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Abstract: We study how the coupling between axion-like particles (ALPs) and mat-

ter can be obtained at the level of on-shell scattering amplitudes. We identify three

conditions that allow us to compute amplitudes that correspond to shift-symmetric La-

grangians, at the level of operators with dimension 5 or higher, and we discuss how they

relate and extend the Adler’s zero condition. These conditions are necessary to reduce

the number of coefficients consistent with the little-group scaling to the one expected

from the Lagrangian approach. We also show how our formalism easily explains that

the dimension-5 interaction involving one ALP and two massless spin-1 bosons receive

corrections from higher order operators only when the ALP has a non-vanishing mass.

As a direct application of our results, we perform a phenomenological study of the in-

elastic scattering ℓ+ℓ− → ϕh (with ℓ± two charged leptons, ϕ the ALP and h the Higgs

boson) for which, as a result of the structure of the 3-point and 4-point amplitudes,

dimension-7 operators can dominate over the dimension-5 ones well before the energy

reaches the cutoff of the theory.
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1 Introduction

In recent years, the study of modern on-shell methods [1–5], together with their appli-

cation to phenomenological issues, has been gaining much attention and giving fruitful

results. Without a doubt, the most innovative feature of these methods consists of

writing down scattering amplitudes by relying on nothing but the covariance of the S-

matrix under little-group transformations of the Lorentz group [6], thus putting aside

the need for fields and Lagrangians. The consequences and applications of the on-shell

approach are far-reaching. On the phenomenological side, much progress has been

made, for instance, in the computation of loop-integrals and anomalous dimensions [7–

13], in the understanding of the Standard Model (SM) and of Effective Field Theories

(EFTs) [14–33], in the study of the physics of higher-spin dark-matter [34, 35] and also

in the formulation of neutrino oscillations [36]. One less pursued question is that of

establishing a precise connection between the physical properties of infra-red (IR) on-

shell amplitudes to the physics of the ultra-violet (UV) [14, 22, 28, 37–40]. In the

Lagrangian approach, the different assumptions about the UV dynamics are translated

in the IR to specific EFTs and power counting (e.g. SILH [41], HEFT [42]), giving us

much more control over the properties of the low-energy amplitudes. The same exercise

still needs to be carried out in a systematic way in the on-shell approach, in which the

UV properties are reconstructed from the IR amplitudes.

Along these lines, an interesting problem that can be studied using on-shell meth-

ods is the one concerning the physics of axion-like particles (ALPs). From the usual

quantum field theoretical perspective, it is well known that ALP interactions must be

invariant under a shift-symmetry if the underlying global symmetry is exact. This has

extensive physical consequences, among which the existence of soft-theorems and the

appearance of the so-called Adler’s zero, which state that amplitudes involving ALPs

(or, equivalently, Nambu–Goldstone bosons) and amplitudes involving ALPs and other

particles are either regular or vanish in the limit in which the ALP momentum be-

comes soft [43–46]. Previous studies in the literature have shown how, using on-shell

techniques, amplitudes involving only exactly massless ALPs make manifest the pre-

viously mentioned soft-theorems [47], as well as Adler’s zero conditions [39, 40, 48–50].

In addition, it is possible to read off from IR properties of these ALPs amplitudes the

structure of the coset group associated to the spontaneous symmetry breaking in the

UV [38].

Two questions that have remained unanswered in the literature are: what happens

when we consider couplings between ALPs and matter? What are the physical prop-

erties that these amplitudes must satisfy in order to recover shift-symmetry? Stated

in another way: the Adler’s zero condition is a necessary requirement that an ampli-
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tude involving ALPs must satisfy, but it may not be enough to completely characterize

the interactions between ALPs and matter. What we seek to find in this work are

possible additional conditions that completely pinpoint the ALP-matter interactions.

Given that on-shell methods allow us to write the amplitudes without assuming any

Lagrangian or symmetry, they are the ideal framework to approach this question.

In this paper, we continue to further explore this direction and investigate the

coupling between ALPs and other matter particles, including the SM ones. We will

first reproduce the well-known results of ALP 3-point couplings to massive fermions

and vectors, which in the Lagrangian approach emerge from operators of the form

(∂µϕ)ψ̄γµγ5ψ and ϕV Ṽ , where ϕ is the ALP, ψ any massive fermion, V a field strength

tensor and Ṽ denotes the dual field strength (to be defined below). We will then uplift

these amplitudes to 3- and 4-point amplitudes involving SM particles in the unbroken

electroweak phase. Understanding the properties of the simplest scattering amplitudes

of ALPs and matter particles will allow us to generalize this procedure and construct

higher-point functions in a systematic way.

The paper is organized as follows. In Section 2, we formulate our approach in terms

of on-shell methods and apply it to generic 3-point amplitudes involving one ALP. We

discuss how we could generalize our procedure to higher-point amplitudes involving

more ALPs and the difficulties involved. In Section 3, we match the massive amplitudes

in the IR to the massless ones in the UV, while specializing to the SM particle content,

discussing also how to handle electroweak symmetry breaking effects. We also comment

on the physical interpretation of the shift-symmetry breaking invariants introduced in

Ref. [51]. In Section 4, we build higher-point contact amplitudes up to dimension 8 in

the ALP scale, while some phenomenological applications are discussed in Section 5. In

particular, we study the production of an ALP in association with a Higgs in a lepton

collider, ℓ−ℓ+ → ϕh, and show that higher-order contact operators can give the leading

contribution to the cross-section at high-energies. Finally, we conclude in Section 6.

We also add a number of appendices with more technical material: in Appendix A,

we present our conventions for spinors; in Appendix B, we propose an alternative

on-shell derivation of the connection between Yukawa couplings and fermions masses;

finally, in Appendix C, we present detailed computations of the running of the 4-particle

amplitude involving one ALP, a fermion-antifermion pair and one Higgs doublet. This

will be useful to show the consistency between the 3-point amplitude involving one

ALP and two massive fermions and the 3-point amplitude involving one ALP and two

massless gauge bosons.
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2 ALP couplings to matter

2.1 General remarks

On-shell techniques have been previously used in the literature to study amplitudes

involving massless scalar particles. More precisely, under the assumption that these

amplitudes vanish as any of the momenta goes soft, i.e. p→ 0, it is possible to derive

a number of features of such (pseudo-)scalars and in some cases even completely deter-

mine the underlying theory [14, 37–40, 47, 48]. However, these analyses are restricted

to amplitudes with nothing but scalars, and therefore do not apply when they interact

with other matter fields, for instance SM particles, making necessary the addition of

extra conditions to characterise ALPs amplitudes. One of the goals of the present pa-

per is then to extend this discussion and to characterise the interactions of ALPs with

other particles from an on-shell perspective.

Our starting point are amplitudes involving ALPs, hereafter denoted by ϕ, in the

limit in which the ALP momentum, pϕ, goes to zero. We will thus be focusing on

lim
pϕ→0
A[ϕ, O] , (2.1)

where A denotes the amplitude and O is a set of other arbitrary particles.1 We will

start by considering amplitudes with the minimal number of particles coupled to one

ALP (taken to be massless), i.e. 3-point amplitudes A3 in which one ALP interacts

with two other particles. Our purpose is to use the soft limit to deduce which conditions

such 3-point amplitudes must satisfy. We will discuss how to do this in a concrete way

shortly. To avoid possible complications due to SM symmetry group, in this section

“matter” means any massive particle of spin 0, 1/2 or 1 that can couple to the ALP. We

will see in Section 3 that our results can be directly applied to amplitudes of massive

SM particles (that would correspond to the broken electroweak phase), and we will also

discuss how to extend them to the massless SM particles (above the electroweak scale).

In on-shell language, 3-point amplitudes are special objects, since they are com-

pletely fixed by little-group covariance and have constant coefficients. While massless

3-point amplitudes only make sense using complex momenta (the 3-body kinematics

forces the amplitude to vanish for real momenta) [2, 5], no such obstruction arise for

massive amplitudes and the momenta can be taken real. Also, 3-point amplitudes can

be used as building blocks to form the so-called “constructible” higher-point ampli-

tudes [26, 52, 53]. Contact interactions, that cannot be constructed in this way, will be

discussed in Section 4. We will now focus on the coupling between one ALP and two

1A more precise definition of the soft limit in terms of Lorentz invariant quantities is |pϕ · pi| ≪
|pi · pj |, for any two momenta pi ̸= pj of the set O.
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massive particles of the same species (we will relax this condition in Section 2.5). The

amplitudes we are interested in are written as

A3

[
ϕPI1,··· ,I2s1 P̄J1,··· ,J2s2

]
, (2.2)

where P is a particle of spin s, P̄ its antiparticle, {I1, · · · I2s}, {J1, · · · , J2s} are sym-

metrized massive little-group indices and the subscripts denote the labels of the mo-

menta (for more details on the notation and conventions, we refer the reader to Ap-

pendix A).

Going back to Eq. (2.1), it is important to notice that the soft limit effectively

“freezes” the particle whose momentum is becoming soft, leaving us with an amplitude

with one less dynamical particle. This means that, when we try to apply (2.1) to

3-point amplitudes as in Eq. (2.2), the soft limit would leave us with a non-physical

2-point amplitude. To circumvent this obstacle, we will consider the 3-point amplitude

in Eq. (2.2) as part of a generic (n + 1)-point amplitude An+1[ϕ,P ,O], constructed

“joining” togetherA3

[
ϕPP̄

]
in Eq. (2.2) with a n-point amplitudeAn[P ,O] (see Fig. 1).

The additional particles denoted collectively as O are generic (apart from the fact

that there must not be another ALP) and their nature will not play any role in our

reasoning. 2 In the soft limit, the (n+ 1)-point amplitude decomposes as

lim
pϕ→0
An+1

[
ϕPI1,··· ,I2si,p , · · ·

]
=

lim
pϕ→0

n∑
i=1

An
[
PK1,··· ,K2s

i,p+pϕ
, · · ·

] ϵK1J1 · · · ϵK2sJ2s

(p+ pϕ)2 −m2
Pi
A3

[
ϕPI1,··· ,I2si,p P̄J1,··· ,J2si,−p−pϕ

]
, (2.3)

where we sum over all particles P , which are labeled by i in An+1 and An, and ϵIJ is

the Levi–Civita tensor that takes into account the sum over spin configurations of the

propagating particle (see Fig. 1). We can understand Eq. (2.3) as follows. Since the

ALP couples to two particles of the same species, in the pϕ → 0 limit the momentum

of the particle in the propagator is very close to p2 = m2
Pi , i.e. the particle is very close

to its mass shell. According to polology [6], 3 the total amplitude will then factorize into

the product of the two sub-amplitudes multiplied by the intermediate propagator and

hence we obtain Eq. (2.3). We can rewrite it more compactly as

2We will come back to the case with more ALPs in the end of this Section and in Section 4.
3As the name suggests, polology refers to the pole structure of amplitudes. More precisely, suppose

we consider a n-point amplitude An in which the external momenta p1,...,r and pr+1,...,n (for some

r < n) are such that s1,...,r ≡ (p1 + · · · + pr)
2 = m2, where m is the mass of some 1-particle state

ψ that can be exchanged in an internal propagator. If this is the case, then polology guarantees that

the amplitude has a pole at s1,...,r = m2 and that the residue factorizes into the product of the two
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lim
pϕ→0

An+1

Pi,p

ϕ

= lim
pϕ→0

n∑
i=1

An
Pi,p+pϕ

A3

Pi,p

ϕ

Figure 1. Diagramatic representation of Eq. (2.3). The index i labels the particle species.

The momenta of external particles are taken to be incoming.

lim
pϕ→0
An+1

[
ϕPI1,··· ,I2si,p , · · ·

]
= lim

pϕ→0

n∑
i=1

An
[
PK1,··· ,K2s

i,p , · · ·
]
× (SPi)

I1,··· ,I2s
K1,··· ,K2s

, (2.4)

with the soft factor given by

(SPi)
I1,··· ,I2s
K1,··· ,K2s

=
ϵK1J1 · · · ϵK2sJ2s

2p · pϕ
A3

[
ϕPI1,··· ,I2si,p P̄J1,··· ,J2si,−p−pϕ

]
. (2.5)

In the last step we have simplified the propagator using the fact that ϕ is massless,

which gives (p+pϕ)2−m2
Pi = 2p·pϕ. We stress once more that all the particles appearing

in the soft factor are on-shell and that we consider real momenta. We observe that,

under our hypothesis, the amplitude An+1 has the same kinematical configuration of

An without the ALP, i.e. the ingoing particle Pi is on-shell in both cases. We are

therefore led to the conclusion that the amplitude describing the interactions of an

ALP with matter particles should obey the following soft factorization condition:

subamplitudes connected by the propagator of the particle ψ:

lim
s1,...,r→m2

Res(An) = Ar+1 (p1 . . . prpψ)An−r+1 (pr+1 . . . pn(−pψ)) ,

where −pψ = p1 + · · · + pr = −pr+1 − · · · − pn is given by momentum conservation (we are taking

all momenta incoming). This result is non-perturbative and relies only on the locality and unitarity

of the S-matrix. Furthermore, it is the basis of the Britto–Cachazo–Feng–Witten (BCFW) recursion

relations [52, 53].
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ALP soft factorization condition

For a massless ALP, in the limit pϕ → 0, as the amplitude An+1[ϕ,P ,O] factorizes

as

An+1[ϕ,P ,O]
pϕ→0
−−−→

∑
P

An[P ,O]× SP , (2.6)

we demand that no poles appear in SP in all phase space for real momenta. This

condition holds when the 3-point amplitude A3 that appears in SP represents the

interaction of the ALP with two particles of the same species, such that An+1 has

the same kinematical structure as An without the ALP.

The motivation for the condition in Eq. (2.6) comes from the fact that we want the

regularity of the soft-limit to be a general property of the amplitude, and not simply

a characteristic of a particular point in the phase-space. Stated in another way: given

the factorization in Eq. (2.4), the fact that particles P and O are the same in An
and An+1 guarantees that the condition of regularity will be valid for any kinematical

configuration of P , O and will thus be independent of particular choices of momenta.

Due to the singularities of the propagator in SP , the ALP soft factorization condition

is expected to give non-trivial requirements on A3.
4

To make progress we need to specify the particle content of the amplitude A3. We

will now analyze in turn the cases in which P has spin 0, 1/2 and 1.

2.2 Scalars

In the simple case in which P = S, with S a spin-0 particle, there are no little group

indices associated with S and SS is simply given by

SS =
1

2p · pϕ
A3

[
ϕSpS̄−p−pϕ

]
. (2.7)

The 3-point amplitude among 3 scalars amounts just to a simple constant, therefore

the only way to avoid SS of diverging as pϕ → 0 is to set it to zero. This is nothing

but a manifestation of the fact that in the usual quantum theoretical language the

interactions of an ALP with two scalars, given by (∂µϕ)(S†i
←→
∂µS), gives a vanishing

amplitude when all particles are taken on-shell.

4We see that the factorization in Eq. (2.4) may in general affect the spin configuration of the

remaining n-point amplitude when compared to the original (n+1)-point one. As we will see, however,

the leading term in the soft expansion will always satisfy (SP)I1,··· ,I2sK1,··· ,K2s
∝ δI1K1

· · · δI2sK2s
+ symm, i.e.

the spin configuration will remain the same, with a change in spin configuration arising only in the

subleading terms. Here, ”symm” indicates the symmetric combinations of little-group indices.
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2.3 Fermions

Moving to the case of fermions P = ψ, we now have a non-trivial little-group scaling

and the 3-point amplitude can be written as

A3

[
ϕψI1ψ̄

J
2

]
= gL ⟨12⟩+ gR [12] , (2.8)

with two a priori complex dimensionless constants, gL,R, that are related to the cou-

plings to the left- and right-handed components of the fermions, respectively. We

consider for concreteness the case of Dirac fermions, but the same discussion holds

for Majorana fermions. In the previous amplitude we have used the bold notation in-

troduced in Ref. [3], which amounts to simply bold the particle momenta instead of

writing explicitly the little group indices. More specifically, in this case the bolded

spinor products are matrices in the {I, J} space (see Appendix A). Also, we use the

short-hand notation |n⟩ ≡ |pn⟩, and similar for other spinors, to label the momenta.

Calling p1 = p, p2 = −p − pϕ and using Eqs. (A.13) and (A.18), the soft factor Sψ
becomes

(Sψ)IK =
mψ

2p · pϕ
(gL + gR)δIK + (Sp0ϕ)IK , (2.9)

where Sp0ϕ denotes terms that are sub-leading on pϕ and we will always assume masses

to be real and positive. As we are going to see, both of these terms will play an

important role in determining the form of gL and gR. First, to avoid the divergence of

Sψ in the soft limit we need gL = −gR,5 which implies that the coupling of the ALP

to the fermions must necessarily be axial. This condition is nevertheless not enough to

guarantee the regularity for all p, as a divergence may still appear when the (real) 3-

momenta p⃗ and p⃗ϕ are collinear with p⃗ · p⃗ϕ > 0. In this case, the denominator appearing

in Eq. (2.9), that is contained in the definition of Sp0ϕ , becomes

1

2p · pϕ
=

1

2|p⃗ϕ|
(√

m2
ψ + |p⃗ |2 − |p⃗ |

) mψ
|p⃗| ≪1

−−−−→ |p⃗ |
|p⃗ϕ|m2

ψ

, (2.10)

i.e. it diverges for very small masses. We anticipate here that the massless limit

mψ → 0 is precisely the limit that will allow us in Section 3 to match the massive SM

amplitudes in the IR into the corresponding massless amplitudes invariant under the

SM symmetry group in the UV. To avoid divergencies when mψ/|p⃗| ≪ 1, we must then

require the soft factor Sψ to be regular also in the collinear configuration. Since, with

5Since, under parity, angle and square brackets are exchanged, the condition gL = −gR amounts

to a parity-odd amplitude, i.e. to a pseudoscalar ALP. We thank Yael Shadmi for pointing this out.
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the condition gψ = gL = −gR, the first term in Eq. (2.9) vanishes, we turn to Sp0ϕ . In

the collinear limit, this term is proportional to (see Eq. (A.20))

lim
collinear

(Sp0ϕ)IK = −gψ ϵKJ
2mψ

(
δI2δ

J
1 + δJ2 δ

I
1

)
, (2.11)

where the structure carrying the little group indices is diagonal and traceless because

of the contraction with the ϵKJ tensor, −ϵKJ
(
δI2δ

J
1 + δJ2 δ

I
1

)
= (σ3)IK . The only way to

guarantee a non-singular massless limit is to have the couplings to be proportional to the

mass, since then Eq. (2.9) becomes independent of mψ in this limit. As a consequence,

remembering that the couplings gL,R are dimensionless, we are forced to introduce a

new scale f in order to correct their dimensionality. From the arguments above, we

then find that gR = −gL ∝ mψ/f .

We can yet obtain more information about the phase of the couplings by imposing

CPT invariance and unitarity of the amplitude. The relation of the amplitude with

their CPT conjugate is given by Eq. (A.23), and implies in the present case that gL =

g∗R. This, together with the previous conditions, leads to purely imaginary coefficients.

In short, we conclude that the coefficients in Eq. (2.8) must be of the form

gL = −gR = Cϕψψ
imψ

f
, Cϕψψ ∈ R. (2.12)

The non-trivial generalisation to several fermion species will be presented in Eq. (2.22).

With Eq. (2.12), the final expression for the amplitude then reads

A3

[
ϕψI1ψ̄

J
2

]
= Cϕψψ

imψ

f

(
⟨12⟩ − [12]

)
. (2.13)

This result agrees exactly with what we have from the usual quantum theoretical ap-

proach starting from an interaction given by (Cϕψψ/2f)(∂µϕ)ψ̄γ5γµψ. We do not have

any coupling with the vector current, because it is not physical due to vector current

conservation on-shell. It is worth stressing that, while little-group arguments were pre-

dicting the structure of the 3-point amplitude in term of two complex constants, the

ALP soft factorization condition (2.6) reduces this freedom to a single real parameter.

2.4 Vectors

We now move to the case P = V , with V a spin 1 particle of mass mV . Without any

loss of generality we take V̄ = V . The 3-point amplitude reads

A3

[
ϕV I1,I2

1 V J1,J2
2

]
=
g−
f
⟨12⟩2 +

g+
f

[12]2 +
g0
mV

⟨12⟩ [12] , (2.14)
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where g±, g0 are three dimensionless complex constants and f is again a new scale

needed to correct the dimension of the coefficients. We observe that, unlike g±, the

coupling g0 is instead divided by a factor m−1
V to ensure a well-defined high-energy

limit [24, 28]. Similar to Eq. (2.8), we use the bold notation to leave the little-group

indices implicit. It is worth stressing again that we need to symmetrize over the little-

group indices, so for instance 6

⟨12⟩2 =
1

2

(〈
1I12J1

〉 〈
1I22J2

〉
+
〈
1I22J1

〉 〈
1I12J2

〉)
, (2.15)

and analogous expressions for the other spinor structures. With this amplitude we

compute the soft factor:

(SV )I1,I2K1,K2
=

m2
V

2p · pϕ

(
g− + g+

f
+

g0
mV

)
1

2

(
δI1K1

δI2K2
+ δI2K1

δI1K2

)
+ (Sp0ϕ)I1,I2K1,K2

, (2.16)

where again Sp0ϕ are terms that are subleading in pϕ. As in the case of the fermions,

regularity when |p⃗ϕ| → 0 imposes that the term in brackets of the first term vanishes.

Regularity in the collinear limit (when mV → 0) requires Sp0ϕ to be regular, and we

can easily show that this requires g0 = 0 (recall Eq. (2.10)). Together with CPT and

unitarity, the constraints on the couplings we obtain are

g− = −g+ = iCϕV V , CϕV V ∈ R. (2.17)

Similarly to the case of fermions, the equation above implies that the couplings of

the ALP to two vectors are purely imaginary and axial. With the results above, the

amplitude in Eq. (2.14) becomes

A3

[
ϕV I1,I2

1 V J1,J2
2

]
=
iCϕV V
f

(
⟨12⟩2 − [12]2

)
. (2.18)

It is possible to show that the amplitude with such couplings corresponds exactly to

the operator (CϕV V /2f)ϕVµνṼ
µν , where Ṽµν ≡ 1

2
ϵµναβV

αβ (see Appendix A). Once

again, we see that the ALP soft factorization condition (2.6) reduces the number of

free parameters from three complex to one real coupling.

2.5 Fermions - Many species case

So far we have analysed the couplings of the ALP assuming that only one species of

particle P couples to ϕ. For the discussion in Section 3, it will also be necessary to

6Here we choose the normalization of 1/2 for all values of I1,2, J1,2 for simplicity, but other con-

ventions can be useful in other contexts, for example in Refs. [18, 24].
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consider the case in which the ALP couples to at least two non-degenerate fermion

species. What we would like to do is to generalize what has been done in Section 2,

constructing a (n+ 1)-amplitude An+1[ϕ,P ,O] joining together the 3-point amplitude

A3[ϕPQ] (with P and Q two particles of different species) and the n-point amplitude

An[Q,O], where once more O denotes a set of arbitrary particles. We face, however,

an immediate problem: when the soft limit is taken in this case, the particle Q in the

propagator will not be close to its mass shell, since by assumption its mass is different

from the one of particle P , and the factorization of Eq. (2.3) fails. Stated in other

terms: given that An+1[ϕ,P ,O] and An[Q,O] contain, respectively, particle P and Q
that are different, the two amplitudes cannot have the same kinematical configuration.

This implies that the ALP soft factorization condition cannot hold in this case. To

avoid this, we can work first in the high-energy limit, where all fermions are massless

and Eq. (2.6) holds again. On the one hand, at leading order in pϕ, the soft factor in

Eq. (2.5) vanishes automatically as ⟨pp⟩ = [pp] = 0 and regularity is trivially satisfied.

On the other hand, the subleading terms that are constant in pϕ do not vanish and can

be constrained in the collinear configuration. Considering that the angle between the

3-momenta is θ ≪ 1, we obtain for each helicity configuration (see Eq. (A.21))

lim
θ≪1
Sψ ∝

1

θ
. (2.19)

Thus, using the regularity condition in the collinear limit, we arrive at the conclusion

that the coefficients of the amplitude should vanish in the massless limit, i.e. they

should be proportional to the mass of the fermions involved in the amplitude. The

couplings, that are now matrices in the space of fermion species, can always be put into

the form

gL,R =
i

f
[MψBL,R − AL,RMψ] , (2.20)

where Mψ is the fermion mass matrix and AL,R, BL,R are arbitrary matrices, that can

depend in a regular way on Mψ as well. If there is any massless fermion in the spectrum,

or if some different species are degenerate in mass, we must treat them separately as the

form of the amplitude is different, meaning that we can always take Mψ to be diagonal

with positive non-degenerate entries. Since the parametrization above is redundant

under the transformation AL,R → AL,R +MψXL,R, BL,R → BL,R +XL,RMψ, with XL,R

some matrix, we can always choose AL,R to be hermitian by choosing XL,R = M−1
ψ A†

L,R.

Imposing CPT and unitarity, which based on Eq. (A.23) amounts to gL = g†R, we obtain

that

gL =
i

f

[
MψAR −B†

RMψ

]
, gR =

i

f
[MψBR − ARMψ] , (2.21)
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i.e. the couplings gL,R depend on the hermitian matrix AR and on the complex matrix

BR. The matrix elements of BR can be simplified as follows. First of all, we observe

that the real part of (BR)ii can always be absorbed in (AR)ii, since the fact that Mψ is

diagonal implies that (BR)ii and (AR)ii are not uniquely defined. Furthermore, since the

diagonal couplings (gL,R)ii appear in the coupling between the ALP and two fermions

of the same species, they must satisfy the soft factorization condition of Eq. (2.3). As

shown in Section 2.3, this forces their imaginary part to vanish. We thus conclude

that the matrix BR can always be taken with vanishing diagonal elements. We still

have enough freedom to significantly simplify the expression for (BR)ij, i ̸= j. Indeed,

applying the transformation AR → AR + MψY , BR → BR + YMψ, with Y satisfying

MψY = Y †Mψ, the expressions for gL,R do not change and AR remains an hermitian

matrix. 7 In order to satisfy MψY = Y †Mψ, the matrix elements of Y must be of

the form Yji = MiY
∗
ij/Mj. The off-diagonal matrix elements Yij (i ̸= j) can then

be chosen to impose the condition (BR)ji = (BR)∗ij (it is sufficient to pick Re(Yij) =

Mj(Re(BR,ji)−Re(BR,ij))/(M
2
j −M2

i ) and Im(Yij) = Mj(Im(BR,ji)+Im(BR,ij))/(M
2
i −

M2
j ), which is always allowed since the masses Mi are assumed to be non-vanishing and

non-degenerate), in such a way that the matrix BR can always be chosen to satisfy

BR = B†
R with vanishing diagonal elements. The couplings appearing in the amplitude

are thus

gL =
i

f
[MψAR −BRMψ] , gR =

i

f
[MψBR − ARMψ] , (2.22)

with both AR, BR hermitian. This expression agrees with what one would expect from a

shift-symmetric coupling of one ALP to fermions [51, 54–56], and precisely corresponds

to the operator (1/f)(∂µϕ)ψ̄[CV +CAγ
5]γµψ, with AR = CV +CA and BR = CV −CA.

We observe that the diagonal elements of CV are not physical due to vector current

conservation and can thus be redefined to obtain (BR)ii = 0, in agreement with what has

been found above. In this case, that corresponds to the 1-family case, the dependency

on (CV )ii thus drops out and it follows from Eq. (2.22) that gL = −gR, in agreement

with Eq. (2.12).

We emphasise that the requirement of regularity of the soft factor SP , combined

with a well behaved massless limit of the low-energy (massive) amplitudes and CPT

invariance plus unitarity, allowed us to fully determine the structure of the 3-point

amplitudes up to some constants. In addition, they all agree with the amplitudes one

would obtain by imposing shift-symmetry at the level of Lagrangian.

7We thank Quentin Bonnefoy for a clarifying discussion about this point.
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2.6 Multiple soft limit

We close this section by commenting on the case that Eq. (2.3) contains more than one

ALP, that is, when multiple ALPs are being taken soft. In this situation, we can make

recursive use of polology to obtain an expression similar to Eq. (2.4), with, however, a

different soft factor:

lim
pϕ1 ,··· ,pϕm→0

An+m
[
ϕ1 · · ·ϕmPI1,··· ,I2si,p , · · ·

]
=

lim
pϕ1 ,··· ,pϕm→0

n∑
i=1

An
[
PK1,··· ,K2s

i , · · ·
]
×
(
S(m)
Pi

)I1,··· ,I2s
K1,··· ,K2s

, (2.23)

where we have defined the m-th soft factor, S(m)
P , associated to the soft emission of

m ALPs. Then, a natural extension of the ALP soft factorization condition (2.6) is to

impose that S(m)
P is regular for all m ≥ 1. For m = 1, we have explicitly computed

the soft factor in Eq. (2.5), that depended only on the 3-point amplitude A3[ϕPP̄ ], and

showed how this latter is constrained by the ALP soft factorization condition (2.6). For

m > 1, instead, the soft factor depends not only on the 3-point amplitude, but also

on higher-point amplitudes involving more ALPs, A4[ϕ
2PP̄ ], · · · ,Am+2[ϕ

mPP̄ ], since

these are in general non-vanishing. To make the discussion more concrete, let us focus

on the double soft limit, m = 2 (see Fig. 2). The soft factor in this case, S(2)
P , contains a

piece that depends on two insertions of the 3-point amplitude (2.2), and a second piece

that depends on A4[ϕ
2PP̄ ]. Since the 3-point amplitude is fixed by the ALP soft factor-

ization condition (2.6), we would expect that imposing the regularity of the double soft

limit would allows us to constraint the 4-point amplitude, A4[ϕ
2PP̄ ]. Already at this

level, however, things are not so simple. Doing the explicit computation, we find that

S(2)
P has a term that can be canceled by a suitable choice of the coefficients appearing

in A4[ϕ
2PP̄ ], but other divergent terms remain whose spinor helicity structures are not

obviously connected to any tree level amplitude. We suspect that the solution to this

problem lies in loop corrections, as it happens in the discussion of multiple soft limits

of photons [44]. In that case, radiative corrections are instrumental in guaranteeing

that the overall amplitude is finite and the same may happen in our case. Given the

complexity of general loop computation in the on-shell context, we defer the detailed

analysis of this class of amplitudes to future work.

a

3 ALP interactions with the SM particles

Having constructed the 3-point amplitudes that describe the ALP interactions to mat-

ter, we now discuss how to extend our results to the case of the SM. There are two

– 13 –



lim
pϕ1,2→0

An+2

Pi,p

ϕ1ϕ2

= lim
pϕ1,2→0

 An A3

ϕ2

A3

Pi,p

ϕ1

+ (ϕ1 ↔ ϕ2)

+ An A4 Pi,p

ϕ2

ϕ1

+ . . .


Figure 2. Schematic diagrammatic representation of Eq. (2.23) for an amplitude with two

ALPs (m = 2). The first line represents the insertion of two 3-point amplitudes, the second

one is the Bose exchange of the two ALPs in the double A3 insertion, while the last line

represents the insertion of the 4-point amplitude with two ALPs whose coefficients need to

be determined. The dots denote other factorization channels that are automatically regular

in the double soft limit.

different regimes for the SM amplitudes. One is when (some of) the particles are mas-

sive and the amplitudes are invariant under the symmetry group SU(3)c × U(1)EM,

corresponding in the usual QFT language to the broken phase of electroweak symme-

try. These amplitudes are the relevant ones at low-energies, that is, when the typical

energy scale is much smaller than the scale of electroweak symmetry v (to be defined

below). For massive amplitudes in this low-energy regime, apart for some overall group

theoretical factors, the results of Section 2 can be directly applied. For energies above

the scale v, i.e. at high-energies, we take the particle content to be massless and ampli-

tudes to be invariant under GSM = SU(3)c×SU(2)L×U(1)Y , thus corresponding to the

unbroken electroweak phase. Explicit expressions for these amplitudes involving also

the ALP will be given below. The link between low- and high-energy amplitudes will al-

low us to find additional properties of the coefficients Cϕψψ, CϕV V and gL,R introduced

in the previous section, once the connection with the coefficients of the high-energy

amplitude is made explicit. In practice, we will take the massless limit of the massive

amplitudes (as defined in Appendix A) and equate them to the corresponding GSM-

invariant massless amplitudes, under the assumption that the m → 0 limit is smooth

and continuous.

The remainder of this section will be devoted to the study of the high-energy limit
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applied to the amplitudes involving one ALP and different particles. The case of the

coupling between one ALP and two Higgs doublets is identical to the one already

discussed in Eq. (2.7), so we can skip directly to the coupling between the ALP and

particles of higher spin. For spin 1 particles (analyzed in Section 3.1) the high-energy

limit of Eq. (2.17) will be straightforward and will allow us to relate the coefficients

appearing in the amplitudes involving ϕWW , ϕZZ, ϕγγ and ϕγZ to the coefficients

appearing in the amplitudes involving ϕBB and ϕW aW a (with a the SU(2)L adjoint

index). The case of the amplitude ϕGAGA (where G is a gluon and A is the index of

the SU(3)c adjoint) will be more difficult, since this amplitude cannot be linked to any

of the massive amplitudes derived in Section 2. In this case, we will need to resort to

a one-loop computation to recover the same structure of the amplitude that emerges

for the other spin 1 bosons. The case of spin 1/2 particles (discussed in Section 3.2)

will be even trickier, since GSM-invariance will force us to connect low-energy 3-point

amplitudes to high-energy 4-point amplitudes involving one additional Higgs doublet.

As we are going to see, in this case electroweak symmetry breaking (as discussed in

Ref. [22]) will be essential to meaningfully connect low- and high-energy coefficients

and will force us to introduce a “ALP-Higgs obstruction” condition to complement the

ALP soft factorization condition of Eq. (2.6). In this section we will still be concerned

with amplitudes that involve only one ALP that are suppressed by f−1. We will discuss

in Section 4 how to compute amplitudes suppressed by more powers of f and we will

comment on the limitations of our approach.

3.1 ϕV V amplitudes

The massless 3-point amplitude involving one ALP and two spin-1 particles can be

built using little group covariance and GSM-invariance. The result is

A3

[
ϕB−

1 B
−
2

]
=
g−B
f
⟨12⟩2 , A3

[
ϕB+

1 B
+
2

]
=
g+B
f

[12]2 ,

A3

[
ϕW−

1 W
−
2

]
=
g−W
f
⟨12⟩2 , A3

[
ϕW+

1 W
+
2

]
=
g+W
f

[12]2 ,

(3.1)

where, for simplicity, we have ignored GSM indices. The ± superscripts show explicitly

the helicities of the spin 1 particles.8 We recall that massless 3-point amplitudes are

non-vanishing only when considering complex momenta. A priori, little group covari-

ance allows the a priori complex coefficients g±B,W to be arbitrary and unrelated one

with the other. As in Section 2, we now want to find whether any correlation exists

8We do not consider amplitudes with one positive and one negative helicity states, as these am-

plitudes have a more intricate analytical structure and do not necessarily vanish as the momenta are

taken real [57–59].
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between these coefficients and how to connect such coefficients with those appearing

in the amplitudes involving physical states. Let us start with the 3-point amplitudes

involving one ALP and the massive spin-1 particles, A3[ϕW
(+)
1 W

(−)
2 ] (where the super-

scripts now denote the electric charge of the massive W bosons, not to be confused

with the helicities that appear in Eq. (3.1) for the massless W bosons in the unbroken

phase) and A3[ϕZ1Z2]. As we saw in Section 2, in this case the ALP soft factorization

condition (2.6) holds and the amplitudes are those of Eq. (2.17), with real coefficients

CϕWW and CϕZZ . Taking the high energy limit of these massive amplitudes and using

spontaneous symmetry breaking as implemented in the on-shell context [60, 61], we

obtain the following correspondence between CϕWW,ϕZZ and g±B,W : 9

g∓B,W = −g±B,W , iCϕZZ = sin2(θW )g−B + cos2(θW )g−W , iCϕWW = g−W , (3.2)

where θW is the weak angle. We thus see that, although little group covariance does

not correlate g±B,W one with the other, using the high energy limit and electroweak

symmetry breaking we are not only able to (anti) correlate g+B,W with g−B,W , but we are

also able to express the coefficients that appear in the massive amplitudes, CϕZZ and

CϕWW , with the high energy coefficients g±B,W . The remaining amplitudes involving the

physical spin-1 states (other than the gluons, to which we will come back later in this

section) are A3[ϕγ
±
1 γ

±
2 ] and A3[ϕZ1γ

±
2 ], where γ± denotes a photon with helicity ±1.

The form of these amplitudes is completely fixed by little group covariance to be

A3

[
ϕγ−1 γ

−
2

]
=
g−γγ
f
⟨12⟩2 , A3

[
ϕγ+1 γ

+
2

]
=
g+γγ
f

[12]2 ,

A3

[
ϕZ1γ

−
2

]
=
g−Zγ
f
⟨12⟩2 , A3

[
ϕZ1γ

+
2

]
=
g+Zγ
f

[12]2 .

(3.3)

Once more, the coefficients appearing are, a priori, unrelated one with the other. We

can, however, use once more electroweak symmetry breaking as implemented in Ref. [60]

to obtain

iCϕγγ = g−γγ = −g+γγ, iCϕZγ = g−Zγ = −g+Zγ, (3.4)

where

iCϕγγ = sin2(θW )g−W + cos2(θW )g−B , iCϕZγ = 2 cos(θW ) sin(θW )
[
g−W − g

−
B

]
. (3.5)

9As discussed in AppendixA, in the cases considered in this paper, when taking the high energy

limit of the massive spinor helicity structure ⟨12⟩2 we simply obtain the massless structure ⟨12⟩2, which
selects negative helicity for the spin-1 particles involved. In an analogous way, the massive structure

[12]2 corresponds to the massless [12]2 and positive helicity vectors. From this correspondence, the

result in Eq. (3.2) immediately follows.
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We thus obtain the non-trivial result that all the coefficients that appear in the 3-point

amplitudes between physical states are correlated one with the other through their

dependence on the high-energy coefficients g±B and g±W . In terms of degrees of freedom,

we have started from four a priori complex parameters (g±W,B) and reduced them to

only 2 real ones.

Gluons, on the other hand, cannot be related to other gauge bosons via symmetry

breaking, nor are they massive at low energy. At all energies at which perturbation

theory is valid, the coupling between the ALP and gluons will be

A3

[
ϕG−

1 G
−
2

]
=
g−G
f
⟨12⟩2 , A3

[
ϕG+

1 G
+
2

]
=
g+G
f

[12]2 , (3.6)

as usual omitting GSM structures. Following our discussion above, we would expect the

coefficients g−G and g+G to be related by g−G = −g+G as in the case of the photons, but in

this case we cannot relate the amplitudes under consideration with massive amplitudes

(gluons are never massive) nor we can use electroweak symmetry breaking as we did

for photon (color symmetry is never broken). The way we found to extract some

information out of these amplitudes is to go to the 1-loop level and see the interplay

between A3[ϕG
±G±] and 3-point amplitudes involving fermions. More precisely, we

compute the anomalous dimension of the coefficient Cψ appearing in the amplitude

between ϕ and two fermions ψ (the coupling will be defined in Eq. (3.9)) induced by

Eq. (3.6). The coefficient Cψ cannot be arbitrary, but in order to satisfy the ALP

soft factorization condition (or, more precisely, to satisfy the “ALP-Higgs obstruction

condition” that we will introduce in Section 3.2 and that will be added to the ALP soft

factorization condition), it will have to satisfy a specific constraint, shown in Eq. (3.12).

Our 1-loop computation (shown in Appendix C) shows that Cψ can satisfy Eq. (3.12)

only if

g−G = −g+G = iCϕGG, (3.7)

with CϕGG real. We thus conclude that the coefficients appearing in the amplitudes

with gluons do indeed satisfy the same relation we found in the case of photons. It is

worth stressing, however, that the reasoning above makes the amplitudes in Eq. (3.6)

qualitatively different from the others, as we were only able to arrive at the constraints

above by using other amplitudes.

Summarizing, the amplitudes in Eqs. (3.1) and (3.6) are constrained to be of the

form

A3

[
ϕV −

1 V
−
2

]
=
iCϕV V
f
⟨12⟩2 , A3

[
ϕV +

1 V
+
2

]
= −iCϕV V

f
[12]2 , (3.8)

with V = B,W or G, and CϕV V real. For the phenomenology of ALPs, the most

important couplings are the one with photons and gluons, which we define at the
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Lagrangian level by L =
Cϕγγ
2f

ϕFµνF̃
µν +

CϕGG
2f

ϕGA
µνG̃

Aµν , with the couplings Cϕγγ and

CϕGG given in terms of the high-energy couplings by Eqs. (3.5) and (3.7).

3.2 Fermions and EWSB

The case of fermions is more subtle and, as we already mentioned at the beginning of

this section, to properly address it we will need to add a condition to Eq. (2.6). The

problem stems from the fact that, unlike what happens in Eq. (2.8), we cannot build an

amplitude with one ALP and two fermions due to GSM-invariance and fermion helicities.

Nevertheless, it is possible to add a Higgs doublet and write

A4

[
ϕψ−

L1ψ̄
−
R2H̄

]
=
C̄ψ
f
⟨12⟩ , A4

[
ϕψ̄+

L1ψ
+
R2H

]
=
Cψ
f

[12] , (3.9)

where ψL,R denote the chiral fermions of the SM, while H is the Higgs doublet and H̄

denotes the anti-Higgs (in the case of couplings to up-quarks one should swap H ↔ H̄).

For simplicity, we again suppress all indices and tensor structures related to GSM. Also,

it is important to notice that the dimensionless couplings Cψ, C̄ψ are matrices in fermion

flavor space and the spinor structures ⟨12⟩ and [12] are flavor-independent since all

fermions are massless. This also implies that we have the freedom to redefine Cψ
and C̄ψ, because in the massless limit they can be seen as tensors of the flavor group

U(3)ψL × U(3)ψR [36]. At tree-level, CPT and unitarity enforces that C̄ψ = C†
ψ, that

follows from Eq. (A.23).

The fact that the amplitude in Eq. (3.9) is now a 4-point amplitude brings two

changes to the analysis. First, the coefficients Cψ can now depend on the kinematics

through kinematical invariants, which we will always assume to be regular, i.e. given

by a power expansion. Second, the reasoning that led us to the ALP soft factorization

condition (2.6) fails, because taking pϕ → 0 does not guarantee that the particle ex-

changed in the propagator goes on-shell and that the amplitude factorizes. The key to

understand the soft limit for these amplitudes lies in the Brout–Englert–Higgs mech-

anism. In general, to connect the massless (high-energy) amplitudes with the massive

(low-energy) amplitudes without the Higgs, one uses

lim
pH→0

A[H, · · · ] = lim
H.E.

1

v
A[· · · ] , (3.10)

where H.E. stands for the high-energy limit of the amplitude (see Appendix A) and v

is the scale at which the Higgs becomes non-dynamical (“frozen” in the language of

Ref. [22]), which is introduced by dimensional analysis and represents the scale asso-

ciated with electroweak symmetry. The limit pH → 0 is to be understood also as the

limit in which the Higgs becomes non-dynamical, which amounts to removing it from
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the amplitude, and the right hand side is to be taken as the high-energy (massless)

limit of the corresponding massive amplitude. What is stated in Eq. (3.10) is nothing

but the UV/IR compatibility for amplitudes involving the Higgs.

In short, we learn from the discussion above that the ALP soft factorization con-

dition (2.6) is not directly applicable to amplitudes involving Higgs. Therefore, we are

led to impose an extra condition for such amplitudes:

ALP-Higgs obstruction If a low-energy 3-point amplitude A3 involving one

massless ALP cannot be associated to a non-vanishing gauge invariant 3-point am-

plitude in the UV, but only to a 4-point one with an extra Higgs, then we impose

the following condition:

lim
pϕ,pH→0

A4[ϕH · · · ] = lim
pϕ→0

lim
H.E.

1

v
A3[ϕ · · · ]. (3.11)

The prescription above guarantees that the result we obtained previously in Eq. (2.22)

holds, as the double soft-limit pϕ, pH → 0 assures that the factorization in Eq. (2.3)

takes place. 10 Therefore, from Eq. (2.22), after applying Eq. (3.10) to (3.9), we obtain

Cψ (pH = 0) = i
(
YψB̃R − ÃRYψ

)
, (3.12)

where Yψ are the diagonal Yukawa couplings, B̃R = limH.E. URBRU
†
R and

ÃR = limH.E. ULARU
†
L (with AR, BR the original couplings appearing in Eq. (2.22))

The equation above needs clarification. The first point regards the appearance of fla-

vor transformations. As mentioned previously, when the fermions are massless we are

free to perform U(3)ψL×U(3)ψR flavor transformations, while this freedom is lost when

they become massive. Hence, when connecting the massive and massless regimes, am-

plitudes will in general agree up to a flavor transformation [36]. Secondly, the Yukawa

matrices can be expressed here as vYψ = ULMψU
†
R, where the relation to the mass

from an on-shell perspective was shown in Refs. [22, 61] and we provide an alternative

derivation in Appendix B. Moreover, from the two previous points we can derive the ex-

pressions for ÃR, B̃R, recalling that the matrices AR, BR can depend on higher powers of

the fermion masses, such that the high-energy limit selects only the mass-independent

10We stress that this condition is reminiscent of the Higgs low-energy theorems [62–64]. However,

these theorems, unlike in our case, are typically employed in the broken phase of electroweak symmetry.

And they are used to obtain contributions from loop amplitudes coming from heavy particles that

couple to the Higgs, which is not what is stated in Eq. (3.11). Nonetheless, it would be interesting to

derive an on-shell perspective of these theorems, which is still missing as far as we know.
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term. At zero Higgs momentum, that is, for constant coupling, Eq. (3.12) is identi-

cal to what one would expect from ALPs coupled to fermions in a shift-symmetric

manner [51, 54–56].

Before moving on to other amplitudes, it is worth to explore in more detail some fea-

tures of the amplitude A3

[
ϕψψ̄

]
and its relation to the ALP-Higgs obstruction. At face

value, the high-energy limit of this amplitude with couplings given in

Eq. (2.22) leads to a vanishing result, since Cψ ∼ Mψ. This naive result is incon-

sistent with GSM-invariance and, for this reason, we had to promote the UV amplitude

to a 4-point amplitude with an additional Higgs. One could, however, imagine an alter-

native route. Using the Weyl equations in Eq. (A.11), it is possible to trade the mass

factor for a momentum insertion in the spinor structures, e.g. Mψ ⟨12⟩ ∼ ⟨1|pϕ|2] for

the case of angle brackets, with an analogous identity holding for square brackets. This

form highlights that the amplitude does not vanish in the high-energy limit and should

be directly matched into GSM-invariant 3-point amplitudes A3

[
ϕψL,Rψ̄L,R

]
. But these

amplitudes nonetheless vanish identically due to the 3-particle kinematics, leaving us

with the 4-point amplitude already discussed as the unique route to match the massive

amplitude in the UV.

Another interesting feature of the coefficient in Eq. (3.12) is its connection with

the invariants that parameterise the breaking of shift-symmetry defined in Ref. [51].

In this reference, a total of 3 and 10 invariants were constructed in the lepton and

quark sector, respectively, using the mathematical properties of Cψ(pH = 0). From our

perspective, the only way to break the coupling structure of Eq. (3.12) is to violate the

scaling with the Yukawa matrices (which correspond to a breaking of the dependence

on the particle mass in Eq. (2.20)), as the phase of the amplitude and the hermiticity of

AR, BR are fixed by CPT and unitarity. We thus conclude that the maximum number

of independent parameters that can break the shift-symmetry (in our language, that

gives a singular massless/high energy limit) amounts to the number of independent

parameters in the Yukawa matrices, i.e. the number of parameters left after all possible

flavor transformations are applied. For leptons, taking massless neutrinos, this implies

3 independent parameters; for quarks (with two Yukawa matrices that are correlated in

the UV because we have only one left handed doublet), the number increases to 10 (6

masses plus the 4 parameters of the Cabibbo–Kobayashi–Maskawa matrix 11). Hence,

in the general case in which the Yukawas have the maximal amount of parameters,

this counting exactly corresponds to the one found in Ref. [51]. Since, however, the

invariants are constructed based on the exact form of the flavor group, we cannot

11The emergence of the Cabibbo–Kobayashi–Maskawa and the Pontecorvo–Maki–Nakagawa–Sakata

matrices from the on-shell perspective was studied in Ref. [36].
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conclude that by reducing the physical parameters of the Yukawas will necessarily

reduce the amount of non-vanishing invariants. In general, their number will only

decrease once the flavor group is enlarged.

4 Constructing higher-point functions

So far we dealt with 3-point functions, i.e. amplitudes with couplings proportional to

1/f that, at leading order, can be matched onto dimension d = 5 operators. We now

proceed to extend our discussion to amplitudes of higher-order and build explicitly the

amplitude basis up to 1/f 4. In the literature, only d = 6 (for instance in Refs. [65,

66]) and a couple of d = 7 operators [65, 67–69] were considered and studied at the

phenomenological level. Our present work provides the complete amplitudes, and a

corresponding operator basis, up to d = 8 consistent with the ALP properties. Our

results agree with what was recently found in the literature, in particular Refs. [70,

71], that use a different on-shell approach, and Ref. [72] that employs Hilbert series

techniques.

4.1 Contact amplitudes

The higher-point amplitudes we are interested in are contact ones, i.e. amplitudes that

are regular in the kinematical invariants, and necessarily involve 4 or more particles.

These amplitudes, from now on denoted as Act, are part of the physical amplitudes,

that is simply the sum of contact and factorizable terms:

Aphys = Act +Afact. (4.1)

The factorizable terms are those that can be obtained joining together lower point

amplitudes, using polology to guarantee the correct pole structure [2, 3]. The strategy

is similar to the one we outlined in Section 2 when taking the soft limit: the struc-

ture of Afact should be such that, when it is possible to exchange an intermediate

particle, in the limit in which the intermediate particle goes on-shell the factorizable

amplitude factorizes, i.e. it can be written as the product of the lower point ampli-

tudes times the propagator of the intermediate particle. Schematically, we thus have

Afact
n1+n2−2 = A(1)

n1A
(2)
n2 /(p

2 − m2), where A(1,2)
n1,2 are the two lower point amplitudes (a

n1-point and a n2-point amplitude, respectively) and the intermediate particle has mo-

mentum p. For simplicity, we are leaving implicit the Levi-Civita tensors that ensure

the correct transformation under little group transformations and that depend on the

spin of the exchanged particles. Explicit examples of how the factorizable amplitudes

can be constructed can be found in Ref. [3].
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Dimension 6

Particle content Act × f 2 O × f 2

ϕ2HH̄ pϕ1 · pϕ2 (∂µϕ)(∂µϕ)|H|2

Table 1. Contact amplitudes suppressed by 1/f2 and corresponding d = 6 operators. All

the amplitudes are stripped of overall coefficients.

On the other hand, given that Act are contact amplitudes (i.e. they do not contain

propagators), they are by definition regular as pϕ → 0, so we cannot extract any

information from them using the ALP soft factorization condition (2.6) alone. In order

to make progress, we need an additional physical constraint on them. We impose:

ALP soft contact condition

If Act
n [· · · ] is a contact amplitude with n ≥ 4 involving at least one massless ALP,

then

lim
pϕ→0
Act
n [· · · ] = 0, (4.2)

for each ALP ϕ present in the amplitude.

If we look back at the results from Section 2, the only reason that the soft-limit did not

give a zero was because of the pϕ-independent terms, that only appeared because of the

singular propagator in Eq. (2.5). Since, now, we do not have such singular terms as we

are looking directly at the contact amplitudes, the natural extension of the previous

requirement is to have the amplitudes to vanish in the soft-limit. The only exceptions

we found to the condition above are the A4

[
ϕψψ̄H

]
amplitudes (3.9), that have a

constant coefficient in Eq. (3.12). However, as discussed in Section 3, these amplitudes

must be treated according to the ALP-Higgs obstruction (3.11).

We stress that the regularity conditions of Eqs. (2.6) and (4.2) are, in most cases,

equivalent to the Adler’s zero condition [44]. In Quantum Field Theoretical language

the Adler’s zero condition states that, in the soft limit pϕ → 0, the soft factor is regular

when ϕ is emitted from some external leg and vanishes when ϕ is emitted from the

interior of the diagram. The only exceptions are, as explained above, those amplitudes

involving the Higgs doublet that match into 3-point amplitudes at low energy.

We will now systematically build amplitudes involving ALPs and SM particles

in the unbroken electroweak phase, imposing Eq. (4.2). In practice, these amplitudes

must scale with some positive power of the ALP momentum. This can either appear in
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Dimension 7

Particle content Act × f 3 O × f 3

ϕψ1ψ̄2H
(pϕ · p1) ⟨12⟩ (∂µϕ)ψ̄H(Dµψ)

(pϕ · p2) ⟨12⟩ (∂µϕ)(Dµψ̄)Hψ

ϕψ1ψ̄2V3 ⟨13⟩ ⟨3|pϕ|2] , ⟨23⟩ ⟨3|pϕ|1]

(∂µϕ)ψ̄γνψVµν

(∂µϕ)ψ̄γνψṼµν

(∂µϕ)ψ̄γνTAψV A
µν

(∂µϕ)ψ̄γνTAψṼ A
µν

ϕH1H̄2V3 ⟨3| pϕ(p1 − p2) |3⟩

(∂µϕ)(H†i
←→
DνH)V µν

(∂µϕ)(H†i
←→
DνH)Ṽ µν

(∂µϕ)(H†i
←→
Dν

AH)V A,µν

(∂µϕ)(H†i
←→
Dν

AH)Ṽ A,µν

ϕHH̄ψ1ψ̄2 ⟨1|pϕ|2]
(∂µϕ)(ψ̄γµψ)|H|2

(∂µϕ)(ψ̄γµTAψ)(H†TAH)

ϕH1H̄2H3H̄4 pϕ · (p1 − p2) + symm. (∂µϕ)(H†i
←→
DµH)|H|2

Table 2. Contact amplitudes suppressed by 1/f3 and corresponding d = 7 operatores. The

symbol ψ denotes SM fermions, while V = B and V A =WA, GA denote the abelian and non-

abelian SM gauge bosons, respectively. Each operator must be invariant under the SM gauge

group and this restricts the type of fields that can appear. The symbol ‘symm’ indicates that

it is necessary to symmetrize the momenta of identical particles according to Bose symmetry.

Additional spinor structures can be obtained from the ones shown by swapping angle and

square brackets. The operator
←→
Dµ

A is defined as
←→
Dµ

A = TA
−→
Dµ −

←−
DµT

A and the dual field

strength as Ṽµν = 1
2ϵµναβV

αβ.

the coefficients through Lorentz invariant combinations such as p · pϕ, or in the spinor

structures themselves, for instance as ⟨p|pϕ|p′], with p, p′ the momenta of other particles

in the amplitude. To have any chance to contribute to amplitudes suppressed at most

by f 4, the spinor structures appearing must have dimension ≤ 4. Additionally, we also

have to impose Bose symmetry when there is more than one identical particle. For
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Dimension 8

Particle content Act × f 4 O × f 4

ϕ4 (pϕ1 · pϕ2)(pϕ3 · pϕ4) + symm. (∂µϕ ∂
µϕ)2

ϕ2H1H̄2

(pϕ1 · pϕ2)2 (∂µ∂νϕ ∂
µ∂νϕ)|H|2

(pϕ1 · p1) (pϕ2 · p2) + symm. (∂µϕ ∂νϕ)(DµH
†DνH)

ϕ2V1V2

(pϕ1 · pϕ2) ⟨12⟩2

(∂αϕ ∂
αϕ)VµνV

µν

(∂αϕ ∂
αϕ)VµνṼ

µν

(∂αϕ ∂
αϕ)V A

µνV
A,µν

(∂αϕ ∂
αϕ)V A

µνṼ
A,µν

⟨1|pϕ1|2] ⟨1|pϕ2|2]
(∂µϕ ∂νϕ)VµαV

αν

(∂µϕ ∂νϕ)V A
µαV

A,αν

ϕ2ψ1ψ̄2 (pϕ1 · p1) ⟨1|pϕ2|2] + symm. (∂µϕ ∂νϕ)(ψ̄γµDνψ)

ϕ2ψ1ψ̄2H (pϕ1 · pϕ2) ⟨12⟩ (∂µϕ ∂
µϕ)ψ̄Hψ

ϕ2H4 pϕ1 · pϕ2 (∂µϕ ∂
µϕ)|H|4

Table 3. Same as Tables 1 and 2 for contact amplitudes of order 1/f4 and the correspondent

d = 8 operators. We do not consider amplitudes that violate baryon or lepton number.

simplicity, we assume only one species of ALP ϕ.

Let us illustrate the method with an example, ϕ2V1V2, for which we have four

helicity configurations for the vectors: (−,−), (+,+), (+,−) and (−,+). For the

(−,−) configuration, little-group covariance and dimensional analysis allow us to write

only the spinor structure ⟨12⟩2. This can satisfy Eq. (4.2) only if multiplied by invariants

proportional to pϕ1,2 , appropriately symmetrized to satisfy Bose symmetry. The only

possibility at the mass dimension of interest is pϕ1 · pϕ2 and the amplitude is

Act
4

[
ϕ2V −

1 V
−
2

]
∝ pϕ1 · pϕ2

f 4
⟨12⟩2 . (4.3)

Note that we could have built different kinematical invariants with more powers of mo-

menta, but they would induce an amplitude of higher order in f . An identical reasoning

applies to the (+,+) helicity configuration, for which the amplitude has exactly the
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same form, provided we exchange the angle brackets with square brackets. We thus ob-

tain a second independent spinor structure. The (−,+) configuration requires, instead,

a momentum insertion of the ALP in between the brackets, as we need to connect an

angle with a square spinor. The only symmetric combination in pϕ1,2 is then

Act
4

[
ϕ2V −

1 V
+
2

]
∝ 1

f 4
⟨1|pϕ1 |2] ⟨1|pϕ2|2] . (4.4)

The (+,−) configuration can be obtained from the equation above just swapping angle

for squared brackets. Unlike the previous case, this does not produce an independent

spinor structure since, due to Bose symmetry, once we exchange angle and square

brackets, re-label the momenta as 1 ↔ 2 and use the identity [p|q|k⟩ = ⟨k|q|p], we

obtain exactly the same spinor combination we began with. As a consequence, for each

vector V we can reconstruct only 3 independent operators:

Ld=8 ⊃
C

f 4
(∂αϕ)(∂αϕ)VµνV

µν +
C ′

f 4
(∂αϕ)(∂αϕ)VµνṼ

µν +
C ′′

f 4
(∂µϕ)(∂νϕ)VµαV

αν ,

(4.5)

with C,C ′, C ′′ dimensionless coefficients. Note that in the list above we do not have the

operator (∂µϕ)(∂νϕ)VµαṼ
αν . Although not trivial, it can be shown that this operator is

redundant [73]. From our on-shell construction, however, the non-redundant operators

were singled out automatically.12 We observe that, were we considering a generic pseu-

doscalar Φ and not an ALP ϕ, it would be possible to write down additional terms in

the amplitude, that vanish in the ALP case. For instance, for the case just discussed,

the amplitude would be

Act
4 [Φ2V −

1 V
−
2 ] =

c1
f 2
⟨12⟩2 +

c1 (pΦ1 · pΦ2)

f 4
⟨12⟩2 , (4.6)

where c1,2 are dimensionless constants. It is only when we consider ALPs and we impose

the ALP soft contact condition of Eq. (4.2) that c1 = 0 and we are left with Eq. (4.3).

As a second example, let us consider the amplitude between two pseudoscalars and two

Higgs doublets. In the case of a generic pseudoscalar, the amplitude can be written up

to O (f−4) as

Act
4 [Φ2H1H̄2] = c′0 +

c′1
f 2
pΦ1 · pΦ2 +

c′2
f 4

(pΦ1 · pΦ2)
2 +

c′3
f 4

((pΦ1 · p1)(pΦ2 · p2) + symm) ,

(4.7)

12On-shell techniques have been used to systematically construct higher-dimensional operators in

general effective theories [27, 74].
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where symm denotes the momenta symmetrization according to Bose symmetry and

the constants c′0,1,2,3 are dimensionless. On the other hand, when we consider ALPs,

the ALP soft contact condition forces c′0 = 0 and we are left only with the terms

proportional to the ALPs momenta:

Act
4 [ϕ2H1H̄2] =

c′1
f 2
pϕ1 · pϕ2 +

c′2
f 4

(pϕ1 · pϕ2)
2 +

c′3
f 4

((pϕ1 · p1)(pϕ2 · p2) + symm) . (4.8)

For both cases of the generic pseudo-scalar and ALPs, the basis of amplitudes that

satisfy the ALP soft contact condition (4.2) is the same.

We present the list of higher-point amplitudes suppressed by f−2, f−3 and f−4 and

the correspondent dimension 6, 7 and 8 operators in Tables 1, 2 and 3, respectively.

For each amplitude we only show independent spinor structures, with the exception

of those that can be obtained exchanging angle with square brackets which are left

implicit. We also do not write explicitly overall coefficients that may depend on SM

gauge group structures like group generators.13 These coefficients will depend on the

particles appearing in the amplitude and their quantum numbers. We show explicit

examples in Appendix A for the case of 3-point amplitudes with SM particles. For

the higher dimensional operators, we only show the general particle content, with ψ

representing SM fermions, V = B the abelian SM gauge boson and V A = WA or GA

the SM non-abelian gauge bosons. Each operator should be invariant under the SM

gauge group and, as usual, this imposes restrictions on the particles that can appear in

each operators. We observe that some spinor structure involving spin 1 particles may

involve both abelian or non-abelian gauge bosons. The difference in this case lies in

the overall coefficient that we do not write explicitly, but the amplitude corresponds

to different operators depending on the nature of the spin 1 particle involved. To

avoid confusion, we make explicit the dependence on the gauge bosons when we write

the operators corresponding to the amplitude under consideration. For instance, the

⟨1|pϕ1|2]⟨1|pϕ2|2] amplitude may correspond to the d = 8 operators (∂µϕ∂νϕ)VµαV
να or

(∂µϕ∂νϕ)V A
µαV

A,να, depending on the vector considered.

We conclude stressing that the constant coefficients that multiply the amplitudes

in Tables 1, 2 and 3 are not further constrained by Eq. (4.2), in sharp contrast to the

amplitudes suppressed by f−1 discussed in Section 3.

13In Eqs. (4.3) and (4.4), for example, if V is an abelian boson the proportionality factor is just a

constant, while if it is non-abelian then Act
4 [ϕ2V A1 V

B
2 ] ∝ δAB , where δAB takes into account the GSM

tensor structure.
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4.2 Corrections to photon and gluon couplings

The construction of amplitudes suppressed by higher powers of f follows in similar

fashion, with their number quickly growing. One interesting class of amplitudes is

Act
[
ϕV V HnH̄n

]
, with n ≥ 1 and V a massless gauge boson, i.e. a photon or a gluon

at low-energy, that start only at dimension 7. In the non-dynamical limit of the Higgs,

these amplitudes are the only ones that can modify the dimension 5 coupling of the

3-point amplitudes (3.8) of the ALPs to massless gauge bosons, thus they can give us

an insight of how the low-energy amplitudes are affected by the higher-point ones.

According to little-group invariance, and taking the negative helicity configuration

for the spin 1 particles as example, these amplitudes can be written schematically as

Act
[
ϕV −

1 V
−
2 H

nH̄n
]

⟨12⟩2 /f 2n+1
= c0 + (pV · pH)

c1
f 2

+ (pϕ · pH)
c2
f 2

+ (pV · pϕ)
c3
f 2

+ · · · , (4.9)

where c0,1,··· are dimensionless (complex) constant coefficients and the dots denote

higher-order terms with more powers of kinematical invariants. Moreover, pH represents

Bose symmetric combinations of momenta of the vectors and Higgs, and pV = p1 + p2,

which is the sole combination of p1,2 that respects Bose symmetry. Imposing the ALP

soft contact condition (4.2) implies that c0 = c1 = 0, while c2, c3 may be non-vanishing.

As stressed before, we also need to take the non-dynamical limit of the Higgs (3.10) in

order for Act
[
ϕV V HnH̄n

]
to contribute to the low-energy amplitude A3[ϕV V ]. Taking

the non-dynamical limit (3.10) implies that all the structures in Eq. (4.9) that contain

pH will vanish at low-energy. Thus, the only relevant terms will be the ones propor-

tional to pV · pϕ. Since the resulting amplitude is a 3-point amplitude, momentum

conservation implies that pV = −pϕ and the final amplitude ends up proportional to

p2ϕ. All the steps above can be summarized as

Act
[
ϕV −

1 V
−
2 H

nH̄n
] Eq. (4.2)−−−−→

[
(pϕ · pH)

c2
f 2

+ (pV · pϕ)
c3
f 2

+ · · ·
]
⟨12⟩2

f 2n+1

Eq. (3.10)−−−−−→
[
(pV · pϕ)

c3
f 2

+ · · ·
](

v

f

)2n ⟨12⟩2

f

pV =−pϕ−−−−−→ − [c3 + · · · ]
p2ϕ
f 2

(
v

f

)2n ⟨12⟩2

f
,

(4.10)

where the term inside the square bracket is constant and can depend on higher powers of

p2ϕ. One the one hand, if the ALP is exactly massless, p2ϕ = 0, the low-energy couplings

are not corrected by higher-dimensional operators, as Eq. (4.10) vanishes. On the other

hand, if we allow for a small mass p2ϕ = m2
ϕ, we see that all corrections are suppressed
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Figure 3. Diagrams contributing to ℓ−ℓ+ → ϕh generated by the operators described in the

text. Black circles denote the insertion of operators containing the ALP. For the last diagram,

also the crossed contribution in which the h and ϕ legs are exchanged should be considered.

by at least the ALP mass squared. This conclusion agrees with what was previously

argued in Refs. [75–77] and follows straightforwardly from our formalism.

5 A phenomenological application : ℓ−ℓ+ → ϕh

The phenomenological impact of higher-dimensional ALP operators have been previ-

ously considered in Refs. [65, 67–69], where the effects of the d = 6 operator

(∂µϕ)(∂µϕ)|H|2 and of the d = 7 operator (∂µϕ)(H†i
←→
D µH)|H|2 were studied in the

context of collider physics. In this section we will turn our attention to the d = 7

operators (∂µϕ)(Dµψ̄)Hψ, (∂µϕ)ψ̄H(Dµψ) and explore their phenomenology at lepton

colliders. More precisely, we will study the impact of these operators in the process

ℓ−ℓ+ → ϕh, with ℓ = e, µ and h the physical Higgs, that can in principle be tested at

future lepton colliders.

The full set of operators that we will consider is

Lint =
Cϕ2H2

2f 2
(∂µϕ)(∂µϕ)|H|2 +

CϕH4

f 3
(∂µϕ)(H†i

←→
D µH)|H|2+

+
∑
ℓ=e,µ

i
Cϕℓ2H
f

yℓϕL̄ℓHℓR +
C

(1)

ϕℓ2HD2

f 3
(∂µϕ)(DµL̄ℓ)HℓR +

C
(2)

ϕℓ2HD2

f 3
(∂µϕ)L̄ℓH(DµℓR) + h.c.,

(5.1)

where Le,µ are the left-handed doublets of the first and second families, while eR and µR
are the corresponding right-handed fields. We denote by Cϕ2H2 , CϕH4 , Cϕℓ2H , C

(1,2)

ϕℓ2HD2

the Wilson coefficients, noticing that Cϕℓ2H is real and we have already factorized the
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Figure 4. Left : Ratio between the cross-sections with and without dimension 7 operators

as a function of the center of mass energy. We take the modulus of the ratio of d = 7 and

d = 5 coefficients equal to 1. The bands are obtained by varying the sign between C
(1,2)
ϕℓ2HD2 .

Right : Total cross-section with the inclusion of d = 7 operators as a function of the center of

mass energy, taking C
(1,2)
ϕℓ2HD2 = Cϕℓ2H = 1. All cross-sections are computed taking mϕ = 0.

For both panels the solid curves denote ℓ = e and dashed ℓ = µ, while blue (orange) means

f = 104 (105) GeV.

Yukawa yℓ explicitly.14 We do not consider lepton flavor violating couplings and will

always assume that the d = 5 coupling has the structure given by Eq. (3.12). Also, we

only consider ALP effective interactions and do not include any SMEFT operators.

After electroweak symmetry breaking, the operators in Eq. (5.1) will generate the

diagrams contributing to ℓ−ℓ+ → ϕh shown in Fig. 3. More in detail, diagrams (i)

and (iv) receive contributions from both Cϕℓ2H and C
(1,2)

ϕℓ2HD2 , diagram (ii) gets contri-

butions from Cϕℓ2H , C
(1,2)

ϕℓ2HD2 and Cϕ2H2 while diagram (iii) is only generated by CϕH4 .

To compute the corresponding cross-section, we generate and manipulate the total am-

plitude using FeynRules [78], FeynArts [79] and FeynCalc [80, 81]. In the limit of very

high-energies,
√
s ≫ v, with

√
s the center-of-mass energy and v the Higgs vacuum

expectation value, the differential cross-section in the center-of-mass frame simplifies

to the following expression:

dσtot(ℓ−ℓ+ → ϕh)

d cos θ
≃ 1

512πf 6

[
(u2 + t2)

(
|C(1)

ϕℓ2HD2|2 + |C(2)

ϕℓ2HD2|2
)

+

+ 4tuRe
(
C

(1)

ϕℓ2HD2C
(2)∗
ϕℓ2HD2

) ]
,

(5.2)

14Having in mind the structure of Eq. (3.12), our parametrization amounts to suppose that YℓÃR −
B̃RYℓ equals the Yukawa coupling times an order one factor that we denote by Cϕℓ2H , as expected by

power counting.
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where t = (pℓ−−ph)2 and u = (pℓ−−pϕ)2. Inspection of Eq. (5.2) shows that, in the high

energy limit, the only relevant contributions are those coming from C
(1,2)

ϕℓ2HD2 and, more

specifically, from diagram (i), due to the fact that only this diagram give a contribution

that grows quadratically with the center-of-mass energy. The conclusion is that, even

though d = 7 operators are suppressed by more powers of f , they can still give the

dominant contribution to observables for sufficiently high energies. This strongly relies

on the fact that the coefficient of the d = 5 operator is Yukawa suppressed, while an

analogue suppression does not exist for the d = 7 operators. We also observe that

Eq. (5.2) is still the leading contribution even if effects from d = 8, 9 operators are

included. This is because, to give a cross section at the same order in 1/f , they would

need to interfere with d = 6, 5 operators, respectively, and would thus be suppressed by

powers of masses and v. The same is true if loop effects involving multiple insertions

of the d = 5 operator are considered, since they are doubly suppressed (by one loop

factor and by the lepton Yukawa coupling) and are thus not expected to change our

conclusions.

To quantify the effects of the d = 7 operators and compare them to those of the

d = 5 operator, we show in Fig. 4 the complete cross-section (in which particle masses

and the Higgs vacuum expectation value are properly taken into account) as a function

of
√
s, with σtot,(5) denoting, respectively, the total cross-section and the cross-section

computed with only d = 5 operators. Since C
(1,2)

ϕℓ2HD2 give the dominant contribution at

high-energies, we set Cϕ2H2 = CϕH4 = 0. Furthermore, we take Cϕℓ2H = |C(1,2)

ϕℓ2HD2| = 1,

while we allow for a different signs between C
(1)

ϕℓ2HD2 and C
(2)

ϕℓ2HD2 . On the left panel,

we plot the ratio σtot/σ(5) for ℓ = e, µ and f = 104 GeV (blue lines) and f = 105

GeV (orange lines). Continuous lines refer to e+e− → ϕh while dashed lines refer to

µ+µ− → ϕh. The bands are obtained varying the sign between C
(1)

ϕℓ2HD2 and C
(2)

ϕℓ2HD2 .

As we can see, at high energies σtot can be larger than σ(5) by many orders of magnitude.

The effect is larger for electrons, since σ(5) is suppressed by smaller Yukawa couplings.

On the right panel we instead show how σtot grows with energy, with the same

conventions used in the left panel. Inspecting the two muon cross-sections shown,

we clearly see the transition from the low energy regime (dominated by the d = 5

operator and essentially independent on energy 15) and the high energy energy regime,

in which the d = 7 operator dominates and the cross-section scales as s2 as predicted by

Eq. (5.2). It is interesting to notice that for f = 104 GeV the dimension 7 effects can

push the cross-section to reasonable values (σtot ∼ 1 fb), while it would remain out of

reach considering only the d = 5 operator (σ(5) ≲ 10−5 fb).

15When
√
s is comparable to the Higgs mass, the cross section is not flat with respect to

√
s because

of the threshold.

– 30 –



From the EFT perspective, it is to be expected that higher-dimensional operators

dominate the cross-section when the energy is close to the cut-off f . What makes the

present case more special and interesting is that the effects of the d = 7 operators

are relevant much before
√
s ∼ f . This is a direct consequence of the fact that the

ALP soft factorization condition (2.6) required the coefficient of the d = 5 amplitude

to be proportional to the Yukawa, while the ALP soft contact condition (4.2) did not

impose such selection rule on the d = 7 operators. We see from Fig. 4 that, at the

phenomenological level, this distinction between d = 5 and d = 7 operators might be

extremely relevant, since, for instance for electrons, the contribution from d = 5 is

always subdominant.

6 Conclusions

Given a scattering amplitude involving ALPs, what is the set of physical properties that

it must satisfy to recover shift-symmetry? Of course, starting from a Lagrangian and

requiring it to be shift-symmetry invariant is not a complete answer to this question,

as we are not making statements about the amplitudes themselves. Taking the on-shell

approach, that bypasses fields and Lagrangians, makes the question even less obvious,

but provides a natural framework for working it out. In this paper, using on-shell

methods, we have identified three conditions that allow us to construct amplitudes

with the desired shift-symmetric properties. All three conditions rely on the properties

of the amplitude in the limit of soft ALP momentum.

The first condition, that we call ALP soft factorization condition, Eq. (2.6), enables

to reproduce the correct amplitudes when the ALP is interacting with two massive

particles, i.e., in the case of amplitudes suppressed by f−1, with f the scale associated

with the ALP (Section 2). In addition to constructing these amplitudes, we also discuss

at length how they can be connected with amplitudes that involve SM particles and

are invariant under the SM symmetry group at high energies. While the case of the

coupling of an ALP to Higgs doublets or gauge bosons is relatively straightforward,

the case of fermions is more subtle, due to an interesting obstruction that emerges

because of a combination of the kinematic of 3-point amplitudes and invariance under

the SM symmetry group. In Section 3 we identify a second condition, the ALP-Higgs

obstruction, that deals with this latter amplitude by relying on electroweak symmetry

breaking and on the fact that, in the limit in which the Higgs momentum becomes soft,

the 4-point amplitude which is invariant under the SM symmetry becomes a 3-point

amplitude with massive fermions. The consequence is that the scattering amplitude

ends up being proportional to the Yukawa coupling of the fermions involved.
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The third condition, that we call ALP soft contact condition, Eq. (4.2), allows to

determine the correct amplitudes when the ALP is interacting with more than two

other particles. Since these higher-point amplitudes correspond to effective operators

suppressed by higher powers of f , we determine in Section 4, solely using scattering

amplitudes, the complete list of operators up to d = 8. Among the higher dimensional

operators, of particular interest for low energy physics are those that involve one ALP,

two massless spin-1 bosons and a number of Higgs pairs, since in the limit of non-

dynamical Higgs they correct the dimension 5 amplitude between one ALP and two

massless spin-1 bosons. We show that on-shell techniques allow us to conclude in

a straightforward way that the dimension 5 amplitude is corrected only if the ALP

mass is different from zero, while the corrections vanish for a massless ALP. We also

study a phenomenological application in which these higher dimensional operators can

dominate over the d = 5 ones: the process ℓ+ℓ− → ϕh at high energy lepton colliders

(Section 5). We find that, due to the Yukawa suppression of the d = 5 operator, the

d = 7 ones can dominate already at energies
√
s≪ f , where they are typically expected

to give only subdominant contributions with respect to the d = 5 operators.

We observe that the ALP soft factorization condition and the ALP soft contact

condition are equivalent to requiring the amplitude to manifest the Adler’s zero in

the limit of soft ALP limit. Nevertheless, this procedure is not completely universal,

since they cannot be applied to 4-point amplitudes involving one Higgs doublet. As

we have shown, in this case we must resort to the ALP-Higgs obstruction condition of

Eq. (3.11), which can be seen as a generalization of the Adler’s zero to this case.

Our work can be extended in several directions. First of all, having derived the

shift-symmetric ALP amplitudes, it follows immediately that all additional terms that

do not satisfy our conditions must break the shift-symmetry. An interesting point

would be to investigate how some sort of power counting could be applied to such

coefficients without resorting to Lagrangians. Moreover, as we already conjectured at

the end of Section 2, it would be interesting to study how general loop diagrams could

make regular the multi-soft limit in which several ALPs momenta are taken to zero

at the same time. A third aspect that can be explored would be the generalization

to amplitudes involving several different ALPs, i.e. to the case in which we have

spontaneous symmetry breaking of a non-abelian group. Possible applications would

be to the study of amplitudes involving light mesons and matter particles (like nucleons

or vector mesons) in Chiral Perturbation Theory, or the coupling between a Composite

Higgs and SM fermions and gauge bosons. Moreover, since on-shell methods can be used

to derive the renormalization group equations of effective operators [10–13], amplitudes

with more than one ALP can be used to study the effects of light ALPs in the running of

Wilson coefficients of operators of the Standard Model Effective Field Theory. Finally,
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the on-shell scattering amplitudes formalism extended using the techniques of Ref. [82]

can, in principle, be used to compute the interactions between ALPs and photons when

magnetic monolopoles are present [83, 84]. We leave the study of these aspects to future

work.
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A Conventions

A.1 Spinor variables

In this Appendix, we set the notation for the spinor variables and summarize the identi-

ties we use. The starting point is the covariance of the S-matrix under little-group, that

allows us to write scattering amplitudes as a sum of all possible kinematical structures

that carry the correct little-group transformation, each multiplied by a corresponding

coupling. The building blocks for these kinematical structures are 2-component spinors.

For massless momenta we define the spinor variables as

|p⟩ ≡ |p⟩α , |p] ≡ |p]α̇ , ⟨p| ≡ ⟨p|α , [p| ≡ [p|α̇ , (A.1)
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where α, α̇ are SL(2, C) indices for left- and right-handed spinors, respectively. The

spinors |p⟩ , ⟨p| are referred to as angle spinors, while |p] , [p| as square spinors. They

transform under the U(1) little-group with opposite phases:

|p⟩ → e−iη |p⟩ , |p]→ eiη |p] , η ∈ R. (A.2)

All indices can be raised and lowered with the Levi–Civita tensor that is defined by

ϵ12 = −ϵ12 = 1, for instance |p⟩α = ϵαβ ⟨p|β. The spinors above satisfy

pµ(σ̄µ)α̇α ≡ pα̇α ≡ |p]α̇ ⟨p|α , pµ(σµ)αα̇ ≡ pαα̇ ≡ |p⟩α [p|α̇ , (A.3)

p |p⟩ = p |p] = ⟨p| p = [p| p = 0. (A.4)

Equation (A.3) is simply the defining equation of the spinors, where σµ = (1, σ⃗)

and σ̄µ = (1,−σ⃗), while in Eq. (A.4) we have the Weyl equations. For a massless

4-momentum (pµ) = |p⃗ |(1, sin θ cosϕ, sin θ sinϕ, cos θ), with p⃗ the 3-momentum, one

possible realization for the spinors in Eq. (A.3) is given by

(⟨p|α) = −
√

2|p⃗ |
(
c

s∗

)
, (|p]α̇) = −

√
2|p⃗ |

(
c

s

)
,

(|p⟩α) =
√

2|p⃗ |
(
s∗

−c

)
, ([p|α̇) =

√
2|p⃗ |

(
s

−c

)
,

(A.5)

where c ≡ cos θ
2
, s ≡ eiϕ sin θ

2
. We can also define the usual anti-symmetric Lorentz

invariant products of spinors:

⟨pq⟩ ≡ ⟨p|α |q⟩α , [pq] ≡ [p|α̇ |q]
α̇ , (A.6)

with the contraction of up- and down-indices performed with the Levi–Civita tensor.

These products can be computed explicitly using Eq. (A.5).

For massive momenta we adopt the notation of Ref. [3] and define bold angle and

square spinors as

|p⟩ ≡
∣∣pI〉

α
, |p] ≡

∣∣pI]α̇ , ⟨p| ≡
〈
pI
∣∣α , [p| ≡

[
pI
∣∣
α̇
, (A.7)

where now I = 1, 2 is the SU(2) index of the little-group, that are also raised and

lowered through the Levi–Civita tensor. Contrary to the massless case, the bold spinors

transform in the same way under little-group as∣∣pI〉→ W I
J

∣∣pJ〉 , ∣∣pI]→ W I
J

∣∣pJ] , W ∈ SU(2), (A.8)
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and analogous for ⟨p| and [p|. The massive spinors satisfy similar relations as

Eq. (A.3), but with the inclusion of the SU(2) little-group indices:

pα̇α ≡ ϵIJ
∣∣pI]α̇ 〈pJ ∣∣α , pαα̇ ≡ −ϵIJ

∣∣pI〉
α

[
pJ
∣∣
α̇
. (A.9)

With the same parametrization as in Eq. (A.5), we can represent the massive spinors

in terms of the components of the 4-momentum as

(
〈
pI
∣∣α) = −

(
c
√
E + |p⃗ | −s

√
E − |p⃗ |

s∗
√
E + |p⃗ | c

√
E − |p⃗ |

)
, (
∣∣pI]α̇) = −

(
s∗
√
E − |p⃗ | c

√
E + |p⃗ |

−c
√
E − |p⃗ | s

√
E + |p⃗ |

)
,

(
∣∣pI〉

α
) =

(
s∗
√
E + |p⃗ | c

√
E − |p⃗ |

−c
√
E + |p⃗ | s

√
E − |p⃗ |

)
, (
[
pI
∣∣
α̇
) =

(
−c
√
E − |p⃗ | s

√
E + |p⃗ |

−s∗
√
E − |p⃗ | −c

√
E + |p⃗ |

)
,

(A.10)

where the first (second) column refers to I = 1 (2), while the rows are for differ-

ent SL(2, C) indices. Also, E =
√
m2 + |p⃗ |2 is the energy and, as before, p⃗ the

3-momentum. In writing Eq. (A.10), we have assumed that momenta, and in partic-

ular the mass m, are real and positive. For the expressions with complex momenta,

we refer the reader to Ref. [3] and references therein. From the expressions above it is

immediate to check that

pαα̇
∣∣pI]α̇ = −m

∣∣pI〉
α
, pα̇α

∣∣pI〉
α

= −m
∣∣pI]α ,〈

pI
∣∣α pαα̇ = m

[
pI
∣∣
α̇
,
[
pI
∣∣
α̇
pα̇α = m

〈
pI
∣∣α , (A.11)

which are the massive version of the Weyl equations in (A.4). We note that in the

massive Weyl equations (A.11) the two types of spinors are related by the mass m.

The anti-symmetric spinor product is defined in the same way as before

⟨pq⟩ ≡
〈
pIqJ

〉
=
〈
pI
∣∣α ∣∣qJ〉

α
, [pq] ≡

[
pIqJ

]
=
[
pI
∣∣
α̇

∣∣qJ]α̇ . (A.12)

From the Weyl equations we can also derive〈
pIpJ

〉
= −mϵIJ ,

[
pIpJ

]
= mϵIJ . (A.13)

It is possible to connect the spinor variables associated to massive particles to

the corresponding massless variables. Each of the massive spinor helicity variables in

Eq. (A.10) can be decomposed as [3]∣∣pI〉 = |p⟩ ζI+ +
√
m |p̂] ζI−,

∣∣pI] = |p] ζI+ +
√
m |p̂⟩ ζI−, (A.14)

where |p⟩ , |p] are the same massless variables in Eq. (A.5) and ζ+ = (1, 0), ζ− = (0, 1).

This decomposition is the mathematical expression of our physical intuition that in the
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massive spinor helicity variables there will always be a component with the “wrong”

helicity (i.e. angle brackets will contain square brackets and vice-versa), but this con-

tribution will be proportional to the particle mass. To make explicit the mass depen-

dence, we have introduced the dimensionless spinor helicity variables |p̂⟩ ≡ |p⟩ /
√
m

and |p̂] ≡ |p] /
√
m. To see why this decomposition is useful, we discuss the example of

the product ⟨pq⟩ = ⟨pIqJ⟩, that can be written as

⟨pq⟩ = ⟨pq⟩
(
ζI+ζ

J
+ +

m

⟨pq⟩
[p̂q̂]ζI−ζ

J
−

)
. (A.15)

Given that the product [p̂q̂] is finite, we define the high-energy limit as the limit

m/ ⟨pq⟩ → 0, for which the second term between brackets vanishes. In a more concise

way, the high-energy limit of ⟨pq⟩ is given by

lim
H.E.
⟨pq⟩ = lim

H.E.

〈
pIqJ

〉
= ⟨pq⟩ δI1δJ1 , (A.16)

where H.E. stands for High-Energy, i.e. for the m/ ⟨pq⟩ → 0 limit, and δI1δ
J
2 = ζI+ζ

J
+.

An analogous discussion also holds for [pq]. We thus see that, for the amplitudes with

a simple dependence on the spinor helicity variables as those we are discussing in this

paper, the high energy limit simply amounts to the “unbolding” of the massive spinor

products

⟨pq⟩ → ⟨pq⟩ δI1δJ1 , [pq]→ [pq] δI2δ
J
2 . (A.17)

It is also useful to consider spinors with negative momenta, for which the analytic

continuation compatible with Eq. (A.11) reads

|−p⟩ = |p⟩ , |−p] = − |p] . (A.18)

Other useful identities are

⟨p|q|k] = [k|q|p⟩ ,
⟨p|σµ|q] ⟨k|σµ|l] = −2 ⟨pk⟩ [ql]

(A.19)

where ⟨p|q|k] ≡ ⟨p|α qαα̇ |k]α̇ and similar for [k|q|p⟩. The same relations also hold for

massive spinors.

Finally, to compute the soft factors in Section 2, more precisely the pϕ-independent

piece in Eq. (2.9), we can use the explicit representations for the spinors in Eqs. (A.5)

and (A.10). Starting with a massive momentum p and a massless one pϕ, we have:

〈
pI (p+ pϕ)J

〉
=

(
0 −m√

(E − |p⃗ |)(E + |p⃗ |+ 2|p⃗ϕ|) 0

)IJ
,

[
pI (p+ pϕ)J

]
=

(
0
√

(E − |p⃗ |)(E + |p⃗ |+ 2|p⃗ϕ|)
−m 0

)IJ
,

(A.20)
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where we are assuming that the angle between the 3-momenta p⃗ and p⃗ϕ is zero. We

can see that in the limit pϕ → 0 we recover Eq. (A.13). Had we instead started with

both massless p and pϕ, such that the angle between the 3-momenta is θ ≪ 1, we would

have obtained

〈
p (p+ pϕ)I

〉
= θ

(
−|p⃗ϕ|

√
|p⃗ |

|p⃗ |+ |p⃗ϕ|
, − |p⃗ |

√
|p⃗ϕ|

|p⃗ |+ |p⃗ϕ|

)I

+O
(
θ2
)
,

[
p (p+ pϕ)I

]
= θ

(
−|p⃗ |

√
|p⃗ϕ|

|p⃗ |+ |p⃗ϕ|
, |p⃗ϕ|

√
|p⃗ |

|p⃗ |+ |p⃗ϕ|

)I

+O
(
θ2
)
,

(A.21)

which are relevant quantities for the computation of Eq. (2.19). Note that in Eq. (A.21)

we still have a SU(2) little-group index, as p+ pϕ is not massless.

A.2 Construction of amplitudes

To write down amplitudes, we use the fact that the S-matrix is covariant under little-

group transformations. This implies that we can express the amplitudes as a sum of

all possible Lorentz-invariant combinations of spinor variables that have the correct

little-group transformation.

For massless particles the little-group transformation is given by Eq. (A.2) and,

according to the covariance of the S-matrix, the amplitude must transform as A →
e−2ihA, with h the helicity of the corresponding particle. Specializing to the case of 3-

point amplitudes, little-group covariance gives us three constraints, while the amplitude

can be built out of 6 spinor products, namely ⟨12⟩ , ⟨23⟩ , ⟨13⟩ and the same with square

brackets. We use here the short-hand notation |n⟩ ≡ |pn⟩ to label the momenta in

the spinors. Due to 3-particle kinematics, however, all these products vanish if the

momenta are real. Relaxing this hypothesis, we find that we can either have the angle

contractions or the square ones to be non-vanishing, thus leaving us with only three

independent Lorentz-invariant products. Up to coefficients, this allows us to completely

fix the amplitude [1, 2, 5]:

A3 ∝

{
⟨12⟩h3−h1−h2 ⟨23⟩h1−h2−h3 ⟨13⟩h2−h1−h3 ,

∑
i hi ≤ 0

[12]h1+h2−h3 [23]h2+h3−h1 [13]h1+h3−h2 ,
∑

i hi ≥ 0
, (A.22)

where h1,2,3 are the helicities of the particles. For higher-point functions, we cannot

completely fix the amplitude, since we have more spinor contractions than little-group

transformation rules.

When considering massive particles the discussion is more involved, because both

angle and square spinors transform in the same way under little-group. Nevertheless,
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one can simply write the amplitude as a sum of all independent spinor structures, each

with a different coefficient (see Ref. [32] for a classification). For a massive particle

of spin s, the transformation of the amplitude is given by the completely symmetric

2s tensor representation, which is equivalent to the usual representation in terms of

the total spin and its projection [3]. Hence, each term in the amplitude must contain

exactly 2s spinors, angle and/or square, of this given particle.

A.3 CPT invariance and unitarity

To extract information on the phases of the amplitudes, we need to relate them to their

complex conjugate, which can be done using CPT invariance and unitarity. In terms of

the transfer matrix T , the amplitude for a state O is written as A [O] = ⟨0|TO⟩, where

we take all particles to be incoming and 0 is the vacuum. Using CPT invariance of

the S-matrix, one can show that ⟨0|TO⟩ = ⟨OΘ|T0⟩, with Θ representing the action of

CPT in the multi-particle states, that amounts to reversing the spin (i.e. changing up

and down little-group indices in the massive case, or flipping the helicity for massless

particles) and swapping particles with anti-particles [6]. In addition, when applying Θ

we must also reverse the ordering of the particles in the amplitude, that can lead to

extra minus signs in the case of fermions. Then, unitarity of the S-matrix imposes that

T ≃ T † up to corrections of order T †T . We therefore obtain at leading order

A [O] ≃ A [OΘ]∗ . (A.23)

The complex conjugation of spinor structures can be found to yield〈
pIqJ

〉∗
= − [pIqJ ] , (A.24)

that holds when considering real momenta with positive energy [85, 86].

A.4 Feynman rules with spinor variables

It is also instructive to show how some Feynman rules for effective operators are trans-

lated in terms of spinor variables. To do so, we first need to express the external

wave-functions in terms of spinors. For spin 1/2 and spin 1 particles we have, respec-

tively,

vI(p) =

(∣∣pI〉∣∣pI]
)
, v̄I(p) = (−⟨pI | , [pI |) ,

uI(p) =

( ∣∣pI〉
−
∣∣pI]

)
, ūI(p) = (⟨pI | , [pI |) ,

(A.25)
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ϵµ(p) =
⟨p|σµ|p]√

2mV

, or ϵ(p)αα̇ =
√

2
|p⟩ [p|
mV

, (A.26)

where u, v, ū, v̄ are the usual solutions to the Dirac equation, and ϵµ is the massive

polarization vector, with mV the mass of the spin 1 particle. Considering a Yukawa

interaction of the form

LYukawa = −ϕ
(
gLψ

†
RψL + gRψ

†
LψR

)
, (A.27)

the corresponding on-shell amplitude with all-in convention is

A3

[
ϕψI1ψ̄

J
2

]
= −ūJ(−p2)

(
gL 0

0 gR

)
uI(p1) = gL

〈
1I2J

〉
+ gR

[
1I2J

]
. (A.28)

For vectors the relevant interactions are

LV =
mV c0

2
ϕVµV

µ + gϕVµνV
µν + g̃ϕVµνṼ

µν . (A.29)

The corresponding amplitude is

A3

[
ϕV I1,I2

1 V J1,J2
2

]
=
(

2
mV c0

2
ηµν + 4g[pν1p

µ
2 − (p1 · p2)ηµν ] + 4g̃ϵµναβp

α
1p

β
2

)
ϵµ(p1)ϵ

ν(p2)

= 2(ig̃ − g) ⟨12⟩2 − 2(ig̃ + g) [12]2 − c0
mV

⟨12⟩ [12] ,

(A.30)

where we note explicitly the 1/mV scaling of the last term. To manipulate the Levi–

Civita we have used

ϵµναβ =
1

4i

(
Tr[σ̄µσν σ̄ασβ]− Tr[σµσ̄νσασ̄β]

)
. (A.31)

A.5 SM amplitudes

For completeness, we present here as well the SM 3-point amplitudes we use to derive

our results in Section 3:

A3

[
Qibn

1 ūam2H
j
]

= (Y †
u )abδnmϵ

ij ⟨12⟩ , A3

[
Q̄b
in1u

am
2 H̄j

]
= (Yu )baδmn ϵij [12] ,

A3

[
Qibn

1 d̄am2H̄j

]
= (Y †

d )abδnmδ
i
j ⟨12⟩ , A3

[
Q̄b
in1d

am
2 Hj

]
= (Yd )baδmn δ

j
i [12] ,

A3

[
Qibn

1 Q̄a
jm2G

A+
3

]
= −
√

2gsT
A
mnδ

i
jδ
b
a

[23]2

[12]
, A3

[
Qibn

1 Q̄a
jm2G

A−
3

]
=
√

2gsT
A
mnδ

i
jδ
b
a

⟨13⟩2

⟨12⟩
,

A3

[
ubn1 ū

a
m2G

A+
3

]
=
√

2gsT
A
mnδ

b
a

[13]2

[12]
, A3

[
ubn1 ū

a
m2G

A−
3

]
= −
√

2gsT
A
mnδ

b
a

⟨23⟩2

⟨12⟩
,

A3

[
H i

1H̄j2W
A−
3

]
= −
√

2gTAji
⟨13⟩ ⟨23⟩
⟨12⟩

, A3

[
H i

1H̄j2W
A+
3

]
= −
√

2gTAji
[13] [23]

[12]
,

A3

[
H i

1H̄j2B
−
3

]
= −
√

2g′yHδ
i
j

⟨13⟩ ⟨23⟩
⟨12⟩

, A3

[
H i

1H̄j2B
+
3

]
= −
√

2g′yHδ
i
j

[13] [23]

[12]
,

(A.32)
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where the expressions are analogous for other fermions and vector bosons, g′, g, gs
are the gauge couplings and yH the Higgs hypercharge. In the equations above a, b

denote flavor indices, i, j indices from the fundamental of SU(2)L and m,n for the

fundamental of SU(3)c. We use TA for the generators of both non-abelian groups.

Here, the conventions are chosen such to correspond to covariant derivatives defined as

Dµ = ∂µ − igVµ, and the Yukawas as LYukawa = −Yψψ̄LHψR + h.c..

B Yukawa - Mass connection

In this Appendix we present an alternative way to understand the relation between

fermion masses in the broken electroweak phase and the Yukawa matrices in the un-

broken phase. This relation was previously studied in Ref. [22] (and more recently in

Ref. [61]) by analysing how the “freezing” of external Higgs particles can make massless

spinors become massive. Here instead, we show explicitly that we can understand the

Higgsing as a modification to the dispersion relation of the fermions, which is very

similar to the analysis performed in Ref. [36] for neutrino propagation in matter.

Consider a generic amplitude A that has a factorization channel in ψR for p2 → 0,

with ψR being one of the massless right-handed fermions of the SM. More precisely,

lim
p2→0
A = lim

p2→0
AaL

δab

p2
AbR = AL

ψR AR , (B.1)

where AaL,R are the sub-amplitudes, a, b are flavor indices and we leave implicit spinorial

indices and the Levi–Civita tensor. Consider now the same amplitude with the addition

of an Higgs - anti-Higgs pair in the pH , pH̄ → 0 limit, in such a way that the Higgses

become non-dynamical. Given that the Higgs interacts with the fermions through

Yukawa interactions,

A3

[
ψbL,1ψ̄

a
R,2H̄

]
= (Y †

ψ)ab ⟨12⟩ , A3

[
ψ̄aL,1ψ

b
R,2H

]
= (Yψ)ab [12] , (B.2)

where H ↔ H̄ in the case of u-quarks and ignoring SM group indices, we can make

recursive use of polology to show that the amplitude will feature extra factorization

channels as p2, pH , pH̄ → 0. Schematically16,

lim
pH ,pH̄→0

lim
p2→0
A
[
H, H̄

]
=
AL

ψR

H

ψL

H̄

ψR AR
. (B.3)

16Here we ignore the contributions from the Higgs being emitted by the other external legs, that

contribute to them becoming massive and therefore are not relevant to our computations.
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Note that we need one Higgs and one anti-Higgs, because otherwise we would not

obtain a factorization to the same amplitudes AaL,R. Evaluating the amplitude above

we obtain

lim
pH ,pH̄→0

lim
p2→0

v2A
[
H, H̄

]
= lim

pH ,pH̄→0
lim
p2→0
AaL

1

p2
v(Yψ)ca [(−p− pH)p]

(p+ pH)2
v(Y †

ψ)bc ⟨(p+ pH)(−p− pH − pH̄)⟩
(p+ pH + pH̄)2

AbR,

(B.4)

where we insert one factor of v for each Higgs becoming non-dynamical. We remark

that the momenta p + pH and p + pH + pH̄ in the expression above are in principle

massive and should carry a massive little-group index. We have checked that, since we

take the limit pH,H̄ → 0 in the end, we obtain the same results using massless spinors.

The numerator of Eq. (B.4) can be rewritten as

[(−p− pH)p] ⟨(p+ pH)(−p− pH − pH̄)⟩ ≃ [ppH ] ⟨pHp⟩ = (p+ pH)2, (B.5)

where we have neglected higher-order terms in Higgs momenta. With the simplification

above the limit becomes

lim
pH ,pH̄→0

lim
p2→0

v2A
[
H, H̄

]
= lim

p2→0
AbR

1

p2
v2(Y †

ψYψ)ba

p2
AaL. (B.6)

It is clear that Eq. (B.6) contributes to the original amplitude without the Higgs - anti-

Higgs pair, as the latter are removed from the external states. Hence, after we take all

Higgs non-dynamical we arrive at

lim
pH ,pH̄→0

lim
p2→0

(
A+ v2A

[
H, H̄

]
+ · · ·

)
= lim

p2→0
AbR

1

p2

[
δba +

v2(Y †
ψYψ)ba

p2
+ · · ·

]
AaL,

(B.7)

where the dots denote similar amplitudes computed with more Higgs insertions, which

are given by analogous expressions. It is possible to resum all the contributions:

1

p2

[
δba +

v2(Y †
ψYψ)ba

p2
+ · · ·

]
=

[
1

p2 − v2Y †
ψYψ

]ba
, (B.8)

hence it is clear that the Higgs ”background” modifies the dispersion relations of the

fermions by inducing an effective mass. Note that the propagator above does not

respect locality manifestly, due to the matrix structure of the Yukawas. Nevertheless,

it is always possible to find basis in which the propagator becomes diagonal and we
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therefore restore manifest locality. The necessity to perform such rotation is nothing

but a realization of the mismatch between the massless and massive flavor basis. The

mass matrix is given by

M2
ψ = v2U †

RY
†
ψYψUR = v2

(
Y †
ψYψ

)
diagonal

, (B.9)

where UR ∈ U(3)ψR , the right-handed flavor group of the massless phase of the theory.

To be able to write directly the mass matrix in terms of the Yukawa, we can repeat

the same steps above with a factorization channel on a left-handed fermion and obtain

similarly M2
ψ = U †

LYψY
†
ψUL, where now UL ∈ U(3)ψL . In order for both expressions to

match, the mass must be given by

Mψ = vU †
LYψUR. (B.10)

It is interesting to notice that for the neutrino sector, in the absence of a Yukawa inter-

action involving right-handed neutrinos, we can still generate masses via the Weinberg

amplitude

A4

[
H2L2

]
= cW ⟨12⟩ , (B.11)

with L the lepton doublet. Repeating the reasoning above for this interaction, we

obtain

M2
ν = v4(c†W cW )diagonal, (B.12)

and we can thus see explicitly the different scaling with the scale v when compared to

Eq. (B.10).

C One-loop running of A[ϕψψ̄H]

In this Appendix we describe in more detail the computation of the beta function used

in Section 3 using the methods of generalized unitarity [5, 7–12, 87–95]. For 1-loop beta

functions, the master formula reads [10, 91](
γOi − γ

(Oi)
IR

)
A [Oi] =

i

8π4

∑
a

∫
dΠ[ℓ1, ℓ2]

∮
z=∞

dz

z
A(a)
L

[
ℓ̂1, ℓ̂2

]
A(a)
R

[
−ℓ̂1,−ℓ̂2

]
,

(C.1)

where γOi is the anomalous dimension of the amplitude A [Oi]. The formula above is

obtained by selecting bubble diagrams from the Passarino–Veltman decomposition [96],

which is the only topology that can contain UV divergences. This is achieved by first

performing all 2-cuts (labeled by a), that result in the product of two tree amplitudes

A(a)
L,R integrated over the 2-body phase-space dΠ[ℓ1, ℓ2] of the two cut momenta ℓ1,2.
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Doing so does not select only bubbles, since 2-cuts get contributions from triangles and

boxes as well. To remove them, we shift ℓ1,2 to the complex plane using a BCFW-like

shift [52, 53], ℓ̂1,2 = ℓ1,2± zℓ2,1 and integrate over dz/z around z = 0. Then, we deform

the contour around the origin as a sum over contours around poles and at z = ∞.

The poles can only come from triangles and boxes, as they have uncut propagators. So

dropping them and keeping only the residue at infinity guarantees that we are selecting

only the bubbles. The numerical factor i/8π4 arises from collecting the divergent piece

of the bubble (−1/8π2), normalizing the phase-space integral (2/π) and from Cauchy’s

theorem (1/2πi). Also, γ
(Oi)
IR denotes the IR contribution to the anomalous dimension

that must be subtracted, and that depends only on the external particles of A [Oi].
We are interested in computing the contribution of the amplitude A3[ϕGG] to the

running of A4

[
ϕψψ̄H

]
. For concreteness, let us choose A4

[
ϕQ̄dH

]
and A4

[
ϕQd̄H̄

]
.

For the first amplitude we have only two possible 2-cuts:

(I) =

Q̄a
in Qa′i′n′

ϕ GA

Q̄b′

j′m′ dbm

GA′
Hj

, (II) =

dbm d̄b
′

m′

ϕ GA

da
′

n′ Q̄a
in

GA′
Hj

(C.2)

where we ignore other cuts that do not involve A3[ϕGG]. In addition, A,A′ and

n, n′,m,m′ are indices of the adjoint and fundamental of SU(3)c, respectively, a, a′, b, b′

of flavor and i, i′, j, j′ of the fundamental of SU(2)L. To compute the 2-cuts above,

we need the corresponding 4-point amplitudes. They can be computed using Eqs. (3.6)

and (A.32):

A4

[
ϕQa′i′n′

1 Q̄a
in2G

A+
3

]
= −
√

2gsg
+
G

f
TAnn′δi

′

i δ
aa′ [23]2

[12]
,

A4

[
ϕda

′n′

1 d̄ai2G
A+
3

]
=

√
2gsg

+
G

f
TAnn′δaa

′ [13]2

[12]
,

A4

[
ϕQa′i′n′

1 Q̄a
in2G

A−
3

]
=

√
2gsg

−
G

f
TAnn′δi

′

i δ
aa′ ⟨13⟩2

⟨12⟩
,

A4

[
ϕda

′n′

1 d̄an2G
A−
3

]
= −
√

2gsg
−
G

f
TAnn′δaa

′ ⟨23⟩2

⟨12⟩
, (C.3)

A4

[
Q̄a
in1d

a′n′

2 GA−
3 H i′

]
= −
√

2gsT
A
nn′(Yd )aa

′
δi

′

i

[12]2

[23] [13]
,
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A4

[
Qain

1 d̄a
′

n′2G
A+
3 H̄i′

]
= −
√

2gsT
A
nn′(Y

†
d )a

′aδii′
⟨12⟩2

⟨23⟩ ⟨13⟩
,

where TA denotes the generators of SU(3)c and g±G the ALP-gluon couplings. The

product of the two amplitudes in the left 2-cut in Eq. (C.2) reads

(I) = (−1)A4

[
ϕQa′i′n′

ℓ1
Q̄a
in1G

A+
ℓ2

]
A4

[
Q̄b′

j′m′(−ℓ1)d
bm
2 GA′−

(−ℓ2)H
j
4

]
δAA

′
δb

′a′δj
′

i′ δ
m′

n′

= −2CA(3)g2sg
+
G

f
(Yd)

abδji δ
m
n

[1ℓ2]
2 [ℓ12]2

[1ℓ1] [ℓ1ℓ2] [2ℓ2]
,

(C.4)

with CA(3) the Casimir of the adjoint of SU(3)c. The extra minus sign above takes

into account fermion ordering, i.e. to arrange the amplitudes as we have defined in

Eqs. (A.32) and (C.3) we need to anti-commute some fermions, leading to an extra

minus. Note that only one helicity configuration of the gluons contribute, as the SM

amplitude A4

[
Q̄dGH

]
is non-zero for only one choice of gluon helicity. Then, we shift

ℓ1,2 to the complex plane as

|ℓ1⟩ → |ℓ1⟩+ z |ℓ2⟩ , |ℓ2]→ |ℓ2]− z |ℓ1] , (C.5)

while |ℓ1] and |ℓ2⟩ remain unchanged. After performing the shift above and selecting

the residue at z =∞ we obtain

(I)→ −2πi
2CA(3)g2sg

+
G

f
(Yd)

abδji δ
m
n

2 [1ℓ2] [2ℓ1]− [1ℓ1] [2ℓ2]

[ℓ1ℓ2]
. (C.6)

Now comes the phase-space integration. To this end, we write ℓ1,2 as linear combinations

of external momenta [11, 22, 87, 89],(
|ℓ1]
|ℓ2]

)
=

(
cos θ −eiϕ sin θ

e−iϕ sin θ cos θ

)(
|4]

|2]

)
, (C.7)

where ϕ is the azimutal and θ the half-polar angles. The angle spinors are related in

similar way, but with an extra complex conjugation. Inserting Eq. (C.7) in (C.6) and

integrating over phase-space∫
dΠ[ℓ1, ℓ2] (I) = −2πi

2CA(3)g2sg
+
G

f
(Yd)

abδji δ
m
n

(
−3π

4
[12]

)
. (C.8)

The 2-cut on the right in Eq. (C.2) is computed analogously. The product of the

amplitudes is

(II) = A4

[
ϕdbm2 d̄b

′

m′ℓ1G
A+
ℓ2

]
A4

[
Q̄a
in1d

a′

n′(−ℓ1)G
A′−
(−ℓ2)H

j
4

]
δAA

′
δb

′a′δn
′

m′

=
2CA(3)g2sg

+
G

f
(Yd)

abδji δ
m
n

[2ℓ2]
2 [ℓ11]2

[2ℓ1] [ℓ1ℓ2] [1ℓ2]
,

(C.9)
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where now we do not have any extra minus from fermion ordering. Note that the spinor

structure from expression above is identical to the one in Eq. (C.4) by changing 1↔ 2.

Thus, ∫
dΠ[ℓ1, ℓ2] (II) = 2πi

2CA(3)g2sg
+
G

f
(Yd)

abδji δ
m
n

(
3π

4
[12]

)
. (C.10)

The result of both 2-cuts must be then inserted in Eq. (C.1) and compared to

A4

[
ϕQ̄dH

]
. It is important to notice that the 2-cuts produced the same kinemat-

ical structure as the original amplitude. Besides, there is no contribution from IR

divergences in this case [25, 26]. We arrive at

dCd
d log µ

= −g
2
sg

+
G

π2
Yd ,

dC̄d
d log µ

= −g
2
sg

−
G

π2
Y †
d , (C.11)

where we included the result also for the conjugate amplitude, that follows in a very

similar way. The results above, properly translated to the usual language by Eq. (A.30),

agree with previous computations in the literature [54–56]. At leading order, the cou-

plings g±G are related by complex conjugation according to Eq. (A.23), which implies

that
dC̄d

d log µ
≃ dC†

d

d log µ
, (C.12)

up to two-loop effects. As a consequence, we can use the results of Section 3 and, to

be consistent with the 1-flavor limit, must satisfy g−G = −g+G. Therefore,

g−G = −g+G = iCϕGG, CϕGG ∈ R, (C.13)

that corresponds solely to the ϕGG̃ coupling, as we wanted to demonstrate.
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