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Magneto-Thermal Thin Shell Approximation for 3D
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Nicolas Marsic, Arjan Verweij, and Sebastian Schöps

Abstract—For finite element (FE) analysis of no-insulation (NI)
high-temperature superconducting (HTS) pancake coils, the high
aspect ratio of the turn-to-turn contact layer (T2TCL) leads to
meshing difficulties which result in either poor quality mesh
elements resulting in a decrease of the solution accuracy or a
high number of degrees of freedom. We proposed to mitigate
this issue by collapsing the T2TCL volume into a surface and
using a so-called thin shell approximation (TSA). Previously, two
TSA have been introduced, one to solve the heat equation and
the other for an H⃗ − ϕ magnetodynamic formulation.

In this work, we propose to combine the magnetodynamic
and thermal TSA to create a coupled magneto-thermal TSA for
three-dimensional FE analysis. Particular attention is paid to
the detailed derivation of the coupling terms. In the context
of NI HTS pancake coils, the TSA represents the electric
and thermal contact resistance of the T2TCL. For the HTS
coated conductor (CC) itself, an anisotropic homogenization is
used which represents its multi-layered structure. In axial and
azimuthal direction, it resolves the current sharing between the
HTS and other layers of the CC. The coupled TSA formulation is
verified against a reference model with volumetric T2TCL. The
coupled TSA is shown to significantly reduce the solution time
as well as the manual effort required for high-quality meshes of
the T2TCL. The implementation is open-source and a reference
implementation is made publicly available.

Index Terms—no-insulation coil, thin shell approximation,
magneto-thermal analysis, H⃗ − ϕ formulation, finite elements

I. INTRODUCTION

No-insulation (NI) pancake coils [1] have no turn-to-turn
electrical insulation and are popular due to their high thermal
stability [2] resulting from a possibility for currents to bypass
local normal zones [3], [4]. Despite this, quenches are still
possible in NI coils [5], [6]. To this end, quench detection
and protection of NI coils require appropriate modeling and
analysis methods.
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Most commonly, simulations of NI coils are based on (dis-
tributed) network models; see [2] for a summary. For FE-based
simulations, two-dimensional (2D) axisymmetric techniques
based on a homogenization employing an anisotropic resistiv-
ity tensor have been proposed in 2020 [7]. More recently, in
2023, 2D axisymmetric models based on the Minimum Electro
Magnetic Entropy Production (MEMEP) method have been
studied [8].

However, NI coils commonly exhibit true three-dimensional
(3D) geometries and quenches are intrinsically local effects.
To comprehensively simulate quench, full 3D models are thus
desirable. These are difficult due to the current flow across
the turn-to-turn contact layer (T2TCL) [7], which has a high
aspect ratio [9]. In [10], classical FE models with volumetric
T2TCL have been used to study the AC loss of an NI pancake
coil. They were, however, restricted to sinusoidal sources and
lacking the thermal coupling. To ensure an accurate solution,
the T2TCL requires a high number of degrees of freedom
(DoF) in a classical FE method.

Recently, we proposed to collapse the T2TCL volumes to
surfaces using a so-called thin shell approximation (TSA).
First, a thermal TSA to represent thin insulation layers by
considering the heat equation was introduced in [9]. Second, a
magnetodynamic H⃗−ϕ TSA was used to study the charge and
discharge of NI coils in [11]. By replacing T2TCL volumes
with surfaces, no volumetric mesh of the thin layer is required.
This work proposes to combine the thermal TSA of [9] and the
magnetodynamic TSA of [11] to model T2TCL with magneto-
thermal T2TCL taking into account the coupling via i) non-
linear material relations and ii) Joule losses.

One-dimensional (1D) Lagrange elements are used to dis-
cretize both temperature and magnetic field strength across
the thickness of the T2TCL [12], [13]. As discussed in [14],
the choice of formulation is important for robust and efficient
simulations of systems with high-temperature superconduc-
tors (HTS). Since no ferromagnetic material exists in the
computational domain, the H⃗ − ϕ formulation is preferred
over A⃗ formulations. Special care is needed to treat multiply
connected domains, which is achieved using automatically
created cohomology basis functions [15]. The HTS coated
conductor (CC) is approximated by using a homogenization
with anisotropic material properties which represent the multi-
layered structure of the CC. In particular, the current sharing
between the HTS and other layers is resolved.

The magneto-thermal TSA is verified by comparison against
a volumetric T2TCL model. The TSA is shown to be a robust
alternative which produces accurate solutions with signifi-
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cantly reduced solution time and meshing effort. The source
code with the details of the formulation is made available [16].

Section II presents the volumetric T2TCL model with the
classical FE formulation. It is replaced with surface T2TCL
with the coupled magneto-thermal TSA formulation in Sec-
tion III with the derivation of the coupling terms. The model
parameters of a powering cycle simulation of an NI coil with
local defect and implementation details are summarized in
Section IV. The results of these simulations are detailed in
Section V. The major findings are summarized in Section VI.

II. MAGNETO-THERMAL FORMULATION

The computational domain Ω as depicted in Fig. 1 consists
of a conducting domain Ωc and a non-conducting domain Ωi.
The conducting domain consists of the bare homogenized CC
Ωc,b, the T2TCL Ωc,cl as well as the current leads. It is bounded
by ∂Ωc with outward normal vector n⃗c. The boundary of the
domain is denoted by ∂Ω = Γ with outward normal vector n⃗.
Furthermore, Γc denotes the terminals, i.e., the surfaces where
the current leads coincide with Γ, which allow a current or a
voltage source to be imposed.

Γ

Ωi
Ωc,b

Γc,cl
current leads

(a) Along main axis view.

Γc

Γc
Γ

current leads

ΩiΩc,b Ωc,cl

(b) Cross-section view.
Fig. 1. Computational domain Ω of the pancake coil with exterior boundary
∂Ω = Γ. It consists of an insulating domain Ωi and a conducting domain Ωc
which is divided into the bare CC Ωc,b, the T2TCL Ωc,cl and current leads.
The cross-section view in (b) is taken at the red dotted line shown in (a).

The weak formulation of the coupled magnetodynamic [15]
and thermal [17, Section 6.1.3.] problem is: From a solution
at time t = 0, find H⃗ ∈ Hϕ,I(curl,Ω) and T ∈ H1

g (Ωc) s.t.

(κ∇T,∇T ′)Ωc
+ (CV ∂tT, T

′)Ωc

=
(
ρ J⃗ · J⃗ , T ′

)
Ωc

∀T ′ ∈ H1
0 (Ωc) ,

(1)(
∂t

(
µH⃗
)
, H⃗ ′

)
Ω
+
(
ρ∇× H⃗,∇× H⃗ ′

)
Ωc

= 0 ∀H⃗ ′ ∈ Hϕ,0(curl,Ω) .
(2)

Herein, H⃗ is the magnetic field strength in Am−1, T the
temperature in K, κ the thermal conductivity in Wm−1 K−1,
CV the volumetric heat capacity in JK−1 m−3, ρ the electric
resistivity in Ωm, J⃗ = ∇ × H⃗ the electric current density
in Am−2 and µ the magnetic permeability in Hm−1. The
volume integral in Ω of the scalar product of the two arguments
is denoted by (·, ·)Ω. The coupling between (1) and (2) appears

in the Joule loss term, i.e., the right hand side of (1) as well
as in the temperature and field dependencies of the materials.

We considered the boundary conditions

n⃗× E⃗ = 0 on Γ
[18]⇒ n⃗ ·

(
µB⃗
)
= 0 on Γ, (3)

with the electric field E⃗ in Vm−1, the magnetic flux density
B⃗ = µH⃗ in T and

T = g on Γc, (4)
n⃗c · (κ∇T ) = 0 on ∂Ωc \ Γc, (5)

imposing the temperature on the terminals and adiabatic
conditions everywhere else. Furthermore, Hϕ,I(curl,Ω) is the
subspace of H(curl,Ω) with vanishing curl in Ωi and strongly
imposed source currents via cohomology basis functions [15].
Its subspace with zero current is Hϕ,0(curl,Ω). The subspace
of H1(Ωc) which fulfills the Dirichlet condition (4) is denoted
as H1

g (Ωc). Its subspace with g = 0 is H1
0 (Ωc).

To represent the layered structure of the CC, an anisotropic
resistivity is used inside Ωc,b. A local coordinate system
(u⃗, v⃗, w⃗) is introduced as shown in Fig. 2 with u⃗ in tangential
direction along the spiral winding, v⃗ in axial direction and w⃗
normal to the spiral winding. In the local coordinate system,
the resistivity reads

ρuvw|Ωc,b = diag (ρuu, ρvv, ρww) . (6)

In u⃗- and v⃗-direction, the layers of the CC are electrically
connected in parallel with the equivalent resistance

ρuu = ρvv =

(
fNC

ρNC,uu
+

fHTS

ρHTS

)−1

,

with fHTS the volume fraction of superconducting material in
the CC, fNC = 1 − fHTS the fraction of non-superconducting
materials (here, copper, silver, and Hastelloy®) and ρNC,uu the
equivalent parallel resistivity of non-superconducting materi-
als. The resistivity of the HTS is given by the power law, i.e.,

ρHTS =
Ec

Jc

(
∥J⃗HTS∥

Jc

)n−1

, (7)

with the critical electric field Ec = 10−4 Vm−1 and the fit
of the critical current density Jc

(
∥B⃗∥, T, θ

)
from [19] with θ

the angle between the tape wide surface and the B⃗-field. The
current flowing in the HTS layer J⃗HTS reads

J⃗HTS =
λ

fHTS

(
J⃗ · u⃗

)
u⃗+

λ

fHTS

(
J⃗ · v⃗

)
v⃗ +

(
J⃗ · w⃗

)
w⃗, (8)

where the current sharing index λ is the fraction of current
flowing in the HTS layer. A non-linear root-finding problem
needs to be solved as detailed in [20, Section III.D] and [11]
to find λ. All other parameters in (7) are presented in Table I.

In w⃗-direction, the equivalent series resistivity reads

ρww = fNC ρNC,ww + fHTS ρHTS,

with ρNC,ww the equivalent resistivity of the series connection
of the non-superconducting materials. In this work, Jc and
consequently ρHTS are assumed to be the same in w⃗ and u⃗− v⃗
direction, but different functions could be used.
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Ωc,b,TSA

T0 = T−

H⃗0
t = H⃗t,−

Γ0
c,cl = Γ

−
c,cl

Γ1
c,cl

Γ2
c,cl

w⃗

u⃗

v⃗

TN = T+

H⃗N
t = H⃗t,+

ΓN
c,cl = Γ

+
c,cl

Ω̂c,cl

w

χi

w0
w1

w2
w3

1

Fig. 2. One turn of the HTS pancake coil (top view): for the TSA approach,
the T2TCL is represented by a virtual domain Ω̂c,cl in which an internal FE
discretization is used to solve the magneto-thermal problem.

The material tensor ρuvw needs to be represented in the
Cartesian xyz coordinate system by using the transformation
matrix from the local uvw to the Cartesian coordinates

M = [u⃗(x, y, z), v⃗(x, y, z), w⃗(x, y, z)] , (9)

with u⃗, v⃗ and w⃗ understood as row vectors. In Cartesian
coordinates, the resistivity tensor then reads

ρ|Ωc,b = ρxyz|Ωc,b = M ρuvw|Ωc,b M
⊤. (10)

The non-linear system is linearized using a quasi Newton-
Raphson scheme where the derivatives of ρc,b w.r.t. J⃗ is
approximated using a finite difference scheme while all other
derivatives are neglected.

The discretization of the magnetodynamics problem for
pancake NI coils is discussed in detail in [11] while details for
the thermal problem are found in [9]. The coupled problem
is not discretized in a single monolithic linear system but two
linear systems are created, one for (1) and one for (2), which
are then solved sequentially inside the Newton-Raphson loop.

III. THIN SHELL FORMULATION

In order to treat the T2TCL in a magneto-thermal setting,
we propose to couple the TSA proposed in [9] and [11]. In
order to explain the coupling in detail afterwards, a summary
of these previous papers is presented here. The main focus,
however, is on the coupling of the two TSA.

First, the volumetric T2TCL Ωc,cl is replaced by a surface
Γc,cl as shown in Fig. 3. As Ωc,cl is thermally and electrically
conducting, the temperature and tangential magnetic field
strength are discontinuous in order to represent temperature
gradients and surface current densities. As proposed in [21],
this discontinuity is introduced using dedicated basis functions
for both T [9] and H⃗ [11], rather than on the mesh level
as proposed in [12]. Thanks to this choice, the thermal and
magnetodynamic TSA can use the same mesh avoiding the
need for interpolation between different meshes.

As shown in Fig. 2, T+ and T− with support restricted to
one of the two sides of Γc,cl are introduced as well as corre-
sponding test functions T ′

+ and T ′
−. The procedure is repeated

with the magnetic field strength yielding H⃗+, H⃗−, H⃗ ′
+, H⃗ ′

−.
This approach leads to additional surface contributions in the

Ωc,b

Ωc,cl

TSA

Ωc,b

Γc,cl

Fig. 3. HTS pancake coil (top view): for the TSA approach, the T2TCL
volume Ωc,cl (left) is collapsed into the T2TCL surface Γc,cl (right).

weak formulations (1) and (2) [9], [11]. These contributions
are used to consider an interface condition on Γc,cl.

This interface condition is built by an internal FE discretiza-
tion of the weak formulations (1) and (2). This discretization
takes place in the internal domain Ω̂c,cl which is a representa-
tion of the T2TCL Ωc,cl (see Fig. 2). To build the internal FE
discretization, a local coordinate system (u⃗, v⃗, w⃗) is used with
the same orientation as for the anisotropic material properties,
i.e., with u⃗ in tangential direction along the spiral, v⃗ in axial
direction and w⃗ along the normal direction of Γc,cl. The domain
Ω̂c,cl is subdivided into N layers Ω̂

(k)
c,cl for k = 1, ..., N with

Ω̂c,cl =
⋃N

k=1 Ω̂
(k)
c,cl and Ω̂

(k)
c,cl := Γ

(k)
c,cl × [wk−1, wk]. In each

Ω̂
(k)
c,cl , we make a product ansatz

H⃗|
Ω̂

(k)
c,cl

(u, v, w, t) =

k∑
j=k−1

H⃗j
t (u, v, t)χj(w) (11)

T |
Ω̂

(k)
c,cl

(u, v, w, t) =

k∑
j=k−1

T j(u, v, t)χj(w), (12)

where H⃗j
t is the tangential magnetic field strength on Γ

(j)
c,cl and

χj(w) the basis function along w⃗. The latter can be chosen to
match the simulation needs (including higher order functions).
In this work, we use first-order Lagrange basis functions

χk−1(w) =
wk − w

wk − wk−1
and χk(w) =

w − wk−1

wk − wk−1
,

for both problems. Let us note that the functions do not
have to be the same for the thermal and magnetodynamic
problem. However, by choosing them to be the same, one
simplifies the implementation of the 1D FE integrals of the
TSA formulation since it allows to reuse existing routines for
their integration. The test functions T ′ and H⃗ ′ are discretized
with the same ansatz. This leads to a decomposition of the
internal problem into surface integrals on Γ

(k)
c,cl and 1D FE

integrals on [wk−1, wk]. The final expressions for the terms
in weak formulation (1) and (2) are found in [9], [11], [13]
except for the Joule losses term inside Ω̂c,cl, that is,(

ρ J⃗ · J⃗ , T ′
)
Ω̂c,cl

=

N∑
k=1

(
ρ J⃗ · J⃗ , T ′

)
Ω̂

(k)
c,cl

. (13)

Its derivation is detailed in Appendix A, which constitutes the
first part of the coupling between magnetodynamics and heat
equation. To appropriately account for the second part, i.e., the
temperature- and field-dependence of the material parameters,
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the ansatzes (11) and (12) need to be used in the 1D FE
integrals as derived in the appendix, alongside an appropriate
numerical quadrature. In this work, Gaussian integration is
used as it is readily available in the FE software. To account for
the increased volume of Ωc,b,TSA compared to Ωc,b, a material
scaling is introduced as detailed in Appendix B.

IV. IMPLEMENTATION AND SIMULATION SETUP

The magneto-thermal model, with and without the TSA,
is implemented in the open-source framework GetDP 3.5 [22]
using the Gmsh 4.11.0 [23] application programming interface
to create the geometry and mesh. It also creates the cohmology
basis functions required for the H⃗−ϕ formulation [15]. Lowest
order basis functions are used and as the T2TCL consists of
only one material, the TSA is used with N = 1. An adaptive
implicit Euler scheme is used for time integration [24].

All important parameters regarding the coil geometry and
simulation setup are given in Table I. A local defect with Jc =
0 is introduced to highlight the current diversion across the
T2TCL, a mechanism that increases the thermal stability of
NI coils. The local defect is depicted in Fig. 4 which also
shows the mesh of the geometry with volumetric T2TCL.

TABLE I
SUMMARY OF MODEL PARAMETERS.

Description Value
Power law n-value 30
Critical current Ic Ic

(∥∥∥B⃗∥∥∥ , T, θ
)

[19]

Critical current at B⃗ = 0 and T = 15K 780A
ReBCO thickness 1.5 µm

{Cu, Hastelloy®, Ag} thickness {42, 75, 1.5} µm [19]
Source current Isrc Powering cycle (Fig. 5)

Number of turns Nt 24
Inner radius 5mm

Bare conductor width wt 4mm
T2TCL thickness thcl 10 µm
T2TCL resistivity ρcl 1.12× 10−4 Ωm [25]

T2TCL thermal conductivity κcl Stainless steel [19]
T2TCL heat capacity CV, cl Stainless steel [19]

Initial temperature T at t = 0 s 15K
Local defect with Jc = 0 Turn 12.4 to 12.6 (Fig. 4)

Current lead material Cu [19] with RRR = 100
Temperature boundary condition g g = 15K ∀t

Ωc,b

Ωc,cl

Local defect Jc

Fig. 4. Local defect and zoom on the mesh of the volumetric T2TCL.

V. POWERING CYCLE SIMULATION WITH LOCAL DEFECT

For verification, the powering cycle of the NI coil is
simulated using three models; i) vol: a fine-meshed model
with volumetric T2TCL, ii) TSAf : a T2TCL TSA model which
uses the same mesh structure inside Ωc,b as the vol model and
iii) TSAc: a coarse-meshed T2TCL model (see Fig. 8a for
the TSAc mesh). It has been proven difficult to use coarsely
meshed models with volumetric T2TCL, either because of
failure to automatically create suitable meshes or convergence
issues due to the high aspect ratio of mesh elements. The TSA
T2TCL models have been more robust and the aforementioned
problems did not occur. Thus, it is possible to use coarse mesh
with the TSA while achieving an accurate solution.

The applied source current and axial central magnetic flux
density are depicted in Fig. 5 for all three models. The
magnetic field is delayed w.r.t. the source current due to
the radial currents and decays exponentially after the sudden
discharge. All three models are in good agreement. The same
is true for voltage between the coil terminals which is shown
in Fig. 6. During charging and discharging, the absolute value
of the voltage is highest as the radial currents flow in the
highly resistive T2TCL. It does not decay to zero during the
current plateau as i) the current leads are made of copper and
ii) radial currents are crossing the T2TCL to divert around the
local defect. The current diversion is depicted in Fig. 8a and
the local temperature hot spot at the defect position in Fig. 8b.
Thanks to the current diversion and the cooling applied at the
coil terminals using boundary condition (4), the local defect
does not cause a thermal runaway as seen in Fig. 7. During
charging, the temperature increases due to the currents across
the T2TCL. During the current plateau, the heat generated
by the currents across the T2TCL is removed by the cooling
yielding a constant temperature. During the fast discharge,
the large T2TCL currents first cause a significant temperature
increase which is then cooled down subsequently.

0 0.5 1 1.5 2
0

175

350

Time (s)

C
ur

re
nt

I s
rc

(A
)

0

0.3

0.6

Fl
ux

de
ns

.B
z,

c
(T

)

Isrc

Bc,vol

Bz,c,TSAf

Bc,TSAc

Fig. 5. The source current Isrc and the central axial magn. flux density Bz,c.

0 0.5 1 1.5 2

0

-18

-36

Time (s)

Vo
lta

ge
(m

V
)

Usrc,vol

Usrc,TSAf

Usrc,TSAc

Fig. 6. Coil terminals voltages Usrc for all models.
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0 0.5 1 1.5 2
15

16

17

18

Time (s)

Te
m

p.
T

d
(K

)
Td,vol

Td,TSAf

Td,TSAc

Fig. 7. Temperature at the center of the local defect for all models.

J⃗ (kAmm−2), t = 1.25 s

0.3 0.6

T (K), t = 1.25 s

15 16.5

(a) Current density. (b) Temp. and mesh.
Fig. 8. Current by-pass and temperature distribution at t = 1.25 s.

Having shown the accuracy of the TSA approach, the
number of DoF and solution time are shown in Table II.
Let us note that the implementation of the finite difference
derivative makes heavy use of GetDP’s scripting language.
While this is convenient for the implementation, this increases
significantly the time required for assembly of the linear
systems and thus also the total solution time required. It
does not have an influence on the relative comparison of
solution times between the models but only on the absolute
timing. The TSAc model has 3.5 times fewer DoF and 3.4
times shorter solution time than the vol model. For vanishing
T2TCL thickness (i.e., directly touching turns), it becomes
increasingly difficult to use a volumetric T2TCL [9]. The TSA
then is the only practical method that is expected to lead to
an accurate solution. Furthermore, it simplifies the meshing.

TABLE II
NUMBER OF DOF AND TOTAL SOLUTION TIME OF THE THREE MODELS.

Description vol TSAf TSAc
Number of DoF thermal system 14907 14896 5229

Number of DoF magnetodynamic system 49740 39678 13090
Total solution time in h 17.4 16.9 5.05

VI. CONCLUSION

A coupled magneto-thermal TSA has been presented to
model the T2TCL in the FE analysis of HTS NI coils in
3D. The formulation has been implemented in the open-source
FE framework Gmsh/GetDP and a reference implementation
has been made publicly available. The numerical results of

a powering cycle of a model NI coil have been verified
against a model with volumetric T2TCL showing excellent
agreement. The TSA leads to a significantly reduced number
of DoF, solution time and simplifies the creation of high-
quality meshes. Its robustness and efficiency enable automated
models resolving each turn to capture local effects like quench.

APPENDIX A
DERIVATION OF JOULE LOSS EXPRESSION

From the representation of H⃗ in Ω̂
(k)
c,cl in (11), we find that

J⃗ |
Ω̂

(k)
c,cl

= ∇× H⃗|
Ω̂

(k)
c,cl

= ∇×

 k∑
j=k−1

H⃗j
t χj

 , (14)

=

k∑
j=k−1

∇χj × H⃗j
t + χj∇× H⃗j

t , (15)

= w⃗ × H⃗k
t − H⃗k−1

t

wk − wk−1
+

k∑
j=k−1

χj∇× H⃗j
t . (16)

Note that first summand is orthogonal to the w⃗-direction while
the second is in w⃗-direction. Using (16), the ansatz (12) for
T ′ and l ∈ {k− 1, k}, the Joule losses in the TSA evaluate to(

ρ J⃗ · J⃗ , T ′
)
Ω̂

(k)
c,cl

=

ρ

∥∥∥∥∥H⃗k
t − H⃗k−1

t

wk − wk−1

∥∥∥∥∥
2

, T ′
lχl


Ω̂

(k)
c,cl

+

ρ

k∑
i=k−1

(
χi∇× H⃗i

t

)
·

k∑
j=k−1

(
χj∇× H⃗j

t

)
, T ′

lχl


Ω̂

(k)
c,cl

=

〈
fl

∥∥∥∥∥H⃗k
t − H⃗k−1

t

wk − wk−1

∥∥∥∥∥
2

, T ′
l

〉
Γ
(k)
c,cl

+

k∑
i=k−1

k∑
j=k−1

〈
cijl∇× H⃗i

t · ∇ × H⃗j
t , T

′
l

〉
Γ
(k)
c,cl

.

Herein, ⟨·, ·⟩Γ denotes the surface integral of the scalar product
of its two arguments on Γ. We introduced the 1D FE integrals

fl =

∫ wk

wk−1

ρχl dw and cijl =

(∫ wk

wk−1

ρχiχjχl dw

)
.

This concludes the decomposition into surface integrals on
Γ
(k)
c,cl and 1D FE integrals in [wk−1, wk], alleviating the need

for a volumetric mesh representation of Ωc,cl.

APPENDIX B
MATERIAL SCALING FOR TSA MODEL

Using the scaling factor

p =
|Ωc,cl|+ |Ωc,b|

|Ωc,b|
= 1 +

|Ωc,cl|
|Ωc,b|

=
|Ωc,b,TSA|
|Ωc,b|

, (17)

the material parameters of Ωc,b,TSA are scaled by

κuu|Ωc,b,TSA = p−1 κuu|Ωc,b , κww|Ωc,b,TSA = p κww|Ωc,b ,

ρuu|Ωc,b,TSA = p ρuu|Ωc,b , ρww|Ωc,b,TSA = p−1 ρww|Ωc,b ,

CV|Ωc,b,TSA = p−1 CV|Ωc,b , Jc|Ωc,b,TSA = p−1 Jc|Ωc,b .
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