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Abstract
CERN (Centre Europeen pour la Recherce Nucleaire) is the largest research centre 
for high energy physics (HEP). It offers unique computational challenges as a result 
of the large amount of data generated by the large hadron collider. CERN has devel-
oped and supports a software called ROOT, which is the de facto standard for HEP 
data analysis. This framework offers a high-level and easy-to-use interface called 
RDataFrame, which allows managing and processing large data sets. In recent 
years, its functionality has been extended to take advantage of distributed comput-
ing capabilities. Thanks to its declarative programming model, the user-facing API 
can be decoupled from the actual execution backend. This decoupling allows physi-
cal analysis to scale automatically to thousands of computational cores over various 
types of distributed resources. In fact, the distributed RDataFrame module already 
supports the use of established general industry engines such as Apache Spark or 
Dask. Notwithstanding the foregoing, these current solutions will not be sufficient 
to meet future requirements in terms of the amount of data that the new projected 
accelerators will generate. It is of interest, for this reason, to investigate a different 
approach, the one offered by serverless computing. Based on a first prototype using 
AWS Lambda, this work presents the creation of a new backend for RDataFrame 
distributed over the OSCAR​ tool, an open source framework that supports serverless 
computing. The implementation introduces new ways, relative to the AWS Lambda-
based prototype, to synchronize the work of functions.
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1  Introduction

One of the main instruments needed for research and progress in the field of High 
Energy Physics (HEP) is the particle accelerator, the largest of which is the Large 
Hadron Collider (LHC). This accelerator, built and operated by the European Organ-
ization for Nuclear Research (CERN), can generate up to one petabyte (PB) of data 
per second while operational.

The LHC does not work constantly, the generation of the physics events is organ-
ized in runs. The third run of the LHC began in July 2022 and is scheduled to last 
until 2025. In addition, the LHC is scheduled for an update, called High Luminos-
ity Large Hadron Collider (HL-LHC) [7], which will start operations in 2029 and 
it is estimated that it will require between 50 and 100 times more computational 
resources than those currently used.

Figure  1 shows the computational requirements of CMS  [42], one of the main 
experiments at the LHC. Its computational needs have been satisfied through pro-
gressive budget added to generational technological advances received year after 
year. However, as shown in the figure, once the HL-LHC is commissioned, these 
computing capabilities will fall far behind the necessary requirements [1]. Europeen 
pour la Recherce Nucleaire) is the largest research centre for High Energy Physics 
(HEP). It offers unique computational challenges as a result of the large amount of 
data generated by the Large Hadron Collider (LHC). CERN has developed and sup-
ports a software called ROOT, which is the de facto standard for HEP data analysis. 
This framework offers a high-level and

CERN and many other academic institutions share resources in order to satisfy 
the computing requirements of the LHC experiments. Collectively, these form a 
grid of computing clusters called Worldwide LHC Computing Grid (WLCG) [48]. 
Thus, distributed computing has been a popular topic of research in the HEP field 
for decades. In recent years, a few key research areas have been highlighted in 
an R &D project  [1, 10, 43] in order to improve the entire HEP software land-
scape. These efforts range from the efficiency, scalability and performance of the 

Fig. 1   Estimation of computational and storage requirements of the CMS experiment for the HL-
LHC  [1]. (The HS06 unit refers to the score obtained by a system in the HEP-SPEC06 benchmark 
focused on analyzing the performance of systems for tasks similar to those performed by HEP analy-
sis [23])
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software currently used to take advantage of new architectures, to the adoption of 
new paradigms, such as the use of Artificial Intelligence (AI) in certain aspects of 
HEP or the use of Big Data models for data analysis.

In the context of data analysis, ROOT   [13] is the de facto standard software 
framework used for storage, processing and visualization. It provides a high-level 
interface to data analysis, called RDataFrame  [38]. This was initially developed 
for use on a single machine, either with one or multiple cores, but more recently 
it has been extended to automatically run workflows on distributed clusters by 
leveranging various backends, such as Apache Spark [50] or Dask [41]. The dis-
tributed extension of RDataFrame is also called DistRDF  [36].

Traditional HEP distributed computing is based on batch computing systems 
on a managed cluster, where all the software and storage are provided by cluster 
administrators for the final user. Spark or Dask processing relies on the principle 
of infrastructure management and setting up resources on premises. On the con-
trary, in an unmanaged or serverless environment the users interface with abstract 
resources, which potentially allows even more massive parallelization across 
multiple machines compared to the managed approach. Furthermore, it may ease 
the development and deployment of parallel applications, an ongoing pain point 
for physics users. Thus, a serverless approach could provide a more scalable and 
more open alternative for HEP analysis workflows.

A first prototype of serverless backend for RDataFrame exists, that makes use 
of AWS Lambda  [25]. Using that proposal as a starting point, this paper intro-
duces a new serverless backend for RDataFrame based on OSCAR​   [40] (Open 
Source Computing for Data-Processing Applications). OSCAR​ is an open source 
solution that provides a self-scaling environment for serverless computing. 
OSCAR​ uses file-based events to run a High Throughput Computing model. The 
execution of the functions is done through the use of Docker [30] containers. This 
proposal provides various improvements to the model presented in the prototype 
backend with AWS Lambda among which we find the capability of OSCAR​ to be 
used in a cluster on-premises free of charge.

Summarizing all of the above, the novel contributions brought by this paper 
are:

•	 The implementation of a new backend for distributed processing of HEP data 
analysis in ROOT using OSCAR​.

•	 A first study on the adaptation of the distributed computing model available so 
far in DistRDF to the file-based, event-driven model offered by OSCAR​.

•	 The implementation of different strategies for serverless reduction algorithms, 
namely an uncoordinated strategy and a coordinated one. This is precisely 
described in Sect. 4.2.2.

•	 A performance evaluation of the backend implementation and the different 
reduction strategies, with a particular description of the different components 
of the workflow that may potentially add overhead to the runtime of the phys-
ics analysis.
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It should be noted from this point going forward that, unlike AWS Lambda, OSCAR​ 
is an experimental tool. Thus, we state in advance in this introduction that some 
downsides were identified while using OSCAR​ that should be improved in future. At 
the same time, OSCAR​ is only an example of an open source serverless tool through 
which this work shows how ROOT itself can be adapted to run on various execution 
engines.

The rest of the paper is divided as follows. Section 3 describes the two main tools 
used in this work. Section 4 describes the whole implementation of the backend pro-
posed in this work. Results are shown and discussed in Sect. 5. Finally, Sect. 6 con-
cludes the paper with some considerations for future work.

2 � State of the art

The Function as a Service computing model (FaaS), part of the larger serverless 
computing paradigm, has seen a steady increase in popularity ever since its first 
usages by big cloud providers, first being Amazon Web Services (AWS) in 2014 [3]. 
This model abstracts the user from a large part of the costs associated with infra-
structure management, whether on-premises or in the cloud, and its configurations. 
The user only needs to provide the code of the functions to execute without the need 
to explicitly pre-provision any type of infrastructure. For this type of services, the 
scaling unit is the function.

Function executions in this model are stateless (although for a few years AWS 
has offered the possibility for Lambda functions to have a shared and persistent file 
system [8]). This means that during the execution of a function, they cannot depend 
internally on memory, mounted disks or similar elements that in other models pro-
vide information on the state of the distributed system. Clearly, this approach can be 
adapted quite well to the HEP data analysis requirements described in Sect. 1.

Another feature of this model is that the functions can be executed inside a con-
tainer, providing the necessary flexibility to accommodate different workflows. For 
instance, the container may have an environment with a ROOT installation together 
with any other libraries that may be needed in the analysis.

The more generic serverless computing paradigm includes other components 
together with the functions. For example, streaming components that generate events 
that will be used to trigger function invocations. Or storage systems such as Amazon 
S3 [5] or MinIO [31] to extract the data to be processed or store the results.

Every serverless execution engine relies on a type of abstraction layer for the 
infrastructure itself. This is usually provided by big vendors, such as Cloud Func-
tions by Google  [20], Lambda by Amazon  [3], or open source solutions such as 
OpenWhisk [6] running on real or virtual machines or Knative [45] running ephem-
eral Docker containers directly on Kubernetes  [46]. All the solutions offered by 
these players share many features. In some cases, communities compare the prod-
ucts in terms of cost efficiency and availability to make informed choices about the 
workflow they will propose to users. An example is offered by a recent overview of 
the serverless computing scenario in bioinformatics by Grzesik et al. [21].
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Efficient orchestrating frameworks are useful in utilizing the power of serverless 
functions in data processing applications. One among these would be PyWren [24]. 
It allows to seamlessly distribute arbitrary Python code over multiple nodes with 
serverless functions. Needed objects and dependencies are serialized and sent to the 
Lambda execution environment in order to run the application on AWS resources 
natively. As of 2021, the original project is no longer maintained, but it was used as 
a basis for interesting extensions, including NumPyWren for numerical algebra [44]. 
This package provided support for distributed computation of serverless linear alge-
bra problems on AWS Lambda, along with the development of a language, LAmbda-
PACK, designed to implement highly parallel linear algebra algorithms in serverless 
environments. A recent alternative to NumPyWren is Wukong [16] a framework that 
allows the execution of jobs divided into tasks that can form complex directed acy-
clic graphs through a decentralized scheduler that greatly improves the features of 
NumPyWren.

The serverless research scenario is quite wide. Other works in this line of research 
are MARLA  [19] (MApReduce on AWS Lambda) and SCAR​  [39] (Serverless Con-
tainer-aware ARchitectures). MARLA is a framework that supports the MapReduce 
model in AWS Lambda for Python. One of the advantages of MARLA over other 
similar frameworks is that it is in charge of managing the entire MapReduce process, 
from the partitioning of the data to the generation of the final result, where the user 
only has to define the Map and Reduce functions of the process. SCAR​ is a frame-
work that offers the possibility of executing any programming language in AWS 
Lambda through the use of containers, allowing the execution of any type of appli-
cation in a FaaS environment, which supported this execution model before AWS 
itself. In particular, the use of containerized environments to run the serverless func-
tions has become more and more popular thanks to a few key advantages it brings in 
terms of reproducibility and ease of deployment. But this also comes with issues to 
be addressed. Bila et al. [9] discuss how containers may hide vulnerabilities which 
can be exploited at runtime. Li et al. [28] present the benefits of reusing the same 
container for multiple serverless functions to avoid cold startups. Oakes et al. [34] 
go as far as implementing a new container runtime especially aimed at serverless 
workflows to obtain factors of speedup with respect to using Docker.

Serverless workflows are not a common topic in High Energy Physics literature. 
A recent review has highlighted a few motivations that would make the FaaS model 
applicable to the online trigger systems employed by LHC experiments  [33]. This 
paper theorizes that inference using neural networks could be triggered by the events 
streaming from the accelerator. A more concrete example is provided by a paper related 
to CernVM-FS (CVMFS)  [11], a file system that provides the software distribution 
backbone for collaborations in the field. The paper describes advances in the publishing 
system of the software distributions. The default model has a single server node respon-
sible for the compilation of all the libraries and only upon a commit from this machine 
the distribution would be actually published and replicated. The envisioned changes 
would have any machine enabled with CVMFS publish the changes to cloud storage 
(e.g., Amazon S3) through a gateway serverless function [12]. Regarding the data anal-
ysis use case, a good example of serverless engine is provided by Lambada [32], that 
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adds facilities on top of AWS Lambda to steer the serverless functions and shows a cost-
efficient usage of the resources.

The contribution of this work aims at furthering the knowledge of the FaaS para-
digm applied to the HEP data analysis use case. With respect to the literature reviewed, 
the execution backend based on OSCAR​ can provide an open platform for research in 
this field and potentially offer physicists a simple to use and cost-effective solution.

3 � Tools

The two main software tools used in this work are ROOT and OSCAR​. The integration 
of a C++ framework, such as ROOT into a serverless ecosystem brings a few chal-
lenges like its packaging and the instrumentation of the C++ code within a serverless 
function invocation. This section highlights the different aspects that are relevant to this 
study when using these two key tools.

3.1 � ROOT

ROOT is a software developed at CERN for the analysis of high energy physics data 
(HEP). This software has been updated since its initial conception in 1994, expand-
ing its functionality and adapting to new technologies. It is made up of several object 
oriented components that allow efficient management and analysis of large volumes of 
data.

One of the most important features of ROOT is its solid and flexible I/O layer. Users 
can write to disk any type of C++ object, including custom classes, in a compressed 
binary format managed by the TFile class. It is common to find in a TFile all the most 
important objects needed for HEP statistics, such as histograms, which in ROOT are 
implemented with the TH1 class. When mentioning physics datasets, the traditional 
ROOT implementation is done with the TTree class. This is a flexible container that can 
also store any type of C++ object, organizing its contents in columns (usually called 
branches). Different branches can be read independently, making TTree a truly colum-
nar data format implementation. A TTree is stored on disk via the TFile class as well 
and multiple trees can be joined together either vertically or horizontally to create a 
larger dataset. Most notably, a ROOT file can be read remotely via protocols such as 
HTTP or XRootD [18].

Another relevant feature for this work is the presence of a C++ interpreter, called 
cling [47], and dynamic Python bindings based on the cppyy [26] library. These two 
together offer the possibility for higher-level tools like RDataFrame to provide users 
with modern, ergonomic interfaces that can interact with other common data science 
libraries, which most often offer Python APIs.

3.1.1 � RDataFrame

RDataFrame is the high-level data analysis interface offered by ROOT. Compared 
to the more traditional imperative programming model, RDataFrame offers a lazy 
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and declarative model inspired by other popular libraries such as Spark [50] or pan-
das [29]. It supports many types of input data formats, the most used one is TTree 
but for example also CSV files and numpy [22] arrays can be processed.

The declarative model has the clear advantage of taking away responsibility from 
the user, who only needs to declare the desired operations on the dataset, allow-
ing for under-the-hood optimizations in the processing and I/O scheduling. The lazy 
approach used by the API means that the execution of the requested operations only 
starts when the final results are queried in the application, for example when a histo-
gram is drawn for the first time.

The data generated by the physical events are statistically independent, so RDa-
taFrame is able to abstract from the different underlying data structures in which 
these events are stored. This also means that parallelism can be achieved by splitting 
the input dataset in different groups of events and applying the computation graph 
to events in parallel. RDataFrame allows users to leverage all cores of their laptop 
with an implicit parallelism machinery based on Intel Threading Building Blocks 
(TBB) [37], but also to distribute the same workload to multiple machines transpar-
ently. The latter feature will be further discussed in the next section.

3.1.2 � Distributed RDataFrame

One of the latest features introduced by the ROOT team for RDataFrame is the abil-
ity to distribute user applications to computing clusters without changing the analy-
sis code. This is done via a thin Python layer that wraps the RDataFrame computa-
tion graph and sends it to the remote nodes leveraging popular execution engines 
like Spark and Dask. Such layer is called distributed RDataFrame or DistRDF. List-
ings 1 and 2 show how the user analysis can be run distributedly with minimal code 
changes.
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Workload distribution follows the MapReduce [17] scheme: a mapper task has 
to apply the full set of operations requested by the user on a certain range of 
entries of the dataset, a reducer task needs to combine the partial outputs of two 
mapper tasks. Once all the results have been combined into one final result, this 
is sent back from the computing cluster to the user. This saves a lot of time for 
the analyst, who does not need to take care of merging partial results of different 
mapper tasks on their own as it used to happen with the traditional batch comput-
ing approach.

A fundamental feature of the distributed RDataFrame tool is the automatic split-
ting of the input dataset in multiple logical partitions, so that each one can be pro-
cessed independently in different tasks. This splitting is done on the client side, 
when the user asks for the results of their operations the first time. At this moment, 
the only information available is the list of files that the user wants to process. In 
general, the number of partitions can be either provided by the user or a default 
value is used. The default value is the total number of cores available in the cluster. 
As many “approximate tasks” are created as the number of partitions indicated, the 
tasks are approximate since the files are only accessed once a mapper task starts on 
a remote node, never by the client. This is done to avoid unnecessary remote I/O 
which is a notorious source of performance bottlenecks for a physics analysis.

DistRDF implements a few backends that have been used as a reference for the 
development of this work. The following are currently supported and featured in 
ROOT releases: 

1.	 Apache Spark [50]. A framework whose goal is large-scale data processing using 
MapReduce. It can be mounted on top of existing Apache Hadoop clusters or on 
its own, and the main advantage over Hadoop is that intermediate data storage is 
done in memory instead of disk, providing much faster speed than Hadoop.

2.	 Dask [41]. A Python library for parallel computing, consisting of two main ele-
ments: a dynamic task scheduler optimized for interactive workloads and support 
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for Big Data data structures. In addition, it also offers capabilities for distributed 
computing in Python.

As already stated in Sect. 1, a previous study also developed a prototype implementa-
tion of a backend for DistRDF that makes use of AWS Lambda. The approach taken in 
that work was to invoke all the Lambda functions synchronously from the client appli-
cation, using Python multithreading. This was done to be able to check the status of the 
invocations and retry their execution in case of error. Once all the functions had finished 
without errors, the reduction of the results was carried out locally on the user side.

This work provides various improvements with respect to the prototype just 
described. For example, the client side is completely decoupled from the rest of the 
architecture, avoiding the need for synchronous calls to functions. Furthermore, the 
reduction phase is completely carried out remotely in the computing cluster, thus 
avoiding possibly heavy network transactions sending the partial results from the 
remote nodes to the client. Although these improvements are developed for OSCAR​, 
they could be implemented also in other serverless environments.

3.2 � OSCAR​

OSCAR​ focuses on file processing by supporting a High Throughput Computing 
model. The execution of the functions is done through the use of Docker contain-
ers. an OSCAR​ installation is based on a Kubernetes cluster that is deployed using 
the following tools: EC3 [14] to provide horizontal cluster elasticity; Infrastructure 
Manager, IM [15], to support multi-cloud deployment; and CLUES [2] to manage 
the elasticity of the cluster by taking care of the scale in and scale out of the nodes 
in the cluster, based on job demand. In Fig. 2 you can see how these services interact 
for the deployment and scaling of the cluster.

3.2.1 � Main components

The main components of OSCAR​ that affect the backend for ROOT are:

•	 OSCAR Manager. The core of OSCAR​, in charge of managing the services and 
the interconnection with the rest of the components. It provides a REST API for 
service creation. This is characterized by stateless client–server communication 
through the HTTP protocol. A client with the necessary credentials may consult, 
create, modify or delete services via the API. OSCAR​ also provides other forms 
of interaction a web interface and a command line tool, named OSCAR-CLI.1

•	 Serverless Backends. OSCAR​ offers two possibilities for implementing the FaaS 
part of the Kubernetes cluster, namely, OpenFaaS [27] and Knative [45]. They 
support synchronous calls to services and invocation via calls to a REST API. 
For this work we will not use these functionalities and we will focus on the 
default functionality of uploading files that invoke the services asynchronously, 
thus generating Kubernetes jobs for the processing of files.

1  https://​github.​com/​grycap/​oscar-​cli.

https://github.com/grycap/oscar-cli
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•	 Internal storage service. The cluster uses an object storage system named MinIO. 
The operation of this type of system is based on the creation of buckets, or repos-
itories, in which files of any type are uploaded. These files do not have direc-
tory hierarchies like traditional file systems. Often, prefixes are used to simu-
late a directory structure and to maintain a certain order within a bucket. The 
term directory or folder is used as a concept for practical purposes  [4]. These 
buckets provide certain features such as access control, auditing or versioning, 
among others. Any modification of a bucket will be sent to OSCAR​ as an event. 
Depending on the configured rules, OSCAR​ will launch, or not, a service associ-
ated with that object. The results of the process can be stored directly within the 
service. Alternatively, they can be sent automatically to external providers such 
as MinIO, Amazon S3 or ONEDATA​  [35].

3.2.2 � Workflow

OSCAR​ ’s basic units of work are functions, also called services. For each service it 
must be defined the required resources, i.e., CPU2 and memory; the Docker image to 
use as the runtime environment; the script that will be executed inside the container 
as an entry point and, finally, which bucket should listen for the generation of events 
that are created when objects are uploaded, modified or deleted. For a given bucket 

Fig. 2   OSCAR​ architecture

2  CPU, in the context of resources allocated to a OSCAR​ service, refers to a logical CPU.
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a prefix or suffix can be used to filter which objects will trigger the execution of the 
associated service. These prefixes or suffixes do not allow the option of using wild-
cards and must be specific.

When a service is defined, OSCAR​ automatically takes care of generating the cor-
responding buckets in MinIO, as well as configuring the types of events it will listen 
for. The results generated by the services can be stored back on the cluster’s internal 
MinIO server, allowing multiple services to be chained together if desired. Special 
care must be taken not to generate recursive loops, since no tools are provided to 
detect them and, in the case of a public cloud deployment, it could generate consid-
erable costs.

OSCAR​ focuses on a file-driven approach. When a user uploads a file, this gener-
ates an event that is picked up by OSCAR​. OSCAR​ then takes care of launching a 
job for that file by generating a Kubernetes job, that is, launching a container based 
on the image provided by the client. In this job the file that has triggered the service 
will be injected in addition to executing a script that contains the operations to be 
carried out, also defined by the user.

4 � Implementation of the backend

The implementation of the backend consists of two blocks. On the one hand, the 
interaction between DistRDF and OSCAR​ is defined. On the other hand, the imple-
mentation defines how the backend schedules resources, distributes the load and col-
lects the final result. We begin with the part related to the backend (Sect.  4.1) to 
continue later with the description of OSCAR​ services (Sect. 4.2) necessary for the 
satisfactory execution of the analysis.

4.1 � The ROOT backend

When an analysis is performed, all the actions defined in the RDataFrame are stored 
without being executed. When an operation that generates output is added, e.g., gen-
erating a histogram, DistRDF takes care of parsing all the code provided by the user 
and passing it to an internal function, called ProcessAndMerge.

The backend features the following three objects: Mapper:

Mapper: Function to be applied to each record in the specified dataset. It receives 
an object of type range as input and generates as output another object corre-
sponding to the output generated by applying the Mapper function to that range, 
which will be referred to as a partial result.
Ranges: Is a list equal in size to the number of partitions specified for analysis. 
Each element of the list contains the information corresponding to the data to be 
processed, both the source of that data and the “approximate tasks” of each of the 
sources. These tasks are used to get the exact events to be processed.
Reducer: Is the aggregation function that will be used to reduce two by two the 
partial results generated by the Mapper in order to obtain the final result.
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The implementation of the backend corresponding to the execution of the analy-
sis must be carried out within function ProcessAndMerge since the value that 
this function must return is the result of adding all the partial results generated and it 
does not make sense to carry it out in another place. Somehow, all this information 
received by the ProcessAndMerge function has to be sent either to the OSCAR​ 
internal storage system or passed directly to the services so that not only one experi-
ment can be run in parallel on multiple nodes but multiple users can be served con-
currently by the cluster running OSCAR​.

On this basis, for the integration with OSCAR​ an experiment can be carried out in 
a bucket or can be carried out in the folder3 of an already existing bucket belonging 
to a specific user. The option in which a bucket represents an experiment has been 
chosen for simplicity, but the term root directory will be used as a generic concept 
to demonstrate that both implementations could be carried out, the root directory 
being, in the first case the name of the bucket itself and, in the second case, the root 
directory denoting a bucket folder. To identify an experiment, a universally unique 
identifier (UUID) is generated during the creation of the RDataFrame abd then used 
as the name of the root directory.

During preliminary tests performed in this evaluation, no performance difference 
was found between using a single bucket with a folder hierarchy and using multiple 
buckets. The difference relates to configuration issues, certain properties and per-
missions. Therefore, the final decision on the configuration should be relegated to 
the requirements of the specific cluster deployment.

In order to send these objects from the client to a remote host, they all need to be 
serialized. We used cloudpickle,4 a library which extends the basic functionality of the 
standard Python serialization library  (pickle), which allows to send defined func-
tions during the backend execution, something that the pickle tool by itself does 
not support. Therefore, both the Mapper and the Reducer functions are serialized, 
and they all are written to a folder in the root directory of the Object Storage System 
(OSS) called functions. None of these scripts launch any service. With this information 
already in the cluster, the backend of ROOT only has to define a way to invoke the nec-
essary services and wait for the result.

Once invoked these services, the function remains blocked and waiting for the final 
result. The final result can be written either to an external provider such as MinIO, 
Amazon S3, or ONEDATA​, or to the cluster’s own internal system. In our implemen-
tation, we have used the OSCAR​ internal system, i.e., MinIO, to store the final result. 
MinIO offers a function that allows to receive notifications of certain events, e.g, writ-
ing or modifying files in a specific location when they are generated. With this func-
tionality, the client will stay on hold, avoiding a constant polling of the system.

3  Object Storage Systems lack of a hierarchy of directories but, for the rest of the document, the term 
folder will be used for simplicity.
4  https://​github.​com/​cloud​pipe/​cloud​pickle.

https://github.com/cloudpipe/cloudpickle
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4.2 � OSCAR​ services

A minimum of two OSCAR​ services need to be created, a Mapper and a Reducer. 
Additionally, we may need a coordination service depending on the way the reduction 
is performed. At its current state, OSCAR​ does not support usage of wildcards in the 
path specified to MinIO when creating a service. Thus, supporting common use cases 
such as multiple users running their analysis or a single user running more than one 
application requires two extra steps. First, the exact path where the service will be lis-
tening for events must be specified during its creation. Second, each service needs to 
be destroyed, together with the data it exchanged with the OSS, once the analysis has 
completed successfully.

4.2.1 � The Mapper service

For the Mapper we define a service that listens file-creation events in the mapper-jobs 
folder of the root directory. The backend writes in the OSS as many files as enumerated 
in the Ranges list. Each one of those files will have the information, serialized, of the 
particular range, launching thus the execution of as many concurrent Mapper services 
as specified at the initialization of the RDataFrame. Invoking a Mapper service con-
sists of reading from the OSS the Mapper function. The backend deserializes the func-
tion, turns it into an object and applies it to its assigned range of entries. The access to 
MinIO storage system is protected with credentials so, to obtain the Mapper function, it 
is necessary to have access to these credentials and the path to the file that contains the 
Mapper function.

When a Mapper has finished processing the analysis part, it writes the result 
returned by the Mapper function in a temporary file of the container, following the phi-
losophy of OSCAR​, so that it is in charge of managing the upload of those results to 
MinIO. OSCAR​ will write this result to the partial-results folder, which will trigger the 
reduction process. This event will or will not directly launch another service, depending 
on the reduction model used.

4.2.2 � The Reducer service

The reduction phase is much faster than the map phase, since it simply consists of 
merging partial results and there are no complex computations involved. Nonethe-
less, performing the reduction in a stateless scenario is not a trivial problem. Com-
pared to a traditional MapReduce workflow, there is no central scheduler that can 
decide when the reduction phase should start and how the reducers should be run. 
Thus, this work proposes two ways of performing this phase:

•	 Uncoordinated Reduction. Under this model of coordination, the result written 
by each Mapper will launch a Reducer. The problem of a reduction in a server-
less environment without coordination or uncoordinated lies on how to check the 
state of the operation. The mapping process will generate a given set of partial 
results. If we set an order in the Mapper services invoked assigning an identifier 
to each one of them, lets say, the rank in the list of range, limiting the reduction 
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to be done in a given order, the reduction can be carried out without the pres-
ence of a coordinator “manager”. Each partial result needs to know which other 
partial result it should be reduced with. This additional information, necessary 
for this solution to work, can be found in the reducer-jobs folder. This folder 
contains as many files as reduction jobs. The files names are selected according 
to the reduction process. For instance, let there be two Mappers with identifiers 
1_1 and 2_2, respectively, then the name of the fale representing their reduc-
tion is 1_1-2_2. A Mapper, upon completion, performs the reduction if the 
data of its counterpart is available in the file system. Otherwise, simply stores 
the partial result, that will wait for the other mapper to finish. It is necessary to 
find a way to determine the generation of the Mapper names in a deterministic 
way so that whatever be the number of Mappers invoked, the reduction is car-
ried out successfully. The algorithm proposed to solve this problem focuses on 
generating a binary tree from the leaves to the root, in which the leaves are the 
identifiers of the Mappers, and at each level from bottom to top the names are 
combined two by two until reaching the root node. The name combination is 
done by taking the identifiers of the extremes that will match the minimum and 
maximum identifiers that have been reduced up to that point. For their part, the 
Reducer must write in partial-results the result with the name corresponding to 
the reduction of the two reduced jobs so that the new Reducer that is invoked 
is able of reducing itself with another partial result. This generation of reduced 
jobs is built into the backend of ROOT but has been developed in this section for 
convenience. This idea can be easily generalized to non binary trees. We show a 
reduction example in Fig. 3 assuming a division of the analysis load into 8 parts. 
In these trees, the nodes of the deepest level will be discarded since they corre-
spond to the Mappers and will write the name to the corresponding folder. The 
main advantage of this approach is that we can get rid of a manager process or a 
coordination function that should permanently be monitoring the process, with 

Fig. 3   Algorithm of reduction
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the consequent waste of resources, which is very discouraged on platforms, such 
as AWS Lambda. On the contrary, there exists a disadvantage. If two Mappers 
that are to be reduced together terminate and write their partial result nearly at 
the same time, they both will check that their counterpart already wrote a partial 
result in their corresponding file. In consequence, both Mappers will probably 
perform the same reduction at the same time. This fact, although produces a cor-
rect final result, also produces in turn a performance penalty. Figure 4 shows a 
schema of the uncoordinated reduction process.

•	 Coordinated reduction: Another alternative consists of using an additional ser-
vice, i.e., a coordination process which is in charge of the whole reduction process. 
The backend invokes this service once, at the starting. This service monitors the 
Mappers once they are created and the folder where they write the partial results 
(partial-results). The monitoring process is done similarly as the client does when 
waits for the final result, receiving an event by the time a partial result is written in 
the file. The coordination service is responsible of launching reduction jobs when 
necessary and of writing in the folder reducer-jobs the work to be done. On the one 
hand, the backend will generate a file with the necessary configuration of the coor-
dinating service. This configuration consists of a list of integers where each value 
represents the number of partial results that should be merged once a Reducer is 
invoked. The coordinator watches the folder in which the partial results are written 
and, upon notification of a new result, it will save the name of the given file. Once 
the number of partial results corresponding to an element of the configuration list 
is reached, the coordinator will generate a reduction job including the names of 
all the partial results that should be merged. Once done, it will pass to the next 
element in the reduction list. An optimization carried out during this work is that 
the last reduction job is performed directly by the coordinator service, so that no 
extra time is spent waiting. It should be noted that since the Reducer function only 
accepts two input parameters, these “multiple” reductions are performed by iterat-
ing over the jobs to be reduced, but they avoid invoking multiple Reducers and 
some of the limitations of the uncoordinated reduction approach. Writing the jobs 

Fig. 4   Component interaction in the uncoordinated reduction process. Numbers denote events order
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is done by the coordinator directly to MinIO without interference from the normal 
OSCAR​ workflow. In fact, usually OSCAR​ only uploads files once a service has 
terminated. But the coordinator service should not finish until all the MapReduce 
workflow has ended. In this case the Reducer will be called when the files are writ-
ten to the reducer-jobs folder instead of partial-results folder, as it was in the unco-
ordinated case. The reduction service needs an additional modification. There is 
no longer need to check whether there are other partial results pending. There is 
only need to deserialize the content of the job, get the partial results from MinIO 
and reduce them all. Once it has finished reducing them, it will write that partial 
result to a file with the result that OSCAR​ will upload to MinIO, finally triggering 
a notification to the coordinator. With the coordinated reduction is not necessary to 
keep the order of the file names. Indeed, the coordinator can structure the process 
of reduction as convenient, e.g., into two parts or choosing an imbalanced splitting 
(80–20%). Figure 5 shows a schema of the coordinated reduction process.

4.3 � Summary of the backend

Preliminary attempts of integrating the backend with OSCAR​ tried using the OSCAR​ 
API to call the Mapper and Reducer services. The final implementation instead 
accesses directly the files on MinIO to generate events. This choice conveniently 
provides the possibility to resume the execution at any point of failure during the 
MapReduce workflow.

Fig. 5   Component interaction in the coordinated reduction process. Numbers denote events order
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Another difference between the two models is that in the uncoordinated reduction 
the jobs are written before the Mappers start whilst in the coordinated one the jobs 
are written by the coordinator when necessary.

One of the current requirements of this backend is the need to define the number 
of Mappers to be invoked for the analysis. In other backends it is possible to obtain 
the number of cores of the cluster but, in OSCAR​, this information is not available 
at the time the services are created. In fact, the whole serverless approach relies on 
the idea that users can scale the number of function calls automatically depend-
ing on the amount of work provided. A possibility for future research would be to 
attempt at predicting the best number of functions that should be invoked, based on 
the workload given by the user application.

5 � Experiments

One of the most important performance metrics for a HEP analysis is the so-called 
time-to-plot. That is, the time elapsed between the moment a user starts the analysis 
and the moment they can see a plot of the results on their screen. This metric deter-
mines the real scalability of the implementation of the proposed backends.

The experiments that will be described in this section all have to go through the 
usual two stages of the MapReduce scheme, plus some extra scheduling and orches-
tration that is more specific to OSCAR​. Figure  6 shows the stages of the process 
where the blue squares represent the work being done outside of the physics analy-
sis, such as container start and kill, MinIO iteration and others. The red squares cor-
respond to the time devoted to the analysis itself. In order to obtain this information 
the code of the OSCAR​ services is wrapped with a Python script that invokes the 
mapper or reducer functions and monitors the hardware resources and time spent 
executing.

Fig. 6   Stages of execution experiments
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5.1 � Setup

A total of 6 working nodes were made available for the purposes of this work. Each 
working node is a virtual machine hosted on a OSCAR​-enabled computing cluster, 
located in Valencia (Spain). The underlying hardware is described in Table 1. Each 
OSCAR​ service created, i.e., the mapper and the reducer, is configured to invoke 
functions with 1 vCPU and 3 GB of RAM available.

5.2 � Methodology

Two types of analysis were employed as benchmarks in this work. The first type is a 
real physics analysis, processing data from events recorded by the CMS experiment 
in 2012 to finally plot a histogram of the di-muon mass spectrum [49]. The amount 
of data for this experiment consists of 200GB obtained from replicating one hundred 
times the original dataset file of 2GB. This analysis was carried out with two types 
of benchmarks, differing for the location of the dataset at runtime: either stored in 
the CERN data center or in the MinIO storage attached to the OSCAR​ cluster, much 
closer to the computing nodes.

The second type of analysis consists of a simulated workload that reads 
no data from disk or network and can better highlight the best CPU usage the 
backend can drive. A simulated dataset is created at runtime in-memory, with 
roughly the same amount of data that would be processed in the other type of 
analysis. The Mapper of this experiment will generate the required data locally 
and will apply a series of operations over the data.

For each of the three experiments, an increasing number of splits of the input 
dataset (also called partitions) was studied: 1, 2, 4, 8, 16, 32, 48, 64, 80. Each 
split corresponds to one mapper task, thus one invocation of the correspond-
ing OSCAR​ service, which are then all executed simultaneously on the available 
nodes. The overall number of cores in the cluster would be 96, but in each node 
the Kubernetes service consumes a small amount of CPU thus hindering perfor-
mance when all cores of a single VM are used. For this reason, the 96 partition 
count is omitted

Table 1   Hardware used for the 
experiments 6 nodes CPU:16 cores Skylake Architec-

ture. No hyper threading. Each 
core has 64KB of L1 cache, 4 
MB of L2 cache and 16 MB of 
L3 cache

Memory: 62.5 GB
Cluster private network 10GbE
Cluster public network 10GbE
MinIO The object storage system is 

hosted on a dedicated disc with 
the following performance: 
3500MB/s sequential read and 
3000 MB/s sequential write
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The Docker images are downloaded to the cluster before the experiments are 
run to avoid fetching the 4GB sized images during the first experiment.

5.3 � Results

In Fig. 7 the time-to-plot for all the experiments can be observed. As expected, 
the experiment with the data located within the cluster is faster than the experi-
ment with the data located at CERN’s servers.

In Fig.  8, the speedup for all the experiments is shown alongside the opti-
mal speedup that should be expected from this kind of analysis, as all the data 
to be processed are independent. For the experiments that use real data we can 
observe that CERN outperforms the data stored in MinIO, something that should 
not happen unless hitting some bottleneck with the disk where MinIO is operat-
ing. This assumption is based on the fact that MinIO storage is placed within the 

Fig. 7   Time-To-Plot evolution

Fig. 8   Speedup evolution
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same network and the same machines that run the OSCAR​ services. Thus, latency 
should be minimal and I/O throughput should be higher than reading remotely 
from CERN, due to the geographical distance.

For the CERN experiment, when we use 48 Mappers or more, the speedup 
remains constant, being probably a network bottleneck. Similarly, also the simu-
lated workload shows a poor performance scaling, reaching less than half of the 
optimal speedup as the core count increases.

Regarding the CPU and Memory utilization, Fig. 9 shows the expected behavior. 
The simulated workload has a CPU usage close to 100% and the experiment with the 
data stored in MinIO also makes a better usage of the CPU as it has to spend less 
time waiting for the data to arrive due to its locality. Looking at Fig. 10 we can see 
that none of the experiments is close to reaching the 3GiB memory limit set, so we 
can discard this limit as a reason for the poor performance.

In order to better investigate the lack of scaling, the focus is shifted to the simu-
lated workload. The other applications that read data may be influenced by I/O with 
the network or the local filesystem, so it is preferable to have a fully CPU bound 
workload to avoid any noise from other factors. Table 2 describes the difference in 
time between the fastest Mapper and the slowest one for the simulated workload. 

Fig. 9   Mapper CPU usage

Fig. 10   Mapper memory usage
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In this workload the difference should be within a reasonable margin (e.g., 2–3%), 
which may be justifiable due to noise on the system, but we can see that the differ-
ence in time reaches up to 29.45% . Figure 11 shows this information graphically. 
The same workload was run with distributed RDataFrame outside of the OSCAR​ 
cluster, on a single physical machine. The difference in time between the fastest 
and the slowest Mapper in this controlled condition is on average 3% . With this 
information we can conclude that there are unknown sources of bottlenecks coming 
from the OSCAR​ cluster.

Table 2   Mapper’s variability 
in execution time for simulated 
workload

The absolute time difference represents the difference between the 
runtime of the slowest mapper and the runtime of the fastest mapper. 
The relative time difference is computed with respect to the runtime 
of the fastest mapper

Mapper count Absolute time difference 
(s)

Relative differ-
ence time (%)

1 0.0 0.0
2 119.0 2.79
4 154.0 7.41
8 105.5 10.03
16 63.5 11.72
32 40.5 13.64
48 32.5 15.44
64 48.0 29.45
80 39.0 27.76

Fig. 11   Distribution of the runtime of Mapper invokations for 48, 64 and 80 mappers, respectively, from 
left to right in the image
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5.4 � Comparison between reduction strategies

The previous results were relative to the uncoordinated reduction strategy. Section 4 
introduced another possible way of addressing the reduction phase, which is further 
discussed in this section and compared to the first one.

In the uncoordinated reduction the degree of the tree is fixed to two. The coordinated 
reduction model is more flexible. Taking as a starting point the overhead introduced by 
OSCAR​, we will focus on a two step reduction. This means that the coordinator will 
launch a reduction service to merge a determined amount of partial results, while the 
remaining partial results will be merged by the coordinator itself. For this coordinated 
reduction three different configurations of load partitioning have been studied:

•	 0% : all the reductions are performed by the coordinator.
•	 50% : the invoked reducers process 50% of the reductions and the remaining 

reductions are performed by the coordinator
•	 87.5% : the reducers are invoked for 87.5% of cases, the coordinator performs the 

remaining 12.5%.

Table 3 shows the results for this fine-tuning, all the configurations have similar results 
and the differences can be attributed to the runtime variability of the various mappers. 
For the comparison with the uncoordinated reduction the 87.5% will be used.

For this fine-tuning experiment the tests have been carried out using 80 Mapper 
services as it generates the biggest amount of reductions required. Figure 12 shows 
that, despite the variability of the system, the coordinated reduction is faster than the 
binary reduction, and this difference increases with the amount of Mappers. This is 
due to the fact that for the uncoordinated reduction, the last Mapper service to fin-
ish has to travel the entire path to the root of the tree invoking a service on each step 
and the greater the amount of Mappers the deeper the tree. This could be partially 
solved if instead of performing only one reduction in the uncoordinated reduction, 
the Reducer also checks if it can perform any other reduction in the path to the root.

6 � Conclusion

In this work we have extended the functionality of ROOT with another serverless 
engine that improves some of the shortcomings of the previous one based on AWS 
Lambda. The open-source platform provided by OSCAR​ is a solid basis for a new 

Table 3   Time to plot results for 
different workload partitioning 
of the coordinated reduction 
strategy

Workload partitioning (%) Time to plot [s]

0 205
50 208
87.5 202
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DistRDF backend that could be used by physicists to easily deploy their distrib-
uted environments. A few areas of improvement were found for OSCAR​, in particu-
lar regarding the asynchronous function invocations, which rely on the underlying 
Kubernetes batch job scheduler. The experimental results still favor the current dis-
tributed backends offered via Spark and Dask. Nonetheless, the serverless approach 
is one of the best options to afford the necessary scalability requested by future 
HEP computing needs. In that regard, this work paves the road to addressing this 
challenge.
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