CERN Accelerating science

 
Hyperfine spectrum of $^{113}$Sb in the $5s^25p^3\ ^4\text{S}_{3/2} \rightarrow 5s^25p^26s\ ^4\text{P}_{3/2}$ transition including a scheme of the hyperfine splitting. The frequency is given as an offset from the transition frequency (45945.340(5)\,cm$^{-1}$ \cite{NIST_ASD}).
Relevant orbitals for the Sb isotopic chain. All calculation methods include the full neutron $N=50-82$ valence space. For the shell-model calculations also the full proton $Z=50-82$ valence space (dashed) is used, while for the \textit{ab initio} calculations either the sdg7 (dash-dot) or sdg (full line) valence space is employed.
Magnetic moments of (a) odd-even and (b) odd-odd $^{112-133}$Sb isotopes in comparison to shell-model and \textit{ab initio} calculations within the VS-IMSRG framework and the EM1.8/2.0 nuclear interaction. $\mu_\text{sp}$ indicates the single-particle value for the respective orbital. (sdg) includes the proton orbitals $\{0g_{9/2}, 0g_{7/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}\}$ and (sdg7) the same except $0g_{9/2}$, see \figref{fig:orbitals}. ``eff'' means that the effective $g$-factors $g_{\text{s,eff}}=0.6g_{\text{s}}$, $g_{\text{l,}\pi}=1.11$ and $g_{\text{l},\nu}=-0.02$ from the shell-model calculations were used instead of the renormalization of the operator. Literature values are taken from Refs.~\cite{Proctor1951,Fernando1960,Jackson1968,Krane1972,EKSTROM1974,CALLAGHAN1974,Ketel1976,Langouche1976,Booth1993,Lindroos1996,Stone1997,Stone2019}. Note that the second literature value of $^{121}$Sb is the first excited $7/2^+$ state (not observed in this work due to its short half-life).
Quadrupole moments of (a) odd-even and (b) odd-odd $^{112-133}$Sb isotopes in comparison to shell-model and \textit{ab initio} calculations within the VS-IMSRG framework and the EM1.8/2.0 nuclear interaction. (sdg) includes the proton orbitals $\{0g_{9/2}, 0g_{7/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}\}$ and (sdg7) the same except $0g_{9/2}$, see \figref{fig:orbitals}. ``eff'' means that the effective charges $e_{\pi}=1.6$ and $e_{\nu}=1.05$ from the shell-model calculations were used instead of the renormalization of the operator. Literature values are taken from Refs.~\cite{Jackson1968,EKSTROM1974,Mahnke1982,Haiduke2006,STONE2016}.