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ABSTRACT

We derive a low-temperature expansion of the formula to compute the average annihila-

tion rate ⟨σv⟩ for dark matter in Z2-symmetric models, both in the absence and the presence

of mass degeneracy in the spectrum near the dark matter candidate. We show that the re-

sult obtained in the absence of mass degeneracy is compatible with the analytic formulae

in the literature, and that it has a better numerical behaviour for low temperatures. We

also provide as ancillary files two Wolfram Mathematica notebooks which perform the two

expansions at any order.
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I. INTRODUCTION

One of the main areas of research in astroparticle physics today is the search for dark

matter (DM). For decades, a number of astrophysical observations have been impossible

to explain in the context of general relativity (GR), if we also assume that the Standard

Model (SM) of fundamental interactions describes the entire particle content of the universe.

Hence, a hypothesis that can explain most - or in some contexts all - observations is the

existence of a kind of stable and non-relativistic matter that couples very weakly with SM

fields. For this reason, this kind of matter is referred to as dark matter. Aside from the

astrophysical observations, the existence of DM is also a necessity in cosmology in order to

obtain a coherent description of the growth of perturbations.

Moreover, despite the fact that it describes very well the phenomena observed up to the

TeV scale,1 the SM is expected to fail at a certain energy scale, surely lower than the Planck

energy. Thus, if DM is in part composed of stable particles, it could be explained in some

extensions of the SM. Alternatively, it is possible to extend the SM with the aim of having

a model that describes the nature of a fraction - or the totality - of the DM abundance.

The abundance of DM has been measured by the Planck collaboration [1] as the relative

energy density:

H0 = 67.66± 0.42 km/s/Mpc, (1)

Ωm = 0.3111± 0.0056, (2)

Ωbh
2 = 0.02237± 0.00015, (3)

Ωch
2 = 0.1200± 0.0012, (4)

ΩΛ = 0.6847± 0.0073, (5)

where H0 is the Hubble parameter, h is the reduced Hubble parameter, defined as:

h =
H0

100 km/s/Mpc
, (6)

and where Ωb is the relative density of baryonic matter, i.e. of the fraction of cold matter

visible via electromagnetic signals, and Ωc is the relative density of cold dark matter, i.e. of

the fraction of cold matter electromagnetically invisible. The discrepancy between Ωm and Ωb

1 Except for neutrinos’ flavour oscillations.
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is the first evidence of the existence of cold dark matter, and that this component dominates

the non-relativistic matter content of the Universe.

The contribution to the relative density of a particle’s species can be computed by solving

the Boltzmann equation for its number density, then obtaining from it the energy density,

and finally dividing this result by the critical density of the Universe today. The form of the

Boltzmann equation and its resolution for the non-relativistic case can be found e.g. in [2].

In particular, it has the form

dn

dt
= −3Hn+ ⟨σv⟩ (n− neq), (7)

where n is the number density of the dark matter candidate, as a function of the time t,2 neq

is the value of equilibrium for n, at the temperature T corresponding to the time t, and ⟨σv⟩
is the thermal average of the product of the total cross-section of annihilation of dark matter

candidates into SM particles with the relative velocity of the particles in the initial state. In

order to compute the thermal average, it has been assumed that the particles in the initial

state have non-relativistic velocities, allowing the replacement s → 4m2 + m2v2, where s

is the Mandelstam variable, m is the mass of the DM candidate, and v its velocity in the

centre-of-mass frame. The expanded σv is then averaged, yielding an expansion in x = m/T

for ⟨σv⟩. The work by Srednicki et al. [3] aimed then to have a more reliable expansion of

⟨σv⟩, by finding the general non-relativistic formula expressed directly in powers of 1/x, and

starting from the squared matrix elements of the annihilation reactions.

In the context of DM produced via annihilation and co-annihilation, the work of Gondolo

and Gelmini [4], and of Edsjo and Gondolo [5] made a step forward, in generalising the

equation in the relativistic case. Firstly, it is pointed out that v should not be the relative

velocity, but the Möller velocity, thus making ⟨σv⟩ a scalar, from now on denoted as ⟨σvMøl⟩eff.

Then, the scenario of annihilation to SM particles and of co-annihilation is considered in

the models with a Z2 symmetry that prevents the DM candidate from decaying into SM

particles. The result is a Boltzmann equation for the total number density of the species

with the same Z2-parity as the DM candidate, which has the same form as equation (7). In

this context, the expression of ⟨σvMøl⟩eff is derived and linked to the one already presented

in [3].

2 In the Friedmann-Lamaître-Robertson-Walker metric.
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In this work, we re-consider the formula derived in [5] for ⟨σvMøl⟩eff in section II, also

showing why the implementation of such a formula can lead to numerically unreliable results

at low temperatures. In section III, we point out that a numerical evaluation of such a

formula at low values for T presents some numerical issues, and we derive its expansion

in 1/x, by following the procedure outlined in [6] by Cannoni. Finally, in section IV we

generalise the expansion in the case of small mass splitting in the spectrum near the DM

candidate’s mass. We conclude in section V by discussing the results and their areas of

application.

II. FREEZE-OUT SCENARIO FOR THERMAL RELIC DENSITY

The standard scenarios for dark matter particles are the so-called thermal relic scenarios,

in which a single relic particle can explain the nature of dark matter. In the freeze-out

scenarios, the new physics particles are considered in thermal equilibrium at a common

temperature T . The expansion rate H of the Universe is given by the Friedmann equation:

H2 =
8πG

3
geff(T )

π2

30
T 4 , (8)

where geff is the effective number of degrees of freedom of radiation.

At thermal equilibrium, under the assumption of the Maxwell-Boltzmann statistics, the

total number density of new physics particles is given by

neq =
T

2π2

∑
i

gim
2
iK2

(mi

T

)
, (9)

where gi and mi are the number of degrees of freedom and the mass of the i-th new physics

particle, respectively, and K2 the modified Bessel function of the second kind of order 2.

To compute the present relic density of dark matter particles, one needs to solve the

Boltzmann evolution equation [4, 7, 8]:

dn

dt
= −3Hn− ⟨σeffv⟩(n2 − n2

eq) , (10)

where n is the total number density of new physics particles and ⟨σeffv⟩ is the thermal average

of the annihilation rate of the new physics particles to the Standard Model particles.

The thermal average of the effective cross-section at temperature T is obtained, under
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the assumptions of thermal equilibrium and Maxwell-Boltzmann statistics:

⟨σeffv⟩(T ) =

∫ ∞

0

dpeffp
2
effWeff(

√
s)K1

(√
s

T

)
m4

DMT

[∑
i

gi
gDM

m2
i

m2
DM

K2

(mi

T

)]2 , (11)

where K1 is the modified Bessel function of the second kind of order 1, gDM and mDM are

the number of degrees of freedom and the mass of the dark matter particle, and

peff(
√
s) =

1

2

√
s− 4m2

DM , (12)

where
√
s is the centre-of-mass energy. We can obtain Weff by integrating over the outgoing

directions of the final particles [8]:

dWeff

d cos(θ)
=
∑
ijkl

pijpkl
8πg2DMpeffSkl

√
s

∑
helicities

∣∣∣∣∣ ∑
diagrams

M(ij → kl)

∣∣∣∣∣
2

, (13)

where M(ij → kl) is the amplitude of two new physics particles (i, j) giving two Standard

Model particles (k, l), and θ is the angle between particles i and k, Skl is a symmetry factor

equal to 2 for identical final particles and to 1 otherwise, and pkl is the final centre-of-mass

momentum such that

pkl =
[s− (mk +ml)

2]
1/2

[s− (mk −ml)
2]

1/2

2
√
s

. (14)

The current density of dark matter particles can be obtained by integrating the Boltzmann

equation (10) between a high temperature where all particles are in thermal equilibrium, and

the current Universe temperature T0 = 2.726 K. The freeze-out temperature Tf is defined

as the temperature at which the dark matter particles leave thermal equilibrium.

There exist several codes for the calculation of dark matter relic density, such as SuperIso

Relic [9–11], MicrOMEGAs [12, 13], DarkSUSY [14, 15], MadDM [16, 17] and DarkPACK [18],

which use different methods of integration of the Boltzmann equation and calculation of the

thermal average of the effective cross-section.

In particular, one can observe that the formula (11) can present some numerical instabili-

ties for small values of T . In fact, both the Bessel functions have an asymptotic behaviour, as

their expansion is given in (A1), so for large 1/T both the integrand function in the numer-

ator and the sum in the denominator tend to 0, leading to an undefined form. Thus, when

the evaluation of the numerator or the denominator returns a number close to the minimum

value of the adopted floating number precision, the value of ⟨σv⟩ cannot be reliable.
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III. AVERAGED ANNIHILATION RATE AT LOW TEMPERATURE

The definition of the averaged annihilation rate given in Eq. (11), is the central part of the

Boltzmann equation. In fact, for small values of T , the arguments of the Bessel functions

tend to infinity, and both K1 and K2 become infinitesimally small since their arguments

tend to infinity. This generates some computational issues, if T is very small, which is the

case in the recent Universe.

From a phenomenological perspective, often the freeze-out temperature will not be small

enough to require a specific expansion for ⟨σvMøl⟩eff. In fact, it is typically equal to the mass

of the DM candidate times a factor ranging from 1/30 to 1/20, and therefore there is no need

to evaluate ⟨σvMøl⟩eff at temperatures as low as 10−14GeV. However, we found this expansion

useful, since in some cases it is possible to calculate, or to find in the literature, some formulae

for ⟨σvMøl⟩eff in the non-relativistic case. Thus, providing a correct numerical expansion at

low temperature, independent from a full formula prone to numerical instabilities, allows us

to detect possible errors in the numerical implementation of the model, or in the derivation

of an analytical expression of the non-relativistic ⟨σvMøl⟩eff in a specific model.

It is therefore useful to study the expansion of the averaged annihilation rate at low

temperatures, in order for example to verify that the relativistic result is consistent with the

non-relativistic one. The derivation of the latter can be found in Ref. [3].

In this subsection, we will outline the steps of the expansion of (11), showing that it

can be performed up to any given order. We also show that the lowest order is the order

zero, hence proving that the formula (11) does not present singularities at T = 0. The

original procedure has been suggested in Ref. [6], and in the following we describe the final

computational steps in a way that they can be reproduced by hand or even with symbolic

manipulation algorithms. We also provide as an ancillary file a Mathematica notebook [19]

which performs such an expansion.

To begin, we make a change of variable for the integral (11):

peff → y =
p2eff
m2

1

+ 1, (15)

where m1 is the mass of the lightest new physics particle, i.e. the dark matter particle,

which we will denote in the following χ1. In the denominator, we keep in the sum only

the contribution of χ1, since it is the lightest particle leading to the dominant contribution
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to the sum. Using the asymptotic form of Kn provided in the Appendix in Eq. (A1), we

therefore obtain:

⟨σvMøl⟩eff =
x

2m2
1K2(x)

∫ +∞

1

dy
√

y − 1Weff(y)K1(2x
√
y), (16)

where x = m1/T .

Similarly to K2, K1 has its maximum value when its argument has its smallest value in

the integral. This means that the largest contributions to the integral are coming from the

region with y ≳ 1. Let us then expand Weff around y = 1:

Weff(y) =
∞∑
n=0

1

n!
(y − 1)nWn, (17)

where Wn =
dnWeff

dyn

∣∣∣∣
y=1

. Then

⟨σvMøl⟩eff =
∞∑
n=0

1

n!
WnKn(x), (18)

where we have defined:

Kn(x) =
x

2m2
1K

2
2(x)

In(x), In(x) =

∫ +∞

1

dy (y − 1)
1
2
+nK1(2x

√
y). (19)

The integral in In corresponds to Eq. (B2) with λ = 0, µ = 3/2 + n and ν = 1. Hence,

In(x) =
1

2
Γ

(
n+

3

2

)
G3,0

1,3

x2

∣∣∣∣∣ 0

−n− 3

2
,
1

2
,−1

2

 . (20)

The coefficients Kn(x) of expansion (18) are therefore

Kn(x) = Γ

(
n+

3

2

)
x

4m2
1K

2
2(x)

G3,0
1,3

x2

∣∣∣∣∣ 0

−1

2
,
1

2
,−n− 3

2

 . (21)

Using the results in Appendix B, we can write the asymptotic form of Kn(x) as:

Kn(x) = Γ

(
n+

3

2

) √
π

4m2
1

e−2x x

K2
2(x)

∞∑
p=n+2

gn,px
−p. (22)

We consider now the asymptotic form of K2(x). By using Eq. (A4), and keeping the same

notation as in Appendix A, we can write:

Kn(x) = Γ

(
n+

3

2

)
1

2
√
πm2

1

x2

1 +B(x)

∞∑
p=n+2

gn,px
−p. (23)
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Since B(x) is a small quantity, we can use the properties of the geometric sum and write:

Kn(x) = Γ

(
n+

3

2

)
1

2
√
πm2

1

x2

∞∑
r=0

(−1)rBr(x)
∞∑

p=n+2

gn,px
−p. (24)

At this point, by knowing the gn,p, the procedure becomes straightforward.

First, we use the expansions (18) and (22) to factorise the terms independent of n in the

expression of ⟨σvMøl⟩eff:

⟨σvMøl⟩eff =
1

2
√
πm2

1

x2

∞∑
r=0

(−1)rBr(x)
∞∑
n=0

[
1

n!
WnΓ

(
n+

3

2

) ∞∑
p=n+2

gn,px
−p

]
. (25)

The term in square brackets is a Laurent series whose maximum order is 2. So we can define

a set of gp such that:3

⟨σvMøl⟩eff =
1

2
√
πm2

1

x2

∞∑
r=0

(−1)rBr(x)
∞∑
p=2

gp
xp

. (26)

Moreover, using Eq. (A7) we can define the coefficients βr such that

⟨σvMøl⟩eff =
1

2
√
πm2

1

∞∑
r=0

βr

xr

∞∑
p=0

g̃p
xp

, (27)

where g̃p = gp+2. Written in this form, it is clear that the lowest order is zero, as it should

be.4

The next step is to determine the coefficients of the powers of 1/x up to a given order Nmax.

This can be done once we know the coefficients βr and gp up to r = Nmax and p = Nmax + 2.

We can also show that there is a maximum contribution from n, which can be obtained from

the range of the sum in p:

n+ 2 ≤ p ≤ Nmax + 2 (28)

from which we obtain the condition n ≤ Nmax. To summarise, in order to truncate the

expansion at the order Nmax, the indexes have the following ranges:

0 ≤r ≤ Nmax, 0 ≤n ≤ Nmax, n+ 2 ≤p ≤ Nmax + 2 . (29)

3 Note that for the sum over p we kept the same name for the index for clarity. In fact, the powers of x are

expressed as functions of p in the original sum. This means that if truncate at a certain order, the upper

limit of the sums is the same.
4 Note that for the sum over r we kept the same name for the index for clarity. Br gives the highest

contribution to the term ηr/x
r. Therefore, if we truncate at a certain order, the range of the two sums is

the same.
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Let us now how discuss to perform the expansion, considering for instance Nmax = 4

to illustrate the intermediate steps and Nmax = 10 for the final result. The Mathematica

notebook provided as an ancillary file provides the algorithm valid for any values of Nmax.

For a given Nmax the maximum order of the derivative of Weff that contributes to ⟨σvMøl⟩eff

is exactly Nmax:

⟨σvMøl⟩eff =
Nmax∑
n=0

1

n!
WnKn(x) . (30)

⟨σvMøl⟩eff is defined as a finite sum, and each Kn is the product of two series that we know

where to truncate. Let us define the quantity:

D(x) =
1

1 +B(x)
=

Nmax∑
r=0

(−1)rBr(x) . (31)

Then, we can write Kn in the form:

Kn(x) = Γ

(
n+

3

2

)
1

2
√
πm2

1

x2D(x)
Nmax+2∑
p=n+2

gn,px
−p . (32)

The coefficients gn,p are tabulated in Eq. (B5). Therefore, we are left with determining the

coefficients of the expansion of D and calculating the product of the two truncated series.

Firstly, we write each power of B in D by expanding the series of B in Br up to the order

Nmax − r + 1. Then, up to the 4th order, the non-trivial powers of B are:

B2 =
b22 + 2b1b3

x4
+

2b2b1
x3

+
b21
x2

, (33)

−B3 = −3b2b
2
1

x4
− b31

x3
, (34)

B4 =
b41
x4

. (35)

The coefficients bi are given in Table III, and the coefficients βr of the expansion of D(x)

are given in Table I.
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We can plug those expressions into D, Kn and ⟨σvMøl⟩eff, obtaining the result (to the 10th

order):

⟨σvMøl⟩eff =
1

4m2
1

{
W0 +

1

x

(
−3W0 +

3W1

2

)
+

1

x2

(
6W0 − 3W1 +

15W2

8

)
+

+
1

x3

(
−75W0

8
+

75W1

16
− 15W2

16
+

35W3

16

)
+

+
1

x4

(
23445W0

2048
− 1485W1

256
− 1575W2

256
− 525W3

64
+

315W4

128

)
+

+
1

x5

(
−17505W0

2048
+

19395W1

4096
+

11925W2

512
+

9975W3

512
− 4725W4

512
+

693W5

256

)
+

+
1

x6

(
−222885W0

32768
+

13095W1

8192
− 878175W2

16384
+

−74025W3

2048
+

89775W4

4096
− 10395W5

1024
+

3003W6

1024

)
+

1

x7

(
1661715W0

32768
− 1264815W1

65536
+

3173175W2

32768
+

1800225W3

32768

−666225W4

16384
+

197505W5

8192
+

6435W7

2048
− 45045W6

4096

)
+

+
1

x8

(
−1379496825W0

8388608
+

32645025W1

524288
− 76137975W2

524288
− 8594775W3

131072
+

+
16202025W4

262144
− 1465695W5

32768
+

855855W6

32768
+

109395W8

32768
− 96525W7

8192

)
+

+
1

x9

(
−13671950879025W0

4294967296
− 2855855475W1

16777216
+

186553125W2

1048576
+

45808875W3

1048576
+

−77352975W4

1048576
+

35644455W5

524288
− 6351345W6

131072
+

+
1833975W7

65536
− 1640925W8

131072
+

230945W9

65536

)
+

+
1

x10

(
−38822473644075W0

8589934592
− 43047242435475W1

8589934592
− 10584016875W2

67108864
+

+
275065875W3

4194304
+

412279875W4

8388608
− 170176545W5

2097152
+

154459305W6

2097152

−13610025W7

262144
+

31177575W8

1048576
− 3464175W9

262144
+

969969W10

262144

)}
, (36)

which correctly reproduces the results in [3] and [6]. From a numerical perspective, the

error on Wn for n ≥ 2 will be large. Therefore, it is recommended to stop at the order 1 or

2. We show the results obtained for the pMSSM5 in DarkPACK in a scenario where the dark

5 The phenomenological Minimal Supersymmetric extension of the Standard Model.
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Symbolic expression Value

β0 1 1

β1 −b1 −15

4

β2 b21 − b2
285

32

β3 −b31 + 2b2b1 − b3 −2115

128

β4 b41 − 3b2b
2
1 + 2b3b1 + b22 − b4

51435

2048

TABLE I. Symbolical expressions and values for the coefficients βr.

10−1510−1310−11 10−9 10−7 10−5 10−3 10−1

10−13

10−12

10−11

10−10

10−9

10−8

T/m1

〈σ
v M

øl
〉 eff

(G
eV

−
2
)

Polynomial
Numerical

FIG. 1. Comparison between the results obtained for ⟨σvMøl⟩eff by using the full expression (11)

and the polynomial expansion at the first order by using (36).

matter candidate has a mass m1 ≈ 200GeV in Figure 1. We see that truncating at the first

order can give a very satisfactory result, since the resulting curves for ⟨σvMøl⟩eff(T ) computed

respectively with the numerical evaluation of Eq. (11) and of the asymptotic behaviour (36)

are compatible. Moreover, from the figure, one can notice that the numerical implementation

of the full formula for ⟨σv⟩ fails to deliver reliable results for T ≲ 10−6m1.
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IV. CASE OF PARTICLES WITH SMALL MASS SPLITTING

The result shown in section III is correct up to a defined order, under the hypothesis that

there are no new physics species with a mass close to the one of the dark matter candidate.6

In models with a Z2 symmetry, such a particle is the lightest of a set. Let us suppose that

there are M ≤ N particles nearly degenerate in mass. In such a case, we need to retain

their contributions to the denominator in (11). Let us define:

x =
m1

T
, xi =

mi

T
, ci =

gi
g1

m2
i

m2
1

, ∆xi = xi − x, (37)

for i = 1, . . . ,M . We can perform the same change of variable as in section III which leads

to:

⟨σvMøl⟩eff =
x

2m2
1

1[∑M
i=1 ciK2

(
mi

T

)]2 ∫ +∞

1

dy
√
y − 1Weff(y)K1(2x

√
y). (38)

After expanding Weff around y = 1 as in the previous case we obtain:

⟨σvMøl⟩eff =
∞∑
n=0

1

n!
WnHn(x). (39)

where we have defined:

Hn(x) =
x

2m2
1

1[∑M
i=1 ciK2

(
mi

T

)]2 In(x), (40)

and where In is the same as the one defined in (19). Note that Hn and Kn differ only for the

Bessel functions in the denominator. With some manipulations, we can treat Hn similarly

as done with Kn. In fact, we already know how to write In as Laurent series.

Let us define the quantity:

D(x) =

[
M∑
i=1

ciK2(xi)

]2
. (41)

Our goal is to expand D(x) at its first order in ∆xi and at an arbitrary order in x. Let us

expand the square:

D(x) =

[
M∑
i=1

ciK2(x+∆xi)

]2
6 Except, of course, the candidate itself.
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= 2
M∑
i=1

ciK2(x+∆xi)
M∑
j=i

(
1− δij

2

)
cjK2(x+∆xj). (42)

At the first order in ∆xi we have also:

K2(x+∆xi) = K2(x) +K ′
2(x)∆xi, (43)

where K ′
2(x) =

dK2

dx
(x). Therefore:

D(x) = 2
M∑
i=1

M∑
j=i

ci

(
1− δij

2

)
cj(K2(x) +K ′

2(x)∆xi)(K2(x) +K ′
2(x)∆xj)

= 2
M∑
i=1

M∑
j=i

ci

(
1− δij

2

)
cj
(
K2

2(x) +K2(x)K
′
2(x)(∆xi +∆xj) + o

(
∆x2

))
. (44)

Separating the constant terms from the linear terms in ∆xi, and using the identity

2K2(x)K
′
2(x) = K2

2(x) we obtain:

D(x) =

[
M∑
i=1

M∑
j=i

ci(2− δij)cj

]
K2

2(x) +

[
M∑
i=1

M∑
j=i

ci

(
1− δij

2

)
cj(∆xi +∆xj)

](
K2

2

)′
(x),

(45)

where (K2
2)

′
(x) =

dK2
2

dx
(x). Let us define:

ρ̃ =

[
M∑
i=1

M∑
j=i

ci(2− δij)cj

]
, η̃ = −

[
M∑
i=1

M∑
j=i

ci

(
1− δij

2

)
cj(∆xi +∆xj)

]
, (46)

and use the expansions (A4) and (A5):

D(x) =
π

2x
e−2x

[
ρ̃(1 +B(x)) + η̃(2 + B̃(x))

]
=

π

2x
e−2x

[
ρ̃+ 2η̃ + ρ̃B(x) + η̃B̃(x)

]
=

π

2x
e−2xγ

[
1 + ρB(x) + ηB̃(x)

]
, (47)

with

γ = ρ̃+ 2η̃, ρ =
ρ̃

γ
, η =

η̃

γ
. (48)

We can therefore write:

1

D(x)
=

2x

πγ
e2x

1

1 + F (x)
, (49)
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with:

F (x) = ρB(x) + ηB̃(x). (50)

The asymptotic behaviour at large x for F is proportional to 1/x, since for both B and B̃

it is proportional to 1/x. This means that we can treat (49) with the geometric expansion

1

D(x)
=

2x

πγ
e2x

∞∑
r=0

(−1)rF r(x). (51)

At this point we have found the same form as in the previous case, and we can treat it

similarly. Moreover, we have chosen to use the definition (50) for F , because it has the

advantage of being straightforward to reduce to the order 0 in ∆xi, which is the case if more

particles have exactly the same mass. In fact, B̃ is from the first order of the expansion of

K2
2(x+∆xi) and also for ∆xi = 0 we have η = 0.

Thus, apart from a factor 1/γ and the replacement B → F , we have found the same

expression as in the previous case:

⟨σvMøl⟩eff =
1

2
√
πm2

1γ
x2

∞∑
r=0

(−1)rF r(x)
∞∑
n=0

[
1

n!
WnΓ

(
n+

3

2

) ∞∑
p=n+2

gn,px
−p

]
. (52)

This does not change the orders to which we need to truncate the series once we know that

we want the result to a given Nmax. By using the results in (29):

0 ≤r ≤ Nmax, 0 ≤n ≤ Nmax, n+ 2 ≤p ≤ Nmax + 2. (53)

The difference is that here the coefficients of F up to a given order depend on model-

dependent quantities, i.e. ρ and η. We can use the same procedure as before, since we

know that the geometric sum in F has to be truncated at the order Nmax. Hence, it is

enough to expand each power F r separately as a function of B and B̃, for which we know

the coefficients, at the first order in η.7 We automated this calculation in the Wolfram

Mathematica notebook in the ancillary files. Parametrising the geometric expansion as:

1

1 + F (x)
=

∞∑
r=0

ϕr

xr
, (54)

we have, for Nmax = 4, the following expressions:

ϕ0 =1, (55a)

7 Since we are treating the first order in ∆xi.
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ϕ1 =− ηb̃1 − ρb1, (55b)

ϕ2 =η
(
2ρb1b̃1 − b̃2

)
+ ρ2b21 − ρb2, (55c)

ϕ3 =η
(
−3ρ2b21b̃1 + 2ρb1b̃2 + 2ρb2b̃1 − b̃3

)
− ρ3b31 + 2ρ2b2b1 − ρb3, (55d)

ϕ4 =η
(
4ρ3b31b̃1 − 3ρ2b21b̃2 − 6ρ2b2b1b̃1 + 2ρb1b̃3 + 2ρb3b̃1 + 2ρb2b̃2 − b̃4

)
+ ρ4b41 − 3ρ3b2b

2
1 + 2ρ2b3b1 + ρ2b22 − ρb4. (55e)

The values of the bi’s and b̃i’s can be found in Table III.

Plugging into the expression of ⟨σvMøl⟩eff, and replacing the gn,p with their values,8 we

obtain:

⟨σvMøl⟩eff =
1

4γm2
1

{
W0ϕ0 +

1

x

[
W0

(
3ϕ0

4
+ ϕ1

)
+

3W1ϕ0

2

]

+
1

x2

[
W0

(
−3ϕ0

32
+

3ϕ1

4
+ ϕ2

)
+W1

(
21ϕ0

8
+

3ϕ1

2

)
+

15W2ϕ0

8

]

+
1

x3

[
W0ϕ0

(
15ϕ0

128
− 3ϕ1

32
+

3ϕ2

4
+ ϕ3

)
+W1

(
75ϕ0

64
+

21ϕ1

8
+

3ϕ2

2

)

+W2

(
195ϕ0

32
+

15ϕ1

8

)
+

35W3ϕ0

16

]

+
1

x4

[
W0

(
15ϕ1

128
− 3ϕ2

32
+

3ϕ3

4
+ ϕ4

)
+W1

(
75ϕ1

64
+

21ϕ2

8
+

3ϕ3

2

)

+W2

(
195ϕ1

32
+

15ϕ2

8

)
+

35W3ϕ1

16
+

315W4ϕ0

128

]}
. (56)

From this expression one can check that in the previous hypothesis (i.e. γ = ρ = 1 and

η = 0) we recover the same coefficients as in (36). This expression, however, is correctly

expanded until the order 4 in 1/x, but it contains some spurious terms of higher orders in

∆xi. In order to eliminate them and consistently truncate at the first order, we have to do

some more manipulations. Recalling the definitions (48) and (46):

ρ =
1

1 + 2 η̃
ρ̃

, η =
η̃

ρ̃+ 2η̃
, (57)

and now we can identify η̃ as the expansion parameter. At the first order we have:

γ−1 =
1

ρ̃

(
1− 2

η̃

ρ̃

)
, ρn = 1− 2n

η̃

ρ̃
, η =

η̃

ρ̃
. (58)

8 This simplifies dramatically the expressions, since many of them vanish.
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As we knew already, η ∼ ∆xi, justifying the truncation of higher powers of η. Since η̃ is

always divided by ρ̃, we can choose η as the expansion parameter.

In the formula (56), we can replace γ with ρ̃ and ϕn with:

ϕ̃n = (1− 2η)ϕn. (59)

We are left with expressing ϕ̃n at the first order in η:

ϕ̃0 =1− 2η, (60a)

ϕ̃1 =η
(
3b1 − b̃1

)
− b1, (60b)

ϕ̃2 =η
(
2b1b̃1 − b̃2 − 4b21 + 3b2

)
+ b21 − b2, (60c)

ϕ̃3 =η
(
−3b21b̃1 + 2b1b̃2 + 2b2b̃1 − b̃3 + 5b31 − 8b2b1 + 3b3

)
− b31 + 2b2b1 − b3, (60d)

ϕ̃4 =η
(
4b31b̃1 − 3b21b̃2 − 6b2b1b̃1 + 2b1b̃3 + 2b3b̃1 + 2b2b̃2 − b̃4 − 6b41

+15b2b
2
1 − 8b3b1 − 4b22 + 3b4

)
+ b41 − 3b2b

2
1 + 2b3b1 + b22 − b4. (60e)

The expression for ⟨σvMøl⟩eff at the first order in ∆xi and at the 4th order in x−1 reads then:

⟨σvMøl⟩eff =
1

4ρ̃m2
1

{
W0ϕ̃0 +

1

x

[
W0

(
3ϕ̃0

4
+ ϕ̃1

)
+

3W1ϕ̃0

2

]

+
1

x2

[
W0

(
−3ϕ̃0

32
+

3ϕ̃1

4
+ ϕ̃2

)
+W1

(
21ϕ̃0

8
+

3ϕ̃1

2

)
+

15W2ϕ̃0

8

]

+
1

x3

[
W0

(
15ϕ̃0

128
− 3ϕ̃1

32
+

3ϕ̃2

4
+ ϕ̃3

)
+W1

(
75ϕ̃0

64
+

21ϕ̃1

8
+

3ϕ̃2

2

)

+W2

(
195ϕ̃0

32
+

15ϕ̃1

8

)
+

35W3ϕ̃0

16

]

+
1

x4

[
W0

(
15ϕ̃1

128
− 3ϕ̃2

32
+

3ϕ̃3

4
+ ϕ̃4

)
+W1

(
75ϕ̃1

64
+

21ϕ̃2

8
+

3ϕ̃3

2

)

+W2

(
195ϕ̃1

32
+

15ϕ̃2

8

)
+

35W3ϕ̃1

16
+

315W4ϕ̃0

128

]}
, (61)

with ρ̃ defined in (46), η defined in (58) and ϕ̃ns defined in (60). Note that we showed

the results at the order 4 since the expression is already very complicated, but the Wolfram

Mathematica notebook in the ancillary files allows us to obtain the correct result at any given

order. We would like to comment the result, by noticing that, in this form, the coefficients

of x−n depend on T , but they are linear in 1/T , therefore, there is a term proportional to
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n 0 1 2 3 4

βn 1 −15

4

285

32
−2115

128

51435

2048

λn −2 −11

4

165

32
−5295

128

297135

2048

TABLE II. Parameters of ϕ̃n in the form ϕ̃n = βn + ηλn.

10−1510−1310−11 10−9 10−7 10−5 10−3 10−1

10−9

10−8

10−7

T/m1

〈σ
v M

øl
〉 eff

(G
eV

−
2
)

Polynomial
Numerical

FIG. 2. Comparison between the results obtained for ⟨σvMøl⟩eff using the full expression (11) and

the polynomial expansion at the first order by using (61). Plot obtained by using DarkPACK [18].

η ∼ 1/T in ϕ̃0. However, we recall that the requirement for the mass degeneracy to contribute

is to have ∆xi small enough to allow the expansion (43). At very low temperatures, only

the truly degenerate species contribute, and for ∆xi = 0 we have η = 0, so the 0th order

contribution does not have a divergence, and the only deviation from the previous formula

(36) is contained in the ρ̃ in the prefactor. In Figure 2 we show the results for the MSSM,

in which we considered the three lightest neutralinos to have the same mass of 200GeV.

V. CONCLUSION

We showed in detail how to derive the formula for the expansion of ⟨σvMøl⟩eff at low

temperatures at an arbitrary order in x = m1/T and at the first order in the mass splittings

xi − x, providing also two Wolfram Mathematica notebooks that allow us to perform both

17



the expansions at an arbitrary order in x.

The implementation of formula (36) in the software DarkPACK has shown the necessity

of the usage of such an expansion at low temperatures, as the implementation of the full

formula (11) fails to provide a numerically stable result. The result is publicly available in

DarkPACK 1.2.

As a continuation of this work, we will implement also the formula with mass degeneracy

in DarkPACK, allowing to have a more reliable tool for the computation of dark matter

densities, especially in models with low freeze-out temperatures.

The overall improved stability of the algorithm in DarkPACK will also be used to solve

a system of Boltzmann equations - one for each species at its own temperature Ti - to be

able to study more general scenarios, in which all the particles of the same species are in

thermal equilibrium between them, but not necessarily with the particles of other species.

In particular, such hypotheses will allow us the study of freeze-in scenarios, or of models

where there is more than one particle as dark matter candidate.
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Appendix A: Asymptotic expansions of the Bessel functions

The asymptotic form of Kn(z) for |z| → +∞ and |arg z| < 3π/2 can be written as [20]:

Kn(z) ∼
√

π

2z
e−z

[
1 +

µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ o
(
z−4
)]

(A1)

where µ = 4n2.

For n = 2 we define the quantity A(x) such that:

K2(x) ∼
√

π

2x
e−x[1 + A(x)] , (A2)

and we write it in the form:

A(x) =
∞∑

m=1

amx
−m. (A3)

Analogously, we can define the quantity B(x) such that:

K2
2(x) ∼

π

2x
e−2x[1 +B(x)] , (A4)

implying the relation B = 2A+ A2.

Finally, it is helpful to write the asymptotic form of the first derivative of K2
2 as:(

K2
2

)′
(x) ∼ − π

2x
e−2x

[
2 + B̃(x)

]
(A5)

with:

B̃(x) = 2B(x) +
1

x
+

B(x)

x
−B′(x) . (A6)

where the ′ denotes the derivative with respect to x.

Note that since A ∼ 1/x,9 we have B ∼ 1/x and B̃ ∼ 1/x:

B(x) =
∞∑

m=1

bmx
−m, B̃(x) =

∞∑
m=1

b̃mx
−m. (A7)

Therefore, the coefficients can be determined using the relations

bm = 2am +
m∑
k=1

akam−k, ∀m ≥ 1 (A8)

b̃1 = 2b1 + 1, b̃m = 2bm +mbm−1. ∀m ≥ 2 (A9)

The coefficients am are known, and their values are given in Table III, thus we can compute

all the other parameters.

9 by neglecting a non-null real factor.
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m am bm b̃m

1
15

8

15

4

17

2

2
105

128

165

32

285

16

3 − 315

1024

315

128

1305

64

4
10395

32768

315

2048

10395

1024

5 −135135

262144
−2835

8192

315

4096

6
4729725

4194304

61425

65536
− 6615

32768

7 −103378275

33554432
−779625

262144

80325

131072

8
21606059475

2147483648

90904275

8388608
−8887725

4194304

9 −655383804075

17179869184
−1497971475

33554432

138305475

16777216

10
45221482481175

274877906944

55124944875

268435456
−4793914125

134217728

TABLE III. Coefficients of the Laurent series in the asymptotic expansion of K2, K2
2 and

(
K2

2

)′.
Appendix B: Meijer functions

The Meijer functions are defined as:10

Gm,n
p,q

z

∣∣∣∣∣ a1, ..., an, an+1, ..., ap

b1, ..., bm, bm+1..., bq

 =
1

2πi

∫
ds

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
xs

(B1)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p, and the poles of Γ(bj − s) must not coincide with the poles of

Γ(1− aj + s) for any pair (j, k) with 1 ≤ j ≤ n, 1 ≤ k ≤ m.

The following property holds:11

∫ ∞

1

dxxλ(x− 1)µ−1Kν(a
√
x) = Γ(µ)22λ−1a−2λG3,0

1,3

a2

4

∣∣∣∣∣ 0

−µ, ν
2
+ λ,−ν

2
+ λ

 . (B2)

10 See e.g. definition (9.301) in Ref. [21].
11 See e.g. equation (6.592.4) in Ref. [21].
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For λ = 0, µ = 3/2 + n and ν = 1, the asymptotic form of the G-function at the right hand

side is:

G3,0
1,3

x2

∣∣∣∣∣ 0

−1
2
, 1
2
,−n− 3

2

 =
√
πe−2xGn(x), (B3)

where Gn(x) is a generalized series:

Gn(x) =
∞∑

p=n+2

gn,px
−p. (B4)

The results of the expansion of Gn for 0 ≤ n ≤ 10 to the 12th order are:

G0 =
1

x2
+

3

4x3
− 3

32x4
+

15

128x5
, (B5a)

G1 =
25

32x5
+

7

4x4
+

1

x3
, (B5b)

G2 =
13

4x5
+

1

x4
, (B5c)

Gν =
1

xν+2
, ∀ 3 ≤ ν ≤ 10. (B5d)
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