
A PYTHON API FOR THE PARTICLE TRACKING CODE PLACET
A. Pastushenko∗, D. Schulte, A. Latina, CERN, Geneva, Switzerland

Abstract
The tracking code PLACET is widely used in the linear

collider community to simulate the beam dynamics. It is a
powerful tool for analyzing the static and dynamic imper-
fections in the lattice and has many built-in correction tech-
niques. The original PLACET code was written in C with
a Tcl interface. Detailed data analysis, including plotting is
often performed with other programming languages, primar-
ily Python. This paper describes the project of the Python
application programming interface (API) for PLACET.

INTRODUCTION
PLACET is a tracking code originally developed by Daniel

Schulte [1] and currently maintained by a dedicated team at
CERN. The code simulates beam dynamics under static and
dynamic imperfections, including both single- and multi-
bunch effects, and serves as the main tool for simulating the
Drive Beam and Main Beam of CLIC. PLACET is designed
as a standalone application, written in C and C++ and ac-
cessed via an interface in Tcl/Tk. To better facilitate data
analysis and representation, the original Tcl interface was ex-
tended [2] with Octave and Python using SWIG (Simplified
Wrapper and Interface Generator) [3].

In this format, one sets up the beamline, initiates the
beams, performs the tracking, and applies corrections using
native Tcl commands. For additional functionality, Octave
and Python capabilities can be utilized. Some Tcl commands
have also been extended to work from within the interface,
primarily in Octave. However, the embedded interfaces
present a couple of disadvantages:

• Limited flexibility: Since the primary interface is still
TCL, users may be limited in their ability to take ad-
vantage of Python’s full range of features and libraries.

• Less streamlined process: Users need to switch be-
tween the Tcl and Python environments, potentially
affecting the development process’s efficiency.

This paper introduces a new software solution that offers
an alternative approach integrating PLACET and Python.
Instead of embedding a Python interface inside the Tcl envi-
ronment, the proposed solution implements PLACET with
Tcl interface as a Python package.

MOTIVATION AND DESIGN GOALS
Python is a general-purpose language with a large ecosys-

tem of libraries and tools for data processing, visualization,
and machine learning. It is one of the most popular program-
ming languages used worldwide. The key features of Python
in comparison to Tcl are:
∗ andrii.pastushenko@cern.ch

• Access to Python libraries and tools: Python has a
vast ecosystem of libraries and tools that can be used to
enhance the functionality of the software, such as data
visualization or machine learning.

• Greater flexibility: Python is a more flexible language
than Tcl, which can make it easier to modify and extend
the software as needed.

In order to benefit from these advantages, we develop a
software that:

1. is a Python package.
2. is lightweight and does not require any PLACET modi-

fications.
3. provides an intuitive user experience.
This approach involves implementing the software in a

format where PLACET runs as a background process and
is accessed through pipes. Alternatively, one could use the
native PLACET code and modify it to use Python instead
of Tcl. While that may be a more comprehensive solution,
it would require rewriting PLACET on a wide scale, which
would demand significantly more time and human resources.

OVERVIEW
The Python package placetmachine has been created

and is available at [4]. It is actively being improved, with
more PLACET commands being added. The package in-
cludes the key class Machine and two smaller sub-packages,
as shown in Fig. 1.

placetmachine.placet
This sub-package forms the actual interface between the

PLACET process and Python, constructing the correspond-
ing API, namely placetmachine.placet. The PLACET
commands, including some key Tcl ones, have their counter-
parts in the Placet class. When a command is executed in
Python, it creates a request in the correct format for PLACET.
The process executes the request, and the result is read and
sent back to Python. So far, 49 commands have been trans-
formed into Python and included in Placet. These com-
mands mostly include the ones used to perform the Beam
Based Alignment (BBA) and emittance tuning studies for
the CLIC 380 GeV machine [5].

To spawn PLACET as the child process in the interactive
mode, the pexpect module is used. The Communicator
class handles the data transfer to and from the PLACET
process spawned with pexpect. With additional classes
they form the Placet class in placetmachine.placet.

Though it is possible to write scripts in pure Python
using this package, doing so would be inefficient. Also,
since Tcl itself is also a scripting language, there is no need
to wait for the process to terminate to get results. Thus,
placetmachine can be used with tools like Jupyter.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL100

MC5.D02: Non linear Single Particle Dynamics Resonances, Tracking, Higher Order, Dynamic Aperture, Code Deve

3337

WEPL: Wednesday Poster Session: WEPL

WEPL100

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

Figure 1: Class diagram of placetmachine package.

placetmachine.lattice

The second sub-package is placetmachine.lattice.
It is used to store the beamline and element properties.
The need for this package arises from the desire to have
data easily accessible. For example, running the command
ElementGetAttribute thousands of times could signif-
icantly slow down the execution. It is also driven by the
design choices that will be discussed later.

placetmachine

The key part of the package is the Machine class. It fea-
tures functions to create the beamline, create beams, assign
static errors, perform tracking, and apply corrections. It mod-
ifies some aspects of PLACET usage that are, by default, in
Tcl. In PLACET, users must define so-called surveys that
tell PLACET how to displace elements before performing
tracking. If a survey is not specified, no beamline errors
are applied, even if the elements are displaced initially. It is
common practice to save beamline alignments every time
tracking or correction is done, so they can be used as a
survey for the next tracking or correction. It is also com-
mon to simulate many beamlines at once by specifying the
parameter machines. To keep track of the changes to the
beamline, users must define a custom survey function and
explicitly save the positions file. In Machine, we aimed to
include these and other similar routines to allow them to be
performed automatically, streamlining the code as much as
possible. The changes include:

• The number of simulated machines is always 1. If
more machines need to be simulated in parallel, a new
instance of Machine can be created.

• The surveys for tracking and corrections are read from
files generated prior to execution by a Beamline at-
tached to the Machine.

• After performing a correction, the misalignments inside
PLACET and Beamline are synchronized.

USAGE
Installation

The package can be accessed at the Gitlab repository
at [4]. Instructions on how to install it are provided in the
repository.

Functions Available in the Machine Class
The full list of functions in the Machine class is available

in the dedicated repository. In this section, we will highlight
the key functions implemented so far:

• create_beamline(): Creates the beamline and at-
taches it to the Machine instance.

• import_beamline(): Imports an existing beamline
and attaches it to the Machine instance.

• make_beam_slice_energy_gradient(): Creates a
sliced beam.

• assign_errors(): Applies static imperfections to
the lattice.

• track(): Tracks the beam using the
TestNoCorrection command from PLACET.

• one_2_one(): Applies the one-to-one steering cor-
rection using the TestSimpleCorrection command
from PLACET.

• RF_align(): Realigns the accelerating struc-
tures using the wake monitors with the
TestMeasuredCorrection command from
PLACET.

• eval_twiss(): Evaluates the Twiss functions along
the beamline using the TwissPlotStep command
from PLACET.

• eval_orbit(): Evaluates the beam orbit along the
beamline using the BpmReadings command from
PLACET.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL100

3338

MC5.D02: Non linear Single Particle Dynamics Resonances, Tracking, Higher Order, Dynamic Aperture, Code Deve

WEPL100

WEPL: Wednesday Poster Session: WEPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

Example Scripts
Listing 1 demonstrates how how to perform beam track-

ing with the Machine class. First, we create a new instance
with default parameters, which starts the PLACET process
running in the background. Second, we create the beam-
line from a file containing the lattice in PLACET format
using the create_beamline() function. This creates a
Beamline object that is an attribute of the Machine and
can be accessed as a clic.beamline. We assign a name to
the beamline (name = "ml") and setup up the cavity param-
eters, such us dimensions, phase, etc., which are required for
wake kick estimations. Next, we create the beam using the
make_beam_slice_energy_gradient() function. Sim-
ilar to PLACET, we set the name, provide the number of
slices, number of macroparticles per slice, energy and energy
gradient offsets, error seed, beam emittance, beta functions,
etc. Finally, the track() function tracks the beam through
the beamline and returns a pandas.DataFrame with the
the name of the beamline and the beam used, as well as the
horizontal and vertical emittances.

Listing 1: Particle tracking for the error-free lattice
1 import placetmachine as pl
2
3 clic = pl. Machine ()
4
5 clic. create_beamline (" ml_beamline .tcl", name = "

ml", cavities_setup = {...})
6
7 beam = clic. make_beam_slice_energy_gradient ("

main_beam ", 11, 5, 1.0 , 1.0 , 1111 , emitt_x =
8.0 , emitty = 0.1 , ..)

8
9 perfect_line = clic. track (beam)

The Listing 2 shows how to perform a simulation of the
one-to-one steering applied to a beamline with randomly
distributed static misalignments 100 times. In the for loop,
we use the assign_errors() function that misaligns the
elements in the current beamline according to the PLACET
built-in survey. In this case, "default_clic" corresponds
to the Clic survey in PLACET. The RMS values of the
misalignments are given as a dictionary of errors. For ex-
ample, ’quadrupole_x’ is the RMS error of the horizontal
alignment of quadrupoles and ’bpm_x’ is the RMS error of
the horizontal alignment of BPMs. The function also accepts
the parameters of the girder alignment (’scatter_y’ and
’flo_y’). The one-to-one steering is performed with the
one_2_one() function. It requires the name of the beam
to be used in the tracking and accepts many extra parame-
ters, such as ’bpm_resolution’, which defines the BPMs
resolution for the one-to-one steering.

Listing 2: Particle tracking and one-to-one steering
1 import pandas as pd
2
3 ...
4
5 errors = {
6 ’quadrupole_x ’: 14.0 ,
7 ’bpm_x ’: 14.0 ,
8 ...
9 }

10 for i in range (100) :
11 clic. assign_errors (" default_clic ",

static_errors = errors , scatter_y =
12.0 , flo_y = 5.0)

12
13 summary = clic. track (beam)
14 one2one = clic. one_2_one (beam , bpm_resolution

= 0.1)
15 summary = pd. concat ([summary , one2one])

SUMMARY AND OUTLOOK
In this paper, we introduced the placetmachine Python

package as an alternative interface for the PLACET parti-
cle tracking software. The package streamlines the pro-
cess of setting up, running, and analyzing simulations
with PLACET, while taking adantage of Python’s extensive
ecosystem. It includes essential features for managing beam-
lines, creating and tracking particle beams, and applying
correction methods. Future developments will focus on in-
corporating more PLACET commands and adapting various
correction routines (DFS, RF alignment, etc.) for Python.
Ultimately, placetmachine aims to provide a comprehen-
sive user-friendly solution to access PLACET.

REFERENCES
[1] D. Schulte, “PLACET: A Program to Simulate Drive Beams”,

in Proc. EPAC’00, Vienna, Austria, Jun. 2000, paper
TUP7B05, pp. 1402–1404.

[2] A. Latina, Y. I. Levinsen, D. Schulte, and J. Snuverink, “Evo-
lution of the Tracking Code PLACET”, in Proc. IPAC’13,
Shanghai, China, May 2013, paper MOPWO053, pp. 1014–
1016.

[3] Simplified Wrapper and Interface Generator, https://www.
swig.org/.

[4] Placetmachine, https://gitlab.cern.ch/apastush/
Placetmachine/.

[5] A. Pastushenko and D. Schulte, “Emittance tuning bumps for
the Main Linac of CLIC 380 GeV”, presented at the IPAC’23,
Venice, Italy, May 2023, paper THPL087, this conference.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPL100

MC5.D02: Non linear Single Particle Dynamics Resonances, Tracking, Higher Order, Dynamic Aperture, Code Deve

3339

WEPL: Wednesday Poster Session: WEPL

WEPL100

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

