CERN Accelerating science

002882345 001__ 2882345
002882345 003__ SzGeCERN
002882345 005__ 20231128203457.0
002882345 0247_ $$2DOI$$9Elsevier B.V.$$a10.1016/j.nima.2023.168892$$qpublication
002882345 0248_ $$aoai:cds.cern.ch:2882345$$pcerncds:CERN
002882345 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2724645$$d2023-11-27T13:58:45Z$$h2023-11-28T09:14:24Z$$mmarcxml
002882345 035__ $$9Inspire$$a2724645
002882345 041__ $$aeng
002882345 100__ $$aNagaslaev, [email protected]$$uFermilab
002882345 245__ $$9Elsevier B.V.$$aFeasibility of using crystal channeling for the beam loss mitigation in slow extraction at 8GeV
002882345 260__ $$c2023
002882345 300__ $$a5 p
002882345 520__ $$9Elsevier B.V.$$aIn the accelerator applications of slow extraction for High Energy Physics (HEP), one of the prime challenges is the mitigation of beam losses, which is becoming increasingly critical with the continuous rise in beam power. A significant breakthrough was achieved earlier at CERN through the successful deployment of proton beam channeling in a crystal at 400 GeV, effectively diverting the beam away from extraction septa and offering new avenues for improving slow extraction efficiency. However, a crucial question remains whether this approach is still effective at lower and medium proton beam energies. In this paper, we present the promising results of the computer simulation studies of the septum shadowing at 8 GeV for the Mu2e project slow extraction at Fermilab. Across the wide range of beam parameters, the beam loss reduction is shown to range between 40 % and factor of three.
002882345 542__ $$3publication$$dElsevier B.V.$$g2023
002882345 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002882345 6531_ $$9Elsevier B.V.$$aBeams
002882345 6531_ $$9Elsevier B.V.$$aSlow extraction
002882345 6531_ $$9Elsevier B.V.$$aLattice
002882345 6531_ $$9Elsevier B.V.$$aResonance
002882345 6531_ $$9Elsevier B.V.$$aCrystal channeling
002882345 6531_ $$9Elsevier B.V.$$aShadowing
002882345 690C_ $$aARTICLE
002882345 690C_ $$aCERN
002882345 700__ $$aTropin, I$$uFermilab
002882345 700__ $$aEsposito, L$$uCERN
002882345 700__ $$aFraser, M$$uCERN
002882345 700__ $$aGoddard, B$$uCERN
002882345 700__ $$aVelotti, F$$uCERN
002882345 700__ $$aBandiera, L$$uFerrara U.
002882345 700__ $$aGuidi, V$$uFerrara U.
002882345 700__ $$aMazzolari, A$$uFerrara U.
002882345 700__ $$aRomagnoni, M$$uFerrara U.
002882345 700__ $$aSytov, A$$uFerrara U.
002882345 773__ $$c168892$$mpublication$$pNucl. Instrum. Methods Phys. Res., A$$v1058$$wC23-06-04.4$$y2024
002882345 960__ $$a13
002882345 962__ $$b2882231$$k168892$$nriccione20230604
002882345 980__ $$aARTICLE
002882345 980__ $$aConferencePaper