology:

−iMx1x2x3 = 1PI

x1

x2 x3

. (2.38)

This corresponds to the single term in Eq. (2.28). At n = 4, there are four distinct
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gluing topologies, each corresponding to a term in Eq. (2.29):

−iMx1x2x3x4 = 1PI

x1

x2 x3

x4

+ 1PI 1PI

x1

x2 x3

x4

y z
+ 1PI 1PI

x1

x3 x2

x4

y z

+ 1PI 1PI

x1

x4 x3

x2

y z
. (2.39)

Now let us consider the gluing topologies for −iMx1···xn and −iMx1···xnxn+1 , with
n ≥ 3. The latter has one more leg, xn+1, and hence receives contributions from more
gluing topologies. We can examine each of them, paying attention to where the extra
leg xn+1 is attached. In this way, for each gluing topology Tn+1 of −iMx1···xnxn+1 , one
can first identify a corresponding gluing topology Tn of −iMx1···xn , and then figure out
how one can calculate Tn+1 from Tn.

Let us elaborate this procedure in detail. Specifically, there are three scenarios for
the position of the leg xn+1 in Tn+1:

1. xn+1 is part of a four- (or higher-) point 1PI vertex in the gluing topology Tn+1.
In this case, if one removes xn+1, the 1PI vertex that it is attaching to will
remain as a 1PI vertex, and Tn+1 will become a gluing topology Tn for −iMx1···xn .
Diagrammatically, one identifies the corresponding Tn from Tn+1 as

Tn+1 = 1PI1PI

1PI

y1

ym

ym+1

yk
xn+1 =⇒ Tn = 1PI1PI

1PI

y1

ym

ym+1

yk

. (2.40)

Next, from the dictionary in Eq. (2.37a), we see that Tn+1 can be calculated from
Tn by taking a functional derivative δ

δϕxn+1 of the corresponding vertex factor in
Tn, because

δk+1(iΓ)

δϕy1 · · · δϕykδϕxn+1
=

δ

δϕxn+1

(
δk(iΓ)

δϕy1 · · · δϕyk

)
. (2.41)

2. xn+1 is part of a three-point 1PI vertex in the gluing topology Tn+1, and none
of the other two lines from this 1PI vertex is a leg. In this case, one can re-
move xn+1 by replacing the three-point 1PI vertex with a propagator, and thus
obtain a gluing topology Tn for −iMx1···xn . Diagrammatically, one identifies the
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corresponding Tn from Tn+1 as

Tn+1 = 1PI 1PI
1PI

y1 z1 y2z2

xn+1

=⇒ Tn = 1PI 1PIy1 y2
. (2.42)

Next, from the dictionary in Eq. (2.37b), we see that Tn+1 can be calculated from
Tn by taking a functional derivative δ

δϕxn+1 of the corresponding propagator factor
in Tn, because

Dy1z1
δ3(iΓ)

δϕz1δϕxn+1δϕz2
Dz2y2 =

δ

δϕxn+1
(Dy1y2) . (2.43)

3. xn+1 is part of a three-point 1PI vertex in the gluing topology Tn+1, and one
of the other two lines from this 1PI vertex is a leg xi. (For n ≥ 3, one cannot
have both the other two lines being legs.) In this case, one can remove xn+1 by
cutting off the three-point 1PI vertex from the diagram and relabeling the leg
from the cut as xi to get a gluing topology Tn for −iMx1···xn . Diagrammatically,
one identifies the corresponding Tn from Tn+1 as

Tn+1 = M1PI yz

x1

xn

xn+1

xi

=⇒ Tn = Mxi

x1

xn

. (2.44)

Next, from the definition in Eq. (2.30), we see that Tn+1 can be calculated from
Tn by first taking the replacement xi → y and then contracting with the factor
−Gy

xn+1xi
, because

δ3(iΓ)

δϕxn+1δϕxiδϕz
DzyMx1···x̂iy···xn = −Gy

xn+1xi
Mx1···x̂iy···xn . (2.45)

In summary, scenarios 1 and 2 together gives the functional derivative term in Eq. (2.32),
and scenario 3 gives us the terms involving the contraction with Gy

xn+1xi
. This completes

the diagrammatic proof of the recursion relation in Eq. (2.32).

2.3.2 Connection with Berends-Giele Recursion Relation

Since it involves off-shell building blocks, the recursion relation in Eq. (2.32) can be
related to the Berends-Giele off-shell recursion relation for computing the amplitudes
[97–99] as we now explain. First, all the amputated correlation functions (and therefore
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the amplitudes) are encoded in the functional relation ϕx[J ]. Specifically, using our
definition of the field ϕx in Eq. (2.8), we can rewrite Eq. (2.33) as

−iMx1···xn =
(
D−1

x1y1

)
· · ·
(
D−1

xnyn

)
(−i)n−1 δn−1ϕy1

δJy2 · · · δJyn
. (2.46)

Note also from Eq. (2.15) that

iDxiyi =
δϕxi

δJyi
. (2.47)

Therefore, by rearranging terms and evaluating them at J = 0, we can obtain the
relation betweenMx1···xn|J=0 and the Taylor expansion coefficients of ϕx[J ] at J = 0:

δn−1ϕy1

δJy2 · · · δJyn

∣∣∣∣
J=0

=
(
−Mx1···xn|J=0

)(δϕx1

δJy1

∣∣∣∣
J=0

)
· · ·
(
δϕxn

δJyn

∣∣∣∣
J=0

)
. (2.48)

The Berends-Giele approach [97–99] is to iteratively solve the equation of motion con-
dition

δΓ

δϕx
= −Jx , (2.49)

to obtain the functional relation ϕx[J ] order by order in J . This is computing its Taylor
expansion coefficients at J = 0 in Eq. (2.48). One can then obtainMx1···xn|J=0 through
Eq. (2.48). This is in contrast with our recursion relation in Eq. (2.32), which directly
constructsMx1···xn [J ] recursively for J ̸= 0.

3 Invariance of Amplitudes Under General Field Redefinitions

In Sec. 2, we reviewed how the n-point amplitudes A (p1, · · · , pn), for both on-shell and
off-shell kinematics, can be obtained from the n-point amputated correlation functions
Mx1···xn [J ] using LSZ reduction (Eq. (2.27)), and we derived an off-shell recursion
relation for Mx1···xn [J ] (Eq. (2.32)). Both of these results are well known; the novelty
here is how we organize the terms. As we will show in this section, this organization
of the results facilitates a new proof of the invariance of on-shell amplitudes under
general field redefinitions, including those involving derivatives. Our results here are
complementary to the traditional approach that makes the argument directly from
the path integral (see e.g. Section 6.2 of [4], which we also reproduce in App. A for
completeness).

An important lesson learned from Sec. 2 is that the amplitudes A (p1, · · · , pn) are
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encoded in a given 1PI effective action Γ[ϕ]:

Γ[ϕ] −→ Mx1···xn [J ] −→ A (p1, · · · , pn) . (3.1)

This is independent of the loop order; for a given theory S[η], the truncation in terms
of loop order only impacts the computation of the 1PI effective action Γ[ϕ] itself. One
can therefore explore the properties of amplitudes by analyzing the behavior of the 1PI
effective action.3 In particular, we will make use of the recursion relation in Eq. (2.32)
to prove the following transformation lemma in Sec. 3.1:

Define the 1PI effective action Γ̃[ϕ̃] as a transformation of Γ[ϕ] that results
from substituting in a given analytic functional relation ϕ[ϕ̃]:

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
. (3.2)

Then the amputated correlation functions encoded in these two 1PI effective
actions, M̃ andM respectively, are related by

M̃x1···xn =
δϕy1

δϕ̃x1
· · · δϕ

yn

δϕ̃xn
My1···yn + Ux1···xn , (3.3)

where Ux1···xn is an “evanescent term” (see Eq. (3.18) below for a detailed
expression), which satisfies

ψ̃x1(p̄1) · · · ψ̃xn(p̄n)
(
Ux1···xn|J=0

)
= 0 , (3.4)

where p̄i is an on-shell momentum. Therefore, Ux1···xn does not contribute to
on-shell amplitudes. As a consequence, the on-shell amplitudes encoded in
Γ̃[ϕ̃] and Γ[ϕ] are the same:

Ã (p̄1, · · · , p̄n) = A (p̄1, · · · , p̄n) . (3.5)

This is the main result of this paper. We emphasize that this result holds to all loop
orders, since Eq. (3.1) holds to all loop orders.

In Sec. 3.2, we will apply the above statement to show that tree-level and one-

3We mention that this is the exact same spirit of functional methods for EFT matching calculations
(e.g. [100, 101]), where the matching of amplitudes are efficiently achieved/guaranteed through the
matching of the 1PI effective actions.
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loop amplitudes are invariant under general field redefinitions. Concretely, we will
parameterize a general field redefinition by writing the old fields η(x) and the new
fields η̃(x) as functionals of each other:

η −→ η̃ : η = f
[
η̃
]
. (3.6)

This accommodates all field redefinitions that are expected to leave the S-matrix ele-
ments invariant, and in particular includes field redefinitions that involve derivatives.
Such a field redefinition leads to a new Lagrangian, which gives a new 1PI effective ac-
tion Γ̃[ϕ̃]. In Sec. 3.2, we will show that up to one-loop order, one can find an analytic
functional relation ϕ[ϕ̃], such that the new 1PI effective action is related to the old one
as in Eq. (3.2), Γ̃[ϕ̃] = Γ

[
ϕ[ϕ̃]

]
. Therefore, the transformation lemma applies, which

leads to the conclusion that the on-shell amplitudes are the same.

3.1 Proof of the Transformation Lemma

Given a relation between two 1PI effective actions Γ̃[ϕ̃] and Γ[ϕ] as in Eq. (3.2):

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
, (3.7)

we now address how their corresponding amplitudes would be related. Specifically, we
will prove the transformation lemma described above; see Eqs. (3.2) to (3.4). Following
the procedure in Eq. (3.1), we will first use Eq. (3.7) to derive the relations between
their functional derivatives, and then the relations between the amputated correlation
functions M̃x1···xn andMx1···xn , and eventually the relations between the amplitudes.

Zero Source Condition

We begin by relating the first functional derivatives of the two effective actions. They
are related by the chain rule

δΓ̃

δϕ̃x
=
δϕy

δϕ̃x

δΓ

δϕy
. (3.8)

It means that for analytic functional relations ϕ[ϕ̃] in Eq. (3.7), where the matrix
δϕy/δϕ̃x is invertible, the zero source condition Eq. (2.14) is unchanged:

δΓ̃

δϕ̃x

∣∣∣∣
ϕ̃=ϕ̃v

= 0 ⇐⇒ δΓ

δϕx

∣∣∣∣
ϕ=ϕ[ϕ̃v ]

= 0 . (3.9)
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Put in other words, ϕv(x) is given by plugging ϕ̃v(x) into the functional relation ϕ[ϕ̃]:

ϕv(x) = ϕ
[
ϕ̃v

]
(x) . (3.10)

Note that this would not be true if there were an inhomogeneous piece in Eq. (3.8).

On-shell Condition

Now we move onto the relation between the second derivatives. Following Eq. (3.8),
we derive the relation between the second functional derivatives again using the chain
rule:

δ2Γ̃

δϕ̃x1δϕ̃x2
=
δϕy1

δϕ̃x1

δϕy2

δϕ̃x2

δ2Γ

δϕy1δϕy2
+

δ2ϕy1

δϕ̃x1δϕ̃x2

δΓ

δϕy1
. (3.11)

From Eq. (3.9), we see that the inhomogeneous piece vanishes when this expression is
evaluated at ϕ̃(x) = ϕ̃v(x):

δ2Γ̃

δϕ̃x1δϕ̃x2

∣∣∣∣
ϕ̃v

=

(
δϕy1

δϕ̃x1

∣∣∣∣
ϕ̃v

)(
δϕy2

δϕ̃x2

∣∣∣∣
ϕ̃v

)(
δ2Γ

δϕy1δϕy2

∣∣∣∣
ϕv

)
, (3.12)

where we have used Eq. (3.10) for the last factor. This tells us that the on-shell
momentum condition Eq. (2.21) is unchanged:∫

d4x1 e
ip̄x1

δ2Γ

δϕx1δϕx2

∣∣∣∣
ϕv

= 0 ⇐⇒
∫

d4x1 e
ip̄x1

δ2Γ̃

δϕ̃x1δϕ̃x2

∣∣∣∣
ϕ̃v

= 0 , (3.13)

again for analytic functional relations ϕ[ϕ̃] such that the matrix δϕy/δϕ̃x is invertible.
Moreover, from Eq. (2.26) we see that Eq. (3.12) also implies the following relation
between the on-shell external wavefunctions

ψy(p̄) =

(
δϕy

δϕ̃x

∣∣∣∣
ϕ̃v

)
ψ̃x(p̄) . (3.14)

Note however that eigenstates with nonzero eigenvalues ψy(p) and ψ̃x(p) with off-shell
momentum pµ are not related in such a simple way. This is because Eq. (3.12) is
a congruence transform instead of a similarity transform between the two matrices

δ2Γ̃
δϕ̃x1δϕ̃x2

∣∣
ϕ̃v

and δ2Γ
δϕy1δϕy2

∣∣
ϕv

. Under such a transform, the nonzero eigenvalues are not
preserved/invariant, which is also inferred by the mismatch regarding the upper/lower
index structure between the two sides of Eq. (2.25).
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Three-point Function

Following Eq. (3.11), one can further move on to the third functional derivatives of Γ[ϕ],
which are of course the three-point amputated correlation functions (c.f. Eq. (2.28)):

M̃x1x2x3 =
δϕy1

δϕ̃x1

δϕy2

δϕ̃x2

δϕy3

δϕ̃x3
My1y2y3 −

δ3ϕy1

δϕ̃x1δϕ̃x2δϕ̃x3

δΓ

δϕy1

−
(

δ2ϕy1

δϕ̃x2δϕ̃x3

δϕy2

δϕ̃x1
+

δ2ϕy1

δϕ̃x1δϕ̃x3

δϕy2

δϕ̃x2
+

δ2ϕy1

δϕ̃x1δϕ̃x2

δϕy2

δϕ̃x3

)
δ2Γ

δϕy1δϕy2
. (3.15)

We see that this expression involve more inhomogeneous pieces as compared to the
second functional derivatives. However, these terms will drop out when computing
on-shell amplitudes:

(2π)4δ4(p̄1 + p̄2 + p̄3) iÃ (p̄1, p̄2, p̄3) = ψ̃x1(p̄1) ψ̃
x2(p̄2) ψ̃

x3(p̄3)
(
−iM̃x1x2x3

∣∣
ϕ̃v

)
. (3.16)

This is because the inhomogeneous pieces in the first and second lines of Eq. (3.15)
respectively contain the following two types of factors:

δΓ

δϕy
:

δΓ

δϕy

∣∣∣∣
ϕv

= 0 , (3.17a)

δϕy2

δϕ̃xi

δ2Γ

δϕy1δϕy2
: ψ̃xi(p̄i)

(
δϕy2

δϕ̃xi

∣∣∣∣
ϕ̃v

)(
δ2Γ

δϕy1δϕy2

∣∣∣∣
ϕv

)
= 0 , (3.17b)

where xi refers to an index in M̃x1···xn , corresponding to an external leg of the diagram.
As indicated above, terms with the first type of factors vanish upon enforcing the zero
source condition ϕ̃(x) = ϕ̃v(x); terms with the second type of factors are nonzero at
ϕ̃(x) = ϕ̃v(x), but will vanish upon a further contraction with the on-shell external
wavefunctions ψ̃xi(p̄i), due to Eqs. (2.26) and (3.14). Since they do not change the
observable (on-shell) physics, we refer to these quantities as “evanescent.” A general
parameterization of the evanescent terms that can appear is

Ux1···xn = ay1x1···xn

δΓ

δϕy1
+

n∑
i=1

by1x1···x̂i···xn

δϕy2

δϕ̃xi

δ2Γ

δϕy1δϕy2
. (3.18)

By construction, it satisfies the condition in Eq. (3.4).
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Now we can rewrite Eq. (3.15) as

M̃x1x2x3 =
δϕy1

δϕ̃x1

δϕy2

δϕ̃x2

δϕy3

δϕ̃x3
My1y2y3 + Ux1x2x3 , (3.19)

where all the inhomogeneous terms are collectively denoted by the evanescent term
Ux1x2x3 , which has the structure of Eq. (3.18) (and hence satisfies the condition in
Eq. (3.4)). This proves the n = 3 case of the transformation lemma around Eqs. (3.3)
and (3.4). It says that the three-point amputated correlation functions M̃x1x2x3 and
My1y2y3 are related homogeneously by the transformation matrices δϕyi/δϕ̃xi , up to an
evanescent term Ux1x2x3 that would not change the on-shell amplitudes Ã (p̄1, p̄2, p̄3).

n-point Functions

The relation in Eq. (3.19) (with the structure of the evanescent term given in Eq. (3.18))
holds also for higher-point amputated correlation functions, i.e., Eq. (3.3). To show
this, one can derive the higher-point analog of Eq. (3.15), and then check if the inho-
mogeneous pieces are evanescent.

In order to organize the proof, we will use the recursive expression of the n-point
functions in Eqs. (2.31) and (2.32), where an (n + 1)-point amputated correlation
function is concisely written in terms of the n-point ones. The n = 3 case that we
proved above in Eq. (3.19) (with Eq. (3.18)) serves as the base case for the induction.
To further prove the result for arbitrary integer n ≥ 3, we need to prove the induction
step: if Eq. (3.3) (with Eq. (3.18)) holds for k, then it will also hold for k + 1.

To show this, we assume that M̃x1···xk
andMy1···yk are related as in Eq. (3.3):

M̃x1···xk
=
δϕy1

δϕ̃x1
· · · δϕ

yk

δϕ̃xk

My1···yk + Ux1···xk
, (3.20)

where Ux1···xk
is an evanescent term that has the form in Eq. (3.18):

Ux1···xk
= ay1x1···xk

δΓ

δϕy1
+

k∑
i=1

by1x1···x̂i···xk

δϕy2

δϕ̃xi

δ2Γ

δϕy1δϕy2
. (3.21)
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We then make use of the recursion relations for both M̃ andM

M̃x1···xk
−→ M̃x1···xkxk+1

=
δ

δϕ̃xk+1

M̃x1···xk
−

k∑
i=1

G̃y
xk+1xi

M̃x1···x̂iy···xk
, (3.22a)

My1···yk −→ My1···ykyk+1
=

δ

δϕyk+1
My1···yk −

k∑
i=1

Gz
yk+1yi

My1···ŷiz···yk , (3.22b)

to show that consequently M̃x1···xkxk+1
andMy1···ykyk+1

will also be related as in Eq. (3.3).
To this end, we compute the inhomogeneous pieces at k + 1:

M̃x1···xkxk+1
− δϕy1

δϕ̃x1
· · · δϕ

yk

δϕ̃xk

δϕyk+1

δϕ̃xk+1
My1···ykyk+1

= −
k∑

i=1

(
δϕy1

δϕ̃x1
· · · δ̂ϕyi

δϕ̃xi
· · · δϕ

yk

δϕ̃xk

)
My1···ŷiz···yk

×
(

δϕz

δϕ̃y G̃
y
xk+1xi

− δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi
Gz

yk+1yi
− δ2ϕz

δϕ̃xk+1δϕ̃xi

)
+

(
δ

δϕ̃xk+1

Ux1···xk
−

k∑
i=1

G̃y
xk+1xi

Ux1···x̂iy···xk

)
. (3.23)

To obtain this result, we have used Eqs. (3.20) and (3.22). Our goal is to show that the
right hand side has the general structure given in Eq. (3.18), so that it is an evanescent
term. Let us check that this is true for the first and the second terms in turn.

To check the evanescence of the first term in Eq. (3.23), we need to study the
relation between G̃y

xk+1xi
and Gz

yk+1yi
. Recalling the definition in Eq. (2.30) and the

relation in Eq. (2.15), we get

Gy
x1x2

= iMx1x2zD
zy = −Mx1x2z

(
δ2Γ

δϕzδϕy

)−1

. (3.24)

Therefore, using the relations in Eqs. (3.11) and (3.15), we have

G̃y
xk+1xi

= −M̃xk+1xiu

(
δ2Γ̃

δϕ̃uδϕ̃y

)−1

= −
(

δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δϕv

δϕ̃uMyk+1yiv −
δ2ϕy1

δϕ̃xk+1δϕ̃xi

δϕy2

δϕ̃u

δ2Γ
δϕy1δϕy2

)
δϕ̃u

δϕw

(
δ2Γ

δϕwδϕz

)−1
δϕ̃y

δϕz + Uy
xk+1xi

=
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δϕ̃y

δϕz
Gz

yk+1yi
+

δ2ϕz

δϕ̃xk+1δϕ̃xi

δϕ̃y

δϕz
+ Uy

xk+1xi
, (3.25)
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where Uy
xk+1xi

collects terms that contain the evanescent factors in Eq. (3.17), in a
similar fashion as in Eq. (3.18). We emphasize that in the parentheses of the second
line above, the second term is not evanescent and hence did not get collected into
Uy
xk+1xi

. This is because unlike xk+1 or xi, the index u is not a leg, since it not an index
in M̃x1···xk+1

. It yields the non-evanescent inhomogeneous piece in the last line. With
the relation in Eq. (3.25), the first line of the result in Eq. (3.23) simplifies into

−
k∑

i=1

(
δϕy1

δϕ̃x1
· · · δ̂ϕ

yi

δϕ̃xi

· · · δϕ
yk

δϕ̃xk

)
My1···ŷiz···yk

δϕz

δϕ̃y
Uy
xk+1xi

∈ Ux1···xk+1
. (3.26)

As indicated here, this is clearly an evanescent term, because of the Uy
xk+1xi

factor.
Now let us move on to the second term in Eq. (3.23). This term contains the

evanescent term Ux1···xk
, whose general form — given in Eq. (3.21) — comprises “a-type”

and “b-type” evanescent factors in Eqs. (3.17a) and (3.17b), respectively. However, if
one takes a functional derivative δ

δϕ̃xk+1
, and/or makes an index replacement xi → y, an

evanescent term of the a-type or b-type might become non-evanescent. In what follows,
we show that despite this, the combination in the second term of Eq. (3.23) is still
evanescent.

Since the second term of Eq. (3.23) is linear in Ux1···xk
, we can examine its a-type

and b-type terms separately. Let us begin with the a-type terms. The evanescence of an
a-type term does not rely on any of its indices being a leg xi, so the index replacement
xi → y would not cause any problems. On the other hand, it does rely on containing
a factor of the first functional derivative of Γ, so the additional functional derivative
could potentially be a problem. However, since this additional functional derivative is
at a leg xk+1, any potentially problematic term that arises from an a-type term will
simply be a b-type term, which is still evanescent:

δ

δϕ̃xk+1

(
ay1x1···xk

δΓ

δϕy1

)
⊃ ay1x1···xk

δϕy2

δϕ̃xk+1

δ2Γ

δϕy1δϕy2
∈ Ux1···xk+1

. (3.27)

Therefore, for a-type terms in Ux1···xk
, the second term in Eq. (3.23) remains evanescent

for each individual term in its parentheses.
Now let us check the b-type terms. Acting the additional functional derivative on
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them yields the following non-evanescent terms

δ

δϕ̃xk+1

Ux1···xk
⊃ δ

δϕ̃xk+1

(
k∑

i=1

by1x1···x̂i···xk

δϕy2

δϕ̃xi

δ2Γ

δϕy1δϕy2

)

⊃
k∑

i=1

by1x1···x̂i···xk

(
δ2ϕy2

δϕ̃xk+1δϕ̃xi

δ2Γ

δϕy1δϕy2
+
δϕy2

δϕ̃xi

δϕyk+1

δϕ̃xk+1

δ3Γ

δϕy1δϕy2δϕyk+1

)
. (3.28)

On the other hand, the external-to-internal index replacement xi → y yields the fol-
lowing non-evanescent terms

−
k∑

i=1

G̃y
xk+1xi

Ux1···x̂iy···xk
⊃ −

k∑
i=1

G̃y
xk+1xi

by1x1···x̂i···xk

δϕy2

δϕ̃y

δ2Γ

δϕy1δϕy2

⊃ −
k∑

i=1

(
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δϕ̃y

δϕz
Gz

yk+1yi
+

δ2ϕz

δϕ̃xk+1δϕ̃xi

δϕ̃y

δϕz

)
by1x1···x̂i···xk

δϕy2

δϕ̃y

δ2Γ

δϕy1δϕy2

⊃ −
k∑

i=1

by1x1···x̂i···xk

(
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

Gy2
yk+1yi

+
δ2ϕy2

δϕ̃xk+1δϕ̃xi

)
δ2Γ

δϕy1δϕy2

⊃ −
k∑

i=1

by1x1···x̂i···xk

(
δϕyk+1

δϕ̃xk+1

δϕyi

δϕ̃xi

δ3Γ

δϕyk+1δϕyiδϕy1
+

δ2ϕy2

δϕ̃xk+1δϕ̃xi

δ2Γ

δϕy1δϕy2

)
, (3.29)

where we have used the results in Eq. (3.25), Eq. (3.24), and then Eq. (2.28). We
see that the non-evanescent terms in Eq. (3.29) precisely cancel those from Eq. (3.28).
Therefore, for b-type terms in Ux1···xk

, the second term in Eq. (3.23) remains evanescent
as a sum of the two terms in its parentheses.

Combining our investigations on a-type and b-type terms in Ux1···xk
, we conclude

that the second term of the result in Eq. (3.23) remains evanescent:

δ

δϕ̃xk+1

Ux1···xk
−

k∑
i=1

G̃y
xk+1xi

Ux1···x̂iy···xk
∈ Ux1···xk+1

. (3.30)

Eqs. (3.26) and (3.30) together then complete our proof of the induction step, namely
that the following relation for (k + 1)-point amputated correlation functions holds

M̃x1···xkxk+1
=
δϕy1

δϕ̃x1
· · · δϕ

yk

δϕ̃xk

δϕyk+1

δϕ̃xk+1

My1···ykyk+1
+ Ux1···xkxk+1

, (3.31)
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provided that it holds for k-point functions (Eq. (3.20)). Combining this induction step
with the base case that we proved for n = 3 in Eq. (3.19), this proves that Eq. (3.3)
(together with Eq. (3.18)) holds for an arbitrary integer n ≥ 3.

To complete our proof of the transformation lemma, let us show that Eqs. (3.3)
and (3.18) imply that the on-shell amplitudes are the same:

(2π)4δ4(p̄1 + · · ·+ p̄n) iÃ (p̄1, · · · , p̄n)

=
[
ψ̃x1(p̄1) · · · ψ̃xn(p̄n)

] (
−iM̃x1···xn|ϕ̃v

)
=
[
ψ̃x1(p̄1) · · · ψ̃xn(p̄n)

] (δϕy1

δϕ̃x1

∣∣∣∣
ϕ̃v

)
· · ·

(
δϕyn

δϕ̃xn

∣∣∣∣
ϕ̃v

)(
−iMy1···yn|ϕv

)
=
[
ψy1(p̄1) · · ·ψyn(p̄n)

] (
−iMy1···yn|ϕv

)
= (2π)4δ4(p̄1 + · · ·+ p̄n) iA (p̄1, · · · , p̄n) , (3.32)

where we have used the relation in Eq. (3.14). ■

3.2 Applications to Tree and One-Loop Amplitudes

We now apply the transformation lemma to show that tree-level and one-loop ampli-
tudes are invariant under a general field redefinition that accommodates derivatives:

η −→ η̃ : η = f
[
η̃
]
. (3.33)

Our task is to show that under such a field redefinition, the change of the 1PI effective
action can be described by Eq. (3.2), i.e., Γ̃[ϕ̃] = Γ

[
ϕ[ϕ̃]

]
for some ϕ[ϕ̃].

Tree-Level Amplitudes

We begin with the tree-level case. When we perform a field redefinition described by
Eq. (3.33), the new action at tree level is simply given by substituting in that relation
(see Eq. (A.6) for a general expression):

S̃
[
η̃
]
= S

[
f
[
η̃
]]
. (3.34)

Meanwhile, the tree-level 1PI effective action is just given by the action of the theory

Γ[ϕ] = S[ϕ] , and Γ̃[ϕ̃] = S̃[ϕ̃] . (3.35)
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Putting Eqs. (3.34) and (3.35) together, we get the relation between the new and old
1PI effective actions at the tree level:

Γ̃
[
ϕ̃
]
= S̃

[
ϕ̃
]
= S

[
f
[
ϕ̃
]]

= Γ
[
f
[
ϕ̃
]]
. (3.36)

We see that they do satisfy the transformation relation in Eq. (3.2), with the functional
ϕ[ϕ̃] identified to be the field redefinition functional itself:

ϕ[ϕ̃] = f [ϕ̃] . (3.37)

The transformation lemma then implies that tree-level on-shell amplitudes are invariant
under the general field redefinition in Eq. (3.33).

One-Loop Amplitudes

In the one-loop case, both Eqs. (3.34) and (3.35) become more complicated. As elabo-
rated in App. A, under a general field redefinition in Eq. (3.33), the action in terms of
the new field at the loop level is (see Eq. (A.6))

S̃
[
η̃
]
= S

[
f
[
η̃
]]
− i log det

(
δηy

δη̃x

)
. (3.38)

Note the extra one-loop sized Jacobian term compared to Eq. (3.34). Apart from
anomalous fermion chiral transformations, this term vanishes if one works with dimen-
sional regularization [3, 4]. However, we keep it here to make our argument independent
of the choice of the regularization scheme. On the other hand, up to one-loop level, the
relation between Γ[ϕ] and S[ϕ] is also modified:

Γ[ϕ] = S[ϕ] +
i

2
log det

(
δ2S

δηx1δηx2

∣∣∣∣
η=ϕ

)
. (3.39)

With Eqs. (3.38) and (3.39), we can obtain the relation between Γ̃[ϕ̃] and Γ[ϕ].
The second functional derivatives of the new action are

δ2S̃

δη̃x1δη̃x2
=
δηy1

δη̃x1

δηy2

δη̃x2

δ2S

δηy1δηy2
+

δ2ηy1

δη̃x1δη̃x2

δS

δηy1
+ (one-loop terms) . (3.40)
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Plugging this in, we obtain the following relation up to one-loop level

Γ̃
[
ϕ̃
]
= S̃

[
ϕ̃
]
+
i

2
log det

(
δ2S̃

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

)

= S
[
f
[
ϕ̃
]]
− i log det

(
δηy

δη̃x

∣∣∣∣
ϕ̃

)

+
i

2
log det

(
δηy1

δη̃x1

δηy2

δη̃x2

∣∣∣∣
ϕ̃

δ2S

δηy1δηy2

∣∣∣∣
f [ϕ̃]

+
δ2ηy1

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

δS

δηy1

∣∣∣∣
f [ϕ̃]

)

= S
[
f
[
ϕ̃
]]

+
i

2
log det

(
δ2S

δηy1δηy2

∣∣∣∣
f [ϕ̃]

+
δ2ηy

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

δη̃x1

δηy1
δη̃x2

δηy2
δS

δηy

∣∣∣∣
f [ϕ̃]

)

= Γ
[
f
[
ϕ̃
]]

+
i

2
Tr log

[
1 +

δ2ηy

δη̃x1δη̃x2

∣∣∣∣
ϕ̃

( δ2S

δηy1δηz1

)−1 δη̃x1

δηy1
δη̃x2

δηy2
δS

δηy

∣∣∣∣
f [ϕ̃]

]
. (3.41)

We see that there is an extra term compared to Eq. (3.36). Although this term looks
complicated, after expanding the log it will yield a series of terms that are proportional
to the tree-level equation of motion δS/δηy, with some one-loop order coefficients ay:

Γ̃
[
ϕ̃
]
= Γ

[
f
[
ϕ̃
]]

+ ay
[
ϕ̃
]( δS

δηy

∣∣∣∣
f [ϕ̃]

)
. (3.42)

Since ay[ϕ̃] are one-loop order, we can replace S with Γ, as the difference introduced
will be two-loop order. For the same reason, we can keep the accuracy only to the first
power of ay[ϕ̃]. Carrying out these manipulations, we get

Γ̃
[
ϕ̃
]
= Γ

[
f
[
ϕ̃
]]

+ ay
[
ϕ̃
]( δΓ

δϕy

∣∣∣∣
f [ϕ̃]

)
= Γ

[
f
[
ϕ̃
]
+ a
[
ϕ̃
]]
. (3.43)

This shows that up to one-loop order, the 1PI effective actions Γ̃[ϕ̃] and Γ[ϕ] again
satisfy the transformation relation in Eq. (3.2), where the functional ϕ[ϕ̃] is identified
as

ϕ[ϕ̃] = f
[
ϕ̃
]
+ a
[
ϕ̃
]
. (3.44)

The transformation lemma then implies that on-shell amplitudes up to one-loop order
are invariant under the field redefinition in Eq. (3.33).
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4 Towards a Geometric Interpretation

In the previous section, we used the transformation lemma to show that the tree-level
and one-loop amputated correlation functions transform as tensors under generalized
field redefinitions up to terms that vanish when the sources are set to zero and the
external states are taken to be on shell. Since the proof of the transformation lemma
in Sec. 3.1 is rather technical, it would be useful to have a more intuitive explanation
of these results. With this motivation in mind, we note that the recursion relation
Eq. (2.32) appears to have a tensor-like structure — the relation between the n+1 and
the n leg results resembles that of a covariant derivative acting on a tensor:

Mx1···xnxn+1 =
δ

δϕxn+1
Mx1···xn −

n∑
i=1

Gy
xn+1xi

Mx1···x̂iy···xn

?
= ∇xn+1Mx1···xn . (4.1)

Having the notion of a covariant derivative evokes the expectation that this can be used
to define parallel transport along some kind of geometric space.

However, such a geometric interpretation requires that we can identify a manifold
such that

a) The functional derivative
δ

δϕx
can be interpreted as a coordinate derivative. (4.2a)

b) The factor Gy
x1x2

serves as a connection. (4.2b)

c) The amputated correlation functionsMx1···xn transform as tensors. (4.2c)

We already know that the third condition fails. When the transformation lemma ap-
plies, the amputated correlation functions do not transform as tensors, due to the extra
evanescent term:

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
=⇒ M̃x1···xn =

δϕy1

δϕ̃x1
· · · δϕ

yn

δϕ̃xn
My1···yn + Ux1···xn . (4.3)

Nevertheless, one could imagine that some sort of procedure to quotient out the evanes-
cent terms exists, leaving behind a well defined “projective” geometry, that we will refer
to as “functional geometry.” This section is devoted to exploring the possibility that
the resulting “functional manifold” could be constructed. In particular, we will discuss
aspects where this approach appears to be successful, and we will highlight some ways
in which it fails. We will also comment on the relation between functional geometry
and the well-established field space geometry formalism (which does not incorporate
derivative field redefinitions).
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4.1 Evidence for a Functional Manifold: Success and Failure

We begin by checking the condition in Eq. (4.2a). Our goal is to find a manifold on
which the functional derivatives δ

δϕ(x)
can be identified with coordinate derivatives. To

this end, we consider the so-called “field configuration space,” which is the collection
of all the ϕ(x) field configurations that are integrated over when computing the path
integral. This space is naturally endowed with a functional differentiable structure,
and hence can be viewed as a differential manifold, albeit an infinite dimensional one
[61, 102, 103]. We refer to this manifold as the “functional manifold.”

One way to parameterize the field configuration space is to simply specify the values
of the field at all the spacetime points:{

ϕx
∣∣ x ∈ spacetime

}
. (4.4)

Each allowed value of the set of variables in Eq. (4.4) gives a specific field configura-
tion ϕ(x), and by our construction, corresponds to a specific point on the functional
manifold. The whole functional manifold is a collection of all such points. The func-
tional manifold is therefore charted by {ϕx}. Functions on this manifold are functions
of the field configurations, or equivalently functionals of the field ϕx, for example the
1PI effective action Γ[ϕ]. Therefore, functional derivatives with respect to the field ϕx

are just coordinate derivatives on this manifold, and they form a basis for the tangent
space: {

δ

δϕx
with ϕx parameterizing the configuration space

}
. (4.5)

4.1.1 Success: 1PI Effective Action as a Scalar

We argued in Sec. 3.2 that under a general field redefinition parameterized by Eq. (3.6),
the 1PI effective action (up to one-loop level) transforms as in Eq. (4.3):

Γ̃[ϕ̃] = Γ
[
ϕ[ϕ̃]

]
. (4.6)

As a functional relation, ϕ[ϕ̃] is a map between the two field configurations, {ϕx} and
{ϕ̃x}. Alternatively, one can view this map as reparameterizing a point on the functional
manifold {ϕx} to the same point using the new set of variables {ϕ̃x}. Therefore, it is a
re-charting or coordinate change on the functional manifold.4 From this point of view,
Eq. (4.6) means that the 1PI effective action transforms as a scalar on the functional
manifold.

4Note that this coordinate change ϕ[ϕ̃] is not necessarily the same as the field redefinition relation
η = f [η̃], c.f. Eqs. (3.37) and (3.44).
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4.1.2 Success: Physical Vacuum as a Geometric Point

Since the 1PI effective action transforms as a scalar, its first functional derivative
transforms as a vector on the functional manifold (c.f. Eq. (3.8)):

δΓ̃

δϕ̃x

∣∣∣∣
ϕ̃

=
δϕy

δϕ̃x

∣∣∣∣
ϕ̃

δΓ

δϕy

∣∣∣∣
ϕ[ϕ̃]

. (4.7)

Recall from Eq. (2.14) that the physical vacuum field configuration ϕv(x) (for the
original theory S[η]) is determined by

δΓ

δϕx

∣∣∣∣
ϕ=ϕv

= 0 . (4.8)

The transformation law in Eq. (4.7) then implies that the physical vacuum is a geometric
point on the functional manifold — it is independent of the chart chosen, and its
coordinates changing accordingly:

ϕv(x) = ϕ
[
ϕ̃v

]
(x) . (4.9)

4.1.3 Failure: Evanescent Terms Ruin Covariance

Given these successes, we move on to check the conditions in Eqs. (4.2b) and (4.2c).
Unfortunately, it turns out that the functional manifold considered above fails to satisfy
these conditions. However, it is still enlightening to see how it fails, since this can
provide guidance for alternative constructions.

First, we can check the properties of Gy
x1x2

. We will argue that it does not have the
appropriate transformation rules to be interpreted as a connection. Following standard
methodology, we use { δ

δϕx , δϕ
x} as the bases of the tangent and cotangent spaces of the

functional manifold. Then a connection Γ can be defined using

δ

(
δ

δϕy3

)
≡ δϕy2 ∇ϕy2

(
δ

δϕy3

)
≡ δϕy2 Γy1

y2y3

(
δ

δϕy1

)
, (4.10)

where Γy1
y2y3

are components of the connection (not to be confused with the 1PI effective
action). Now consider a coordinate change ϕ[ϕ̃]. The bases transform as tensors

δ

δϕ̃x
=
δϕy

δϕ̃x

δ

δϕy
, (4.11a)

δϕ̃x =
δϕ̃x

δϕy
δϕy . (4.11b)
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This leads to the following standard transformation law for a connection:

Γ̃x1
x2x3

=
δϕy2

δϕ̃x2

δϕy3

δϕ̃x3

δϕ̃x1

δϕy1
Γy1
y2y3

+
δ2ϕy1

δϕ̃x2δϕ̃x3

δϕ̃x1

δϕy1
. (4.12)

Now comparing with the transformation property of Gy
x1x2

derived in Eq. (3.25),
we see that Gy

x1x2
does not satisfy Eq. (4.12). Therefore, it cannot serve as a connection

on the functional manifold. However, it is worth mentioning that the transformation
property of Gy

x1x2
in Eq. (3.25) is very close to that in Eq. (4.12); the only difference is

that Eq. (3.25) contains an extra evanescent term. Given that Gy
xn+1xi

does not serve
as a connection on the functional manifold, the right-hand side of the recursion relation
in Eq. (4.1) cannot be interpreted as a covariant derivative “∇xn+1”.

The same essential obstruction holds for the amputated correlation functions. As
derived in Sec. 3, the transformation property of the amputated correlation functions
are given in Eq. (4.3). Clearly, they do not transform as tensors on the functional man-
ifold, again due to the extra evanescent term. So similar to the situation of Eq. (4.2b),
the condition in Eq. (4.2c) is almost satisfied, except for the evanescent term.

4.1.4 Failure: Vanishing Curvature Tensor

We will now identify another fundamental issue with the functional geometry picture
as defined above. We show that if we ignore the evanescent term issue discussed above
and mindlessly use Gy

x1x2
defined in Eq. (2.30) as a connection to compute the Riemann

curvature tensor, then it vanishes. One straightforward way to see this follows directly
from the recursion relation Eq. (4.1) — using it twice, we find

Mx1···xnyz = ∇z∇yMx1···xn . (4.13)

Then the crossing symmetry ofMx1···xnyz between the legs y and z implies that

[∇y,∇z]Mx1···xn = 0 , (4.14)

namely that there is no curvature. We will provide a bit more insight into this issue in
Sec. 4.2.5 below, in terms of so-called field space geometry.

4.2 Relation to the Field Space Geometry

There is a well-established geometric picture for amplitudes in the literature [56–66],
based on the idea of the “field space manifold,” which accommodates a narrower set
of field redefinitions, namely those that do not involve derivatives. In this section, we
comment on the relation between the functional manifold and the field space manifold.
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We will also discuss how a variety of quantities on the functional manifold reproduce
geometric statements that have been derived using the field space geometry picture.
Some of these have been shown in [5]. Here we give a more detailed discussion.

4.2.1 Review of Field Space Geometry

We briefly review the field space geometry picture. For this purpose, we again focus
on the case of scalar fields, similar with Sec. 2.1. We consider an EFT of scalar fields
{ϕa}. The most general Lagrangian involving up to two derivatives is:

L = −V (ϕ) +
1

2
gab(ϕ)

(
∂µϕ

a
)(
∂µϕb

)
+O

(
∂4
)
. (4.15)

V (ϕ) and gab(ϕ) can be interpreted as functions on the so-called “field space manifold,”
which consists of all the allowed field space (or target space) points. Note that each
point on the field space manifold is specified by the set of values {ϕa}, so it is a finite
dimensional manifold, with its dimension being the number of field flavors. The field
space geometry deals with the differential geometry on this manifold.

A field redefinition without derivatives

ϕ = f
(
ϕ̃
)
, (4.16)

can be viewed as a coordinate change on the field space manifold. As usual, the bases
of its tangent and cotangent spaces { ∂

∂ϕa , dϕ
a} transform as tensors

∂

∂ϕ̃a
=
∂ϕb

∂ϕ̃a

∂

∂ϕb
, (4.17a)

dϕ̃a =
∂ϕ̃a

∂ϕb
dϕb . (4.17b)

Using these bases, a connection on the manifold can be introduced as

d

(
∂

∂ϕc

)
≡ dϕb∇ϕb

(
∂

∂ϕc

)
≡ dϕb Γa

bc

(
∂

∂ϕa

)
, (4.18)

where Γa
bc are the connection components (not to be confused with 1PI effective actions).

A covariant derivative of a general tensor is then given by

∇c T
a···

b··· = ∂c T
a···

b··· +
(
Γa
ck T

k···
b··· + · · ·

)
−
(
Γk
cb T

a···
k··· + · · ·

)
. (4.19)

We note that the function gab(ϕ) transforms as a (0, 2)-tensor under the non-
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derivative field redefinition in Eq. (4.16):

g̃ab
(
ϕ̃
)
=
∂ϕc

∂ϕ̃a

∂ϕd

∂ϕ̃b
gcd(ϕ) . (4.20)

This object is a natural choice of a metric on the field space manifold. If we require
the connection in Eq. (4.18) to be compatible with this metric, i.e., ∇c gab = 0, we get
the usual Levi-Civita connection:

Γa
bc =

1

2
gak (gkb,c + gkc,b − gbc,k) , (4.21)

where indices following a comma denote partial derivatives.
The field space geometry is a Riemannian geometry. On-shell amplitudes can be

written in terms of geometric tensors on the field space manifold, multiplied by addi-
tional kinematic factors. For example, for the theory up to two-derivative interactions
given in Eq. (4.15), the three-point amplitudes can be written as

−

(
3∏

i=1

g1/2aiai

)
A a1a2a3 (p̄1, p̄2, p̄3) = V ; (a1a2a3) . (4.22)

Here indices following a semicolon denote covariant derivatives under the Levi-Civita
connection in Eq. (4.21), and the parentheses denote a normalized symmetrization of
these indices. The bars on the geometric quantities, gab, V , etc. indicates evaluat-
ing them at the physical vacuum point on the field space manifold. The four-point
amplitudes have a similar but richer expression:

−

(
4∏

i=1

g1/2aiai

)
A a1a2a3a4 (p̄1, p̄2, p̄3, p̄4) = V ; (a1a2a3a4) +

1

3

∑
i<j

sijRai(akal)aj

+

[
V ; (a1a2b)

gbc

s12 −m2
b

V ; (a3a4c)

]
3perms

. (4.23)

where Rabcd denotes the Riemann curvature tensor derived from the metric gab in the
standard way. We see from these examples that the field space geometry does not
address the kinematic factors in the amplitudes. It only provides a geometric interpre-
tation for the coefficients of each kinematic combination that can appear.5

5Note that Eqs. (4.22) and (4.23) assume w.l.o.g. that gab and V ;ab = m2
agab are diagonal. See

[77, 78] for details of how to avoid this assumption with the use of vielbeins.
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4.2.2 Embedding the Field Space Manifold into the Functional Manifold

The field space geometry is constructed on the manifold of the field space, while the
functional manifold discussed in Sec. 4.1 consists of the field configuration space. There-
fore, the finite dimensional field space manifold could be identified with a submanifold
of the infinite dimensional functional manifold, defined by the restriction that it only
contains the constant field configurations.

However, this is not to say that the field space geometry only handles constant field
configurations. It addresses arbitrary field configurations by invoking the field maps
ϕa(x) from the spacetime manifold to the field space manifold, inducing a factorized
structure of the connection (c.f. Eq. (4.18)):

dϕb = dxµ
(
∂µϕ

b
)

=⇒ d

(
∂

∂ϕc

)
= dxµ

[ (
∂µϕ

b
)
Γa
bc

]( ∂

∂ϕa

)
. (4.24)

The term in the squared bracket can be viewed as a connection that defines a covariant
derivative Dµ on the spacetime manifold; see e.g. [66]. For example, the first derivative
of the potential V, a = V; a is a (0, 1)-tensor on the field space manifold. Its spacetime
covariant derivative is then given by

DµV; a = ∂µV; a − Γc
ba

(
∂µϕ

b
)
V; c =

(
∂µϕ

b
)
∇bV; a =

(
∂µϕ

b
)
V; ab . (4.25)

On the other hand, the functional manifold is formed by all the field maps {ϕa(x)}.
The bases of its tangent and cotangent space are “promoted” from the field space
manifold version into (c.f. Eq. (4.11))

∂

∂ϕa
−→ δ

δϕa(x)
, (4.26a)

dϕa −→ δϕa(x) . (4.26b)

4.2.3 Reproducing the Connection on the Field Space Manifold

We would like to reproduce geometric quantities on the field space manifold from quanti-
ties on the functional manifold. To this end, we should restrict the functional manifold
quantities onto the submanifold formed by constant field configurations, namely by
taking

∂µϕ
a = 0 . (4.27)

In what follows, we will show how to reproduce the field space manifold connection Γa
bc

from Gy
x1x2

, even though the latter does not serve as a connection on the functional
manifold. More specifically, we will take the definition of Gy

x1x2
in Eq. (2.30) and apply
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it to the theory given by the Lagrangian in Eq. (4.15) at the tree level. We then restrict
the resulting expression onto the submanifold formed by constant field configurations,
and show that this gives us Γa

bc.
We begin with the 1PI effective action at tree level, which is just the action:

Γ[ϕ] = S[ϕ] =

∫
d4x

[
−V (ϕ) +

1

2
gab(ϕ) (∂µϕ

a)
(
∂µϕb

)]
x

. (4.28)

Here everything in the squared bracket is evaluated at the spacetime point x, as indi-
cated by the subscript x shorthand. Note that without following a comma or semicolon,
this subscript x is not denoting a functional derivative, but simply denotes evaluating
the function at x, as in the cases of ϕx and Jx. Note that we are keeping the flavor
indices explicit. We need its first functional derivative

δΓ

δϕa(x1)
= −

[
gai
(
∂2ϕi

)
+
(
gai,j − 1

2
gij,a

)
(∂µϕ

i)(∂µϕj) + V,a

]
x1

, (4.29)

its second functional derivative

δ2Γ

δϕa(x1)δϕb(x2)
= −

{
(gab)x1

[
∂2δ4(x1 − x2)

]
+
(
gai,b∂

2ϕi
)
x1
δ4(x1 − x2)

+
[
(gab,i − gib,a + gai,b)(∂µϕ

i)
]
x1

[
∂µδ4(x1 − x2)

]
+
[(
gai,jb − 1

2
gij,ab

)
(∂µϕ

i)(∂µϕj)
]
x1
δ4(x1 − x2)

+ (V,ab)x1δ
4(x1 − x2)

}
, (4.30)
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and its third functional derivative

δ3Γ

δϕa(x1)δϕb(x2)δϕk(z)
= −

{
(gab,k)x1

[
∂2δ4(x1 − x2)

]
δ4(x1 − z)

+ (gak,b)x1δ
4(x1 − x2)

[
∂2δ4(x1 − z)

]
+ (gab,k − gkb,a + gak,b)x1

[
∂µδ

4(x1 − x2)
][
∂µδ4(x1 − z)

]
+
[
(gab,ik − gib,ak + gai,bk)(∂µϕ

i)
]
x1

[
∂µδ4(x1 − x2)

]
δ4(x1 − z)

+
[
(gai,kb − gik,ab + gak,ib)(∂µϕ

i)
]
x1
δ4(x1 − x2)

[
∂µδ4(x1 − z)

]
+
[
gai,bk(∂

2ϕi) +
(
gai,jbk − 1

2
gij,abk

)
(∂µϕ

i)(∂µϕj)
]
x1
δ4(x1 − x2)δ4(x1 − z)

+ (V,abk)x1δ
4(x1 − x2)δ4(x1 − z)

}
. (4.31)

Now using the definition in Eq. (2.30) and restricting to the constant field configura-
tions, we get

Gc
ab(x1, x2; y)

∣∣
∂µϕa=0

≡ − δ3Γ

δϕa(x1)δϕb(x2)δϕk(z)
iDkc(z, y)

∣∣∣∣∣
∂µϕa=0

=

∫
d4z

{
gab,k

[
∂2δ4(x1 − x2)

]
δ4(x1 − z) + gak,bδ

4(x1 − x2)
[
∂2δ4(x1 − z)

]
+ (gab,k − gkb,a + gak,b)

[
∂µδ

4(x1 − x2)
][
∂µδ4(x1 − z)

]
+ V,abkδ

4(x1 − x2)δ4(x1 − z)
}∫

d4p

(2π)4
e−ip(z−y) −1

gkcp2 − V,kc
. (4.32)

It is more convenient to take a Fourier transform∫
d4x1 d

4x2 d
4y eip1x1+ip2x2e−iqy

[
Gc

ab (x1, x2; y)
∣∣
∂µϕa=0

]
= (2π)4δ4(p1 + p2 − q)

1

gkcq2 − V,kc

[
1
2
(gka,b + gkb,a − gab,k) q2 + 1

2
(gab,k − gkb,a + gka,b) p

2
1

+ 1
2
(gab,k + gkb,a − gka,b) p22 − V,abk

]
. (4.33)

We see that when the potential is absent in the theory, and the external momenta p1, p2
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are on shell p̄21 = p̄22 = 0, we indeed reproduce the field space manifold connection:∫
d4x1 d

4x2 d
4y eip̄1x1+ip̄2x2e−iqy

[
Gc

ab (x1, x2; y)
∣∣
∂µϕa=0

]
= (2π)4δ4(p̄1 + p̄2 − q) Γc

ab , (4.34)

or equivalently written with the external wavefunctions (Eq. (2.24)) as

ψx1(p̄1)ψ
x2(p̄2)

[
Gc

ab (x1, x2; y)
∣∣
∂µϕa=0

]
= R1/2

η ψy(p̄1 + p̄2) Γ
c
ab . (4.35)

When the potential is present, Γc
ab is reproduced from Gc

ab (x1, x2; y) in the kinematic
limit of large q2. These results demonstrate that Gy

x1x2
serves as a generalization of Γa

bc,
even though it does not have a geometric meaning on the functional manifold.

4.2.4 Reproducing the Geometric Soft Theorem

A nice result obtained from the field space geometry picture is the so-called geometric
soft theorem [77]. When applied to the scalar field theory in Eq. (4.15) with only
the two-derivative term,6 it states that in the soft kinematic limit of the (n + 1)th

leg (labeled by the flavor index b below), the on-shell amplitudes satisfy the following
recursion relation

lim
q̄→0
Aa1···anb (p̄1, · · · , p̄n, q̄) = R1/2

η ∇bAa1···an (p̄1, · · · , p̄n) , (4.36)

where ∇b is the covariant derivative on the field space manifold; see Eq. (4.19) for
explicit expression. In this subsection, we show that the tensor-like recursion relation
in Eq. (4.1) serves as a generalized version of Eq. (4.36), in the sense that it reproduces
Eq. (4.36) when restricted to the submanifold of constant field configurations.7

We begin with the functional derivative part of Eq. (4.1). When restricted to the
submanifold of constant field configurations, and taking the q → 0 limit, we have

lim
q→0

ψy(q) δ
δϕb(y)

[
Ma1···an(x1, · · · , xn)

∣∣
∂µϕa=0

]
= R1/2

η
∂

∂ϕbMa1···an (x1, · · · , xn) . (4.37)

6We focus on the zero potential case here for simplicity of the presentation. When the potential
term is turned on, the geometric soft theorem is slightly more complicated; see Eq. (17) in [77]. It can
be also reproduced in a similar way.

7Note that the residue factor R1/2
η in Eq. (4.36) can be extracted from the analogous all-order

expression in [77] by changing from a mass basis to a flavor basis index. We assume no mass mixing
between flavor eigenstates.
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Now using Eq. (2.27), we get

lim
q→0

[
(2π)4δ4(p1 + · · ·+ pn + q) iAa1···anb (p1, · · · , pn, q)

]
=
[
ψx1(p1) · · ·ψxn(pn)ψ

y(q)
] [
−iMa1···anb (x1, · · · , xn, y)

∣∣
J=0

]
⊃
[
ψx1(p1) · · ·ψxn(pn)ψ

y(q)
] [
−i δ

δϕb(y)
Ma1···an (x1, · · · , xn)

] ∣∣∣∣
J=0

= R1/2
η

[
ψx1(p1) · · ·ψxn(pn)

] [
−i ∂
∂ϕb
Ma1···an (x1, · · · , xn)

] ∣∣∣∣
J=0

= (2π)4δ4(p1 + · · ·+ pn)R
1/2
η

∂

∂ϕb
iAa1···an (p1, · · · , pn) , (4.38)

or simply

lim
q→0
Aa1···anb (p1, · · · , pn, q) ⊃ R1/2

η

∂

∂ϕb
Aa1···an (p1, · · · , pn) . (4.39)

Next let us work out the connection part of Eq. (4.1). Taking the momenta to be
on-shell, i.e., pi = p̄i and q = q̄, we can make use of Eq. (4.35) to get

(2π)4δ4(p̄1 + · · ·+ p̄n + q̄) iAa1···anb (p̄1, · · · , p̄n, q̄)

⊃
[
ψx1(p̄1) · · ·ψxn(p̄n)ψ

y(q̄)
]

×
∫

d4z
[
−Gc

ba1
(y, x1; z)

∣∣
∂µϕa=0

][
−iMca2···an (z, x2, · · · , xn)

∣∣
J=0

]
= R1/2

η

[
ψz(p̄1 + q̄)ψx2(p̄2) · · ·ψxn(p̄n)

]
Γc
ba1

[
iMca2···an (z, x2, · · · , xn)

∣∣
J=0

]
= (2π)4δ4(p̄1 + · · ·+ p̄n + q̄)R1/2

η

(
−Γc

ba1

)
iAca2···an (p̄1 + q̄, p̄2, · · · , p̄n) . (4.40)

Taking the soft limit, this reads

lim
q̄→0
Aa1···anb (p̄1, · · · , p̄n, q̄) ⊃ R1/2

η

(
−Γc

ba1

)
Aca2···an (p̄1, p̄2, · · · , p̄n) . (4.41)

Combining Eqs. (4.39) and (4.41), we obtain Eq. (4.36).

4.2.5 Revisiting Vanishing Curvature for Functional Geometry

We can gain some insight into why we are finding that functional geometry has zero
curvature (see Sec. 4.1.4) by comparing with the case of field space geometry. Consider
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the expression in Eq. (4.23) for the four-point amplitude written using field space
geometry. The amplitude is written as a sum of several terms, and each can be expressed
as a geometric quantity multiplied by kinematic dependence. Under a non-derivative
field redefinition, each term here is individually invariant. On the other hand, when a
derivative field redefinition is carried out, each term alone will no longer have a well-
defined geometric meaning. However, the total amplitude is of course still invariant. A
repackaged expression of Eq. (4.23) is desired to make this invariance manifest, which
would serve as a generalization of the field space geometry. This is what we hoped (and
failed) to accomplish by introducing functional geometry.

Taking a closer look at the expression in Eq. (4.23), we note that it contains two
types of geometric quantities: some of its terms are fully determined by the Riemann
curvature tensor, which is the intrinsic geometry of the field space manifold endowed
with the metric gab(ϕ), while others depend on external input functions on the manifold,
such as the potential V (ϕ). From this point of view, a generalization of the field space
geometry will repackage Eq. (4.23) still into these two types of geometric quantities,
under the new notion of geometry. Apparently, what the functional geometry picture
has done is to package everything into the second type. The intrinsic geometry is
trivialized since the curvature vanishes, and the amplitude is fully determined by an
external input function, namely the 1PI effective action Γ[ϕ].

4.3 Exploring Modified Source Terms

In this section we consider if modifications of the source term that appears in the path
integral can change the conclusions about the lack of curvature for functional geometry.
Modifications of the source term in the partition function change the off-shell behavior
of correlators but leave amplitudes invariant. This statement is a key feature of the
traditional argument for field redefinition invariance of amplitudes, see e.g. [4] and
App. A. The freedom to modify the source term has also been used by Vilkovisky
[60] and DeWitt [61, 63] to define specific effective actions whose correlators transform
covariantly with respect to transformations in field space; the same freedom may be
useful here for removing evanescent terms in configuration space.

We define a new partition function Z̃[J ], which differs from Eq. (2.1) by an addi-
tional source term δT [η, J ]:

Z̃[J ] ≡
∫
Dη eiS+iJxηx+iδT [η,J ] . (4.42)

We assume that δT [η, J ] has a smooth dependence on η, which admits the following
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functional expansion

δT = J̃ (1)
y1

(ϕ̃−η)y1+J̃ (2)
y1y2

(ϕ̃−η)y1(ϕ̃−η)y2+J̃ (3)
y1y2y3

(ϕ̃−η)y1(ϕ̃−η)y2(ϕ̃−η)y3+. . . (4.43)

where the coefficients J̃ (i) are η independent, but functionals of J . Note that ϕ̃ here is
a functional of J , which is implicitly determined through its definition

ϕ̃y ≡ ⟨ηy⟩δT,J ≡
∫
Dη ηy eiS+iJxηx+iδT∫
Dη eiS+iJxηx+iδT

. (4.44)

It is expected that the J̃ (i)
y1...yk are local, in that they are only supported when y1 = y2 =

. . . = yk, but the following analysis does not rely on this.
Therefore, Eq. (4.43) is an expansion of the η dependence about its quantum vev.

This is done to reduce the size of the ensuing expressions, and we can make this shift
without loss of generality. Eq. (4.43) could be rewritten as an expansion about η = 0:
as ϕ̃ is a functional of J , the ϕ̃ terms can be absorbed in Eq. (4.43) through redefinitions
of the J̃ (i), up to an η-independent phase which drops out of all correlators.8

We define a set of analogous tilded quantities that are modified with respect to the
quantities in previous sections due to the presence of the extra source terms:

D̃xy ≡ ⟨ηxηy⟩δT,J, conn , (4.45a)

−iM̃x1···xn ≡
(∏

i

D̃−1
xiyi

)
⟨ηy1 · · · ηyn⟩δT,J, conn , (4.45b)

G̃z
x1x2
≡ iD̃zy M̃yx1x2 , (4.45c)

∇̃y M̃x1···xn ≡
δ

δϕ̃y
M̃x1···xn −

n∑
i=1

G̃z
yxi
M̃x1···x̂iz···xn . (4.45d)

Working to first order in the extra source terms, any modified correlator can be ex-

8Note that the definition of ϕ̃y, Eq. (4.44), is self-referential, but it can be iteratively solved to an
arbitrarily high power of J and J̃ (i).
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panded in terms of unmodified ones

⟨(· · · )⟩δT,J ≡
∫
Dη (· · · ) eiS+iJxηx+iδT∫
Dη eiS+iJxηx+iδT

=

∫
Dη (· · · )(1 + iδT ) eiS+iJxηx∫
Dη (1 + iδT ) eiS+iJxηx

+O
(
δT 2
)

= ⟨(· · · )⟩J + ⟨(· · · )iδT ⟩J − ⟨(· · · )⟩J ⟨iδT ⟩J +O
(
δT 2
)
. (4.46)

By further expanding M̃, G̃, and ∇̃M̃ (which depend on products of correlators),
the linear dependence in δT of the quantities in Eq. (4.45) then follows. We test the
resulting modifications to the recursion relation by computing the difference

D = −i
(
∇̃x4 M̃x1x2x3 − M̃x1x2x3x4

)
, (4.47)

which is zero in the unmodified path integral. This gives

D =
{
J̃ (2)
y1y2,x4

+ 3J̃ (3)
y1y2x4

}
Dy1d1Dy2d2

(
iMd1d2f1D

f1f2Mf2x1x2x3 +Md1d2x1x2x3

−
[
Md1d2f1D

f1f2Mf2f3x1D
f3f4Mf4x2x3 − iMd1d2f1x1D

f1f2Mf2x2x3 + cycs
] )

−
{
J̃ (3)
y1y2y3,x4

+ 4J̃ (4)
y1y2y3x4

}
Dy1d1Dy2d2Dy3d3

×
(
iMd1d2d3f1D

f1f2Mf2x1x2x3 +Md1d2d3x1x2x3

−
[
Md1d2d3f1D

f1f2Mf2f3x3D
f3f4Mf4x1x2 − iMd1d2d3f1x1D

f1f2Mf2x2x3 + cycs
] )

−
[
3
{
J̃ (3)
y1y2x1,x4

+ 4J̃ (4)
y1y2x1x4

}
Dy1d1Dy2d2

×
(
Md1d2x2x3 + iMd1d2f1D

f1f2Mf2x2x3

)
+ cycs

]
− 6

{
J̃ (3)
x1x2x3,x4

+ 4J̃ (4)
x1x2x3x4

}
+ [terms ∝ derivatives of J̃ (4)] + [terms ∝ J̃ (i) for i > 4] +O

(
δT 2
)
, (4.48)

where ‘cycs’ refers to the terms generated by cyclically permuting x1, x2, x3, and an
index after a comma denotes a functional derivative with respect to ϕ̃, for example
J̃
(2)
y1y2,x4 ≡ δ

δϕ̃x4
J̃
(2)
y1y2 . (The underlining in this expression has no mathematical meaning

and will be used simply to identify terms in the discussion below.)
We note that the non-zero right-hand side of Eq. (4.48) cannot be wholly absorbed

by a redefinition of the “connection” G̃z
x1x2
→ G̃z

x1x2
+ δG̃z

x1x4
, for some δG̃z

x1x2
linear in
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δT . This redefinition would exclusively generate terms of the form −δG̃z
x1x4
Mzx2x3 +

cycs. However, the underlined terms in Eq. (4.48) do not contain a piece Mzx2x3 for
some dummy index z, so they could not be set to zero by such a redefinition.

Nonetheless, the parts of D shown in Eq. (4.48) can be set to zero for J̃ (i) satisfying
the conditions

J̃ (2)
y1y2,y3

+ 3J̃ (3)
y1y2y3

= O
(
δT 2
)
, (4.49a)

J̃ (3)
y1y2y3,y4

+ 4J̃ (4)
y1y2y3y4

= O
(
δT 2
)
. (4.49b)

These describe some necessary conditions that additional source terms must satisfy to
maintain the recursion relation between correlators. These modifications, in analog
with the Vilkovisky and DeWitt effective actions, have the potential to change the
transformations of correlators under field redefinitions. This leaves open the exciting
possibility that a judicious choice of J̃ (i) can remove the evanescent terms in G and
M, which prevent a clear geometric interpretation of this formalism. We leave this for
future work.

5 Conclusions and Outlook

In this paper, we provided a new perspective on the covariance properties of generalized
amplitudes under field redefinitions. We proved a result that connects the transforma-
tion properties of the 1PI effective action to the transformation of the generalized
amplitudes, which we called the transformation lemma. We then showed that this re-
sult can be applied to demonstrate the invariance of on-shell amplitudes under field
redefinitions for scalar field theories up to one-loop order.

The covariance properties of these objects is highly suggestive of an underlying
geometric interpretation, that we refer to as functional geometry. We explored the
ways in which this functional geometry construction succeeds and where it does not.
In particular, the curvature invariants (as computed by naively following the strategy
for Riemannian geometry) vanish, and it is currently unclear if a modified approach
(for example, adjusting the source term in the path integral) can resolve this issue.
Nonetheless, we showed that the functional geometry does reduce to the field space
geometry in the appropriate limits, which provides some evidence that this approach
is on the right track. See also [104] for recent progress on using n-particle irreducible
effective actions to study a geometric interpretation.

Generally speaking, any improved understanding of field redefinition freedom in
quantum field theory improves our understanding of the physical content of its La-
grangian. It also provides insight into the intricate structure of its amplitudes, which
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project out these field redefinition redundancies in a non-trivial way. There are many
open questions that we would like to explore in the future.

We expect that the condition on the transformation of the effective action, Eq. (3.2),
should hold to all orders in perturbation theory. Since we have only shown this up to
one loop, it would be very interesting to understand how this holds at two loops (and
beyond), which could help lead to an all-orders result. It is possible that a looser
assumption than Eq. (3.2) would still result in the transformation of the correlator
given in Eq. (3.3); understanding the minimal possible conditions on the transformation
of the effective action could further constrain the edge cases of the allowed space of
field redefinitions. It would also be useful to extend our results explicitly to fermionic
theories, as well as to understand how the gauge redundancy in gauge theories (whose
behavior is in many ways similar to the field redefinition freedom in an ungauged theory)
can be included in our framework.

It is worth considering the assumptions we have imposed on the possible space of
field redefinitions. In principle, the transformation lemma, Eq. (3.3), holds for any
invertible, infinitely differentiable (i.e. smooth) functional ϕ[ϕ̃]. However, in order for
the “evanescent term” U to be projected out in the amplitude by LSZ reduction, we
have assumed many properties in our treatment of the on-shell states. In particular,
in Sec. 2.2, we assume properties of the pole structure of two-point correlator (whence
the usual restriction that field redefinitions should be local, in order not to disturb said
pole structure), as well as Poincaré invariance. This latter requirement of preserving
spacetime symmetry is unnecessary, and there are many examples of non-Poincaré
invariant field theories that have a well-defined S-matrix. It would be interesting to
extend the results of this paper to such non-Poincaré invariant theories.

One interesting intermediate step would be to define the wavefunctions ψ for J ̸= 0,
and therefore define a J-dependent amplitude via the LSZ reduction formula Eq. (2.27),
which would describe scattering about an arbitrary spatially-dependent background.
Understanding the background dependence could be useful for investigating various IR
constraints on EFTs. Knowing the J-dependence of the amplitude would also allow
us to write a functional recursion relation for the amplitudes themselves, i.e., A in
addition to M, which could serve as a generalization of the expressions in [77] away
from the soft and spatially constant background limit.

Finally, the true nature of the functional geometry remains to be discovered. Per-
haps this can be accomplished by finding the appropriate source term in the path
integral as explored above. Another approach would be to find a way to quotient out
the evanescent terms in order to construct the functional manifold directly. It would
also be fascinating to understand if there is a connection between functional geometry
and recent progress understanding EFTs in terms of Lagrange space [88] and/or jet
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bundles [89, 90]. Clearly, we have only begun to address some of the most fundamental
questions regarding the connections between EFTs and geometry.
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Appendix

A Amplitude Invariance From the Path Integral

In this appendix, we briefly review the argument for amplitude invariance under field
redefinitions from the path integral point of view. This is largely repeating Section 6.2
in [4]. We include this appendix to make this paper self-contained.

To compute the amplitudes for a theory given by S[η], one can start with the
generating functional W [J ] defined in Eq. (2.1):

eiW [J ] ≡
∫
Dη exp

{
iS[η] + i

∫
d4x J(x)η(x)

}
, (A.1)

which generates the connected correlation functions. Making an integration variable
change

η = f
[
η̃
]
, (A.2)

we get the same quantity rewritten as

eiW [J ] =

∫
det

(
δη

δη̃

)
D η̃ exp

{
iS
[
f
[
η̃
]]

+ i

∫
d4x J(x)f

[
η̃
]
(x)

}
=

∫
D η̃ exp

{
i

(
S
[
f
[
η̃
]]
− i log det

(
δη

δη̃

))
+ i

∫
d4x J(x)f

[
η̃
]
(x)

}
. (A.3)

Now, consider a slightly different generating functional W1[J ]:

eiW1[J ] =

∫
D η̃ exp

{
i

(
S
[
f
[
η̃
]]
− i log det

(
δη

δη̃

))
+ i

∫
d4x J(x)η̃(x)

}
, (A.4)
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where the difference is due to the last term in the exponent. As W1[J ] ̸= W [J ], it
generates a set of connected correlation functions that are different from the original
theory S[η]. However, the only difference between W1[J ] and W [J ] is how the source
field J(x) is coupled to the theory:∫

d4x J(x) f
[
η̃
]
(x) versus

∫
d4x J(x) η̃(x) . (A.5)

In such cases, for legitimate field redefinitions f
[
η̃
]
, it is understood [3, 4] that upon

the LSZ reduction procedure, they yield the same on-shell amplitudes. Therefore, we
see from Eq. (A.4) that for the purposes of computing the on-shell amplitudes for the
theory S[η], one can alternatively work with a new theory given by the action S̃[η̃]:

S̃[η̃] = S
[
f
[
η̃
]]
− i log det

(
δη

δη̃

)
. (A.6)

Note that the second piece from the Jacobian is one-loop sized. For tree-level calcu-
lations, one can ignore it and simply use the first term above as the new theory. For
loop-level calculations, if one works with dimensional regularization, the second piece
above also vanishes due to it being a scaleless integral (except for anomalous fermion
chiral transformations); see e.g. Ref. [3] for more detailed discussions. In this paper,
to make our statement independent of the choice of regularization scheme, we keep the
second piece above for the loop-level discussions.
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