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Abstract. We discuss the implications of b → sℓ+ℓ− measurements and their deviations with
respect to the Standard Model predictions in a model-independent framework. We highlight in
particular the impact of the recent updated measurements including the updated Bs → ϕµ

+µ−

branching ratios and angular observables, the recent CMS measurement of the branching ratio
of Bs → µ

+µ−, and the LHCb measured lepton flavour universality violating ratios RK0
S

and
RK∗+ . In addition, we check the compatibility of the new physics effect for the theoretically
clean observables with the rest of the neutral B decays observables.

1 Introduction

In the last few years, since the measured deviation
in the angular observable P′5 of the B → K∗µ+µ−

decay [1], there have been several measurements
in neutral B-decays indicating tension with the
Standard Model (SM). Updated measurements by
LHCb for the P′5(B → K∗µ+µ−) have persistently
shown tension with the SM which can be explained
with short distance new physics (NP) contribu-
tions [2, 3]. This is also the case of the overall
B→ K∗µ+µ− angular observables and is supported
in addition (see e.g. [4]) by the angular analysis
of its isospin partner in the recent measurement of
B+ → K∗+µ+µ− [5]. The Bs → ϕµ

+µ− branch-
ing fraction [6–8] also indicates tensions with the
SM and is measured to be below the SM predic-
tion. This trend is seen in several other b → sℓ+ℓ−

branching fractions such as B → Kµ+µ− [9] and
Λb → Λµ

+µ− [10]. Since the branching fractions
are dependent on the relevant local form factors,
they suffer from large theoretical uncertainties. In
contrast, the angular observables have a reduced
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sensitivity to the form factor uncertainties, but they
are still dependent on the non-local hadronic con-
tributions whose size are not fully known in QCD
factorisation. Consequently the significance of the
anomalies are dependent on the estimated size of
the non-local effects. Recent theoretical progress
for a better control of these effects can be found in
Refs. [11–13].

A set of observables to test lepton flavour uni-
versality violation (LFUV) in b → sℓ+ℓ− transi-
tions is defined as RH = (B → Hµ+µ−)/(B →
He+e−) with H = K+,K∗, ϕ, ... [14]. Unlike the
observables mentioned in the previous paragraph,
these ratios are very precisely known in the SM.
There have been signs of deviation from the SM
in the LFUV ratios for the case of RK [15–17]
and RK∗ [18]. The recent measurements of RK0

S
and RK∗+ [19] although within 2σ of the SM pre-
diction, show the same trend as their isospin part-
ners with the central values below the SM predic-
tions. Incidentally, there have also been a slight
sign of LFUV in flavour changing neutral current
processes in the Kaon sector [20] (currently the ex-
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Figure 1. Two dimensional likelihood plot of BR(Bs,d →

µ+µ−).

perimental uncertainty is quite large for these pro-
cesses).

The significance of each of the B-anomalies,
individually is around ∼ 2 − 3σ, however collec-
tively they can be explained by common NP sce-
narios and have a much larger significance in a
global analysis [21–26].

Another precisely predicted observable with an
uncertainty of less than 5% in its SM prediction
is BR(Bs → µ

+µ−) which has been measured by
several experiments. Previous measurements of
ATLAS [27], CMS [28] and LHCb [29, 30] were
in about 2σ tension with the SM prediction [21].
However, the situation has changed with the recent
data from CMS [31]. For our fits, we combined the
ATLAS [27] and LHCb [29, 30] results together
with the recent CMS [31] measurement, consider-
ing a joint 2D likelihood as shown in Fig 1. We
obtained the experimental combined value of the
Bs → µ

+µ− branching ratio to be

BR(Bs → µ
+µ−)comb.

exp =
(
3.52+0.32

−0.30

)
× 10−9 , (1)

which is within 1σ of the SM prediction.

2 Coherence of clean observables
with the rest of the rare B-decay
observables

In order to examine the consistency of the impli-
cation of the clean observables for new physics as
compared to the rest of the observables [32, 33],
we perform two sets of fits; one to the clean ob-
servables where we consider RK ,RK∗ as well as
their isospin partners RK0

S
and RK∗+ [19] and also

BR(Bs,d → µ
+µ−), and another one considering the

rest of the bsℓℓ observables. The observable calcu-
lations and the χ2 fitting is done using the SuperIso
public program [34–38].

2.1 Clean observables

In table 1 we give the one-dimensional NP fits to
clean observables and compare them with our 2021
fit results [21]. Compared to Ref. [21], we now
include the two LFUV ratios RK0

S
and RK∗+ [19] as

well as the RK measurement by Belle [39] in the
[1,6] GeV2 bin and the updated combination for
BR(Bs → µ

+µ−) as given in Eq. (1).

Figure 2. The prediction of RK(∗) and BR(Bs → µ
+µ−)

within 1σ
(
=
√
σ2

th + σ
2
exp

)
of their measured values. On

the lower plot we have the zoomed-in version of the up-
per plot. The dark gray band indicates the 1σ region cor-
responding to the updated combination of BR(Bs → µµ)
and the lighter gray region (on the lower plot) with the
dotted borders corresponds to the 2021 combination.
The yellow diamond indicates the best fit value to RK(∗) ,
while the green plus sign (gray cross) corresponds to
the best fit point when the 2022 (2021) combination for
BR(Bs → µµ) is included in the fit.
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Only LFUV ratios and Bs,d → ℓ
+ℓ−

2021 fit results (χ2
SM = 28.19)

b.f. value χ2
min PullSM

δC9 −1.00 ± 6.00 28.1 0.2σ

δCe
9 0.80 ± 0.21 11.2 4.1σ

δCµ9 −0.77 ± 0.21 11.9 4.0σ

δC10 0.43 ± 0.24 24.6 1.9σ

δCe
10 −0.78 ± 0.20 9.5 4.3σ

δCµ10 0.64 ± 0.15 7.3 4.6σ

δCe
LL 0.41 ± 0.11 10.3 4.2σ

δCµLL −0.38 ± 0.09 7.1 4.6σ

Only LFUV ratios and Bs,d → ℓ
+ℓ−

2022 fit results (χ2
SM = 30.63)

b.f. value χ2
min PullSM

δC9 −2.00 ± 5.00 30.5 0.4σ

δCe
9 0.83 ± 0.21 10.8 4.4σ

δCµ9 −0.80 ± 0.21 11.8 4.3σ

δC10 0.03 ± 0.20 30.6 0.1σ

δCe
10 −0.81 ± 0.19 8.7 4.7σ

δCµ10 0.50 ± 0.14 16.2 3.8σ

δCe
LL 0.43 ± 0.11 9.7 4.6σ

δCµLL −0.33 ± 0.08 12.4 4.3σ

Table 1. Comparison of the fits to clean observables with the 2021 fit results [21] on the left and the updated 2022 fits
on the right.

All observables except LFUV ratios and Bs,d → ℓ
+ℓ−

2021 fit results (χ2
SM = 200.1)

b.f. value χ2
min PullSM

δC9 −1.01 ± 0.13 158.2 6.5σ

δCe
9 0.70 ± 0.60 198.8 1.1σ

δCµ9 −1.03 ± 0.13 156.0 6.6σ

δC10 0.34 ± 0.23 197.7 1.5σ

δCe
10 −0.50 ± 0.50 199.0 1.0σ

δCµ10 0.41 ± 0.23 196.5 1.9σ

δCe
LL 0.33 ± 0.29 198.9 1.1σ

δCµLL −0.75 ± 0.13 167.9 5.7σ

All observables except LFUV ratios and Bs,d → ℓ
+ℓ−

2022 fit results (χ2
SM = 221.8)

b.f. value χ2
min PullSM

δC9 −0.95 ± 0.13 185.1 6.1σ

δCe
9 0.70 ± 0.60 220.5 1.1σ

δCµ9 −0.96 ± 0.13 182.8 6.2σ

δC10 0.29 ± 0.21 219.8 1.4σ

δCe
10 −0.60 ± 0.50 220.6 1.1σ

δCµ10 0.35 ± 0.20 218.7 1.8σ

δCe
LL 0.34 ± 0.29 220.6 1.1σ

δCµLL −0.64 ± 0.13 195.0 5.2σ

Table 2. Comparison of the fits to all observables except the clean ones with the 2021 fit results on the left and the
updated 2022 fits on the right.

While the significance of NP in Ce,µ
9 or Ce

10
has slightly increased, the Cµ10 solution is now less
favoured compared to the 2021 results [21]. This
is expected as the new combination of BR(Bs →

µ+µ−) is now in much better agreement with the
SM prediction and constrains more Cµ10. The inclu-
sion of BR(Bs → µ

+µ−) in this set of observables
is crucial in breaking the degeneracy between NP
in δCµ9 and δCµ10 for explaining the measured val-
ues of the LFUV ratios as can be clearly seen in
figure 2 where without BR(Bs → µ

+µ−) the best fit
point of RK(∗) is given by the yellow diamond while
including it moves the best fit value to the green
plus sign. The impact of the updated value of the
BR(Bs → µ

+µ−) can bee seen in the lower plot by
comparing the green plus sign with the gray cross
corresponding to the best fit point when the 2021
combination for BR(Bs → µ

+µ−) was considered.

2.2 All except the clean observables

We consider now the 1-dimensional NP fits to the
rest of the observables, excluding the LFUV ratios
and Bs,d → ℓ

+ℓ−. We assume 10% power correc-
tion for the non-factorisable contributions beyond
QDC factorisation [40–43]. Compared to Ref. [21]
we use the updated LHCb results for the Bs →

ϕµ+µ− observables [7, 8] with 8.4 fb−1 of data. The
CMS measurement for FH(B+ → K+µ+µ−) [44]
and the LHCb measurement of the angular observ-
ables of B → K∗e+e− [45] have also been consid-
ered. As can be seen in table 2, the hierarchy of the
preferred NP contributions is similar to the 2021
results, where the most preferred scenarios are still
NP in lepton flavour violating δCµ9 and NP in lepton
flavour universal δC9 with the third most preferred
description given by NP in the chiral basis δCµLL.
The above mentioned scenarios however are show-

3

EPJ Web of Conferences 289, 01002 (2023)   https://doi.org/10.1051/epjconf/202328901002
FCCP2022



ing a ∼ 0.4σ reduced significance compared to our
2021 results which is mainly due to the updated
Bs → ϕµ

+µ− experimental data.
For the fit to all observables except the clean

ones there is no significant indication for NP within
the electron sector since not only the measurements
in the electron sector are in good agreement with
their SM predictions, there are also far less data
compared to the decays with muons. Comparing
the result of table 2 with the result of the previ-
ous subsection (table 1) we see that there is not
a full agreement for the preferred scenarios, how-
ever, there are common scenarios such as NP con-
tributions to δCµ9 [46, 47] which have a large sig-
nificance for both datasets with best fit points that
agree within 1σ.

The compatibility of the two-dimensional NP
fits to “clean observables” and the NP fits to “all
observables except the clean ones” can be seen in
figure 3 where also the significant impact of includ-
ing or removing BR(Bs → µ

+µ−) from each dataset
is clearly visible, especially for the clean observ-
ables.

Figure 3. Two-dimensional fits to the clean observables
(top) and to the rest of the observables (bottom).

3 Global fits to all b→ sℓ+ℓ−

observables

For a global analysis of the NP implications of rare
B-decays, we need to take into account all rele-
vant b → s decays combining the datasets of sec-
tion 2.1 and section 2.2. We assume 10% error for
the power corrections when applicable.

3.1 One- and two-dimensional fits

The 1-dim NP fits to the rare B-decays are given
in table 3. As anticipated from the comparison of
the fits to clean observables and the rest of the ob-
servables, the most favoured scenario to explain
the overall data is lepton flavour violating NP in
δCµ9 . The other prominent scenarios are NP in δCµLL
followed by lepton flavour universal NP in δC9.
While the hierarchy of the favoured scenarios has
not changed, it should be noted that NP in δCµ10
is now less favoured which is mostly due to the
updated combination for BR(Bs → µ

+µ−). This
can also be seen in the decrease of the significance
of δCµLL compared to the 2021 fit results. The de-
crease of preference of NP in δCµ10 can also be seen
in the 2-dim fits of figure 4.

In the 1-and 2-dim fits of table 3 and fig-
ure 4 we have not shown the NP fits to the ra-
diative coefficient δC7, the scalar and pseudoscalar
coefficients (δCQ1,2 ) or the coefficients where the
hadronic currents are right-handed (δC′i ) since they
are all strongly constrained by data. The situation
can in principle change when several coefficients
can simultaneously contribute, this is clearly the
case when doing a simultaneous fit to δCµ10 and
δCµQ1,2

[48] which would otherwise be severely con-
strained by BR(Bs → µ

+µ−) if only one single co-
efficient would contribute.

3.2 Multidimensional fit

A multidimensional fit gives in principle a more
realistic picture than assuming new physics contri-
bution to only a single coefficient, as it is very un-
likely for a UV-complete scenario to merely affect
one coefficient while the rest of the coefficients are
kept to their SM values. Therefore, here we con-
sider a 20-dim fit varying all relevant Wilson coef-
ficients (table 4). Besides being more realistic, this
multidimensional fit has the advantage of avoiding
the look elsewhere effect (LEE) since LEE not only
takes place when one makes a selected choice of
observables but is also relevant in the case when
a posteriori a subset of specific NP directions are

4
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All observables
2021 fit results (χ2

SM = 225.8)

b.f. value χ2
min PullSM

δC9 −0.99 ± 0.13 186.2 6.3σ

δCe
9 0.79 ± 0.20 207.7 4.3σ

δCµ9 −0.95 ± 0.12 168.6 7.6σ

δC10 0.32 ± 0.18 222.3 1.9σ

δCe
10 −0.74 ± 0.18 206.3 4.4σ

δCµ10 0.55 ± 0.13 205.2 4.5σ

δCe
LL 0.40 ± 0.10 206.9 4.3σ

δCµLL −0.49 ± 0.08 180.5 6.7σ

All observables
2022 fit results (χ2

SM = 253.5)

b.f. value χ2
min PullSM

δC9 −0.95 ± 0.13 215.8 6.1σ

δCe
9 0.82 ± 0.19 232.4 4.6σ

δCµ9 −0.92 ± 0.11 195.2 7.6σ

δC10 0.08 ± 0.16 253.2 0.5σ

δCe
10 −0.77 ± 0.18 230.6 4.8σ

δCµ10 0.43 ± 0.12 238.9 3.8σ

δCe
LL 0.42 ± 0.10 231.4 4.7σ

δCµLL −0.43 ± 0.07 213.6 6.3σ

Table 3. Comparison of the fits to all observables with the 2021 fit results on the left and the updated 2022 fits on the
right.

Figure 4. Two-dimensional fit to all rare B-decay observables.

assumed which is circumvented when all possible
Wilson coefficients are varied. With a large set of
free parameters and the limited decay modes there
can be flat directions or non-sensitive NP coeffi-
cients that can be removed by considering the cor-
relations and likelihood profiles in order to get an

“effective” number of degrees of freedom (dofeff).
In the 20-dim fit we find degeneracy in δCe

10 and
δCe′

10 which results in having dofeff = 19. With the
current data, there are still several of the Wilson
coefficients which are only loosely constrained, es-
pecially in the electron sector where there is less
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All observables with χ2
SM = 225.8, nr. obs.= 173

2021 fit results (χ2
min = 151.6; PullSM = 5.5(5.6)σ)

δC7 δC8

0.05 ± 0.03 −0.70 ± 0.40

δC′7 δC′8
−0.01 ± 0.02 0.00 ± 0.80

δCµ9 δCe
9 δCµ10 δCe

10

−1.16 ± 0.17 −6.70 ± 1.20 0.20 ± 0.21 degenerate w/ ↓

δC′µ9 δC′e9 δC′µ10 δC′e10

0.09 ± 0.34 1.90 ± 1.50 −0.12 ± 0.20 degenerate w/ ↑

δCµQ1
δCe

Q1
δCµQ2

δCe
Q2

0.04 ± 0.10 −1.50 ± 1.50 −0.09 ± 0.10 −4.10 ± 1.5

δC′µQ1
δC′eQ1

δC′µQ2
δC′eQ2

0.15 ± 0.10 −1.70 ± 1.20 −0.14 ± 0.11 −4.20 ± 1.2

All observables with χ2
SM = 253.5, nr. obs.= 183

2022 fit results (χ2
min = 179.1; PullSM = 5.5(5.5)σ)

δC7 δC8

0.06 ± 0.03 −0.80 ± 0.40

δC′7 δC′8
−0.01 ± 0.01 −0.30 ± 1.30

δCµ9 δCe
9 δCµ10 δCe

10

−1.14 ± 0.19 −6.50 ± 1.90 0.21 ± 0.20 degenerate w/ ↓

δC′µ9 δC′e9 δC′µ10 δC′e10

0.05 ± 0.32 1.40 ± 2.30 −0.03 ± 0.19 degenerate w/ ↑

δCµQ1
δCe

Q1
δCµQ2

δCe
Q2

0.04 ± 0.20 −1.60 ± 1.70 −0.15 ± 0.08 −4.10 ± 0.9

δC′µQ1
δC′eQ1

δC′µQ2
δC′eQ2

−0.03 ± 0.20 −1.50 ± 2.10 −0.16 ± 0.08 −4.00 ± 1.2

Table 4. Comparison of 20-dim fit to all observables with the 2022 (2021) result on the right (left). The PullSM in the
parenthesis is given for dofeff = 19.

data. The significance of the NP in our 20-dim fit
is 5.5σ, remaining the same as what we had found
in Ref. [21].

4 Conclusions

We presented the NP fits to rare B decays which
include the recent measurements of Bs → ϕµ

+µ−

observables and the lepton flavour violating ra-
tios RK∗+ and RKS by LHCb. We have further-
more updated the BR(Bs → µ+µ−) combination
to include the very recent measurement by CMS.
The main change in the NP fits is a reduction for
the significance of a δCµ10 solution or the scenar-
ios involving it which is mainly due to the recent
BR(Bs → µ

+µ−) measurement being in agreement
with the SM value. However, the hierarchy of the
favoured scenarios for the global fit has remained
stable and the preferred scenario is still NP with
δCµ9 . We also updated our twenty dimensional fit
which avoids the look elsewhere effect finding a
5.5σ significance.
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