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Abstract We derive a low-temperature expansion of the
formula to compute the average annihilation rate 〈σv〉 for
dark matter in Z2-symmetric models, both in the absence
and the presence of mass degeneracy in the spectrum near the
dark matter candidate. We show that the result obtained in the
absence of mass degeneracy is compatible with the analytic
formulae in the literature, and that it has a better numerical
behaviour for low temperatures. We also provide as ancil-
lary files two Wolfram Mathematica notebooks, which
perform the two expansions at any order.

1 Introduction

One of the main areas of research in astroparticle physics
today is the search for dark matter (DM). For decades, a
number of astrophysical observations have been impossible
to explain in the context of general relativity (GR), if we
also assume that the Standard Model (SM) of fundamen-
tal interactions describes the entire particle content of the
universe. Hence, a hypothesis that can explain most—or in
some contexts all—observations is the existence of a kind of
stable and non-relativistic matter that couples very weakly
with SM fields, which is referred to as dark matter. Aside
from the astrophysical observations, the existence of DM is
also a necessity in cosmology in order to obtain a coherent
description of the growth of perturbations.

a e-mail: alexandre.arbey@ens-lyon.fr
b e-mail: nazila@cern.ch
c e-mail: marco.palmiotto@univ-lyon1.fr (corresponding author)

Moreover, albeit it describes very well the phenomena
observed up to the TeV scale,1 the SM is expected to fail at
an energy scale lower than the Planck energy. Thus, if DM
is partly composed of stable particles, it could be explained
in some extensions of the SM. Alternatively, it is possible to
extend the SM with the aim of having a model that describes
the nature of a fraction—or the totality—of the DM abun-
dance, with detection limits compatible with the state of the
art of the observations.

The abundance of DM has been measured by the Planck
collaboration [1] as the relative energy density:

H0 = 67.66 ± 0.42 km/s/Mpc, (1)

�m = 0.3111 ± 0.0056, (2)

�bh
2 = 0.02237 ± 0.00015, (3)

�ch
2 = 0.1200 ± 0.0012, (4)

�� = 0.6847 ± 0.0073, (5)

where H0 is the Hubble parameter, h is the reduced Hubble
parameter, defined as:

h = H0

100 km/s/Mpc
, (6)

and where �b is the relative density of baryonic matter, i.e. of
the fraction of cold matter visible via electromagnetic sig-
nals, and �c is the relative density of cold dark matter, i.e. of
the fraction of cold matter electromagnetically invisible. The
discrepancy between �m and �b is an evidence of the exis-
tence of cold dark matter, and that this component dominates
the non-relativistic matter content of the Universe.

The contribution to the relative density of a particle species
can be computed by solving the Boltzmann equation for its

1 Except for neutrinos’ flavour oscillations.
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number density, then obtaining from it the energy density,
and finally dividing this result by the critical density of the
Universe today. The form of the Boltzmann equation and its
resolution for the non-relativistic case can be found e.g. in
Ref. [2]. In particular, it has the form

dn

dt
= −3Hn + 〈σv〉(n − neq), (7)

where n is the number density of the dark matter candidate, as
a function of the time t ,2 neq is the value of equilibrium for n,
at the temperature T corresponding to the time t , and 〈σv〉 is
the thermal average of the product of the total cross-section of
annihilation of dark matter candidates into SM particles with
the relative velocity of the particles in the initial state. In order
to compute the thermal average, it has been assumed that the
particles in the initial state have non-relativistic velocities,
allowing the replacement s → 4m2 + m2v2, where s is the
Mandelstam variable, m is the mass of the DM candidate,
and v its velocity in the centre-of-mass frame. The expanded
σv is then averaged, yielding an expansion in x = m/T for
〈σv〉. The work by Srednicki et al. [3] aimed then to have a
more reliable expansion of 〈σv〉, by finding the general non-
relativistic formula expressed directly in powers of 1/x , and
starting from the squared matrix elements of the annihilation
reactions.

In the context of DM produced via annihilation and co-
annihilation, the work of Gondolo and Gelmini [4], and of
Edsjö and Gondolo [5] made a step forward, in generalis-
ing the equation in the relativistic case. Firstly, it is pointed
out that v should not be the relative velocity, but the Møller
velocity, thus making 〈σv〉 a scalar, from now on denoted
as 〈σvMøl〉eff. Then, the scenario of annihilation to SM parti-
cles and of co-annihilation is considered in the models with a
Z2 symmetry that prevents the DM candidate from decaying
into SM particles. The result is a Boltzmann equation for the
total number density of the species with the same Z2-parity
as the DM candidate, which has the same form as Eq. (7). In
this context, the expression of 〈σvMøl〉eff is derived, yielding
to formula (13) in the present article. This formula has been
explicitly expanded around T = 0 in the work of Cannoni
[6], under the assumption of a model with only one DM can-
didate, and with no particle degenerate (or nearly degenerate)
in mass with it. The result is the same as previously obtained,
under the same hypotheses, in the aforementioned work [3]
by Srednicki et al. .

Thus, in the cited literature, there are two formulae for the
calculation of 〈σvMøl〉eff: a general one for any temperature,
and an expansion for low temperatures. The former is always
valid, but it presents an integral, therefore it can hardly be
treated to obtain a symbolic expression. The latter, while valid

2 In the Friedmann–Lemaître–Robertson–Walker metric.

for low temperatures and with a constraint on the model,
can be used to have an analytic expression for 〈σvMøl〉eff.
Indeed, many works which present new models—such as
[7]—often use the expanded formula, for providing a first
order expression of 〈σvMøl〉eff around T = 0. In fact, usually,
the accuracy of the first order expansion is good enough to
have a reliable estimate of the freeze-out temperature, that
may then be used for setting the initial conditions for the
Boltzmann equation, and for solving it.

In this work, we present a generalisation of the work of
Cannoni in [6]. In particular, we consider models in which
there is small mass splitting, or mass degeneracy, in the spec-
trum near the mass of the DM candidate. Therefore, thanks
to the formula we derive here, it is possible to apply the same
method to new models with the aforementioned mass split-
ting or with resonances at low velocity, allowing for a reliable
estimate of 〈σvMøl〉eff without needing numerical tools.

Such models are an interesting case of study, since the
small mass splitting with the DM candidate is a simple con-
dition to have in models with one or more long-lived particles
that decay to the DM candidate. Other than the interest from
the phenomenological perspective (see e.g. [8]), nowadays
the detectors’ upgrade to be able to detect long-lived parti-
cles is a topic of active discussion among many experiments
at colliders (see e.g. [9]).

Thus, scenarios in which there are (one or more) parti-
cles, especially if charged, whose masses are close to the one
of the DM candidate become viable cases of study. In this
context, simplified effective models with mass splitting are
good examples in which having a symbolic expression for
〈σvMøl〉eff at low temperature can be useful for phenomeno-
logical studies.

The rest of the present article is organised as follows. In
Sect. 2 we re-consider the formula derived in [5] for 〈σvMøl〉eff,
also showing why the implementation of such a formula can
lead to numerically unreliable results at low temperatures. In
Sect. 3, we point out that a numerical evaluation of such a
formula at small values of T presents some numerical issues,
and we derive its expansion in 1/x , by following the proce-
dure outlined in [6] by Cannoni. Finally, in Sect. 4 we gener-
alise the expansion in the case of small mass splitting in the
spectrum near the mass of the DM candidate. We conclude in
Sect. 5 by discussing the results and their areas of application.
In the appendices, there are some mathematical formulae and
an example of application of the formula obtained in Sect. 4.

2 Freeze-out scenario for thermal relic density

The standard scenarios for dark matter particles are the so-
called thermal relic scenarios, in which a single relic particle
can explain the nature of dark matter. In the freeze-out sce-
narios, the new physics particles are considered in thermal
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equilibrium at a common temperature T . The expansion rate
H of the Universe is given by the Friedmann equation:

H2 = 8πG

3
geff(T )

π2

30
T 4, (8)

where geff is the effective number of degrees of freedom of
radiation.

At thermal equilibrium, under the assumption of the
Maxwell–Boltzmann statistics, the total number density of
new physics particles is given by

neq = T

2π2

∑

i

gim
2
i K2

(mi

T

)
, (9)

where gi and mi are the number of degrees of freedom and
the mass of the i-th new physics particle, respectively, and K2

the modified Bessel function of the second kind of order 2.
To compute the present relic density of dark matter par-

ticles, one needs to solve the Boltzmann evolution equation
[4,10,11]:

dn

dt
= −3Hn − 〈σeffv〉(n2 − n2

eq), (10)

where n is the total number density of new physics particles
and 〈σeffv〉 is the thermal average of the annihilation rate of
the new physics particles to the Standard Model particles.

The case with non-thermalised species—as non-relativistic
ones—can be treated by appropriately modifying the expres-
sion of H (8), and the Boltzmann equation (10) as follows
(see e. g. [12,13]):

H2 = 8πG

3

(
geff(T )

π2

30
T 4 + ρnt

)
, (11)

dn

dt
= −3Hn − 〈σeffv〉(n2 − n2

eq) + Nnt , (12)

where the parameters ρnt and Nnt are respectively the effective
energy density, and the variation of the number density due
to non-thermalised particles. Therefore, considering such a
case in the freeze-out scenario does not affect the expression
of 〈σeffv〉.

The thermal average of the effective cross-section at tem-
perature T is obtained, under the assumptions of kinetic equi-
librium and Maxwell–Boltzmann statistics:

〈σeffv〉(T ) =

∫ ∞

0
dpeff p

2
effWeff(

√
s)K1

(√
s

T

)

m4
DMT

[
∑

i

gi
gDM

m2
i

m2
DM

K2

(mi

T

)]2 , (13)

where K1 is the modified Bessel function of the second kind
of order 1, gDM andmDM are the number of degrees of freedom
and the mass of the dark matter particle, and

peff(
√
s) = 1

2

√
s − 4m2

DM, (14)

where
√
s is the centre-of-mass energy. We can obtainWeff by

integrating over the outgoing directions of the final particles
[11]:

dWeff

d cos(θ)
=
∑

i jkl

pi j pkl
8πg2

DM peff Skl
√
s

∑

helicities

∣∣∣∣∣∣

∑

diagrams

M(i j → kl)

∣∣∣∣∣∣

2

, (15)

where M(i j → kl) is the amplitude of two new physics par-
ticles (i, j) giving two Standard Model particles (k, l), and θ

is the angle between particles i and k, Skl is a symmetry fac-
tor equal to 2 for identical final particles and to 1 otherwise,
and pkl is the final centre-of-mass momentum such that

pkl =
[
s − (mk + ml)

2
]1/2 [

s − (mk − ml)
2
]1/2

2
√
s

. (16)

The current density of dark matter particles can be
obtained by integrating the Boltzmann equation (10) between
a high temperature where all particles are in thermal equilib-
rium, and the current Universe temperature T0 = 2.726 K.
The freeze-out temperature T f is defined as the temperature
at which the dark matter particles leave thermal equilibrium.

There exist several codes for the calculation of dark
matter relic density, such as SuperIso Relic [14–16],
MicrOMEGAs [17,18], DarkSUSY [19,20], MadDM [21,
22] and DarkPACK [23], which use different methods of
integration of the Boltzmann equation and calculation of the
thermal average of the effective cross-section.

In particular, one can observe that the formula (13) can
present some numerical instabilities for small values of T . In
fact, both the Bessel functions have an asymptotic behaviour,
as their expansion is given in (A1), so for large 1/T both
the integrand function in the numerator and the sum in the
denominator tend to 0, leading to an undefined value. Thus,
when the evaluation of the numerator or the denominator
returns a number close to the minimum value of the adopted
floating number precision, the value of 〈σv〉 cannot be reli-
able.

We see in the following that in our case of study, the thresh-
old for the reliability of the implementation of the formula
(13) with double floating precision is T/m1 ≈ 10−6, which
is related to the ratio of infinitesimally small Bessel functions
in this regime.

Before doing the expansion, let us define W̃eff = g2
DMWeff,

such that:

dW̃eff

d cos(θ)
=
∑

i jkl

pi j pkl
8πpeff Skl

√
s

∑

helicities

∣∣∣∣∣∣

∑

diagrams

M(i j → kl)

∣∣∣∣∣∣

2

, (17)
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and

〈σeffv〉(T ) =

∫ ∞

0
dpeff p

2
effW̃eff(

√
s)K1

(√
s

T

)

m4
DMT

[
∑

i

gi
m2

i

m2
DM

K2

(mi

T

)]2 , (18)

where we removed the parameter gDM—originally introduced
ad hoc in the definition of Weff [5] - as its square is a common
term in the numerator and in the denominator.

3 Averaged annihilation rate at low temperature

The definition of the averaged annihilation rate given in
Eq. (18), is the central part of the Boltzmann equation. In fact,
for small values of T , the arguments of the Bessel functions
tend to infinity, and both K1 and K2 become infinitesimally
small since their arguments tend to infinity. This generates
some computational issues, if T is very small, which is the
case in the recent Universe.

From a phenomenological perspective, often the freeze-
out temperature will not be small enough to require a specific
expansion for 〈σvMøl〉eff. In fact, it is typically equal to the
mass of the DM candidate times a factor ranging from 1/30
to 1/20, and therefore there is no need to evaluate 〈σvMøl〉eff at
temperatures as low as 10−14GeV. However, we found this
expansion useful, since in some cases it is possible to calcu-
late, or to find in the literature, some formulae for 〈σvMøl〉eff in
the non-relativistic case. Thus, providing a correct numerical
expansion at low temperature, independent of a full formula
prone to numerical instabilities, allows us to detect possible
errors in the numerical implementation of the model, or in
the algorithms which derive an analytical expression of the
non-relativistic 〈σvMøl〉eff in a specific model.

It is therefore useful to study the expansion of the averaged
annihilation rate at low temperatures, in order for example
to verify that the relativistic result is consistent with the non-
relativistic one. The derivation of the latter can be found in
Ref. [3].

In this subsection, we will outline the steps of the expan-
sion of (18), showing that it can be performed up to any given
order. We also show that the lowest order is the order zero,
hence proving that the formula (18) does not present singu-
larities at T = 0. The original procedure has been suggested
in Ref. [6], and in the following we describe the final compu-
tational steps in a way that they can be reproduced by hand or
even with symbolic manipulation algorithms. We also pro-
vide as an ancillary file a Mathematica notebook [24]
which performs such an expansion.

To begin, we make a change of variable for the integral
(18):

peff → y = p2
eff

m2
1

+ 1, (19)

where m1 is the mass of the lightest new physics particle,
i.e. the dark matter particle, which we will denote in the
following χ1. In the denominator, we keep in the sum only the
contribution ofχ1, since it is the lightest particle leading to the
dominant contribution to the sum. Using the asymptotic form
of Kn provided in the Appendix in Eq. (A1), we therefore
obtain:

〈σvMøl〉eff = x

2g2
1m

2
1K

2
2 (x)

∫ +∞

1
dy
√
y − 1 W̃eff(y)

K1
(
2x

√
y
)
, (20)

where x = m1/T .
Similarly to K2, K1 has its maximum value when its argu-

ment has its smallest value in the integral. This means that
the largest contributions to the integral come from the region
with y � 1. Let us then expand W̃eff around y = 1:

W̃eff(y) =
∞∑

n=0

1

n! (y − 1)nW̃n, (21)

where W̃n = dnW̃eff

dy

∣∣∣∣
y=1

. Then

〈σvMøl〉eff =
∞∑

n=0

1

n! W̃nKn(x), (22)

where we have defined:

Kn(x) = x

2g2
1m

2
1K

2
2 (x)

In(x),

In(x) =
∫ +∞

1
dy(y − 1)

1
2 +nK1(2x

√
y). (23)

The integral in In corresponds to Eq. (B2) with λ = 0,
μ = 3/2 + n and ν = 1. Hence,

In(x) = 1

2
�

(
n + 3

2

)
G3,0

1,3

(
x2

∣∣∣∣
0

−n − 3

2
,

1

2
,−1

2

)
. (24)

The coefficients Kn(x) of expansion (22) are therefore

Kn(x) = �

(
n + 3

2

)
x

4g2
1m

2
1K

2
2 (x)

×G3,0
1,3

(
x2

∣∣∣∣
0

−1

2
,

1

2
,−n − 3

2

)
. (25)
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Using the results in Appendix B, we can write the asymptotic
form of Kn(x) as:

Kn(x) = �

(
n + 3

2

) √
π

4g2
1m

2
1

e−2x x

K 2
2 (x)

∞∑

p=n+2

gn,px
−p.

(26)

We consider now the asymptotic form of K2(x). By using
Eq. (A4), and keeping the same notation as in Appendix A,
we can write:

Kn(x) = �

(
n + 3

2

)
1

2
√

πg2
1m

2
1

x2

1 + B(x)

∞∑

p=n+2

gn,px
−p.

(27)

Since B(x) is a small quantity, we can use the properties of
the geometric sum and write:

Kn(x) = �

(
n + 3

2

)
1

2
√

πg2
1m

2
1

x2

×
∞∑

r=0

(−1)r Br (x)
∞∑

p=n+2

gn,px
−p. (28)

At this point, by knowing the gn,p, the procedure becomes
straightforward.

First, we use the expansions (22) and (26) to factorise the
terms independent of n in the expression of 〈σvMøl〉eff:

〈σvMøl〉eff = 1

2
√

πg2
1m

2
1

x2
∞∑

r=0

(−1)r Br (x)

×
∞∑

n=0

⎡

⎣ 1

n! W̃n�

(
n + 3

2

) ∞∑

p=n+2

gn,px
−p

⎤

⎦ .

(29)

The term in square brackets is a Laurent series whose maxi-
mum order is 2. Thsus, we can define a set of gp such that3:

〈σvMøl〉eff = 1

2
√

πg2
1m

2
1

x2
∞∑

r=0

(−1)r Br (x)
∞∑

p=2

gp
x p

. (30)

Moreover, using Eq. (A7) we can define the coefficients βr
such that

〈σvMøl〉eff = 1

2
√

πg2
1m

2
1

∞∑

r=0

βr

xr

∞∑

p=0

g̃p
x p

, (31)

3 Note that for the sum over p we kept the same name for the index for
clarity. In fact, the powers of x are expressed as functions of p in the
original sum. This means that if truncated at a certain order, the upper
limit of the sums is the same.

where g̃p = gp+2. Written in this form, it is clear that the
lowest order is zero, as it should be.4

The next step is to determine the coefficients of the pow-
ers of 1/x up to a given order Nmax. This can be done once
we know the coefficients βr and gp up to r = Nmax and
p = Nmax + 2. We can also show that there is a maximum
contribution from n, which can be obtained from the range
of the sum in p:

n + 2 ≤ p ≤ Nmax + 2 (32)

from which we obtain the condition n ≤ Nmax. To summarise,
in order to truncate the expansion at the order Nmax, the indices
have the following ranges:

0 ≤r ≤ Nmax, 0 ≤n ≤ Nmax, n + 2 ≤p ≤ Nmax + 2 .

(33)

Let us now discuss how to perform the expansion, con-
sidering for instance Nmax = 4 to illustrate the intermediate
steps and Nmax = 10 for the final result. The Mathematica
notebook provided as an ancillary file provides the algo-
rithm valid for any values of Nmax.

For a given Nmax the maximum order of the derivative of
Weff that contributes to 〈σvMøl〉eff is exactly Nmax:

〈σvMøl〉eff =
Nmax∑

n=0

1

n! W̃nKn(x) . (34)

〈σvMøl〉eff is defined as a finite sum, and eachKn is the product
of two series that we know where to truncate. Let us define
the quantity:

D(x) = 1

1 + B(x)
=

Nmax∑

r=0

(−1)r Br (x) . (35)

Then, we can write Kn in the form:

Kn(x) = �

(
n + 3

2

)
1

2
√

πg2
1m

2
1

x2D(x)
Nmax+2∑

p=n+2

gn,px
−p .

(36)

The coefficients gn,p are tabulated in Eq. (B5). Therefore, we
are left with determining the coefficients of the expansion of
D and calculating the product of the two truncated series.
Firstly, we write each power of B in D by expanding the

4 Note that for the sum over r we kept the same name for the index for
clarity. Br gives the highest contribution to the term ηr/xr . Therefore,
if we truncate at a certain order, the range of the two sums is the same.
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Table 1 Symbolical expressions and values for the coefficients βr

Symbolic expression Value

β0 1 1

β1 −b1 −15

4

β2 b2
1 − b2

285

32

β3 −b3
1 + 2b2b1 − b3 −2115

128

β4 b4
1 − 3b2b2

1 + 2b3b1 + b2
2 − b4

51435

2048

series of B in Br up to the order Nmax − r + 1. Then, up to
the 4th order, the non-trivial powers of B are:

B2 = b2
2 + 2b1b3

x4 + 2b2b1

x3 + b2
1

x2 , (37)

−B3 = −3b2b2
1

x4 − b3
1

x3 , (38)

B4 = b4
1

x4 . (39)

The coefficients bi are given in Table 3, and the coefficients
βr of the expansion of D(x) are given in Table 1.

We can plug those expressions into D, Kn and 〈σvMøl〉eff,
obtaining the result (to the 10th order):

〈σvMøl〉eff = 1

4g2
1m

2
1

{
W̃0 + 1

x

(
−3W̃0 + 3W̃1

2

)

+ 1

x2

(
6W̃0 − 3W̃1 + 15W̃2

8

)

+ 1

x3

(
−75W̃0

8
+ 75W̃1

16
− 15W̃2

16
+ 35W̃3

16

)

+ 1

x4

(
23445W̃0

2048
− 1485W̃1

256

− 1575W̃2

256
− 525W̃3

64
+ 315W̃4

128

)

+ 1

x5

(
−17505W̃0

2048
+ 19395W̃1

4096
+ 11925W̃2

512

+9975W̃3

512
− 4725W̃4

512
+ 693W̃5

256

)

+ 1

x6

(
−222885W̃0

32768
+ 13095W̃1

8192
− 878175W̃2

16384

−74025W̃3

2048
+ 89775W̃4

4096
− 10395W̃5

1024
+ 3003W̃6

1024

)

+ 1

x7

(
1661715W̃0

32768
− 1264815W̃1

65536
+ 3173175W̃2

32768

+ 1800225W̃3

32768
+ −666225W̃4

16384
+ 197505W̃5

8192

+ 6435W̃7

2048
− 45045W̃6

4096

)

+ 1

x8

(
−1379496825W̃0

8388608
+ 32645025W̃1

524288

−76137975W̃2

524288
− 8594775W̃3

131072
+

+16202025W̃4

262144
− 1465695W̃5

32768
+ 855855W̃6

32768

+109395W̃8

32768
− 96525W̃7

8192

)

+ 1

x9

(
−13671950879025W̃0

4294967296
− 2855855475W̃1

16777216

+186553125W̃2

1048576
+ 45808875W̃3

1048576

−77352975W̃4

1048576
+ 35644455W̃5

524288
− 6351345W̃6

131072

+1833975W̃7

65536
− 1640925W̃8

131072
+ 230945W̃9

65536

)

+ 1

x10

(
−38822473644075W̃0

8589934592
− 43047242435475W̃1

8589934592

−10584016875W̃2

67108864

+275065875W̃3

4194304
+ 412279875W̃4

8388608
− 170176545W̃5

2097152

+154459305W̃6

2097152
− 13610025W̃7

262144
+ 31177575W̃8

1048576

−3464175W̃9

262144
+ 969969W̃10

262144

)}
, (40)

which correctly reproduces the results in Ref. [3] and Ref. [6].
From a numerical perspective, the error on W̃n for n ≥ 2
will be large. Therefore, it is recommended to stop at the
order 1 or 2. We show the results obtained for the pMSSM5

in DarkPACK in a scenario where the dark matter candi-
date has a mass m1 ≈ 200GeV in Fig. 1. We see that trun-
cating at the first order can give a very satisfactory result,
since the obtained curves for 〈σvMøl〉eff(T ) computed with
the numerical evaluation of Eq. (18) and with the asymp-
totic behaviour (40) are compatible. Moreover, from the fig-
ure, one can notice that the numerical implementation of
the full formula for 〈σv〉 fails to deliver reliable results for
T � 10−6m1. In the calculation, DarkPACK uses floating
numbers with double precision.

5 The phenomenological Minimal Supersymmetric extension of the
Standard Model [25].
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Fig. 1 Comparison between the results obtained for 〈σvMøl〉eff by using
the full expression in Eq. (18) and the polynomial expansion at the first
order by using Eq. (40)

4 Case of particles with small mass splittings

The result shown in Sect. 3 is correct up to a defined order,
under the hypothesis that there are no new physics species
with a mass close to the one of the dark matter candidate.6 In
models with a Z2 symmetry, such a particle is the lightest of
a set. Let us suppose that there are M ≤ N particles nearly
degenerate in mass. In such a case, we need to retain their
contributions to the denominator in Eq. (18). Let us define:

x = m1

T
, xi = mi

T
, ci = gi

m2
i

m2
1

, �xi = xi − x, (41)

for i = 1, . . . , M . We can perform the same change of vari-
able as in Sect. 3 which leads to:

〈σvMøl〉eff = x

2m2
1

1
[∑M

i=1 ci K2
(mi
T

)]2

×
∫ +∞

1
dy
√
y − 1W̃eff(y)K1

(
2x

√
y
)
. (42)

After expanding Weff around y = 1 as in the previous case
we obtain:

〈σvMøl〉eff =
∞∑

n=0

1

n! W̃nHn(x), (43)

where we have defined:

Hn(x) = x

2m2
1

1
[∑M

i=1 ci K2
(mi
T

)]2 In(x), (44)

6 Except, of course, the candidate itself.

and where In is the same as the one defined in Eq. (23). Note
that Hn and Kn differ only for the Bessel functions in the
denominator. With some manipulations, we can treat Hn in
the same way as done with Kn . In fact, we already know how
to write In as Laurent series.

Let us define the quantity:

D(x) =
[

M∑

i=1

ci K2 (xi )

]2

. (45)

Our goal is to expand D(x) at its first order in �xi and at an
arbitrary order in x . Let us expand the square:

D(x) =
[

M∑

i=1

ci K2 (x + �xi )

]2

= 2
M∑

i=1

ci K2(x + �xi )
M∑

j=i

(
1 − δi j

2

)
c j K2(x + �x j ).

(46)

At the first order in �xi we have also:

K2 (x + �xi ) = K2(x) + K ′
2(x)�xi , (47)

where K ′
2(x) = dK2

dx (x). Therefore:

D(x) = 2
M∑

i=1

M∑

j=i

ci

(
1 − δi j

2

)
c j

× (K2(x) + K ′
2(x)�xi

) (
K2(x) + K ′

2(x)�x j
)

= 2
M∑

i=1

M∑

j=i

ci

(
1 − δi j

2

)
c j

×
(
K 2

2 (x) + K2(x)K
′
2(x)

(
�xi + �x j

)+ o
(
�x2
))

.

(48)

Separating the constant terms from the linear terms in �xi ,

and using the identity 2K2(x)K ′
2(x) = dK 2

2
dx (x) we obtain:

D(x) =
⎡

⎣
M∑

i=1

M∑

j=i

ci
(
2 − δi j

)
c j

⎤

⎦ K 2
2 (x)

+
⎡

⎣
M∑

i=1

M∑

j=i

ci

(
1 − δi j

2

)
c j
(
�xi + �x j

)
⎤

⎦
(
K 2

2

)′
(x),

(49)
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where
(
K 2

2

)′
(x) = dK 2

2
dx (x). Let us define:

ρ̃ =
⎡

⎣
M∑

i=1

M∑

j=i

ci
(
2 − δi j

)
c j

⎤

⎦ ,

η̃ = −
⎡

⎣
M∑

i=1

M∑

j=i

ci

(
1 − δi j

2

)
c j
(
�xi + �x j

)
⎤

⎦ , (50)

and use the expansions (A4) and (A5):

D(x) = π

2x
e−2x

[
ρ̃(1 + B(x)) + η̃(2 + B̃(x))

]

= π

2x
e−2x

[
ρ̃ + 2η̃ + ρ̃B(x) + η̃ B̃(x)

]

= π

2x
e−2xγ

[
1 + ρB(x) + η B̃(x)

]
, (51)

with

γ = ρ̃ + 2η̃, ρ = ρ̃

γ
, η = η̃

γ
. (52)

We can therefore write:

1

D(x)
= 2x

πγ
e2x 1

1 + F(x)
, (53)

with:

F(x) = ρB(x) + η B̃(x). (54)

The asymptotic behaviour at large x for F is proportional to
1/x , since for both B and B̃ it is proportional to 1/x . This
means that we can treat (53) with the geometric expansion:

1

D(x)
= 2x

πγ
e2x

∞∑

r=0

(−1)r Fr (x). (55)

At this point we have found the same form as in the previous
case, and we can treat it similarly. Moreover, we have chosen
to use the definition (54) for F , because it has the advantage
of being straightforward to reduce to the order 0 in �xi ,
which is the case if more particles have exactly the same
mass. In fact, B̃ is from the first order of the expansion of
K 2

2 (x + �xi ) and also for �xi = 0 we have η = 0.
Thus, apart from a factor 1/γ and the replacement B →

F , we have found the same expression as in the previous
case:

〈σvMøl〉eff = 1

2
√

πm2
1γ

x2
∞∑

r=0

(−1)r Fr (x)

×
∞∑

n=0

⎡

⎣ 1

n! W̃n�

(
n + 3

2

) ∞∑

p=n+2

gn,px
−p

⎤

⎦ .

(56)

This does not change the orders at which we need to truncate
the series once we know that we want the result to a given
Nmax.

By using the results in Eq. (33):

0 ≤r ≤ Nmax, 0 ≤n ≤ Nmax, n + 2 ≤p ≤ Nmax + 2.

(57)

The difference is that here the coefficients of F up to a given
order depend on model-dependent quantities, i.e. ρ and η.
We can use the same procedure as before, since we know
that the geometric sum in F has to be truncated at the order
Nmax. Hence, it is enough to expand each power Fr separately
as a function of B and B̃, for which we know the coefficients,
at the first order in η.7 We automated this calculation in the
Wolfram Mathematica notebook in the ancillary files.

Parametrising the geometric expansion as:

1

1 + F(x)
=

∞∑

r=0

φr

xr
, (58)

we have, for Nmax = 4, the following expressions:

φ0 = 1, (59a)

φ1 = − ηb̃1 − ρb1, (59b)

φ2 = η
(

2ρb1b̃1 − b̃2

)
+ ρ2b2

1 − ρb2, (59c)

φ3 = η
(
−3ρ2b2

1b̃1 + 2ρb1b̃2 + 2ρb2b̃1 − b̃3

)

− ρ3b3
1 + 2ρ2b2b1 − ρb3, (59d)

φ4 = η
(

4ρ3b3
1b̃1 − 3ρ2b2

1b̃2 − 6ρ2b2b1b̃1 + 2ρb1b̃3

+2ρb3b̃1 + 2ρb2b̃2 − b̃4

)

+ ρ4b4
1 − 3ρ3b2b

2
1 + 2ρ2b3b1 + ρ2b2

2 − ρb4.

(59e)

The values of the bi ’s and b̃i ’s can be found in Table 3.
Plugging into the expression of 〈σvMøl〉eff, and replacing

the gn,p with their values,8 we obtain:

〈σvMøl〉eff = 1

4γm2
1

{
W̃0φ0+ 1

x

[
W̃0

(
3φ0

4
+φ1

)
+ 3W̃1φ0

2

]

7 Since we are treating the first order in �xi .
8 This simplifies dramatically the expressions, since many of them van-
ish.
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+ 1

x2

[
W̃0

(
−3φ0

32
+ 3φ1

4
+ φ2

)

+ W̃1

(
21φ0

8
+ 3φ1

2

)
+ 15W̃2φ0

8

]

+ 1

x3

[
W̃0φ0

(
15φ0

128
− 3φ1

32
+ 3φ2

4
+ φ3

)

+ W̃1

(
75φ0

64
+ 21φ1

8
+ 3φ2

2

)
+

+ W̃2

(
195φ0

32
+ 15φ1

8

)
+ 35W̃3φ0

16

]

+ 1

x4

[
W̃0

(
15φ1

128
− 3φ2

32
+ 3φ3

4
+ φ4

)

+ W̃1

(
75φ1

64
+ 21φ2

8
+ 3φ3

2

)

+ W̃2

(
195φ1

32
+ 15φ2

8

)
+ 35W̃3φ1

16

+ 315W̃4φ0

128

]}
. (60)

From this expression, one can check that in the previous
hypothesis (i.e. γ = ρ = 1 and η = 0) we recover the same
coefficients as in Eq. (40). This expression, however, is cor-
rectly expanded until the order 4 in 1/x , but it contains some
spurious terms of higher orders in �xi . In order to eliminate
them and consistently truncate at the first order, we have to
do some more manipulations. Recalling the definitions (52)
and (50):

ρ = 1

1 + 2 η̃
ρ̃

, η = η̃

ρ̃ + 2η̃
, (61)

we can now identify η̃ as the expansion parameter. At the
first order we have:

γ −1 = 1

ρ̃

(
1 − 2

η̃

ρ̃

)
, ρn = 1 − 2n

η̃

ρ̃
, η = η̃

ρ̃
. (62)

As we know already, η ∼ �xi , justifying the truncation of
higher powers of η. Since η̃ is always divided by ρ̃, we can
choose η as the expansion parameter.

In the formula (60), we can replace γ with ρ̃ and φn with:

φ̃n = (1 − 2η) φn . (63)

We are left with expressing φ̃n at the first order in η:

φ̃0 = 1 − 2η, (64a)

φ̃1 = η
(

3b1 − b̃1

)
− b1, (64b)

φ̃2 = η
(

2b1b̃1 − b̃2 − 4b2
1 + 3b2

)
+ b2

1 − b2, (64c)

φ̃3 = η
(
−3b2

1 b̃1 + 2b1b̃2 + 2b2b̃1

−b̃3 + 5b3
1 − 8b2b1 + 3b3

)
− b3

1 + 2b2b1 − b3,

(64d)

φ̃4 = η
(

4b3
1b̃1 − 3b2

1b̃2 − 6b2b1b̃1 + 2b1b̃3

+2b3b̃1 + 2b2b̃2 − b̃4 − 6b4
1

+15b2b
2
1 − 8b3b1 − 4b2

2 + 3b4

)

+ b4
1 − 3b2b

2
1 + 2b3b1 + b2

2 − b4. (64e)

The expression for 〈σvMøl〉eff at the first order in �xi and at
the 4th order in x−1 reads then:

〈σvMøl〉eff = 1

4ρ̃m2
1

{
W̃0φ̃0+ 1

x

[
W̃0

(
3φ̃0

4
+ φ̃1

)
+ 3W̃1φ̃0

2

]

+ 1

x2

[
W̃0

(
−3φ̃0

32
+ 3φ̃1

4
+ φ̃2

)

+ W̃1

(
21φ̃0

8
+ 3φ̃1

2

)
+ 15W̃2φ̃0

8

]

+ 1

x3

[
W̃0

(
15φ̃0

128
− 3φ̃1

32
+ 3φ̃2

4
+ φ̃3

)

+ W̃1

(
75φ̃0

64
+ 21φ̃1

8
+ 3φ̃2

2

)

+ W̃2

(
195φ̃0

32
+ 15φ̃1

8

)
+ 35W̃3φ̃0

16

]

+ 1

x4

[
W̃0

(
15φ̃1

128
− 3φ̃2

32
+ 3φ̃3

4
+ φ̃4

)

+ W̃1

(
75φ̃1

64
+ 21φ̃2

8
+ 3φ̃3

2

)

+ W̃2

(
195φ̃1

32
+ 15φ̃2

8

)
+ 35W̃3φ̃1

16

+ 315W̃4φ̃0

128

]}
, (65)

with ρ̃ defined in Eq. (50), η defined in Eq. (62) and φ̃ns
defined in Eq. (64). Note that we showed the results at the
order 4 since the expression is already very complicated, but
the Wolfram Mathematica notebook in the ancillary
files allows us to obtain the correct result at any given order.
We would like to comment on the result, by noticing that, in
this form, the coefficients of x−n depend on T , but they are
linear in 1/T , therefore, there is a term proportional to η ∼
1/T in φ̃0. However, we recall that the requirement for the
mass degeneracy to contribute is to have �xi small enough
to allow the expansion (47). At very low temperatures, only
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Table 2 Parameters of φ̃n in the form φ̃n = βn + ηλn

n 0 1 2 3 4

βn 1 −15

4

285

32
−2115

128

51435

2048

λn -2 −11

4

165

32
−5295

128

297135

2048

Fig. 2 Comparison between the results obtained for 〈σvMøl〉eff using
the full expression (18) and the polynomial expansion at the first order
by using (65). Plot obtained using DarkPACK [23]

the fully degenerate species contribute, and for �xi = 0
we have η = 0, so the 0th order contribution does not have a
divergence, and the only deviation from the previous formula
in Eq. (40) is contained in the ρ̃ in the prefactor. In Fig. 2 we
show the results for the pMSSM, in which we considered the
three lightest neutralinos to have the same mass of 200GeV.
As in the case without mass degeneracy, DarkPACK uses
floating numbers with double precision. In such conditions
we find again that the numerical expression breaks down for
T/m1 � 10−6.

5 Conclusion

We showed in detail how to derive the formula for the expan-
sion of 〈σvMøl〉eff at low temperatures at an arbitrary order in
x = m1/T and at the first order in the mass splittings xi − x ,
providing also two Wolfram Mathematica notebooks
that allow us to perform both the expansions at an arbitrary
order in x .

The implementation of the formula (40) in the software
DarkPACK has shown the necessity of the usage of such an
expansion at low temperatures, as the implementation of the
full formula (18) fails to provide a numerically stable result.
The result is publicly available in DarkPACK 1.2.

In many NP scenarios, the freeze-out temperature lies in
the interval [m1/30,m1/20], thus the calculations of the relic
density made by using formula (18) are reliable. Therefore,
the result presented in the present work will hardly improve
the numerical computation of the relic density in many NP
scenarios, apart in case of resonances at low velocities. How-
ever, it can be used to validate the numerical result obtained
by using (18) for temperatures which are low, but larger
than the breakdown threshold of 10−6m1. This check can
be extremely useful, especially in very recent codes (such as
DarkPACK) or while implementing a new model with mass
degeneracy near the DM candidate, since it provides the com-
putation of an important quantity in an independent way of
the full numerical one. The latter involves in fact a numerical
integration, while the former involves a numerical derivative.
Both calculations are prone to different kinds of numerical
errors, and from the agreement of the two calculations of
〈σvMøl〉eff one can ensure that there are no inconsistency.

Moreover, as pointed out in the introduction, the formula
derived in this work can be used to compute symbolically—
by hand or with symbolic manipulation programs—the
expression of 〈σvMøl〉eff at low temperatures in models where
a small mass splitting or a resonance is present. This allows
for a better profiling of the parameter space of the model,
since it is possible to study its impact on 〈σvMøl〉eff, and there-
fore on the corresponding relic density.
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Appendix A: Asymptotic expansions of the Bessel
functions

The asymptotic form of Kn(z) for |z| → +∞ and |argz| <

3π/2 can be written as [26]:

Kn(z) ∼
√

π

2z
e−z
[

1 + μ − 1

8z
+ (μ − 1)(μ − 9)

2!(8z)2

+ (μ − 1)(μ − 9)(μ − 25)

3!(8z)3 + o
(
z−4
)]

(A1)

where μ = 4n2.
For n = 2 we define the quantity A(x) such that:

K2(x) ∼
√

π

2x
e−x [1 + A(x)] , (A2)

and we write it in the form:

A(x) =
∞∑

m=1

amx
−m . (A3)

Analogously, we can define the quantity B(x) such that:

K 2
2 (x) ∼ π

2x
e−2x [1 + B(x)] , (A4)

implying the relation B = 2A + A2.
It is helpful to write the asymptotic form of the first deriva-

tive of K 2
2 as:

(
K 2

2

)′
(x) ∼ − π

2x
e−2x

[
2 + B̃(x)

]
, (A5)

with:

B̃(x) = 2B(x) + 1

x
+ B(x)

x
− B ′(x) . (A6)

where the ′ denotes the derivative with respect to x .
Note that since A ∼ 1/x ,9 we have B ∼ 1/x and B̃ ∼

1/x :

B(x) =
∞∑

m=1

bmx
−m, B̃(x) =

∞∑

m=1

b̃mx
−m . (A7)

9 By neglecting a non-null real factor.

Therefore, the coefficients can be determined using the rela-
tions

bm = 2am +
m∑

k=1

akam−k, ∀m ≥ 1

(A8)

b̃1 = 2b1 + 1, b̃m = 2bm + mbm−1. ∀m ≥ 2
(A9)

The coefficients am are known, and their values are given in
Table 3, thus we can compute all the other parameters.

Appendix B: Meijer functions

The Meijer functions are defined as10

Gm,n
p,q

(
z

∣∣∣∣
a1, . . . , an, an+1, . . . , ap
b1, . . . , bm , bm+1 . . . , bq

)

= 1

2π i

∫
ds

∏m
j=1 �(b j − s)

∏n
j=1 �(1 − a j + s)

∏q
j=m+1 �(1 − b j + s)

∏p
j=n+1 �(a j − s)

xs ,

(B1)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p, and the poles of �(b j − s)
must not coincide with the poles of �(1 − a j + s) for any
pair ( j, k) with 1 ≤ j ≤ n, 1 ≤ k ≤ m.

The following property holds11

∫ ∞

1
dxxλ(x − 1)μ−1Kν(a

√
x) = �(μ)22λ−1a−2λG3,0

1,3

×
(

a2

4

∣∣∣∣
0

−μ, ν
2 + λ,− ν

2 + λ

)
. (B2)

For λ = 0, μ = 3/2 + n and ν = 1, the asymptotic form of
the G-function at the right hand side is:

G3,0
1,3

(
x2

∣∣∣∣
0

− 1
2 , 1

2 ,−n − 3
2

)
= √

πe−2xGn(x), (B3)

where Gn(x) is a generalised series:

Gn(x) =
∞∑

p=n+2

gn,px
−p. (B4)

The results of the expansion of Gn for 0 ≤ n ≤ 10 to the
12th order are:

G0 = 1

x2 + 3

4x3 − 3

32x4 + 15

128x5
, (B5a)

10 See e.g.: Definition (9.301) in Ref. [27].
11 See e.g.: Eq. (6.592.4) in Ref. [27].
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Table 3 Coefficients of the Laurent series in the asymptotic expansion of K2, K 2
2 and

(
K 2

2

)′

m am bm b̃m

1
15

8

15

4

17

2

2
105

128

165

32

285

16

3 − 315

1024

315

128

1305

64

4
10,395

32,768

315

2048

10,395

1024

5 −135,135

262,144
−2835

8192

315

4096

6
4,729,725

4,194,304

61,425

65,536
− 6615

32,768

7 −103,378,275

33,554,432
−779,625

262,144

80,325

131,072

8
21,606,059,475

2,147,483,648

90,904,275

8,388,608
−8,887,725

4,194,304

9 −655,383,804,075

17,179,869,184
−1,497,971,475

33,554,432

138,305,475

16777216

10
45,221,482,481,175

274,877,906,944

55,124,944,875

268,435,456
−4,793,914,125

134,217,728

G1 = 25

32x5
+ 7

4x4 + 1

x3 , (B5b)

G2 = 13

4x5
+ 1

x4 , (B5c)

Gν = 1

xν+2 , ∀ 3 ≤ ν ≤ 10.

(B5d)

Appendix C: A practical example

In this appendix, we provide a practical example on how
to use formula (65). Let us consider a generalisation of the
model presented e.g. in [28], in which the SM is extended by
adding a Dirac fermion χ1 and a parity-even real scalar φ,
according to a variation of lagrangian density by:

�L1 = 1

2
m2

φ(∂φ)2 + χ̄1(i�∂ − m1)χ1 − g1,φφχ̄1χ1

−
∑

f

1√
2
g f φ y f φ f̄ f, (C1)

where the sum runs over all the SM fermions f , and y f =√
2m f /v, with v the Higgs boson’s v.e.v. of about 246

GeV, and m f the mass of f . For such a model, considering
mφ > m1 > m f , the only process contributing to 〈σvMøl〉eff

is χ̄1χ1 → f̄ f , whose sum over the spins of the squared

amplitude is:

M =
∑

spins

|M2| = 2
(
g1,φg f φ y f

)2
(
s − 4m2

1

) (
s − 4m2

f

)

(
s − m2

φ

)2 + m2
φ�2

φ

,

(C2)

where s is the Mandelstam variable, and �φ is the total decay
width of φ. From this expression, we can use the relation (17)
to compute W̃eff:

W̃eff(s) = 1

8π
√
s

∑

f

N f C f

(
s − 4m2

1

) (
s − 4m2

f

)3/2

(
s − m2

φ

)2 + m2
φ�2

φ

,

(C3)

where N f is the number of colors’ degrees of freedom of f ,

and C f = 2
(
g1,φg f φ y f

)2.
At this point, we can apply formula (40) to determine

〈σvMøl〉eff at the first order in T :

〈σvMøl〉eff = 3

8

T

g2
1m

3
1

W1 = 3

8

T

g2
1m

3
1

ds

dy

dW̃eff

ds

∣∣∣∣
s=4m2

1

= 3

2

T

g2
1m1

dW̃eff

ds

∣∣∣∣
s=4m2

1

. (C4)
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By computing the derivative, we obtain the result:

〈σvMøl〉eff = 3

4πg2
1m

2
1

∑

f

N f C f

(
m2

1 − m2
f

)3/2

(
4m2

1 − m2
φ

)2 + m2
φ�2

φ

T,

(C5)

which, after replacing C f and g1 = 2, reproduces the result
in [28].

To show an example about the application of formula (65),
let us consider a generalisation of the presented model: in
particular, let us add a new Dirac fermion χ2 with a mass
m2 � m1, that couples with φ with a different coupling g2,φ .
Then, the variation of lagrangian density with respect to �L1

is:

�L2 = χ̄2(i�∂ − m2)χ2 − g2,φφχ̄2χ2. (C6)

Next, we need to compute W̃eff(s) and its derivatives for s =
4m2

1: the only contribution to these quantities comes from the
process χ̄1χ1 → f̄ f , which is the only one kinematically
allowed at the threshold. Therefore, the expression of W̃eff(s)
takes the form (C3), and also the expression of its derivative
is the same.

Let us write formula (65) at the first order, knowing that
W̃eff(s = 4m2

1) = 0:

〈σvMøl〉eff = 3T

8ρ̃g2
1m

3
1

φ̃0
ds

dy

dW̃eff

ds

∣∣∣∣
s=4m2

1

= φ̃0

ρ̃
(〈σvMøl〉eff)1

(C7)

where (〈σvMøl〉eff)1 has been already computed, and it takes
the form of (C5). Therefore, we need to compute the ratio
φ̃0/ρ̃. By using their definitions, and with the further simpli-
fication ci = gi ,12 we obtain:

φ̃0

ρ̃
= 1

24
+ �x2

24
, (C8)

where �x2 = (m2 − m1)/T .
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