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Abstract: We present the deployment and testing of an autoencoder trained for unbiased detection
of new physics signatures in the CMS Level-1 Global Trigger (GT) test crate during LHC Run 3.
The GT test crate is a copy of the main GT system, receiving the same input data, but whose output
is not used to trigger the readout of CMS, providing a platform for thorough testing of new trigger
algorithms on live data, but without interrupting data taking. We describe the integration of the
Neural Network into the GT test crate, and the monitoring, testing, and validation of the algorithm
during proton collisions.
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1 Introduction

The CMS detector [1, 2] reads out far more data than can be processed, reconstructed, and analyzed.
In order to use any of the TB/s being generated, a reduction of more than 99% is necessary. The job
of the CMS Level-1 trigger (L1T), which it does in real-time on a chain of field programmable gate
arrays (FPGAs) [3], is to perform this data reduction without missing interesting physics events.
Operating on the clock of the LHC, where collisions occur every 25 nanoseconds, requires the
entire system to adhere to microsecond latency constraints. Furthermore, stability is crucial for this
system. Any error can lead to detector "dead time", where data is lost forever.

A potential problem of traditional trigger strategies is that they rely either on a priori knowledge
of signal or generic kinematic selections. This problem is addressed by triggering on how anomalous
an event is. A variational autoencoder (VAE) trained on real unbiased CMS data to detect outliers
offers a solution that is both signal agnostic (applicable to signatures we have not had the foresight
to target specifically) and highly sensitive (effectively boosts signal efficiency for multiple physics
signatures) [4, 5].

2 Anomaly Detection Trigger Algorithm

The VAE design uses an information bottleneck created by a small-dimensional latent space, which
enforces an efficient data encoding, and leads the model to learn what makes an event anomalous.
For this Anomaly Detection implementation in the CMS Level-1 Global Trigger, called Anomaly
eXtraction Online Level-1 Trigger aLgorithm (AXOL1TL), the inputs are taken from a set of
standard L1T objects (𝑝miss

T , 4 e/𝛾, 4 𝜇, and 10 jets) as (𝑝T, 𝜂, 𝜙) vectors. The design of the VAE,
visualized in figure 1, was driven by the constraints of the L1T system. Multiple steps were taken
to minimize latency and resource utilization, including the removal of the decoder network, and the
simplification of the latent space loss term, shown in (2.1). The reconstruction term is computed
from the difference between the input (x) and output (𝑥) of the VAE. The second, full regularization
term, is the Kullback–Leibler divergence (KL-divergence) between the latent space distribution
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Figure 1. (Left) A typical design of a VAE, utilizing both an encoding and decoding network to reconstruct
event information. (Right) The VAE model visualization for AXOL1TL, showing the layers, inputs, outputs,
and the calculation of the anomaly score, our metric for triggering on interesting physics.

and a standard normal distribution with mean 𝜇 and standard deviation 𝜎. The parameter 𝛽 can
be tuned to balance the reconstruction performance with more efficient latent space encoding. At
inference time, the loss is approximated by the mean-squared term Σ𝑖𝜇

2 of the KL-divergence for
latency considerations. This approximation has no impact on performance.

Loss = (1 − 𝛽) | |𝑥 − 𝑥 | |2 + 𝛽
1
2
(𝜇2 + 𝜎2 − 1 − log𝜎2) (2.1)

AXOL1TL is trained with unbiased data collected by the CMS Experiment during 2023 with
proton collisions at a centre of mass energy

√
𝑠 = 13.6 TeV. From this dataset, 10.5 million events

were used: 50% for training and 50% for setting thresholds on the anomaly score. Quantization
aware training, where inference-time quantization is emulated during training using the package
QKeras [6], allowed for optimal performance in the final hardware implementation. A set of
thresholds to demonstrate the range of performance possible with AXOL1TL was chosen, plotted
in figure 2, estimating the L1T rate for different thresholds.
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Figure 2. Anomaly score distributions for 2023
Ephemeral ZeroBias events. Individual event
scores/losses for the QKeras model in Python (orange)
and standalone High-Level Synthesis (HLS) emulator
(blue). Dotted lines represent scores that correspond
to trigger paths in the 𝜇GT test crate.

For the 2023-trained model, an example of the significant performance improvement for Beyond
the Standard Model (BSM) signals, measured in simulated events, by adding AXOL1TL to the 2023
trigger menu is shown in table 1.
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AXOL1TL Rate 1 kHz 5 kHz 10 kHz
𝐻 → 𝑎𝑎 → 4𝑏 Signal Efficiency Gain 46% 100% 133%

Table 1. Efficiency improvement of AXOL1TL trigger bits to 2023 L1 Menu with respect to the BSM signal
of a Higgs decaying to two (pseudo)scalars of mass 15 GeV, where (pseudo)scalars decay to bottom quark
pairs. The model used is trained on Run 3 ZeroBias events (Run 367883). Efficiency gains from AXOL1TL
at various triggering rates are compared.

3 CMS Global Trigger Firmware

Figure 3. Schematic of the 𝜇𝐺𝑇 board, showing the AXOL1TL score calculation in yellow.

The firmware for the Anomaly Detection algorithms had to be integrated into the existing
CMS Global Trigger (𝜇𝐺𝑇) board structure [7], shown in in figure 3. To meet timing, the score
is calculated in concert with other global trigger quantities, fed into the trigger combination logic,
and its corresponding trigger decisions are read out via the standard links.

High-level synthesis (HLS) was used to generate the hardware code (VHDL) for the 𝜇𝐺𝑇 FPGA,
utilizing the hls4ml package to efficiently synthesize the neural network [8]. To incorporate the
trigger information into the common CMS software tools, an external CERN Gitlab repository for
HLS dependencies was made. This code generates the bitfiles that configure the trigger boards.

Vivado co-simulation tests, shown in table 2, demonstrate that the synthesized VHDL code
meets the L1T latency requirement of 50 ns and takes up only a small fraction of the resources
available on the Xilinx Virtex-7 chip [9].

Latency LUTs FFs DSPs BRAMs
AXOL1TL 2 ticks (50 ns) 2.1% ∼ 0% 0% 0%

Table 2. Vivado timing and resource utilization report for Anomaly Detection trigger on Xilinx Virtex-7
FPGA. Results show that firmware build meets L1 latency requirements, fitting within 2 clock cycles @
40 MHz. The resource utilization of the module is also relatively small. Columns refer to different FPGA
components: look-up tables (LUTs), flip-flops (FFs), digital signal processing (DSPs) slices, and block
random access memory (BRAMs)
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Further validation was performed to ensure trigger decisions were being computed correctly for
the given thresholds. A ModelSim emulator, the standard CMS tool for L1T menu [10] validation
was used. Test vector files with the Level-1 objects, detector conditions, and an independently
emulated reference decision were read into the environment, and table 3 shows the perfect trigger
bit agreement observed. This successful ModelSim test confirmed a functional firmware module
that could be implemented in hardware, with final triggers decisions that could be accurately
emulated and verified.

L1 Menu
Index

L1 Menu
Algorithm Name

Test Vector
Count

Hardware
Emulation Count

Agreement

94 L1_ADT_20000 0 0 ✓

95 L1_ADT_4000 29 29 ✓

103 L1_ADT_400 2618 2618 ✓

108 L1_ADT_80 3331 3331 ✓

Table 3. Test Crate firmware validation. The table shows trigger bits for the L1 menu of 4 Anomaly Detection
thresholds: scores >1250, >250, >25, and >5 from top to bottom (factor of 16 differentiates physical anomaly
score and hardware integer). Test vector counts are generated with standalone emulator and hardware counts
come from 𝜇𝐺𝑇 ModelSim firmware validation workflow, using the same events from Run 368566. Perfect
bit agreement is observed.

4 Test Crate Implementation

Once validated, the 𝜇𝐺𝑇 firmware was implemented on the CMS Global Trigger Test Crate (TC);
The TC is a set of identical MP7 boards that are used as backup for the production system, as well as
for testing new trigger strategies. In this configuration, the TC is set to read in the same inputs, but
without actually triggering on events and saving data. The TC is connected to the CMS Prometheus
monitoring server that can query trigger metrics in real-time allowing us to monitor trigger rates
for the anomaly trigger paths while data is being taken, shown in figure 4.

For particular runs, events that were triggered and saved by the production system contain TC
information, showing which trigger bits were fired. This allows for a final validation of the anomaly
score performance with respect to emulation. Figure 5 and table 4 show that for such events we see
minimal mismatches and reasonable agreement between hardware and emulation.

5 Summary

We have shown a signal-agnostic trigger model sensitive to interesting physics. A firmware im-
plementation for this trigger algorithm was successfully integrated into the CMS Level-1 trigger
architecture. Using the CMS Global Trigger test crate, we showed an active hardware trigger that
performed consistently during 2023 collisions. Finally, validation was performed at each steps
using HLS emulation. We plan to update this algorithm and prepare downstream trigger logic to
implement the Anomaly eXtraction Online Level-1 Trigger aLgorithm (AXOL1TL) in the Level-1
trigger for 2024 data-taking.
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Figure 4. Test crate rate monitoring time series. L1 trigger rates shown for 4 Anomaly Detection threshold
triggers, overall L1 physics rate, and the L1_SingleMu22 un-prescaled single muon reference trigger. Time-
averaged rates are read from 𝜇𝐺𝑇 test crate monitoring software via Prometheus server at a ∼20s buffer
rate during good data-taking conditions in 2023. AXOL1TL model is trained on 2018 ZeroBias data and
thresholds are chosen to test possible range of accessible trigger rate. Thresholds are not meant to model
realistic trigger rates. Consistent performance is shown over the course of partial fill-cycle. The turn-on
corresponds to the beginning of an LHC fill and the sawtooth pattern corresponds to luminosity levelling.
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Figure 5. Anomaly Detection hardware and em-
ulator trigger counts for 2023 Ephemeral ZeroBias
data where hardware bits are recorded from config-
ured 𝜇𝐺𝑇 test crate. Red segments represent mis-
matches between hardware and emulation. Cluster-
ing near decision boundaries implies issue is due to
precision/rounding problem. Minimal mismatches in
hardware vs. emulation (<1%) are observed.

L1 Menu
Algorithm
Name

Test
Crate
Count

Standalone
Emulation

Count

Mismatches

L1_ADT_20000 1 1 0
L1_ADT_4000 742 741 19
L1_ADT_400 21236 21229 253
L1_ADT_80 25468 25481 93

Table 4. Anomaly Detection hardware and em-
ulator trigger counts for 2023 Ephemeral Ze-
roBias data where hardware bits are recorded
from configured 𝜇𝐺𝑇 test crate. Test Crate
Count shows events triggered in hardware and
read out into data and Standalone Emulator
Count is evaluated via offline inference with
L1 objects.
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