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Abstract. Motivated by recent experimental observations carried out in supercon-

ducting transmon circuits, we compare two different charging protocols for three-level

quantum batteries based on time dependent classical pulses. In the first case the com-

plete charging is achieved through the application of two sequential pulses, while in the

second the charging occurs in a unique step applying the two pulses simultaneously.

Both protocols are analytically solvable leading to a complete control on the dynamics

of the quantum system. According to this it is possible to determine that the latter

approach is characterized by a shorter charging time, and consequently by a greater

charging power. We have then tested these protocols on IBM quantum devices based

on superconducting circuits in the transmon regime. The minimum achieved charg-

ing time represents the fastest stable charging reported so far in solid state quantum

batteries.
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1. Introduction

Quantum batteries (QBs) are miniaturized devices able to efficiently store and release

energy on-demand exploiting the puzzling rules of quantum mechanics [1, 2]. They are

intended to play a major role in the future developments of quantum technologies [3].

In this direction, it is possible to imagine for example networks of QBs connected to a

quantum computer with the aim of locally providing energy supply to support reversible

quantum operations [4]. The starting point of this field can be traced back to the seminal

work by Alicki and Fannes in 2013 [5]. Since then, the theoretical investigations have

been focused on the study of the charging dynamics of one or more quantum systems

each one with a finite dimension Hilbert space, usually two-level systems (TLSs) [6].

For what it concerns the charging of QBs, two main approaches have been discussed

in literature. The first one is based on the unitary energy transfer between a purely

quantum charger and the QB [7, 8]. This case has been discussed in particular for arrays

of artificial atoms [9, 10, 11, 12, 13, 14] and systems for cavity and circuit quantum

electrodynamics (QED) [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Remarkably enough,

the first experimental evidence of a quantum charged QB has been recently reported in

a system where fluorescent organic molecules play the role of two-level systems (TLSs)

embedded in a microcavity [26]. This system shows a behavior consistent to what

predicted for the first time in [15], with dissipative effects counter-intuitively leading to

an improvement of the stability of the QBs [18].

On the other hand, the charging induced by a classical external drive has been

also considered [27, 28]. This idea culminated in the first experimental evidence of

a three-level QB realized with a superconducting circuit in the transmon regime [29].

The authors of this work compared two different charging protocols able to promote a

qutrit (three-level quantum system) from the ground state to a second excited state.

By controlling the form of the drives, they have been able to obtain both a fast and

unstable and a slow and stable charging process. This latter protocol shows charging

times of the order of ≈ 200 ns, namely two orders of magnitude shorter with respect

to the typical relaxation and dephasing times of the device (≈ 20 µs). In spite of

this fundamental result in the field, the considered protocols were constrained by

additional requirements of the field amplitudes introduced in order apply the quantum

brachistochrone theory [30] leading to an analytically solvable stable adiabatic charging.

In the present paper, we will demonstrate that a full analytical solution of the

qutrit’s dynamics is possible under more general conditions. Reviewing the recently

discussed case of a qubit QB, we will identify faster stable protocols able to realize

an almost complete charging of the qutrit QB. In particular, driving the systems with

properly designed Gaussian pulses, we will determine the charging time considering:

i) a sequential charging protocol where the qutrit is first promoted from the ground

to the first excited state and afterwards from the first to the second excited state and

ii) a simultaneous charging protocol where the transition directly involve the ground

and the second excited state.
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We will test these protocols on IBM quantum devices showing that in the

simultaneous protocol the charging time can be decreased down to ≈ 20 ns. This is an

order of magnitude shorter with respect to the analysis carried out in [29, 31] in presence

of a comparable stored energy and longer relaxation and dephasing times (≈ 100 µs).

To the best of our knowledge this represents the fastest stable charging reported so far in

the framework of QBs based on superconducting circuits, indicating the IBM quantum

devices as ideal candidates to develop stable multi-level solid state quantum batteries.

2. Two-level QB

We start our analysis by reviewing the case of a superconducting circuit in the transmon

regime working as a qubit (see [32] and Appendix A for more details). To access

quantum features these devices are put at cryogenic temperatures (few mK). Under

these working conditions, which are conventionally used in the framework of solid state

quantum computation [33], the QB can be effectively described as a two-level system

with Hamiltonian (from now on we consider ℏ = 1)

Ĥ
(2)
QB = ω0 |0⟩ ⟨0|+ ω1 |1⟩ ⟨1| (1)

and level spacing

∆ = ω1 − ω0 (2)

between the ground state |0⟩ and the first excited state |1⟩. Its dynamics is controlled

by means of a classical external time-dependent drive such that the total Hamiltonian

reads [34, 35]

Ĥ(2)(t) = Ĥ
(2)
QB + Ĥ

(2)
C (t) (3)

with

Ĥ
(2)
C (t) = gf(t) cos(Ωt)(|0⟩ ⟨1|+ |1⟩ ⟨0|). (4)

In the above Equation, f(t) is a time-dependent envelop function with maximum

amplitude equal to one, whose form will be specified in the following. Such function is

further modulated by a cosine with controllable frequency Ω. Finally, g represents the

intensity of the (dipole) coupling between the QB and the classical drive. Notice that

in our study we can safely neglect the dynamics of the external charger, due to the fact

that it can be considered as a classical object not affected by the state of the QB [28].

To study the time evolution of the state, and consequently the time behaviour of

the stored energy stored, we consider the generic initial wave-function at time t = 0 [31]

|ψ(0)⟩ = √
a |0⟩+

√
1− aeiϕ |1⟩ , (5)

with 0 ≤ a ≤ 1 and 0 ≤ ϕ < 2π real parameters. The experimentally realized transmon

devices, typically used in the quantum computing framework, including the devices

developed by IBM, usually satisfy g < ∆ [33]. Under this condition, in order to achieve

a complete charging of the QB, namely a perfect transition |0⟩ → |1⟩, one need to tune
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the frequency of the drive in such a way to precisely fulfill the condition Ω = ∆. at this

point it is useful to consider the time dependent rotation

Ŝ(2)(t) = eiĤ
(2)
QBt (6)

leading to the new Hamiltonian

Ĥ ′(2) = Ŝ(2)Ĥ(2)(Ŝ(2))† − iŜ(2)d(Ŝ
(2))†

dt
. (7)

Further considering the rotating wave approximation (RWA) [36, 37, 38], which

is very well justified under the conditions of resonance and small coupling discussed

above [39], one obtains the effective Hamiltonian

Ĥ
(2)
eff (t) =

g

2
f(t)(|0⟩ ⟨1|+ |1⟩ ⟨0|), (8)

where we have neglected a constant term that plays no role in the dynamics. This leads

to the Schrödinger equation

i |ψ̇′(t)⟩ = Ĥ
(2)
eff |ψ′(t)⟩ (9)

where |ψ′(t)⟩ = Ŝ(2)(t) |ψ(t)⟩ with |ψ(t)⟩ the wave-function of the qubit at a given

time [31]. Note that we are using the conventional Newton’s dot notation to indicate

the time derivative.

Starting from this, the energy stored in the QB at the same time t can be defined

as [7, 15]

E(2)(t) = ⟨ψ(t)|Ĥ(2)
QB|ψ(t)⟩ . (10)

According to this definition and taking into account the analysis described above, the

energy stored into the QB at the time t can be explicitly written (assuming for now on

ω0 as the energy reference) as

E(2)(t) = ∆

[
a sin2 θ(t)

2
+ 2

√
a
√
1− a sinϕ sin

θ(t)

2
cos

θ(t)

2
+ (1− a) cos2

θ(t)

2

]
, (11)

where

θ(t) = g

∫ t

0

f(τ)dτ. (12)

According to this expression the key parameter to control the system’s dynamics

is the area under the envelope function f(t). However, in order to evaluate the energy

stored into the QB as a function of time the knowledge of the form of f(t) is therefore

necessary. According to the analysis reported in [31], a good choice for the envelope

function is

f(t) = N e−
(t−tm/2)2

2σ2 , (13)

namely a Gaussian with amplitude N and standard deviation σ, centered at t = tm/2,

with tm the time at which the measurement of the state is carried out. In the following

we will assume

σ =
tm
8
, (14)
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where the condition tm ≫ σ is fulfilled, and

N =
θm

(gσ
√
2π)

, (15)

with θm the maximum amplitude achieved for the phase θ(t) induced by this pulse.

Indeed, one has

θ(t) ≈ θm
2

[
Erf

(
t− tm

2√
2σ

)
+ 1

]
, (16)

with Erf(x) the error function of argument x.

Replacing the above expression into (11) one can determine the charging time tc,

namely the time at which the QB is (almost) completely charged, as a fraction of tm.

For example, in figure 1, the QB reaches a charging E
(2)
thr = 0.95∆ for a time tc = 0.59tm.

0.0 0.2 0.4 0.6 0.8 1.0
t/tm

0.0

0.2

0.4

0.6

0.8

1.0

E
(2

) /
∆

Figure 1: Blue curve: theoretical behaviour of the energy E(2) stored into the qubit QB

(in units of ∆) as a function of t (in units of tm) and with initial condition |ψ(t)⟩ = |0⟩
(a = 1 and arbitrary ϕ in (5)). Horizontal grey line indicates a QB charging of

E
(2)
thr = 0.95∆, while the vertical grey line is in correspondence of the charging time

tc = 0.59tm. Here we are considering θm = π.

It is also useful to consider more realistic situations. Indeed, according to the

analysis reported in [31], in a real device it is not possible to initialize the system

exactly in the ground state. According to this, considering for example the conditions

a = 0.98, ϕ = 0 (figure 2a) and a = 0.96, ϕ = 0 (figure 2b), the charging E
(2)
thr = 0.95∆

is achieved for tc = 0.61tm and tc = 0.63tm respectively.

Obviously, the arbitrary choice of the value for the threshold E
(2)
thr could play in

general a relevant role in determining the charging time. However, assuming E
(2)
thr ranging

form 0.92∆ to 0.99∆ the charging times are only marginally different, namely tc ≈ 0.6tm
(see table 1). This strengthens the validity of our estimation.
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(b)

Figure 2: Blue curves: theoretical behaviour of the energy E(2) stored into the qubit

QB (in units of ∆) as a function of t (in units of tm) and with a = 0.98, ϕ = 0 (a)

and a = 0.96, ϕ = 0 (b) respectively. We have considered E
(2)
thr = 0.95∆ in both panels

(horizontal grey lines). This leads to tc = 0.61tm (a) and tc = 0.63tm (b) respectively

(vertical grey lines). Here we are considering θm = π.

Table 1: Charging times (in units of tm) for different initial states of the QB (denoted

by a and ϕ according to (5) and values of the energy threshold.

a ϕ Ethr/∆ tc/tm

1 0 0.92 0.58

1 0 0.95 0.59

1 0 0.99 0.63

0.98 0 0.95 0.61

0.98 π
4 0.95 0.63

0.96 0 0.95 0.63

0.96 π
4 0.95 0.68

Despite the above analysis, the charging behaviour in real time cannot be directly

addressed in a cloud based access as the one provided by IBM. However, it is possible to

reconstruct it starting from the evolution of the stored energy at a fixed measurement

time t = tm and as function of θm. The theoretical prediction for this quantity in the

case of an ideal charging starting from the ground state |0⟩ is reported in figure 3 and

compared to the real data extracted from the IBM quantum machine ibm auckland.

Data are extracted from the machine following the calibration procedure described

in [31]. Notice that this curve does not depends on the functional form of the drive,

provided that tm ≫ σ with σ the typical width associated to f(t), and that the deviation

with respect to the theoretical prediction mainly depends on the fact that the system

cannot be initialized exactly in the ground state, that the pulses are discretized and

to possible read-out errors [31]. Taking into account the fact that for this specific
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experiment tm = 30 ns and due to the above considerations, one can estimate a charging

time tc ≈ 20 ns. This value is orders of magnitude shorter with respect to the decay

time of the device (≈ 100µs), leading to a great stability of the QB [40]. Moreover,

this time is shorter with respect to the one achieved in [31] due to the greater values of

coupling characterizing ibm auckland in comparison with the one of ibm armonk used

there (g ≈ 1 Ghz vs g ≈ 0.1 Ghz).

0 π
4

π
2

3
4π π

θm

0.0

0.2

0.4

0.6

0.8

1.0

E
(2

) /
∆

Device: ibm auckland

Figure 3: Energy stored in the QB (in units of ∆) as a function of θm. The black line

is obtained analytically using (11) and with initial condition |ψ(t)⟩ = |0⟩ (a = 1 and

arbitrary ϕ in (5)). The blue points correspond to experimental data obtained from

the ibm auckland device, using the Gaussian pulses described in the main text with

tm = 30 ns.

3. Three-level QB

We want now to investigate the possibility to realize charging protocols addressing the

ground (|0⟩) and first two excited states (|1⟩, |2⟩) of a transmon, namely realizing a

qutrit QB described by the Hamiltonian (see Appendix A for more details)

Ĥ
(3)
QB = ω0 |0⟩ ⟨0|+ ω1 |1⟩ ⟨1|+ ω2 |2⟩ ⟨2| . (17)

Also in this case the dynamics is controlled by means of classical external drives such

that

Ĥ(3)(t) = Ĥ
(3)
QB + Ĥ

(3)
C (t) (18)

with

Ĥ
(3)
C (t) = gf1(t) cos(Ω1t)(|0⟩ ⟨1|+ |1⟩ ⟨0|)

+ gf2(t) cos(Ω2t)(|1⟩ ⟨2|+ |2⟩ ⟨1|). (19)
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Here, f1(t) and f2(t) are two generally different time dependent envelope functions

generalizing what shown in the previous Section.

Notice that the general form of the classical driving Hamiltonian in (19) allows for a

direct coupling only between states with opposite parity (|0⟩ ↔ |1⟩, |1⟩ ↔ |2⟩). Despite
the fact that a transition |0⟩ ↔ |2⟩ could be useful for the following analysis, it cannot

be implemented in these machines. The Hamiltonian in (19) has been also investigated

in [29]. However, in the following we will discuss more versatile and efficient charging

protocols, leading to a faster and stable charging.

Proceeding in full analogy with what done in the case of the qubit QB one can

consider a time dependent rotation of the form

Ŝ(3)(t) = eiĤ
(3)
QBt (20)

to describe the system in the rotating frame. In order to simplify the notation one can

define:

∆ = ω1 − ω0, (21)

∆′ = ω2 − ω1. (22)

In the transmon geometry considered in this work, one has ∆ > ∆′ due to the fact that

this device can be described as a anharmonic oscillator of the Duffing type (see [32, 33]

and Appendix A for more details).

Considering again the RWA valid for Ω1 = ∆ and Ω2 = ∆′, the effective

Hamiltonian in the rotating frame can be evaluate by means of the relation

Ĥ ′(3)(t) = Ŝ(3)Ĥ(3)(Ŝ(3))† − iŜ(3)d(Ŝ
(3))†

dt
(23)

and reads

Ĥ
(3)
eff =

g

2
f1(t)(|0⟩ ⟨1|+ |1⟩ ⟨0|) + g

2
f2(t)(|1⟩ ⟨2|+ |2⟩ ⟨1|). (24)

This leads to the Schrödinger equation

i |Ψ̇′(t)⟩ = Ĥ
(3)
eff |Ψ′(t)⟩ (25)

where |Ψ′(t)⟩ = Ŝ(3)(t) |Ψ(t)⟩ with |Ψ(t)⟩ the wave-function of the qutrit at a given time.

Considering the conventional spinorial notation

|Ψ′(t)⟩ =

 c2(t)

c1(t)

c0(t)

 (26)

the dynamics of the system is obtained by solving the set of differential equations ċ2(t)

ċ1(t)

ċ0(t)

 = −ig
2

 0 f2(t) 0

f2(t) 0 f1(t)

0 f1(t) 0

 c2(t)

c1(t)

c0(t)

 . (27)

According to the previous discussion, in order to excite the QB from |0⟩ to |2⟩ we

have to apply two pulses to the system. In order to achieve this goal in the two

following Subsections we will address two different situations: i) the two pulses are
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applied sequentially and ii) two pulses are simultaneous. As will be clear in the

following, both these cases can be treated analytically. From a theoretical point of

view also intermediate situations where the two pulses partially overlap can be studied

by considering a numerical approach, however we are not going to discuss these cases

in details because it not easy to directly implement them on IBM machines [41].

In the following, we will evaluate the energy stored in the three-level QB

E(3)(t) = ⟨Ψ(t)|Ĥ(3)
QB|Ψ(t)⟩ (28)

assuming the ground state of the qutrit as initial state, namely

|Ψ(0)⟩ = |0⟩ . (29)

We will also comment about possible deviations with respect to this ideal condition in

realistic implementations. Notice that, despite the different physical implementation and

objectives, the formalism we are considering presents analogies with recently reported

protocols for coherent energy transfer [42].

3.1. Sequential charging protocol

Here, we can choose two identical, but properly delayed in time, pulses, namely

f2(t) = f1(t − tm/2) and with f1(t) of the same Gaussian form as in (13) but with

tm → tm/2, in such a way that the total duration of the protocol is tm. In this limit, one

can analytically solve the problem in two steps, each one identical to what previously

discussed in the case of the qubit.

|0⟩ → |1⟩ transition. In this case one needs to solve the set of differential equations: ċ2(t)

ċ1(t)

ċ0(t)

 = −ig
2

 0 0 0

0 0 f1(t)

0 f1(t) 0

 c2(t)

c1(t)

c0(t)

 . (30)

The energy stored in the QB in this phase is (see (11) with a = 1)

E(3)
seq(t) = ∆ sin2 θ1(t)

2
(31)

with

θ1(t) = g

∫ t

0

f1(τ)dτ (32)

and t ∈ [0, tm/2]. Notice that one can safely assume that out of this interval f1(t) is

essentially zero.

|1⟩ → |2⟩ transition. Here, we need to solve the set of differential equations ċ2(t)

ċ1(t)

ċ0(t)

 = −ig
2

 0 f2(t) 0

f2(t) 0 0

0 0 0

 c2(t)

c1(t)

c0(t)

 . (33)
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Assuming that in the previous step the system reaches the first excited state

(|Ψ(tm/2)⟩ ≈ |1⟩), the energy stored in the QB is given by

E(3)
seq(t) = ∆ +∆′ sin2 θ2(t)

2
(34)

with

θ2(t) = g

∫ t

tm
2

f2(τ)dτ (35)

and t ∈ [tm/2, tm]. Also in this case, out of this interval f2(t) can be considered as

null. Using the same Gaussian envelope function discussed in previous Section, with

σ = tm/16, one has

θ1(t) ≈
θ1,m
2

[
Erf

(
t− tm

4√
2σ

)
+ 1

]
(36)

θ2(t) ≈
θ2,m
2

[
Erf

(
t− 3tm

4√
2σ

)
+ 1

]
. (37)

In figure 4 we show the energy stored in the battery as a function of time. Here,

one can clearly see a two-step charging (blue curve). For what it concerns the charging

time, due to the similarity with the qubit charging the same estimation discussed above

works also here, limited to the second step (tc ≈ 0.8tm).

0.0 0.2 0.4 0.6 0.8 1.0
t/tm

0.0

0.2

0.4

0.6

0.8

1.0

E
(3

) /
∆
m
a
x

|0〉

|1〉

|2〉sequential

simultaneous

Figure 4: Energy stored in the QB (in units of ∆max = ∆ + ∆′) as a function of t (in

units of tm) for both a sequential (blue curve) and simultaneous (red curve) charging

protocol. Here we have considered pulses of Gaussian form satisfying the constrains

discussed in the main text, with φm = 2π, Θm = π and a = 1.

Also in this case the real time dynamics cannot be accessed directly in IBM quantum

devices. It is however possible to extract it from the behaviour of the energy stored at
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the final measurement time tm and as a function of the quantity

φm =

{
θ1,m if θ1,m ∈ [0, π]

π + θ2,m if θ1,m = π& θ2,m ∈ [0, π].
(38)

In terms of this new variable one has

E(3)
seq(φm) =

{
∆sin2 φm

2
if φm ∈ [0, π]

∆ + ∆′ sin2
(
φm−π

2

)
if φm ∈ [π, 2π].

(39)

The behaviour of the above function, together with the the relative experimental

data obtained using the ibm auckland device (a machine composed by 27 transmon

circuits, of which we address the number 0 that is characterized by the the best

compromise between the longer relaxation and dephasing times and the smaller read-

out error), are reported in figure 5. Data are extracted from the machine following the

calibration procedure described in Appendix B. The agreement between data and the

theoretical function is very good, in particular in the first half of each step. However,

the experimental data show that it is not possible to fully charge the QB. Indeed, the

maximum energy reached is 92.1% of the maximum energy ∆max = ∆+∆′.

Here, the charging occurs in a time (tc ≈ 25 ns) which is way shorted with respect

to the decay time of the device (≈ 100 µs). This stable charging protocol is similar

to the one discussed in [29], although there the charging was reached in the longer

time tc ≈ 200 ns. This faster charging is a consequence of the stronger dipole coupling

characterizing this quantum device. For what it concerns the amount of energy stored

in the qutrit, one has ∆max ≈ 39.2 µeV, which is smaller but of the same order of

magnitude of the one reported in [29] (∆max ≈ 50.6 µeV).

0 π
4

π
2

3
4π π 5

4π
3
2π

7
4π 2π

ϕm

0.0

0.2

0.4

0.6

0.8

1.0

E
(3

)
si
m
/∆

m
a
x

Device: ibm auckland

Figure 5: Energy stored in the QB (in units of ∆max) as a function of φm following the

sequential charging protocol. The black line is obtained analytically using (39). The

blue points correspond to experimental data obtained from the ibm auckland device,

using the Gaussian pulses described in the main text with tm = 30 ns.
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3.2. Simultaneous charging protocol

In this case one has f1(t) = f2(t) = f(t), which leads to the set of differential equation ċ2(t)

ċ1(t)

ċ0(t)

 = −ig
2
f(t)

 0 1 0

1 0 1

0 1 0

 c2(t)

c1(t)

c0(t)

 . (40)

The matrix

T̂ =

 0 1 0

1 0 1

0 1 0

 (41)

is diagonalized by means of the unitary transformation

Û =

 1
2

− 1√
2

1
2

1
2

1√
2

1
2

1√
2

0 1√
2

 . (42)

This leads to new set of the decoupled equations ċ−(t)

ċ+(t)

ċB(t)

 = −ig
2
f(t)

−
√
2c−(t)√
2c+(t)

0

 →


c−(t) = e

i g√
2

∫ t
0 f(τ)dτ

c−(0)

c+(t) = e
−i g√

2

∫ t
0 f(τ)dτ

c+(0)

cB(t) = cB(0).

(43)

In this basis the state at time t is given by

|Ψ′(t)⟩ =

 eiΘ(t)c−(0)

e−iΘ(t)c+(0)

cB(0)

 (44)

with

Θ(t) =
g√
2

∫ t

0

f(τ)dτ. (45)

Is this new basis the initial conditions lead to c−(0)

c+(0)

cB(0)

 =

 1
2
1
2
1√
2

 (46)

and consequently

|Ψ′(t)⟩ =

 1
2
eiΘ(t)

1
2
e−iΘ(t)

1√
2

 . (47)

Returning back to the original basis we finally have

|Ψ′(t)⟩ =

 1
2
[cosΘ(t)− 1]

− i√
2
sinΘ(t)

1
2
[cosΘ(t) + 1]

 . (48)

Considering the same Gaussian pulse as in the qubit case one obtains

Θ(t) =
Θm

2

[
Erf

(
t− tm

2√
2σ

)
+ 1

]
(49)
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with Θm = θm/
√
2.

In figure 4 we report the energy stored in the QB as a function of time (red curve),

given (assuming again ω0 as the reference energy) by

E
(3)
sim(t) =

∆

2
sin2Θ(t) +

∆max

4
[1− cosΘ(t)]2 . (50)

As expected, the complete charging of the QB can be obtained here in a unique step

as long as Θm = π. Notice that a similar form of the stored energy can be obtain

under proper conditions within the adiabatic approximation (see Appendix C for more

details).

Assuming, in analogy with what done for the qubit QB, the charging time as the

one required to reach E
(3)
thr = 0.95∆max, one has also in this case tc = 0.59tm. Notice

that, for a fix tm, this leads to a faster charging (greater charging power) with respect

to the sequential case.

The relative experimental data as a function of Θm, obtained using the ibmq toronto

device (a machine composed by 27 transmon circuits, of which we address the number

16 that is characterized by the best compromise between the longer relaxation and

dephasing times and the smaller read- out error) are reported in figure 6 ‡. In is

worth to note that this simultaneous charging protocol cannot be implemented on

all IBM quantum machines that can be accessed via qiskit-pulse due to software

constraints [43]. Also in this case data are obtained following the calibration procedure

described in Appendix B. The maximum energy reached is 92.0% of ∆max. This indicates

that efficiencies of the two considered protocols are very closed. Moreover, the charging

occurs in roughly the same amount of time with respect to the other (tc ≈ 20ns)

with an analogous relaxation time (tc ≈ 100 µs). As far as we know this is the faster

stable charging process reported so far for a multi-level QB. Shorter times seem out of

reach in the currently available IBM quantum devices due to discretization of the signal

implemented at the level of software [31]. The amount of energy stored in the qutrit in

this case in almost identical to the one reported for ibm auckland (∆max ≈ 39.3 µeV).

It is worth to mention the fact that the departure from the theoretical curve could be

related to errors at the level of the initialization, to discretization of pulses or to read-out

errors.

4. Conclusions

We have considered two experimentally relevant cases in which the dynamics of a three-

level quantum battery can be treated analytically. Starting from an analysis carried out

for the simpler two-level case, we have determined the charging time for: i) a sequential

charging protocol where the qutrit is charged according to the two subsequent steps

|0⟩ → |1⟩ and |1⟩ → |2⟩ and ii) a simultaneous charging protocol where it is possible to

achieve a direct |0⟩ → |2⟩ transition. We underline the fact that the reported results

‡ This device has been officially retired by IBM on April 10th 2023, during our investigation.
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Figure 6: Energy stored in the QB (in units of ∆max) as a function of Θm following the

simultaneous charging protocol. The black line is obtained analytically from (50). The

red points correspond to experimental data, obtained from the ibmq toronto machine.

We have considered the same Gaussian pulse as in the qubit case with tm = 30 ns.

for both the charging protocols are robust against cross-talks among the various circuits

composing the considered machines.

We have also tested these protocols on IBM quantum devices estimating a charging

time tc ≈ 20 ÷ 25 ns. These times are an order of magnitude shorter with respect to

a previous analysis carried out in [29], in presence of a comparable stored energy and

for devices characterized by longer relaxation and dephasing times. As far as we know,

these results, in particular for what it concerns the simultaneous charging, represent

the fastest stable charging reported so far in the framework of multi-level solid state

quantum batteries based on superconducting circuits.

As an interesting by-product of our analysis, we have shed new light on the time

dependent control of multi-level quantum systems with relevant impact in the field of

quantum computation. Indeed, the possibility to use quantum devices both as qubit and

as qutrit [48] or more generally qudit [49] could make the current quantum computers

more versatile broadening the panorama of future possible applications [50].
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Appendix A. Theoretical description of the transmon qubit

We want to provide here a simple circuital scheme leading to the two- and three-level

quantum devices discussed in the main text (see figure A1).

Its Hamiltonian is given by [32, 33]

H = 4ECN
2 − EJ

2
cosΦ (A.1)

with

EC =
e2

Cs

> 0 (A.2)

the charging energy associated to the capacitive part of the circuit (e here is the charging

energy and Cs the capacitance), EJ > 0 the energy associated to the Josephson junction,

N the Cooper pair number operator and Φ the conjugate phase operator which satisfies

[Φ, N ] = i. (A.3)

In the transmon limit EC ≪ EJ this problem maps into the one of a particle with very

small kinetic energy trapped into a cosine-like potential. Under these conditions it is

possible to Taylor expand the cosine term up to the forth order obtaining

H ≈ 4ECN
2 +

EC

2
Φ2 − EC

24
Φ4. (A.4)

The previous Hamiltonian can be quantized introducing ladder operators satisfying[
b, b†

]
= 1 (A.5)

and such that

N = i

(
EJ

32EC

) 1
4 (
b† − b

)
(A.6)
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Φ =

(
2EC

EJ

) 1
4 (
b† + b

)
. (A.7)

According to this, one obtains an anharmonic oscillator of the Duffing type

H ≈ ωP b
†b− EC

12

(
b† + b

)4
(A.8)

with

ωP =
√

8ECEJ (A.9)

the so called plasma frequency of the circuit.

In the considered limit the energy levels are very well determined already at the

first order in perturbation theory, leading (up to a constant) to

ωn = (ωP − EC)n− 1

2
ECn (n− 1) . (A.10)

From this we finally derive

∆ = ω1 − ω0 = ωP − EC (A.11)

∆′ = ω2 − ω1 = ωP − 2EC = ∆− EC (A.12)

∆max = ω2 − ω0 = ∆+∆′ = 2ωP − 3EC . (A.13)

These parameters are the ones considered in the main text.

Appendix B. Calibration and data analysis

The reconstruction of the state of a transmon, after the application of a time dependent

external drive, is done through a readout in the so-called dispersive regime. Here, a

harmonic oscillator (LC circuit playing the role of a resonator) is weakly coupled to

the transmon and off resonant with respected to it [33]. In this regime the frequency

of the oscillator depends of the state of the transmon. This allows for a so called non-

destructive measurement [44] based on the fact that a monochromatic microwave with

frequency Ω0 applied to the resonator is modified in such a way that

cosΩ0t→ A cos(Ω0t+ χ), (B.1)

with A and χ real numbers representing an amplitude and a phase respectively. Taking

into account the complex representation of the transmitted wave at a given time, one

can write

Aeiχ = I + iQ, (B.2)

with I and Q real numbers. Every measurement of the transmon state is therefore

reported as a point in the (I,Q) plane. In order to accumulate proper statistics, the

machine performs multiple runs (1024 in default settings). They are typically very

scattered, requiring a further analysis to extract meaningful information from them.

We have classified the points according to the three relevant states of the system (|0⟩,
|1⟩ and |2⟩) by means of scikit-learn, an open source machine learning library based on

the Python programming language [45]. We have used support vector machines method
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with linear kernel function. This method takes as input two arrays: an array X of shape

(n samples, n features) holding the training samples, and an array y of class labels,

that can be strings or integers, of shape (n samples). In our case we have 3072 samples

with 2 features, I and Q and 3 possible labels, 0, 1 or 2. After being trained, the model

can be used to classify new values.

Figure B1 shows an example of data distribution with the colored regions

graphically representing the data labels. According to this picture, the energy stored in

a qutrit QB (with respect to the ground state), can be determined through the relation

E(η) = ∆P1(η) + ∆maxP2(η) (B.3)

with

Pi(η) = | ⟨Ψ(η)|i⟩ |2 (B.4)

and η = φm,Θm depending on the considered charging protocol.

−10 0 10
I [a.u]

−15

−10

−5

0

Q
[a
.u

]

|0〉
|1〉
|2〉

Figure B1: Example of data distribution associated to the measurements of the state

|0⟩ (blue dots), |1⟩ (red dots) and |2⟩ (green dots) in the (I,Q) plane (in arbitrary

units) for the ibm auckland device. Big black dots indicate the centers of the different

distributions, while straight lines separates the regions associated to every state. The

efficiency of the considered separation is roughly 95.5% for the ground state, 95.7% for

the first excited state and 90.0% for the second excited state. For each state shown in

the plot, we have considered 1024 runs (3072 in total).

In figures (B2) and (B3) we show the different evolution of the state of the qutrit

in the (I,Q) plane considering the sequential and simultaneous charging respectively.

In particular, while in the former case there is an intermediate situation in which the

system is in the state |1⟩ with high probability, this doesn’t happens in the latter.
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Figure B2: Example of data distribution associated to the sequential charging protocol.

Each plot shows the results (black dots) in the (I,Q) plane (in arbitrary units) as a

function of φm. For each state shown in the plot, we have considered 1024 runs. These

measurements have been carried out using the ibm auckland device. The background

is coloured according to what discussed in the calibration phase. In particular the blue

part is classified as |0⟩, the red one as |1⟩ and the green one as |2⟩.

Appendix C. Adiabatic charging of the three-level QB

An alternative way to charge the qutrit QB realizing a stable |0⟩ → |2⟩ transition

involves a classical charging (see (19)), with two identical time dependent drives such

that

f1(t) = f2(t) = f(t) (C.1)

and

Ω1 = Ω2 =
∆+∆′

2
, (C.2)

namely resonant with a unique frequency given by the average of the two level
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Figure B3: Example of data distribution associated to the simultaneous charging

protocol. Each plot shows the results (black dots) in the (I,Q) plane (in arbitrary

units) as a function of Θm. For each state shown in the plot, we have considered

1024 runs. These measurements have been carried out using the ibmq toronto device.

The background is coloured according to what discussed in the calibration phase. In

particular the blue part is classified as |0⟩, the red one as |1⟩ and the green one as |2⟩.

spacing [46]. Under such conditions, assuming again the RWA, one obtains the new

effective Hamiltonian

Ĥ(3)
eff (t) =

g

2
f(t)

 0 e−iδt 0

eiδt 0 eiδt

0 e−iδt 0

 , (C.3)

with

δ =
∆−∆′

2
. (C.4)

Notice that, according to the derivation reported in Appendix A, this parameter is



Qutrit quantum battery: comparing different charging protocols 20

positive and can be written only in term of the transmon charging energy, namely

δ =
EC

2
. (C.5)

In order to solve the dynamics, in this case it is possible to consider a full numerical

approach. However, in the following we will proceed along a different path working on

the the abiabatic approximation [47]. This will allow us to have a better insight of the

physics of the system. In this case the state of the system at a given time t can be

approximated as

|Ψ′(t)⟩ ≈
∑
σ

cσe
−i

∫ t
0 Eσ(τ)dτeiγσ(t)|Ψσ(t)⟩ σ = B,±. (C.6)

In the above expression one needs to take into account the instantaneous eigenstates

of the Hamiltonian in (C.3)

|ΨB(t)⟩ =

− 1√
2

0
1√
2

 ; |Ψ±(t)⟩ =

 1
2

± eiδt√
2

1
2

 (C.7)

with instantaneous energy eigenvalues

EB(t) = 0

E±(t) = ± g√
2
f(t). (C.8)

Others important terms which compare in (C.6) are the geometric or Berry

phases [47]

γB(t) = i

∫ t

0

dτ⟨ΨB(t)|
d

dτ
|ΨB(t)⟩ = 0

γ±(t) = i

∫ t

0

dτ⟨Ψ±(t)|
d

dτ
|Ψ±(t)⟩ = −δt

2
. (C.9)

Taking into account the initial condition already discussed in the main text, namely

cB =
1√
2
; c± =

1

2
, (C.10)

one finally obtains

|Ψ′(t)⟩ ≈


1
2

[
cosΘ(t)e−i δt

2 − 1
]

− i√
2
sinΘ(t)ei

δt
2

1
2

[
cosΘ(t)e−i δt

2 + 1
]
 , (C.11)

with stored energy

E
(3)
ad (t) ≈

∆

2
sin2Θ(t)+

∆max

4

[
1− 2 cosΘ(t) cos

(
δt

2

)
+ cos2Θ(t)

]
.(C.12)

In the regime where both approaches are applicable, the adiabatic charging usually

leads to a faster but less stable charging with respect to the simultaneous (see figure

(C1)).
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Figure C1: Energy stored in the qutrit QB (in units of ∆max) as a function of t (in

units of tm) for both an adiabatic (green curve) and simultaneous (red curve) charging

protocol. Here we have considered the same Gaussian pulses as in the qubit case.
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[39] Lü Z and Zheng H 2012 Phys. Rev. A 86 023831

[40] Carrega M, Crescente A, Ferraro D, Sassetti M 2020 New J. Phys. 22 083085

[41] IBM Quantum. https://quantum-computing.ibm.com/, 2021

[42] Crescente A, Ferraro D, Carrega M and Sassetti M 2023 Entropy 25 758

[43] IBM assistance office, private communication.

[44] Jeffrey E, Sank D, Mutus J Y, White T C, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B, and

Dunsworth A 2014 Phys. Rev. Lett. 112 190504

[45] Pedregosa F, Varoquaux G, et al. Journal of Machine Learning Research 12 2825

[46] Willsch D, et al. arXiv:2302.09192

[47] Berry M V 1984 Proceedings of the Royal Society A 392 1802

[48] Cervera-Lierta A, Krenn M, Aspuru-Guzik A and Galda A 2022 Phys. Rev. Appl. 17 024062

[49] Jankovic D, Hartmann J G, Ruben M and Hervieux P A 2023 arXiv:2302.04543

[50] Nguyen H C, Bach B G, Nguyen T D, Tran D M, Nguyen D V and Nguyen H Q 2022

arXiv:2212.14170

http://arxiv.org/abs/2212.12397

	Introduction
	Two-level QB
	Three-level QB
	Sequential charging protocol
	Simultaneous charging protocol

	Conclusions
	Theoretical description of the transmon qubit
	Calibration and data analysis
	Adiabatic charging of the three-level QB

