QCD at High Energies

- ICFA2023, Hamburg, 28. 11. 2023
 - Oldrich Kepka Institute of Physics, Prague
- On behalf of ATLAS and CMS Collaborations

Quantum Chromodynamics at LHC

All LHC observations rely on the modeling of QCD production, jets are ubiquitous at LHC

Objectives of QCD exploration

- More precise understanding of fundamental parameters of QCD
- Valuable inputs for theory development to describe the complexity of hadronic final state
- Improve future physics searches isolate and measure SM processes which are backgrounds

ATLAS and **CMS** briefings

QCD in proton-proton collision

- **At short distances:** QCD is a theory of free partons scattering off each other
 - High-order perturbative calculation in $\alpha_{\rm c}$
 - Parton showers
 - Resummation of logarithmic corrections due to soft/collinear emissions
 - QCD dynamics of heavy quarks
- **At large distances:** strongly bound hadronic resonances, QCD confinement
 - PDF, Fragmentation functions (evolution still perturbative)
 - non-perturbative effects (color-reconnection, underlying) event, multiparton interactions)

Collider experiments continue to produce extraordinary results with innovative techniques Interpretations of LHC data need precise theory with higher-order QCD and EW calculations

Outline

- - High-order perturbative
- - QCD dynamics of heavy
- At large distances: strongly bound hadronic resonances, QCD
 - PDF, Fragmentation functions (evolution still perturbative)
 - event, multiparton interacting to the substructure

High-order pQCD α_{s} strong coupling

High-order pQCD

Accuracy of QCD calculations

• Fixed order calculations

- NNLO has become standard
- Reduction of scale uncertainties from 10-20% (NLO) to O(%) at NNLO
- Computational costs often limiting factor

- MC with Parton Shower Simulations (Pythia, Herwig, Sherpa)
 - Matching NLO ME to PS automated, matching to NNLO to PS is state-of-the art
 - Merging of exclusive 2 \rightarrow n-jet productions at NLO or LO improves modeling of events with large number of jets
- Active development of more accurate parton showers (NLL)
 - The first shower algorithm introduced in ~1980
 - At the threshold of major breakthrough
- Parton shower uncertainties are dominant in many LHC measurements involving jets, in particular with the top

. . . Correlation in multijet events

JHEP 07 (2023) 85 (ATLAS)

$Z(\ell\ell)$ +jets

- High-precision measurements over wide range: up to 8 jets and jets beyond 1 TeV
- Testing ground for higher-order QCD predictions
 - Advanced multi-jet merged calculations (Madgraph FxFx and Sherpa) describe data well
 - Best description by fixed order NNLO calculations

EPJC 83 (2023) 722 (CMS) JHEP 06 (2023) 080 (ATLAS) PRD 108 (2023) 052004 (CMS)

Multi-jet merging+PS

Top production

- Inclusive top-pair production
 - Impressive agreement over 2 orders of magnitude
 - At 13 TeV, exp. unc. of 1.8% (ATLAS $e\mu$ +b-jets), compare with ~4% with PDF4LHC21

- Differential measurements
 - Issues with modelling of t and $t\bar{t}$ p_T distributions
 - Ad-hoc 2-point systematic comparisons

Full exploitation of present and future top samples needs improved MC

Yields (II, I+jet): O(10M) in Run2 $\rightarrow O(100M)$ at HL-LHC

Future: move to NNLO+PS simulation and improve shower uncertainty prescriptions

LHCTopWG EPJC 80 (2020) 658 (CMS)

α_s strong coupling

The strong-coupling strength

- Least known fundamental forces of nature
 - Large uncertainty in many LHC measurements, e.g. Higgs couplings
- Single free parameter in massless QCD limit
- Asymptotic freedom decreasing with scale of the process ~ $\ln Q^2/\Lambda^2$, tested up to multi-TeV scale

$\delta \alpha \sim 10^{-10} \ll \delta G_{r} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{c} \sim 10^{-2}$ World PDG average over 7 categories $\alpha_{\rm s}(Q^2 = m_{\rm Z}^2) = 0.1179 \pm 0.0009$ BDP 2008-16 τ decays Boito 2018 & PDG 2020 low Q^2 Boito 2021 Mateu 2018 Peset 2018 $Q\overline{Q}$ Narison 2018 (*c*c) bound Narison 2018 (bb) states BM19 (*cc*) BM20 (*b*b) BBG06 JR14 ABMP16 PDF fits NNPDF31 CT18 MSHT20 ALEPH (j&s) OPAL (j&s) JADE (j&s) Dissertori (3j) e⁺e⁻ JADE (3j) jets & Verbytskyi (2j) shapes Kardos (EEC) Abbate (T) Gehrman Hoang (C) Klijnsma (*tt*) CMS (*t*t̄) hadron collider d'Enterria (W/Z) PDG 2020 electroweal Gfitter 2018 lattice FLAG2019 0.110 0.115 0.120 0.125 0.130 $\alpha_{\rm s}({\rm M}_{\rm Z}^2)$ August 2021

11

State-of-the-art for the strong coupling

Most precise results from tau decays and Lattice

Category	α _s (m _z)	δα _s (m _z)	Rel. Unc.	Results
Tau decays and low Q ²	0.1178	0.0019	1.6%	4
$Q\overline{Q}$ bound states	0.1181	0.0037	3.1%	4
DIS and PDF fits	0.1162	0.0020	1.7%	6
e+e- jets and shapes	0.1171	0.0031	2.6%	10
Hadron colliders	0.1165	0.0028	2.4%	5
Electroweak boson decays	0.1208	0.0028	2.4%	2
Lattice QCD (FLAG 21)	0.1184	0.0008	0.7%	11
PDG 22 World Average	0.1179	0.0009	0.8%	39

CMS-PAS-SMP-21-008 JHEP 12 (2022) 035 (CMS)

- Several recent determinations from LHC at 13 and 8 TeV using NNLO reached percent level accuracy and will have impact on the PDG world average
- NNLO Theory scale uncertainty is the dominant source for jet based measurements, N³LO for jets not within reach

Strong coupling from Z p_T distribution

- Coupling extracted using state-of-the-art theory

0.08 A novel approach - extraction using low transverse momentum of Z, [GeV⁻¹] ATLAS Z boson recoiling against QCD initial-state radiation ප<mark>ිද</mark>් 0.06 🗕 Data stat. \oplus syst. -10 0.04 0.02 $pp \rightarrow Z, |y| < 1$ Radiation inhibited observable requires resummation = 8 TeV. 20.2 fb Excellent agreement between data and predictions CuTe-MCFM Impressive progress in understanding of boson p_T modelling from theory and experiment => also impact on mw determination Ratio to data (aN⁴LL resummation matched to N³LO fixed order calculation, approximate N³LO MSHT20 PDF) RadISH $\alpha_s(m_Z) = 0.1183 \pm 0.0009 (0.74\%)$ Most precise experimental measurement of the strong coupling 10 15 20 25 30 35 5

2309.12986 (ATLAS)

α_s measurements at FCC-ee / CEPC

Hadronic W and Z decays $\Delta \alpha_s / \alpha_s = 0.1 - 0.2 \%$

- Combined fit of Z pseudo observables ($R_Z = \Gamma_Z^{had} / \Gamma_Z^{lep}$, Γ_Z^{tot} , σ_Z^{had}) precisely measured using energy scan, Tera-Z FCC-ee(90)
- Similar for WW, increase over LEP (10⁴ \rightarrow 10⁸), can be competitive (Improved α_{OED} (m_z), $|V_{cs}|$, $|V_{cd}|$, m_W, assume N⁴LO QCD)
- τ -leptonic decays $\rightarrow \Delta \alpha_s / \alpha_s \ll 1\%$
 - O(10¹¹) from Z $\rightarrow \tau \tau$ at FCC-ee (90 GeV)

(With expected improvements: N⁴LO, improved τ spectral functions, estimate of higher pQCD (FOPT vs CIPT))

Thrust, C-parameter, event shapes 3-jet cross sections

Recent progress in understanding non-perturbative effects in C-parameter measured at LEP resolved tensions with the world average α_s , grooming techniques to suppress non-pert.

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C \left(1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^2)\right)$$

PDF

PDF motivation

- PDF uncertainties are a limiting factor in precision measurements at LHC
- Uncertainty variations within 1 PDF set not covering difference with other PDF
 - ATLAS m_w mass

. . .

- ATLAS and CMS $\sin^2 \theta_W$
- CMS α_s extraction from ttbar production

Do we understand our PDF and uncertainties sufficiently well?

PDF-Set	$p_{\mathrm{T}}^{\ell} \; [\mathrm{MeV}]$	$m_{\rm T}~[{\rm MeV}]$	combined [MeV]
CT10	$80355.6^{+15.8}_{-15.7}$	$80378.1_{-24.8}^{+24.4}$	$80355.8^{+15.7}_{-15.7}$
CT14	$80358.0^{+16.3}_{-16.3}$	$80388.8^{+25.2}_{-25.5}$	$80358.4^{+16.3}_{-16.3}$
CT18	$80360.1^{+16.3}_{-16.3}$	$80382.2^{+25.3}_{-25.3}$	$80360.4^{+16.3}_{-16.3}$
MMHT2014	$80360.3^{+15.9}_{-15.9}$	$80386.2^{+23.9}_{-24.4}$	$80361.0^{+15.9}_{-15.9}$
MSHT20	$80358.9^{+13.0}_{-16.3}$	$80379.4^{+24.6}_{-25.1}$	$80356.3^{+14.6}_{-14.6}$
NNPDF3.1	$80344.7^{+15.6}_{-15.5}$	$80354.3^{+23.6}_{-23.7}$	$80345.0^{+15.5}_{-15.5}$
NNPDF4.0	$80342.2^{+15.3}_{-15.3}$	$80354.3^{+22.3}_{-22.4}$	$80342.9^{+15.3}_{-15.3}$

NNPDF4.0 and CT10 differ by 18 MeV Estimated PDF uncertainties $3 \rightarrow 9$ MeV

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00036 \,(\text{stat}) \pm 0.00018 \,(\text{syst})$ ± 0.00016 (theo) ± 0.00031 (PDF),

PDF envelope 0.0006 (MMHT2014 - NNPDF3.0)

Parton distribution functions

- PDF determined in global fits to fixed target, DIS and collider data
- More data are included as NNLO predictions become available, towards N³LO PDFs is in progress
- Precisions of 1% is being achieved for medium Bjorken-x
- **PDF Benchmarking**
 - Important effort to understand correlations between PDF set
 - gg luminosity shows spread of more than 20% in the multi-TeV region, $q\bar{q}$ agrees better, except around 300 GeV

PDF constraining measurements

• High-x gluon

- Jet and multijet production (multi-differential), precise jet energy scale at the level of 1-2%
- Inclusive γ
- ttbar and ttbar+j

• Medium-x parton densities

- Most precise measurement of Z boson new methodology
- Per-mile uncertainty in the central and less than % in the forward regions
- Full-lepton phase-space offers unambiguous interpretation of PDFs

• Strange and charm parton densities

• Probed with W+D, W+b jet measurements

... also, LHCb brings in valuable coverage of forward region

Achievable precision depends on syst. uncertainties of the data - correlations insufficiently known \rightarrow results in tensions between dataset

PDF at HL-LHC and FCC-eh

- Factor 2 reduction of PDF uncertainties at the end of HL-LHC
- At FCC-eh PDF uncertainties are strongly reduced, EIC in the next talk
- Precise PDF determination demanded by the precision physics program at hadron-hadron FCC-hh machine

parton-parton luminosities ($\sqrt{s} = 100 \text{ TeV}$)

Jet substructure

Jet substructure

Jet constituents four-momenta are mapped onto physically meaningful observable: (m_J, LJP, generalised angularities - LHA, width, thrust, multiplicity, ...)

- Jet substructure reveal information about
 - Parton shower modelling
 - Flavour tagging (quark/heavy quark/gluon)
 - Large-R jets particle content in boosted jet topologies
 - Fragmentation and non-perturbative effects
 - . . .

 $\{p_i\} \rightarrow \lambda$

Lund jet plane at 13 TeV

- represents the original quark or gluon

Other QCD program at future lepton facility

Expect new generation of highly accurate MC models in the next decade

- NNLO calculations matched and merged with next-generation showers ILC/FCC-ee/CEPC clean events to test PS/hadronization developments Disentangling perturbative from non-perturbative corrections

High-precision quark and gluon substructure and fragmentation studies

- Current PS models differ on the gluon radiation pattern (less for quark)
- Clean gluon $H \rightarrow gg$ factory, compare with $Z \rightarrow qq(g)$
- q/s/c/b/gluon tagging

- **Colour reconnection studies -** CR is an uncertainty on m_{top} String drag effect on W mass, No-CR excluded at 99.5% CL at LEP Use threshold scan + huge sample of semi-leptonic WW to measure mW
- input as constraint to make sensitive measurements of CR in hadronic WW

Summary

- measurements
- EWK measurements

Future lepton colliders will play an instrumental role to scrutinise ongoing theory developments on the way to the future hadron-hadron collider

QCD physics at the LHC has entered % precision era both in terms of theory and experimental

Accurate pQCD predictions are indispensable (NNLO computations are available for many processes)

Parton showers is a fast developing field - showers uncertainties are often the dominant uncertainties in

Backup

QCD opportunities at future lepton colliders

FCC-ee

W/Z associated with charm and beauty

- - test of pQCD: gluon splitting, HF mass effects, NLO effects
- **W+D measurements** reveal details of the strange parton density
 - $s \bar{s}$ asymmetry constrained via ration of $W^+ + \bar{c}/W^- + c$

Z+b measurements discriminate the effect of b quark PDF, important for VH-> bbll and BSM searches

Jet response

- Particle response depends on the parton shower and hadronization
 - driven by the energy fraction of kaons and baryons in a jet

r and hadronization ryons in a jet