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1 Introduction

One of the manifestations of locality in quantum field theory is a polynomial behavior
of scattering amplitudes at high energies [1–3]. Stringy amplitudes famously violate this
polynomiality and exhibit an exponential behavior at high energies and fixed angles [4–6].
Gravitational amplitudes are expected to violate the simple polynomial behavior as well
due to black holes [7–10].

This paper explores the possible effects of the amplitudes non-polynomiality at high
energies on the low-energy observables, such as the Wilson coefficients. To make the problem
tractable, we consider weakly coupled stringy scattering. In that context, let us introduce
the leading Regge trajectory j(t), which captures the basic high-energy properties of the
amplitude. It is defined by taking the high-energy limit with momentum transfer t kept fixed1

T (s, t) ∼ f(t)sj(t), s → ∞, t fixed . (1.1)

At positive t, it is related to the spectrum of the exchanged particles [6]. For negative t, it
captures the behavior of the amplitude in the actual high-energy scattering experiment. This
paper explores extra constraints on the low-energy observables drawn from some knowledge
about j(t).

The amplitudes of interest are described by meromorphic functions with extra constraints
that we impose:

(A) Standard bootstrap constraints: analyticity (meromorphy), unitarity, and crossing
symmetry (ACU). Because we effectively work at the tree level, unitarity is reduced to
positivity, see [11, 12].

(B) Maximal spin constraint: J(m2) ≤ j(m2), where J(m2) is the maximal spin of the
exchanged particle of mass m, and j(m2) is the leading Regge trajectory that we
consider to be given.

(C) Superpolynomial softness: we impose that the amplitude decays at high energies faster
than any given power for negative enough t < 0. In other words, for any N ∈ Z+ there
exists t < 0 such that j(t) < −N . These conditions are conveniently expressed in the
Regge sum rules (RSR), which will be introduced in the following.

We, therefore, see that the additional assumptions (B) and (C) are related to the properties of
the leading Regge trajectory j(t) for positive and negative t respectively. It is an interesting
question to what extent the properties of j(t) at negative and positive t are related to each
other, and we briefly comment on this question further in our conclusions.

An example of the amplitude that satisfies (A), but violates both (B) and (C) is given
by T (s, t) = 1

(s−m2)(t−m2) , for which j(t) = −1 and J(m2) = ∞. There are amplitudes that
satisfy (B) and do not satisfy (C), e.g., glueball scattering in large N QCD, or recently
constructed deformations of the Veneziano amplitude considered in [13]. Finally, some
amplitudes satisfy both (B) and (C), such as for example the Veneziano amplitude [14] or
the Coon amplitude [15–17].

1For meromorphic amplitudes of interest, we take s → ∞ with arg s > 0 kept fixed.
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In this paper, we focus on the case when the leading Regge trajectory is linear

j(m2) = j0 + α′m2, (1.2)

where α′ is the string tension and j0 is the so-called Regge intercept. We derive bounds on
the Wilson coefficients using both the so-called dual and primal approaches.

In the dual approach, reviewed in appendix A, we derive bounds on the low-energy
expansion of the amplitude without explicitly constructing the amplitude. A standard tool
to do it is via dispersion relations [18]. In this case, (B) is implemented at the level of the
discontinuity of the amplitude. On the other hand, (C) can be implemented using the Regge
sum rules that we introduce shortly below. In the primal approach, we explicitly write down
an ansatz for the amplitude that satisfies (B) and (C), as well as analyticity and crossing,
and we impose unitarity numerically.

For our dual results, the assumption (1.2) about the linearity of the leading Regge
trajectory can be easily relaxed, and any desired shape of the Regge trajectory (e.g., taken
from the lattice data [19]) could be put in. For the primal approach, our analysis could
be generalized along the lines of [20] or [21], which allow certain flexibility in the shape
of the leading Regge trajectory.

We set the mass of the lightest massive state at m2
gap = 1. We will consider two types

of amplitudes, which we call open and closed, following the example of fundamental strings.
They are distinguished by the structure of poles, as well as by α′ that appear in (1.2)

α′
open = 1, α′

closed = 2 . (1.3)

For the closed string case, we consider the MHV scattering amplitude of gravitons in four
spacetime dimensions. For the open string case, we consider the scattering of massless scalars
in four spacetime dimensions.

1.1 Review of the results

Our paper is divided into two parts: the closed string case and the open string case. Apart
from (1.3), the difference between the two cases is that for the open string case, we assume
that the amplitude has only poles in the s- and t- channels, whereas for the closed string
case poles in all three channels are present.

Closed string case

We consider the MHV scattering amplitude of gravitons in four dimensions previously
considered in [22–25]. We assume the linear Regge trajectory to be j(t) = 2 + 2t, where
m2

gap = 1. We derive bounds on the Wilson coefficients using the dual and primal approaches.
For the dual approach, this case was previously considered in [22–25], where (A) was

imposed. We find that imposing (B) leads to slightly more stringent bounds excluding
the small regions of parameter space around the amplitudes which involve particles of all
spin at a given mass.

We restate superpolynomial softness in terms of the Regge sum rules (RSR) on the
discontinuity of the amplitude, see (2.9) below. However, due to the ‘oscillating’ nature of
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the RSR, stemming from the fact that Legendre polynomials are not sign-definite for t < 0,
we find that these constraints are not used in the numerics. Therefore, we do not get any
difference compared to the dual bounds obtained from (A) and (B). This issue is similar to
the one described in [26], and we discuss it further in appendix A.5.

At this point, however, we cannot be sure that this effect is not just a technical artifact
of the current implementation of the dual bootstrap scheme, which, in particular, can impose
only a finite number of RSR constraints. To make progress on this question, we develop
a primal approach, where we explicitly construct amplitudes that satisfy (C), see (3.4). A
remarkable fact about this ansatz is that it satisfies all the desired properties at finite Nmax.
We can, therefore, derive bounds on Wilson coefficients numerically first for finite Nmax,
and then extrapolate them to Nmax → ∞. We do not observe a clear gap between the
primal and dual results within the available precision. We conclude that the extra constraints
due to superpolynomial softness (not used in the dual approach and manifest in the primal
approach) do not lead to stronger bounds.

Our results for various Wilson coefficients are summarized in figures 4, 7 and 10.

Open string case

The dual approach for the open string case leads to results very similar to the closed string
case. Again we find that imposing the maximal spin condition leads to stronger bounds,
whereas the superpolynomial softness, imposed through a finite number of RSR constraints,
does not lead to visible effects.

The situation with the primal approach, however, is very different. In this case, any
truncation of the ansatz (4.3) to a finite number of terms violates unitarity. Therefore we do
not have a systematic way to derive the primal bounds in this case. Nevertheless, we identify
an interesting Nmax = ∞ class of deformations which satisfy (A), (B), and (C). They are
conveniently given by the worldsheet integral (4.6), that we repeat here

Tc0,c1,λ(s, t) =
∫ 1

0
dz z−s−1(1− z)−t−1(1− 4λ(1− z)z)c0+c1(s+t), 0 ≤ λ ≤ 1

2 .

A remarkable property of these amplitudes is a novel behavior at high energies and fixed
angles, see (4.12). In particular, they go beyond the analysis of [6] in several respects, thus
emphasizing the restricting nature of technical assumptions made in that paper.

Based on these results, we propose a bound on the high-energy fixed (complex) angle
behavior of the meromorphic stringy amplitudes and use it to derive a lower bound on
high-energy fixed angle scattering (5.2), which is analogous to the old result by Cerulus and
Martin in the context of gapped, relativistic QFTs.

Our results for various Wilson coefficients are summarized in figure 14. In this case,
our dual and primal bounds do not coincide. However, it is not very surprising given that
our primal approach is not systematic, and further work is needed to clarify the interplay
between (B) and (C) in that case.

1.2 Connection to recent literature

For the reader’s convenience, let us comment on the relationship of this paper to the recent
work on related topics. For the graviton scattering, bounds on low energy observables using
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the usual bootstrap axioms (A) were considered in [22–25]. Here, we consider the same
observables and add extra constraints on the leading Regge trajectory (B) and (C). In [22],
the authors considered a unitary deformation of the Virasoro-Shapiro amplitude with a
single satellite term. In this work, we systematically constructed such deformations with
an arbitrary number of satellite terms.

For the open string case, bounds on low energy observables using the usual bootstrap
axioms (A) were considered in [27–29] in the context of large N QCD. Here we imposed
extra constraints on the leading Regge trajectory (B) and (C). In [13], the authors derived a
unitary deformation of the Veneziano amplitude. While this amplitude satisfies the maximal
spin constraint (B), it does not satisfy the Regge sum rules (C). In this work, we find a
different family of unitary deformations that satisfy both the maximal spin constraint (B)
and superpolynomial softness (C). These amplitudes have interesting high-energy, fixed-angle
behavior and violate some of the technical assumptions made in [6]. We relax some of these
assumptions and propose a new bound on the high-energy, fixed-angle scattering.

Other approaches have been pursued in the literature to further restrict the space of
stringy amplitudes. One interesting direction was followed in [30–32], where the authors
imposed that amplitudes satisfy certain monodromy relations stemming from the worldsheet
representation of the amplitude. In this case, the space of allowed Wilson coefficients is
drastically reduced. Note that the deformation of the Veneziano considered here (4.6) does
not satisfy the standard monodromy relation.

Extensions of the open string amplitudes to different spectra and nonlinear leading
Regge trajectories were also recently pursued. One notable deformation of the spectrum
leads to the so-called Coon amplitude [15–17] which has been explored recently [33–40].
Keeping the spectrum of the Veneziano amplitude intact, the authors of [20] constructed
an explicit amplitude that exhibits bending of the leading trajectory expected in large N

QCD. More recently, open string amplitudes with an arbitrary spectrum were constructed
and explored in [21].

Finally, this work explores constraints from the high-energy superpolynomial softness
of the amplitude at t < 0. A related exploration was done in [41], where the authors
studied the consequences of changing the Regge intercept j0 instead. The authors have
observed that lowering the Regge intercept below j0 < 1 led to little or no improvement of
the bootstrap bounds for the closed string case (in the presence of the u-channel poles).2
The nontrivial effect appeared when the Regge intercept was lowered further j0 < 0, so no
subtractions are needed in the dispersion relations. The same phenomenon was observed
for nonperturbative amplitudes in [12].

1.3 Plan of the paper

The plan of the paper is as follows. In section 2, we review the basic assumptions and
constraints imposed. In section 3, we explore the closed string case, namely the MHV
scattering amplitude of gravitons. We derive both primal and dual bounds on the low-energy
Wilson coefficients. In section 4, we consider the open string case, where we take external
particles to be massless scalars. We derive dual bounds on the low-energy observables

2For the open string case when no u-channel poles are present there is an improvement.
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and construct new explicit amplitudes with several remarkable properties. We conclude in
section 5, where we discuss the results of this work and mention some future directions. We
provide various appendices which contain additional details and we refer to them throughout
the text in places where they become relevant. Notably, the appendices contain a review
of the dual method in appendix A, examples of amplitudes in appendix C, a bound on the
asymptotic form of the amplitude in appendix F and a version of the Cerulus-Martin bound
for stringy amplitudes in appendix G.

2 Assumptions and constraints

Let us start by reviewing the standard assumptions satisfied by the tree-level (or meromorphic)
scattering amplitudes. We then explain the extra constraints imposed in this work in
more detail.

Here we list properties of tree-level two-to-two scattering amplitudes of massless scalar
particles in four spacetime dimensions. The Mandelstam variables satisfy s + t + u = 0.

(i) Meromorphy: The scattering amplitude is described by a meromorphic function of
two variables T (s, t) where all the singularities are simple poles.

T (s, t) ∼
s→m2

n

− Rn(t)
s − m2

n

, (2.1)

and mn are masses of exchanged particles.

(ii) Crossing symmetry: For general external particles A, B, C, D, crossing symmetry
is the requirement that

TAB→CD(s, t) = TAC̄→B̄D(t, s) = TAD̄→B̄C(u, t). (2.2)

In this work, we consider different combinations of external particles, and the exact
form of crossing symmetry will be specified for each case separately. This property was
recently proven in the planar limit [42].

(iii) Unitarity: The residues Rn(t) can be decomposed in partial waves

Rn(t) = −Res
s=m2

n

T (s, t) =
∑
J=0

cn,JPJ

(
1 + 2t

m2
n

)
, (2.3)

where PJ(x) are the usual Legendre polynomial. Unitarity is the statement that

cn,J ≥ 0 . (2.4)

In the case of spinning particles, unitarity takes the form of a semi-definite matrix as
reviewed in [23, 43] for the case of graviton scattering.

This ends the list of the usual bootstrap assumptions for the tree-level scattering amplitudes.
In this work, we want to impose extra constraints coming from the shape of the leading
Regge trajectory.
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(iv) Maximal spin: we require the residue (2.3) to be polynomial in t whose maximal
power is bounded by the leading Regge trajectory

Rn(t) =
j(m2

n)∑
J=0

cn,JPJ

(
1 + 2t

m2
n

)
. (2.5)

This condition is essentially imposing the finite energy sum rules (FESR) considered in
the past in [44–51].3 This constraint effectively puts in the information about the shape
of the leading Regge trajectory (1.1) for positive t. For the linear trajectory (1.2), it
prevents the appearance of an infinite tower of exchange particles of arbitrary high spin
at a given mass.

(v) Regge sum rules (RSR): it is a statement about the softness of the amplitude at
negative t and is best derived starting from the contour integral

1
2πi

∮
C

ds′(s′)nT (s′, t) = 0 (2.6)

where C is the contour described in figure 1. We can split the integral into two parts

0 =
∫
C∞

ds′(s′)nT (s′, t) + 1
π

∫ ∞

−∞
ds′(s′)nTs(s′, t). (2.7)

The integral over the large circle C∞ can be computed using the known Regge behav-
ior (1.1) ∫

C∞
ds′(s′)nT (s′, t) ∼

∫
C∞

ds′

s′
(s′)j(t)+1+n = 0, if j(t) < −1− n. (2.8)

We thus obtain the Regge sum rules

RSR:
∫ ∞

−∞
ds′(s′)nTs(s′, t) = 0, j(t) < −1− n , (2.9)

which conveniently express the superpolynomial softness of the amplitude in terms
of the constraints on the discontinuity of the amplitude. In the case of meromorphic
amplitudes, the integral reduces to a sum as Ts ∼ δ(s − m2

n) (plus the u-channel
contribution).

In the primal approach, we will explore the space of amplitudes by explicitly constructing
them in a way that they obey all the above constraints. To write an explicit ansatz, we
will have to choose a spectrum, and in this work, we consider amplitudes characterized
by the equidistant spectrum.

(vi) Equidistant spectrum: all particles in the spectrum have m2
n = n with n ∈ Z+ .

Let us emphasize that this is a technical constraint, and we leave to future studies generaliza-
tions to more complicated spectra. However, it is important to emphasize that we found that
adding the equidistant spectrum assumption to the dual approach does not affect the bounds
on Wilson coefficients. In this sense, amplitudes with an equidistant spectrum are generic.

3See also [52] for the rigorous formulation of the FESR using Tauberian theorems.
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s

C

Figure 1. The integration contour used to derive the Regge sum rules. Without loss of generality, we
draw a cut along the full real axis.

3 Closed strings: MHV scattering of gravitons

In this section, we consider graviton scattering, which corresponds to the closed string case
α′

closed = 2. In particular, we consider the two-to-two MHV amplitude

T++−−(s, t, u) = ([12]⟨34⟩)4f(s|t, u) CMF= s4f(s|t, u), (3.1)

where crossing symmetry implies that f(s|t, u) = f(s|u, t) and all other MHV amplitudes
are described by the same function. By CMF we mean the center-of-mass reference frame,
see [23] for details.

At low energy, the amplitude admits the following expansion

f(s|t, u) = 8πGN

stu
+ |βR3 |2

tu

s
− |βϕ|2

1
s
+

∑
k≥j≥0

ak,jsk−jtj . (3.2)

The coefficients in this expansion define the so-called Wilson coefficients. The first term
is the well-known Einstein term, the second is the correction to the 3-pt coupling from
the R3 operator, and the third is due to the ϕC2 coupling, which describes the massless
scalar exchange. Finally, the ak,j are related to higher dimensional operators. We used
the convention of [23], and we refer the reader to this reference for detailed computation
of the low energy expansion (3.2) starting from the Lagrangian. Bounds on ratios of these
Wilson coefficients were derived using the dual method in [22–25] imposing only the standard
bootstrap constraints (ACU) (A).

Next, we want to impose that the amplitude satisfies the well-known linear Regge
behavior of string theory (1.1) with

j(t) = 2 + 2t, ∀t. (3.3)

– 8 –
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As explained in section 2, we will impose this in two steps. First, it will be imposed for t > 0
by bounding the maximal spin in the spectrum (B). This can be easily done using the dual
method reviewed in appendix A. Second, we will also use superpolynomial softness in the form
of Regge sum rules at negative t. In this case, we observe that adding a finite number of Regge
sum rules to our dual algorithm does not affect the bounds. To explore the space of Wilson
coefficients when infinitely many Regge sum rules (or superpolynomial softness) are imposed,
we will turn to the primal method, where these constraints are built-in. When constructing
an ansatz, further assumptions have to be made about the spectrum, and we will assume an
equidistant spectrum m2

n = n. This assumption can also be made in the dual approach. By
adding this constraint, we did not observe any difference in the outcome of the numerics.

Note that in four spacetime dimensions, one-particle states are not good asymptotic
states in gravity [53]. This fact manifests itself through the IR divergences. There are two
comments that we can make in this regard. First, all the basic ideas in the present paper
are directly generalizable to d > 4, and it would be interesting to do it explicitly. Second,
in d = 4, we expect that our conclusions should hold for the IR finite observables, e.g., for
CFT correlators dual to gravitational theory in AdS4, see [54, 55].

Next, we describe the ansatz in section 3.1 and the primal algorithm in section 3.2, then
we present the result for various Wilson coefficients in section 3.3.

3.1 Closed string ansatz

Our ansatz for closed string satisfying the constraint described in section 2 is built out of
the ‘Virasoro-Shapiro block’. It takes the following form4,5

f(s|t, u) = −8πGN
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

+
′∑

cs,ct,cu,ds,dt,du

αcs,(ct,cu),ds,(dt,du)
Γ(cs − s)Γ(ct − t)Γ(cu − u)
Γ(ds + s)Γ(dt + t)Γ(du + u) , (3.4)

where we used the symmetric notation α(i,j) = 1
2(αi,j + αj,i) to emphasize that the func-

tion is t − u symmetric. The first term is the well-known Virasoro-Shapiro amplitude for
superstrings [57–59]. A unitary deformation with one satellite term α1,(1,1),2,(2,2) = −8πGN ϵ,

0 ≤ ϵ ≤ 1 was recently considered in [22]. The
′∑ indicates that we only keep terms for which

the residues are polynomial and which satisfy the Regge behavior (3.3)

f(s|t, u) ≲ s−2+2t , s → ∞, t fixed, (3.5)
f(s|t, u) ≲ t2+2s , t → ∞, s fixed. (3.6)

This imposes constraints on αcs,(ct,cu),ds,(dt,du), and will be discussed in appendix B.
Let us discuss the basic properties of this ansatz. It is obviously meromorphic with

equidistant spectrum m2
n = n ∈ Z+ and crossing symmetry is built in. It also automatically

satisfies the maximal spin constraint (B) because for a given s only a finite number of terms in
4A similar ansatz was considered in the past in [56], however, without imposing unitarity.
5While for open strings, we will argue that the ansatz in complete — see appendix E—for closed strings we

do not have a similar argument.
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the ansatz contribute to the sum rule and each of them manifestly satisfies it. Regarding the
superpolynomial softness, while each term satisfies it individually, the (infinite) sum might
not. This point will be further discussed for the infinite sums of similar type in section 4.2.
Below, we consider the truncated sum for which superpolynomial softness will be manifest.
The only remaining constraint is thus unitarity, the latter is not automatic and imposes
nontrivial constraints on the coefficients α’s.

Let us review here unitarity constraints for the MHV amplitude. As we are considering
the scattering of spinning particles, we have a few different channels to consider. In the
case at hand, the two independent channels are (++ → ++) and (+− → +−) for which
the residues (2.3) read6

−Res
s=n

T++−−(s, t) =
∑

J=0,2,...

c++
n,J dJ

0,0

(
1 + 2t

n

)
(3.7)

−Res
s=n

T+−−+(s, t) =
∑

J=0,2,...

c+−
n,J dJ

4,4

(
1 + 2t

n

)
(3.8)

where the dJ
µ,ν(x) are the usual Wigner small d-matrices (see for example [60]) and dJ

0,0(x) =
PJ(x). The coefficients cn,J are square of coupling constants and are thus nonnegative

c++
n,J ≥ 0, c+−

n,J ≥ 0 . (3.9)

These constraints restrict the allowed space of α’s. The space of amplitudes defined in this
way is still infinite-dimensional and we will study its projection on the space of a few leading
low-energy Wilson coefficients.

In order to explore the space of amplitudes numerically, we consider a truncated ansatz

fNmax(s|t, u) = −8πGN
Γ(−s)Γ(−t)Γ(u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

+
Nmax∑

cs=0,ctu=1

2Nmax∑
ds=2,dtu=1

αcs,ctu,ds,dtu

Γ(cs − s)Γ(ctu − t)Γ(ctu − u)
Γ(ds + s)Γ(dtu + t)Γ(dtu + u) , (3.10)

where the limit of the sum is chosen such that the residues are polynomial and the Regge limit
satisfies (3.3). There are further constraints on αcs,ctu,ds,dtu that we summarize in appendix B.
In the end, this ansatz contains 3N2

max + Nmax − 2 independent parameters. In what follows,
we will explore primal bound on Wilson coefficients numerically. This procedure will be
explained in detail next in section 3.2.

However, before going further, let us remind the reader that already in string theory,
there exists a nontrivial α solution for f(s|t, u) in (3.4), namely the scattering of gravitons
in heterotic string theory [61], where the MHV amplitude is

f (hs)(s|t, u) = −8πGN
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

(
1− tu

1 + s

)
(3.11)

which is simply generated from the ansatz with one nontrivial term α0,(1,1),2,(1,1) = 8πGN .
We know that this amplitude satisfies all the constraints, the space of α’s is thus nontrivial.

6To label the (++ → ++) amplitude, we use the all-in notation and call it T++−− and similarly for the
(+− → +−) amplitude.
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3.2 Primal algorithm

Here we describe the numerical primal algorithm used to find extremal stringy gravitational
amplitudes and derive bounds on Wilson coefficients.

Provided the ansatz (3.10), it is clear that the low-energy Wilson coefficients are linear
combinations of the α’s. Explicitly they take the form

ak,j = −x08πGN +
Nmax∑

cs=0,ctu=1

2Nmax∑
ds=2,dtu=1

xcs,ctu,ds,dtuαcs,ctu,ds,dtu , (3.12)

where xi ∈ R and can be computed by expanding the ansatz at low energy. Similar relations
hold for |βR3 |2 and |βϕ|2. The same is true for the partial wave coefficients c++

n,J , c+−
n,J . The

procedure of bounding Wilson coefficients can thus be efficiently implemented using Linear
Programming, and in practice, we used SDPB [62, 63].7 When imposing unitarity, this cannot
be done numerically for all n, J , therefore we truncate the number of constraints by imposing

c++
n,J ≥ 0, c+−

n,J ≥ 0, ∀n ≤ nmax, ∀J. (3.13)

As we will see, in practice, the convergence in nmax is fast. We impose the constraint for
all spins, and due to the linearity of the Regge trajectory, the number of constraints scales
as O(n2

max).8 In practice, we computed the coefficients c++
n,J , c+−

n,J for each term in (3.10)
using (3.7) and (3.8).

We now give an example of the procedure of maximizing the quantity A (A is any ratio
of Wilson coefficients and in the gravitational case we can normalize everything to 8πGN )

(a) At fixed Nmax for the ansatz (3.10), we maximize A by increasing the number of
unitarity constraints nmax. Experimentally, the extremal value converges to a plateau
for nmax ≳ 2Nmax + 10.

(b) We extremize A for increasing size of the ansatz Nmax. For each fixed Nmax, the
resulting amplitude satisfies all the constraints.

(c) We fit the extremal A vs Nmax and when possible, we extrapolate to Nmax → ∞. As
we will see, it is not always clear that A converges to a finite value. The converged
value is then a primal bound on A.

It is straightforward to extend this algorithm to explore a higher-dimensional space of
parameters. This is done by fixing (A1, . . . , An) and maximizing A0.

3.3 Bounds on Wilson coefficients

In this section, we present bounds on various ratios of Wilson coefficients.
In section 3.3.1 we consider bounds on the Wilson coefficients normalized to GN . Some

of the bounds of this type are known to suffer from IR divergencies in four dimensions.
7We also tried linear solvers such as GLPK and Gurobi [64]. However, we observed that as we increase

Nmax, high precision was needed and we turned to SDPB, where arbitrary precision can be used.
8Remember that, due to the polynomial nature of the residue, there are finitely many spins per level n.

Therefore, (3.13) represents a finite set of constraints.
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The simplest example concerns the correction to the graviton three-point coupling which
is bounded as [65]

|βR3 |2

8πGN
≲

log(MHSLIR)
M4

HS
, (3.14)

where MHS is the threshold for higher spin particles and LIR is an IR regulator. This bound
was recently transformed to a sharp inequality in [24] and derived by taking the flat space
limit of AdS [54]. As the ansatz described above is tree-level, the amplitude is manifestly IR
finite. The correction to the graviton three-point coupling |βR3 |2 is the first target for our
primal algorithm. We then proceed by deriving a bound on a0,0, which corresponds to the
contact term R4 in the low-energy effective action. We also normalize it by 8πGN , and the
corresponding upper bound is again known to suffer the IR divergences [23, 24].

Then we consider various bounds on Wilson coefficients ak,j normalized by a0,0 in
section 3.3.2. Such ratios are known to admit dual bounds when assuming ACU (A). In
this work, we explore the space of these coefficients where the extra information about the
leading Regge trajectory j(t) is put in. We use the primal method to impose this constraint
for all t (negative and positive), and the dual algorithm when it is effectively only imposed
for positive t > 0 (B).

3.3.1 Bounds normalized by GN

Correction to the 3-pt coupling — |βR3|2. Let us start by considering the bound on
correction to the graviton three-point coupling |βR3 |2, this example will also allow us to
go through the numerical procedure described in section 3.2. First, we extremize |βR3 |2 at
fixed Nmax as we increase the number of constraints nmax, see step (a). We present the
result in figure 2 (left panel). This figure shows that at fixed Nmax, |βR3 |2

8πGN
converges to a

plateau in nmax. The amplitude extracted at finite Nmax satisfies all the constraints listed
in section 2, see step (b).

In this way, we can explicitly construct stringy tree-level amplitudes with |βR3 |2 ⪅ 3·8πGN .
To extract a primal bound, step (c), we need to extrapolate in Nmax, this is shown in figure 2
(right panel). Clearly, the data does not allow us to determine if it converges to a finite value
as Nmax → ∞. To highlight this point, we performed two fits, one using a power law (in
gray) which converges to a finite value, whereas the second using a logarithm (in dashed)
diverges. A large Nmax analysis is needed to distinguish between the two options.

While deriving this bound, no assumption was made on βϕ, and thus we allowed for a
massless scalar exchange |βϕ| ≥ 0. Imposing the absence of massless scalar exchange βϕ = 0
does not change the qualitative behavior of the bound and the ∼ logNmax behavior remains.

Dimension 8 operator — R4. Next, we consider the leading correction due to a contact
term R4 parameterized by a0,0. It is well known from dispersion relations that this coefficient
is positive (see appendix A for a review). We follow the same procedure as for the correction
to the three-point coupling and present the result in figure 3 for the upper bound. From
the extrapolation, it is clear that it behaves similarly to the correction to the three-point
coupling. As for the lower bound, the bound can be extrapolated and converge to (a0,0)min

8πGN
≈ 0
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Figure 2. Maximum values of the correction to the 3-pt coupling |βR3 |2 normalized by 8πGN . On
the left panel, we present convergence in nmax, i.e., the number of massive states for which unitarity
was imposed. We see that the convergence is fast and quickly stabilizes to a plateau. On the right, we
show the converged value vs. Nmax along with two fits. The dashed line is a divergent log(Nmax) fit,
and the solid line is a convergent power-law fit.
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Figure 3. Maximum values of the first contact term correction a0,0 normalized by 8πGN . On the
left panel, we present convergence in nmax. On the right panel, we show the converged value vs. Nmax
along with two fits. The dashed line is a divergent log(Nmax) fit, and the solid line is a convergent
power-law fit.

and as such does not change compared to the dual bound based on assuming causality,
unitarity, and crossing symmetry.

|βR3|2 vs. a0,0. The result obtained for a0,0 could have been anticipated. Indeed, it was
shown in [23] that |βR3 |2

a0,0
≤ 1. And thus, if the upper bound for |βR3 |2/(8πGN ) diverges as

log(Nmax), so must the upper bound on a0,0/(8πGN ). We can then bound the correction to
the 3-point coupling |βR3 |2 at fixed a0,0. This result is shown in figure 4 at various Nmax. We
do not perform an Nmax → ∞ extrapolation. The shape of the allowed region is similar to the
one obtained in [24] and is consistent with a ∼ logNmax divergence in the large Nmax limit.

3.3.2 Bounds normalized by the total cross-section moment a0,0

In this subsection, we will consider bounds on ak,j

a0,0
. Notice that the coefficients a2k,0 measure

moments of the total cross-section, see appendix A, and are positive.
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Figure 4. Allowed space of Wilson coefficients |βR3 |2 vs. a0,0 at finite Nmax. Our results are consistent
with the bounds diverging as logNmax. Interestingly, this seems to be analogous to the presence of
the IR regulator in the same bounds obtained in [24].
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+RSR (primal)  

causality + unitarity 
+ crossing

Nmax → ∞

10

12

14

16

18

20

Figure 5. The allowed region for the space of Wilson coefficients a2,0, a2,1. In light gray, we report
the dual bound using only ACU (A) with kmax = 16 null constraints. In red colors, we show primal
results obtained using our ansatz for increasing Nmax. The green region is the extrapolated Nmax → ∞
allowed region. In light green, we show a conservative estimate of the extrapolation error.

Dimension 12 operators — D4R4. We start by looking at the coefficients of dimension
12 operators, namely a2,0, a2,1, a2,2, and normalize them by a0,0. Out of the three coefficients,
only two are independent because by crossing we have a2,1 = a2,2. From previous works, we
know that these ratios are bounded from causality and unitarity (A), see [24, 25].

– 14 –



J
H
E
P
1
0
(
2
0
2
4
)
0
7
5

++

0 1
100

1
50

1
40

1
30

1
20

1
18

1
16

1
14

1
12

1
11

1
10

0.100

0.102

0.104

0.106

0 1
100

1
50

1
40

1
30

1
20

1
18

1
16

1
14

1
12

1
11

1
10

0.12

0.13

0.14

0.15

0.16

++

<latexit sha1_base64="cd6XFTg6EsRm1ncYp9G+pvHlsJs=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU01E0WPRiyepYD+gDWGz3bRLN5uwOyktIf/EiwdFvPpPvPlv3LY5aPXBwOO9GWbmBYngGhznyyqtrK6tb5Q3K1vbO7t79v5BS8epoqxJYxGrTkA0E1yyJnAQrJMoRqJAsHYwup357TFTmsfyEaYJ8yIykDzklICRfNt2z+79rAdsAllEJnnu21Wn5syB/xK3IFVUoOHbn71+TNOISaCCaN11nQS8jCjgVLC80ks1SwgdkQHrGipJxLSXzS/P8YlR+jiMlSkJeK7+nMhIpPU0CkxnRGCol72Z+J/XTSG89jIukxSYpItFYSowxHgWA+5zxSiIqSGEKm5uxXRIFKFgwqqYENzll/+S1nnNvaw5DxfV+k0RRxkdoWN0ilx0heroDjVQE1E0Rk/oBb1amfVsvVnvi9aSVcwcol+wPr4BrpSTsw==</latexit>

1/Nmax
<latexit sha1_base64="cd6XFTg6EsRm1ncYp9G+pvHlsJs=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU01E0WPRiyepYD+gDWGz3bRLN5uwOyktIf/EiwdFvPpPvPlv3LY5aPXBwOO9GWbmBYngGhznyyqtrK6tb5Q3K1vbO7t79v5BS8epoqxJYxGrTkA0E1yyJnAQrJMoRqJAsHYwup357TFTmsfyEaYJ8yIykDzklICRfNt2z+79rAdsAllEJnnu21Wn5syB/xK3IFVUoOHbn71+TNOISaCCaN11nQS8jCjgVLC80ks1SwgdkQHrGipJxLSXzS/P8YlR+jiMlSkJeK7+nMhIpPU0CkxnRGCol72Z+J/XTSG89jIukxSYpItFYSowxHgWA+5zxSiIqSGEKm5uxXRIFKFgwqqYENzll/+S1nnNvaw5DxfV+k0RRxkdoWN0ilx0heroDjVQE1E0Rk/oBb1amfVsvVnvi9aSVcwcol+wPr4BrpSTsw==</latexit>

1/Nmax

<latexit sha1_base64="kkYfHEkJaFTdmfjaYt65H6sssaw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A3nOM+g==</latexit>r <latexit sha1_base64="kkYfHEkJaFTdmfjaYt65H6sssaw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A3nOM+g==</latexit>r

Figure 6. Examples of convergences in 1/Nmax along the boundary of figure 5. r is the distance
between the ‘cross’ and the points. On the left panel, we observe ‘good’ linear convergence. In contrast,
on the right panel, the convergence is extremely slow.

Let us first derive the primal bound using the ansatz (3.10). We present the result in
figure 5 along with the bound assuming only ACU (A). As before, the convergence in nmax is
fast and easy. Regarding the convergence in Nmax we observe different behaviors along the
boundary. In some regions, we observe a ‘fast’ convergence. This corresponds to the points
on the boundary where the dark green goes up to the boundary in figure 5. The convergence
is harder in other regions and seems to diverge even though we know that a finite bound
exists. We show examples of convergence in Nmax in figure 6.

To overcome this issue, we use a fit of the form r = a + bN c
max. First, we included only

points along the boundary that converge at least linearly in 1/Nmax, then we used convexity
to close the region. This leads to the boundary of the light green region in figure 5. To get
an idea of the uncertainty in this procedure, we added points that ‘look’ linear for Nmax ≥ 15
and used a linear fit. This leads to the darker green region in figure 5 which can be thought
of as an ‘optimistic’ fit. To remain conservative, one should consider the full green region.

Next, we bound the same Wilson coefficients with the dual method supplemented by
the constraints on the leading Regge trajectory. For positive t, it leads to the maximal
spin bound on the spectrum (B)

J(m2) ≤ 2m2 + 2. (3.15)

Imposing (C) in the form of a finite number of RSR does not lead to a stronger bound.
We compare the primal bound, the dual bound using only ACU, and the one with the

maximal spin constraint in figure 7. From this plot, one clearly sees that RSR has little to no
effect and the gap seems to close in most regions of the boundary. The dual bounds are also
obtained with finitely many null constraints and the gap would close further as kmax → ∞.
Note that the primal ansatz has the extra assumption of equidistant spectrum m2

n = n. We
check that this constraint has no effect on the allowed region in the dual approach.
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It is interesting to see where special amplitudes lie in this region. The simplest amplitude
is perhaps the massive spin-0 exchange amplitude given by9

fspin 0 =
8πGN

stu
+ λ2

m6
1

m2 − s
, (3.16)

which leads to the ratios of Wilson coefficients(
a2,0
a0,0

,
a2,1
a0,0

)
=
( 1

m4 , 0
)

(3.17)

and this populate the line a2,1 = 0 as one vary the mass m ∈ [1,∞). Clearly, this amplitude
satisfies (3.15) but not RSR.

We can also understand how the line a2,0
a0,0

= 1 is excluded by imposing (3.15). From
the sum rules for ak,0, (see (A.4)), the only allowed spectrum is at m2 = 1. Then, we can
explicitly construct the amplitude at the upper-right kink. It is given by an infinite tower
of spins exchanged at m2 = 1

fextr(s|t, u) = 8πGN

stu
+ 1

(1− s)(1− t)(1− u) +
λ

1− s
+ g

(1− t)(1− u) , (3.18)

with
λ = −2 log(2)

3 , g = 1628532− 2349480 log(2)
7096320 log(2)− 4918777 . (3.19)

Indeed, by computing the ratio of Wilson coefficients for this amplitude, we obtain(
a2,0
a0,0

,
a2,1
a0,0

)
=
(
1,

1 + g

1 + g + λ

)
(3.19)
≈ (1, 2.367), (3.20)

which is precisely the location of the upper-right corner. In appendix C, we show that
this amplitude is unitary and has no spin 0 and spin 5 exchanges. Moreover, the line at
a2,0
a0,0

= 1 is given by scanning over λ. As it is clear from the equation above, except at the
spin 0 point (λ → ∞), the amplitudes on this line are given by an infinite tower of spin
at m2 = 1 and cannot satisfy the polynomial residue constraint J ≤ 2m2 + 2 (3.15). This
is exactly what we observe in figure 7.

One advantage of the primal approach is that at any finite Nmax, the amplitude is known
explicitly. It is therefore interesting to study the physical properties of extremal solutions
and how they evolve along the boundary. In particular, we can analyze the contribution of
various spins and channels to the ak,0 sum rule which reads

ak,0 =
1
π

∫ ∞

1

dm2

m2k+10

 ∞∑
J=0,2,...

ρ++
J (m2) +

∞∑
J=4,5...

(−1)kρ+−
J (m2)

 , (3.21)

=
∞∑

J=0,2,...

Jρ++
J Kk + (−1)k

∞∑
J=4,5,...

Jρ+−
J Kk, (3.22)

9In appendix C, we show that this amplitude is unitary. Note that this amplitude has intercept j0 = 3.
However, it satisfies all the sum rules used in the dual approach. See appendix C for further discussion.
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J  2m2 + 2

Figure 7. Comparison of various assumptions and the corresponding bounds for the Wilson coefficients
a2,0, a2,1. In gray, we imposed the standard bootstrap constraints (A) in the dual approach, in red,
we further imposed the maximal spin constraint (B). In green, we show the bound obtained using
the primal approach which manifestly satisfies (C), see also figure 5. For the dual bounds, we used
kmax = 6. We also indicated special amplitudes: fextr given by (3.18) with λ, g given by (3.19), and
the spin 0 exchange at m2 = 1 given by fspin 0 in (3.16).

where in the second line we introduced the notation J. . .Kk = 1
π

∫∞
1

dm2

m2k+10 (. . .) for the integral
over m2.

Setting k = 0, we get

1 = a−1
0,0

 ∞∑
J=0,2,...

Jρ++
J K0 +

∞∑
J=4,5,...

Jρ+−
J K0

 . (3.23)

In figure 8, we show various contributions to the sum rule along the boundary.10 To this
end, we define an angle variable θ which spans the boundary, see figure 8(bottom-left) for
its definition. We observe that the lowest spin always dominates along the boundary in the
(+−) channel. This is not true in the (++) channel where on the upper diagonal J = 2
dominates. On the lower-right panel of figure 8, we highlight that along the boundary ∼ 90%
of the sum rule comes from the lowest spin contribution in each channel.

Dimension 16 operators — D8R4. We next consider bounds on the a4,j coefficients
normalized by a0,0. At this level, there are 3 independent coefficients a4,0, a4,1 and a4,2 which
carve a finite region in 3d space. We proceed similarly as in the case of dimension 12 operators.
In figure 9, we present a section of the allowed space at a4,0/a0,0 = 1/2 and the entire 3d region
using the primal ansatz. The convergence in Nmax is fast except at the origin a4,2 = a4,1 = 0.

10Here we use the amplitude obtained with Nmax = 20.
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Figure 8. Spectral density moments along the boundary of the allowed region in the space of ratios of
Wilson coefficients

(
a2,1
a0,0

,
a2,0
a0,0

)
for the amplitude with Nmax = 20. Points at the boundary are labeled

by an angle θ defined in the lower-left panel. We indicated special points with A, B, C. From (3.23),
all contributions sum to 1, which is indicated in the plots by a black dotted line. In the lower-right
panel, we present the lowest spin contribution to the spectral density in each channel.

In the existing literature, the dual bounds using only causality, unitarity, and crossing
symmetry were never presented. Instead, various authors [22, 23, 25], considered bounds
on the homogeneous ratios a4,1

a4,0
vs. a4,2

a4,0
. In this space, [23] highlighted that all theories

populate a smaller region dubbed the low-spin dominance region obtained assuming that
higher spin contributions to the spectral densities ρJ are suppressed. The same effect appears
for the a2,j coefficients, and in a subsequent work [24], the authors emphasized that bounds
on the homogeneous ratios are dominated by a small region close to the free theory point
when considering the inhomogeneous ratios. Here, we observe the same effect. A similar
observation was made in [25], where the authors realized that by fixing the value a4,0

a0,0
, the

bound on ratios of homogeneous coefficients shrinks significantly (this corresponds to a
section in the 3d region in figure 9).

Second, we bound the section a4,0
a0,0

= 1
2 using the dual method by imposing the maximal

spin constraint (B) with (3.15). We present the result in figure 10. They present a clear
overlap between the assumptions (B) and (C), i.e., RSR has little to no effect. We also
checked that imposing equidistant spectrum m2

n = n in addition to J ≤ 2m2 + 2 does not
change the shape of the allowed region and cannot create a gap between the primal and dual
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Figure 9. The allowed region for the Wilson coefficients a4,0, a4,1, a4,2. In light gray, we report the
dual bound using only causality, unitarity, and crossing (ACU) (A). In color, we present the primal
bounds that also satisfy (B) and (C) using increasing Nmax. The green region is the extrapolated
bound Nmax → ∞. On the right, we show the result for the 3d region and, on the left, we present an
example of the section at a4,0/a0,0 = 1/2. At finite Nmax, the convergence is fast except close to the
origin. The 3d region is built for 0.05 ≤ a4,0

a0,0
≤ 0.95 at Nmax = 20 + extrapolation was used when

necessary.

regions. In this figure 10, we also draw the line of low spin dominance LSD∞ defined by

LSDα : Jρ++
0 Kk

Jρ++
J>0Kk

≥ α and Jρ+−
4 Kk

Jρ+−
J>4Kk

≥ α. (3.24)

It is also interesting to study the content of the extremal primal amplitudes and we
proceed similarly to the case of a2,k. We present the result in figure 11, and except for the
region close to the upper-right corner, the lowest spin always dominates in each channel.
Furthermore, as for the case of a2,k, the sum of the lowest spin spectral density in each
channel constitutes ∼ 90% of the sum rules all along the boundary.

4 Open strings: scattering of massless scalars

In this section, we consider the same problem but for open strings: we assume that T (s, t)
has poles only in the s- and t-channels; it obeys the crossing relation T (s, t) = T (t, s); in
the Regge limit, it takes the form (1.1) with

j(t) = t, (4.1)
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<latexit sha1_base64="vGYYsTm81g6C6G+3eVVOxvML1/E=">AAAB+HicbVDLSgNBEJz1GeMjqx69DEbBU9gVRY8BLx4jmAckS5id9CZDZh/M9Ipx2S/x4kERr36KN//GSbIHTSxoKKq66e7yEyk0Os63tbK6tr6xWdoqb+/s7lXs/YOWjlPFocljGauOzzRIEUETBUroJApY6Eto++Obqd9+AKVFHN3jJAEvZMNIBIIzNFLfrgT9rIfwiJkpled9u+rUnBnoMnELUiUFGn37qzeIeRpChFwyrbuuk6CXMYWCS8jLvVRDwviYDaFraMRC0F42Ozynp0YZ0CBWpiKkM/X3RMZCrSehbzpDhiO96E3F/7xuisG1l4koSREiPl8UpJJiTKcp0IFQwFFODGFcCXMr5SOmGEeTVdmE4C6+vExa5zX3subcXVTrJ0UcJXJEjskZcckVqZNb0iBNwklKnskrebOerBfr3fqYt65Yxcwh+QPr8wfSuJPA</latexit>

fextr

<latexit sha1_base64="EsV3NV1o0Ad8ECaXoFCdRL/JYB8=">AAAB+nicbVBNS8NAEN34WetXqkcvi1XwVBJR9Fjw4rGC/YA2hM120y7dbMLuRC0x/hMvHhTx6i/x5r9x2+agrQ8GHu/NMDMvSATX4Djf1tLyyuraemmjvLm1vbNrV/ZaOk4VZU0ai1h1AqKZ4JI1gYNgnUQxEgWCtYPR1cRv3zGleSxvYZwwLyIDyUNOCRjJtyuhn/WAPUCmEy7zJyf37apTc6bAi8QtSBUVaPj2V68f0zRiEqggWnddJwEvIwo4FSwv91LNEkJHZMC6hkoSMe1l09NzfGyUPg5jZUoCnqq/JzISaT2OAtMZERjqeW8i/ud1UwgvvYzLJAUm6WxRmAoMMZ7kgPtcMQpibAihiptbMR0SRSiYtMomBHf+5UXSOq255zXn5qxaPyriKKEDdIhOkIsuUB1dowZqIoru0TN6RW/Wo/VivVsfs9Ylq5jZR39gff4AJHmUeQ==</latexit>

fspin 0

<latexit sha1_base64="shCTNEjdBMdwH/xt9WCBlrPZaP0=">AAAB+3icbVBNSwMxEM3Wr1q/1nr0EqyCp7Irih4LXjxWsLXQLks2zbah2WRJZqVl6V/x4kERr/4Rb/4b03YP2vpg4PHeTDLzolRwA5737ZTW1jc2t8rblZ3dvf0D97DaNirTlLWoEkp3ImKY4JK1gINgnVQzkkSCPUaj25n/+MS04Uo+wCRlQUIGksecErBS6FbjMIesB2wMOU6VYNNp6Na8ujcHXiV+QWqoQDN0v3p9RbOESaCCGNP1vRSCnGjg1D5Y6WWGpYSOyIB1LZUkYSbI57tP8ZlV+jhW2pYEPFd/T+QkMWaSRLYzITA0y95M/M/rZhDfBDmXaQZM0sVHcSYwKDwLAve5ZhTExBJCNbe7YjokmlCwcVVsCP7yyaukfVH3r+re/WWtcVrEUUbH6ASdIx9dowa6Q03UQhSN0TN6RW/O1Hlx3p2PRWvJKWaO0B84nz/KV5TU</latexit>

ftu pole

<latexit sha1_base64="otz1mNui9jTyRGfOZtiCLr3mV/Y=">AAACAHicbZDLSsNAFIYn9VbrLerChZvBorgoZVIquiy4cVnBXqANYTKdtEMnkzAzEUrIxldx40IRtz6GO9/GSZuFtv4w8PGfczhzfj/mTGmEvq3S2vrG5lZ5u7Kzu7d/YB8edVWUSEI7JOKR7PtYUc4E7WimOe3HkuLQ57TnT2/zeu+RSsUi8aBnMXVDPBYsYARrY3n2yTCQmKTYS5u1RpblgGooyzy7iupoLrgKTgFVUKjt2V/DUUSSkApNOFZq4KBYuymWmhFOs8owUTTGZIrHdGBQ4JAqN50fkMFz44xgEEnzhIZz9/dEikOlZqFvOkOsJ2q5lpv/1QaJDm7clIk40VSQxaIg4VBHME8DjpikRPOZAUwkM3+FZIJNItpkVjEhOMsnr0K3UXeu6ui+WW1dFHGUwSk4A5fAAdegBe5AG3QAARl4Bq/gzXqyXqx362PRWrKKmWPwR9bnDwJole8=</latexit>a4,2
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="FSCf7EsOulxOXh20Cy5+HECy/wc=">AAAB/HicdVDJSgNBEO2JW4xbNEcvjUHIaZiEaDwG9ODBQ0SzQBJCT6cnadLTM3TXiMMw/ooXD4p49UO8+Td2FsH1QcHjvSqq6rmh4Boc593KLC2vrK5l13Mbm1vbO/ndvZYOIkVZkwYiUB2XaCa4ZE3gIFgnVIz4rmBtd3I69ds3TGkeyGuIQ9b3yUhyj1MCRhrkCz1gt5BcXJ2lg6THpQdxOsgXHbtaqR7XKvg3KdvODEW0QGOQf+sNAxr5TAIVROtu2QmhnxAFnAqW5nqRZiGhEzJiXUMl8ZnuJ7PjU3xolCH2AmVKAp6pXycS4msd+67p9AmM9U9vKv7ldSPwTvoJl2EETNL5Ii8SGAI8TQIPuWIURGwIoYqbWzEdE0UomLxyJoTPT/H/pFWxy0e2c1kt1kuLOLJoHx2gEiqjGqqjc9RATURRjO7RI3qy7qwH69l6mbdmrMVMAX2D9foB0qiVdw==</latexit>

LSD1

<latexit sha1_base64="2sH3jrdUfK5ZL7fXtCTZWv/VWJs=">AAAB9HicdVDJSgNBEO2JW4xb1KOXxigIwjAzROMx4EU8RTALJGPo6dQkTbpnJt09gRDyHV48KOLVj/Hm39hZBNcHBY/3qqiqFyScKe0471ZmaXlldS27ntvY3Nreye/u1VScSgpVGvNYNgKigLMIqpppDo1EAhEBh3rQv5z69SFIxeLoVo8S8AXpRixklGgj+dctDgPsiTsPn3rtfMGxi17xvOTh38S1nRkKaIFKO//W6sQ0FRBpyolSTddJtD8mUjPKYZJrpQoSQvukC01DIyJA+ePZ0RN8bJQODmNpKtJ4pn6dGBOh1EgEplMQ3VM/van4l9dMdXjhj1mUpBoiOl8UphzrGE8TwB0mgWo+MoRQycytmPaIJFSbnHImhM9P8f+k5tnume3cFAvlo0UcWXSADtEJclEJldEVqqAqomiA7tEjerKG1oP1bL3MWzPWYmYffYP1+gEHAZDh</latexit>

J  2m2 + 2

Figure 10. Bounds for a4,1, a4,2 at a4,0
a0,0

= 1/2 from various assumptions. In gray, the usual bootstrap
assumptions are considered (ACU) (A). In red, we further imposed the maximal spin constraint (B),
and, in green, superpolynomial softness (C) is imposed using the primal approach figure 9 (left). For
the dual bounds, we used kmax = 6. We also indicated special amplitudes: fextr given by (3.18) (but
with the mass of the exchanged tower of particles given by m8 = 2), the tu-pole amplitude, and the
spin 0 exchange amplitude with mass m8 = 2, see table 2.

where as before we set m2
gap = 1.

The main difference compared to the case of closed strings is that we find that unitarity
excludes any ansatz with a finite number of satellite terms, see appendix D. Due to this
fact, we were not able to set up a systematic primal bootstrap scheme to derive bounds
on Wilson coefficients for the open string case.

There are however nontrivial solutions with infinitely many satellite terms which satisfy
unitarity. We find a three-parameter family of such unitarity amplitudes which can be
represented through a simple worldsheet integral. They exhibit novel high-energy, fixed-angle
behavior.

4.1 Ansatz

As before we consider the amplitudes with exactly equidistant spectrum m2 = n, polynomial
residues, that satisfy crossing. For the open string case where the amplitude only has poles
in the s- and t-channels we get the following ansatz

T (s, t) =
∞∑

cs,ct=0

cs+ct∑
cu=max(cs,ct)

αcs,ct,cu

Γ(cs − s)Γ(ct − t)
Γ(cu − s − t) , αcs,ct,cu = αct,cs,cu (4.2)
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<latexit sha1_base64="IjLhb6WJ3r/0Sx28nchpU4AipKQ=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0UoqGUiii4LbsRVBfuAJIbJdNIOnTyYmQglZO3GX3HjQhG3foE7/8Zpm4W2HrhwOOde7r3HTziTCqFvo7SwuLS8Ul6trK1vbG6Z2zttGaeC0BaJeSy6PpaUs4i2FFOcdhNBcehz2vGHV2O/80CFZHF0p0YJdUPcj1jACFZa8sx9JxCYZLbtiEHs3dxnRye563ooz7CXoWOU555ZRXU0AZwnVkGqoEDTM7+cXkzSkEaKcCylbaFEuRkWihFO84qTSppgMsR9amsa4ZBKN5u8ksNDrfRgEAtdkYIT9fdEhkMpR6GvO0OsBnLWG4v/eXaqgks3Y1GSKhqR6aIg5VDFcJwL7DFBieIjTTARTN8KyQDrbJROr6JDsGZfnift07p1Xke3Z9VGrYijDPbAAagBC1yABrgGTdACBDyCZ/AK3own48V4Nz6mrSWjmNkFf2B8/gB4NJoG</latexit>

[[⇢+�
J ]]0
a0,0

<latexit sha1_base64="An4gAPWLw5qxd/d7c9J+muXZ5Eg=">AAACCnicbVDLSsNAFJ3UV62vqEs30SIUKmUiii4LbsRVBfuAJIbJdNIOnWTCzEQoIWs3/oobF4q49Qvc+TdO2yy09cCFwzn3cu89QcKoVBB+G6Wl5ZXVtfJ6ZWNza3vH3N3rSJ4KTNqYMy56AZKE0Zi0FVWM9BJBUBQw0g1GVxO/+0CEpDy+U+OEeBEaxDSkGCkt+eahGwqEM8dxxZD7N/dZvZ57ng/zDPkZPIF57ptV2IBTWIvELkgVFGj55pfb5ziNSKwwQ1I6NkyUlyGhKGYkr7ipJAnCIzQgjqYxioj0sukruXWslb4VcqErVtZU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLaJykisR4tihMmaW4NcnF6lNBsGJjTRAWVN9q4SHS2SidXkWHYM+/vEg6pw37vAFvz6rNWhFHGRyAI1ADNrgATXANWqANMHgEz+AVvBlPxovxbnzMWktGMbMP/sD4/AF1DpoE</latexit>

[[⇢++
J ]]0
a0,0

<latexit sha1_base64="tedUETVNwtFXWOIc4BsXVep+CuA=">AAAB/XicbVDJSgNBEO1xjXGLy83LYBAigTAjih4DXjxGMAskQ+jp1CRNenqG7hoxDom/4sWDIl79D2/+jZ3loIkPCh7vVVFVz48F1+g439bS8srq2npmI7u5tb2zm9vbr+koUQyqLBKRavhUg+ASqshRQCNWQENfQN3vX4/9+j0ozSN5h4MYvJB2JQ84o2ikdu6wUCyejkYthAdMWY9KCWLYzuWdkjOBvUjcGcmTGSrt3FerE7EkBIlMUK2brhOjl1KFnAkYZluJhpiyPu1C01BJQ9BeOrl+aJ8YpWMHkTIl0Z6ovydSGmo9CH3TGVLs6XlvLP7nNRMMrryUyzhBkGy6KEiEjZE9jsLucAUMxcAQyhQ3t9omAUUZmsCyJgR3/uVFUjsruRcl5/Y8Xy7M4siQI3JMCsQll6RMbkiFVAkjj+SZvJI368l6sd6tj2nrkjWbOSB/YH3+AB8glPI=</latexit>

(++) channel
<latexit sha1_base64="1BF0MIiGYtRk52uPzHMUHYgoftY=">AAAB/XicbVDLSgNBEJyNrxhf8XHzshiEiBh2RdFjwIvHCOYByRJmJ51kcHZ2mekV45L4K148KOLV//Dm3zhJ9qCJBQ1FVTfdXX4kuEbH+bYyC4tLyyvZ1dza+sbmVn57p6bDWDGoslCEquFTDYJLqCJHAY1IAQ18AXX/7mrs1+9BaR7KWxxE4AW0J3mXM4pGauf3iscnR6NRC+EBE9anUoIYtvMFp+RMYM8TNyUFkqLSzn+1OiGLA5DIBNW66ToReglVyJmAYa4Va4gou6M9aBoqaQDaSybXD+1Do3TsbqhMSbQn6u+JhAZaDwLfdAYU+3rWG4v/ec0Yu5dewmUUI0g2XdSNhY2hPY7C7nAFDMXAEMoUN7faJgFFGZrAciYEd/bleVI7LbnnJefmrFAupnFkyT45IEXikgtSJtekQqqEkUfyTF7Jm/VkvVjv1se0NWOlM7vkD6zPHyJKlPQ=</latexit>

(+�) channel

<latexit sha1_base64="9Wm7g6LrqKycFa5oAhN7fbN+ytk=">AAACBXicbVDLSsNAFJ34rPUVdamLYBG6kDIRRZcFN+Kqgn1AEsJkOmmHTmbCzEQoIRs3/oobF4q49R/c+TdO2yy09cCFwzn3cu89Ucqo0hB+W0vLK6tr65WN6ubW9s6uvbffUSKTmLSxYEL2IqQIo5y0NdWM9FJJUBIx0o1G1xO/+0CkooLf63FKggQNOI0pRtpIoX3kxxLh3PN8ORThbRCEsMhRmMNTWBShXYMNOIWzSNyS1ECJVmh/+X2Bs4RwjRlSynNhqoMcSU0xI0XVzxRJER6hAfEM5SghKsinXxTOiVH6TiykKa6dqfp7IkeJUuMkMp0J0kM1703E/zwv0/FVkFOeZppwPFsUZ8zRwplE4vSpJFizsSEIS2pudfAQmVi0Ca5qQnDnX14knbOGe9GAd+e1Zr2MowIOwTGoAxdcgia4AS3QBhg8gmfwCt6sJ+vFerc+Zq1LVjlzAP7A+vwB+8yYJg==</latexit>

[[⇢J ]]0
a0,0

<latexit sha1_base64="HpOqT3ECyAeSzETuuqlO7Iao4KU=">AAACCnicbVDLSsNAFJ3UV62vqEs30SJUiiWRim6EghtxVcE+oI1hMp22QyczYWYilJC1G3/FjQtF3PoF7vwbJ20EbT0wcO4593LnHj+kRCrb/jJyC4tLyyv51cLa+sbmlrm905Q8Egg3EKdctH0oMSUMNxRRFLdDgWHgU9zyR5ep37rHQhLObtU4xG4AB4z0CYJKS565X+qKIffi6ws7uYvL5aT8U1fT+jg58syiXbEnsOaJk5EiyFD3zM9uj6MowEwhCqXsOHao3BgKRRDFSaEbSRxCNIID3NGUwQBLN56ckliHWulZfS70Y8qaqL8nYhhIOQ583RlANZSzXir+53Ui1T93Y8LCSGGGpov6EbUUt9JcrB4RGCk61gQiQfRfLTSEAiKl0yvoEJzZk+dJ86TinFbsm2qxVsriyIM9cABKwAFnoAauQB00AAIP4Am8gFfj0Xg23oz3aWvOyGZ2wR8YH98J35kf</latexit>

(⇢++
J=0 + ⇢+�

J=4)

<latexit sha1_base64="SoCJkGUYCgcSdU7sCy+LIU/Der0=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCQSyJVHQjFNyIqwr2AW0Mk+mkHTqZCTMToYZ8iRsXirj1U9z5N07bLLT1wIXDOfdy7z1BzKjSjvNtFVZW19Y3ipulre2d3bK9t99WIpGYtLBgQnYDpAijnLQ01Yx0Y0lQFDDSCcbXU7/zSKSigt/rSUy8CA05DSlG2ki+Xe7LkfDT26t69pCenGa+XXFqzgxwmbg5qYAcTd/+6g8ETiLCNWZIqZ7rxNpLkdQUM5KV+okiMcJjNCQ9QzmKiPLS2eEZPDbKAIZCmuIaztTfEymKlJpEgemMkB6pRW8q/uf1Eh1eeinlcaIJx/NFYcKgFnCaAhxQSbBmE0MQltTcCvEISYS1yapkQnAXX14m7bOae15z7uqVRjWPowgOwRGoAhdcgAa4AU3QAhgk4Bm8gjfryXqx3q2PeWvBymcOwB9Ynz/79pKQ</latexit>

⇢+�
J=4

<latexit sha1_base64="CW2qJRCcKdWQ05iugU9jn9nGVyg=">AAAB+HicbVBNS8NAEJ34WetHox69LBahUCiJKHoRCl7EUwX7AW0Mm+22XbrZhN2NUEN+iRcPinj1p3jz37htc9DWBwOP92aYmRfEnCntON/Wyura+sZmYau4vbO7V7L3D1oqSiShTRLxSHYCrChngjY105x2YklxGHDaDsbXU7/9SKVikbjXk5h6IR4KNmAEayP5dqknR5Gf3l452UNarWa+XXZqzgxombg5KUOOhm9/9foRSUIqNOFYqa7rxNpLsdSMcJoVe4miMSZjPKRdQwUOqfLS2eEZOjFKHw0iaUpoNFN/T6Q4VGoSBqYzxHqkFr2p+J/XTfTg0kuZiBNNBZkvGiQc6QhNU0B9JinRfGIIJpKZWxEZYYmJNlkVTQju4svLpHVac89rzt1ZuV7J4yjAERxDBVy4gDrcQAOaQCCBZ3iFN+vJerHerY9564qVzxzCH1ifP/LEkoo=</latexit>

⇢++
J=0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
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Figure 11. The spectral density moment along the boundary of the allowed region in the space(
a4,2
a0,0

,
a4,1
a0,0

)
at fixed a4,0

a0,0
= 1

2 for the amplitude with Nmax = 20. Points at the boundary are labeled
by a4,1

a0,0
. The upper branch is depicted in solid and the lower in dashed, as shown in the lower-left

panel. From (3.23), all contributions sum to 1, indicated in the plots by a black dotted line. In the
lower-right panel, we present the lowest spin contribution in each channel.

where the lower bound on cu comes from imposing the Regge behavior st+(cs−cu) and the
upper bound from imposing that residues are polynomials.

Not all the terms in the ansatz above are independent. Eliminating the redundancies,
we can write a simpler ansatz

T (s, t) =
∞∑

i=0

i∑
k=0

bik
Γ(i − s)Γ(i − t)
Γ(i + k − s − t) , (4.3)

which was considered by Khuri in [66].
The term k = i = 0 corresponds to the Veneziano amplitude. Notice that the ampli-

tude (4.3) automatically satisfies the maximal spin constraint. The reason is that taking
the discontinuity in s automatically truncates the sum over i and one can trivially check
that Ts ∼ st. In appendix E, we argue that this ansatz is complete for amplitudes with an
equidistant spectrum and linear trajectories.

4.2 Regge sum rules

Checking RSR for the amplitude (4.3) is more subtle. Here we can distinguish two cases:
when the sum over i truncates to ≤ Nmax; when the sum over i goes all the way to infinity.
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Let us first discuss the case i ≤ Nmax. In this case, superpolynomial softness is trivial
because for given i and k, the amplitude behaves in the Regge limit as T (s, t) ∼ st−k.
However, we show in appendix D that all such amplitudes violate unitarity. Thus, we
conclude that no unitary deformations of the Veneziano amplitude with i ≤ Nmax exist.
This makes the method used to derive bounds on Wilson coefficients in the previous section
inapplicable, see section 3.2.

Next, we consider the case when the sum over i goes all the way to infinity. In this
case, a class of unitary deformation was recently found by Cheung and Remmen in [13]. In
particular, they found an amplitude depending on the parameter r

TCR(s, t) =
∞∑

i=0

1
i!

r

r + i

Γ(i − s)Γ(i − t)
Γ(i − s − t) = Γ(−s)Γ(−t)

Γ(−s − t) 3F2(−s,−t, r;−s − t, 1 + r; 1) (4.4)

which for r = 0 reduces to the Veneziano amplitude. Unitarity imposes an additional
constraint on r. For example, in d = 4, it requires that r ≥ −1/2. In the Regge limit,
this deformation takes the form

TCR(s, t) = st + r

(1 + t)s + . . . , (4.5)

where the second term explicitly violates RSR. The mechanism by which this term emerges
is interesting: the Regge limit and sum over i above do not commute. Therefore even though
each term in the sum (4.4) satisfies RSR, the full amplitude given by an infinite sum does not.

To the best of our knowledge, the existence of unitary deformations of the Veneziano
amplitudes that satisfy RSR has not been explicitly demonstrated so far, and it is what we
will show next. We will not try to be exhaustive and it would be very interesting to classify
all such deformations. We leave this problem for future work.

4.3 Unitary amplitudes

We do not know what is a complete set of unitary amplitudes (4.3) that satisfy RSR. Here
we consider a three-parameter family of amplitudes and explore it in detail. The easiest
way to define them is via the worldsheet-like integral

Tc0,c1,λ(s, t) =
∫ 1

0
dz z−s−1(1− z)−t−1(1− 4λ(1− z)z)c0+c1(s+t), 0 ≤ λ ≤ 1

2 , (4.6)

where the restriction on λ comes from imposing RSR.11 Moreover, the Regge behavior (4.1)
further requires that c1λ < 1

4 with the leading Regge behavior given by Tc0,c1,λ(s, t) ≃
Γ(−t)(1 − 4c1λ)t(−s)t.

The integral can be evaluated explicitly and the result takes the following form

Tc0,c1,λ(s, t) = Γ(−s)Γ(−t)
Γ(−s − t) 3F2

(
−s,−t,−c0 − c1(s + t);−s + t

2 ,
1− s − t

2 ;λ
)

. (4.7)

11We do not have a rigorous derivation of this fact and we cannot with full confidence exclude the possibility
that there are interesting amplitudes that satisfy RSR beyond that range. Notice that analyticity of the
amplitude constraints λ ≤ 1 for real λ. Similarly, we do not analyze here the case of complex (c0, c1, λ), or the
case where we insert multiple deformation factors into the worldsheet integral.
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For λ = 0 it becomes the Veneziano amplitude T0,0,0 = Γ(−s)Γ(−t)
Γ(−s−t) . Similar amplitudes

have been considered in the past: Matsuda [67] considered the case c1 = 1/2, c0 = 0;
Mandelstam [68] considered the case c1 = 0. For these particular cases, expansion coefficients
in (4.3) can be found explicitly

• For c1 = 1/2, c0 = 0 (the Matsuda case), the coefficients read

bik = λi

i!
(−1)k2i−kΓ(i + k + 1)
Γ(k + 1)Γ(i − k + 1) . (4.8)

• For c1 = 0 (the Mandelstam case), the coefficients read

bik =

 bii = λi

i!
4iΓ(i−c0)
Γ(−c0)

bik = 0 , k ̸= i
. (4.9)

Let us also mention a couple of special cases which further simplify dramatically

T0,1/2,1/2(s, t) = 1
2
Γ(− s

2)Γ(−
t
2)

Γ(− s+t
2 )

, (4.10)

T−1/2,1/2,1/2(s, t) = 1
2
Γ(− s

2)Γ(−
t−1
2 ) + Γ(− s−1

2 )Γ(− t
2)

Γ(− s+t−1
2 )

. (4.11)

These amplitudes satisfy unitarity, however they have c1λ = 1
4 and their Regge limit T (s, t) ∼

st/2 differs from (4.1).
Our next step is to impose unitarity. It imposes further nontrivial constraints on the

allowed values of (c0, c1, λ). We analyzed unitarity numerically by choosing a grid in the space
of parameters (c0, c1, λ) and explicitly checking unitarity up to level 100. We then further
checked unitarity at level 200, 300, 400. The results are shown in figure 12. In particular,
we find that unitarity implies that c1 ≥ 0. As λ → 0, the number of levels needed to check
unitarity increased and we do not exclude that the lowest level (in blue-violet in figure 12)
might be reduced further as the number of levels goes to infinity. We provide the list of points
satisfying unitarity as supplementary material to this publication. We conclude that there is a
finite region of unitary amplitudes that satisfy RSR in the three-dimensional space (c0, c1, λ).

Verifying unitarity for stringy amplitudes is a famously difficult problem because they
have infinitely many poles. Even for the Veneziano amplitude, the original proof is via the
no-ghost theorem [69]. This was recently revisited in [70] and proven for all superstring
amplitudes in d ≤ 6 directly for the residues. Here, we checked unitarity numerically up to
a certain maximal mass by explicitly computing the residues.

4.4 High-energy, fixed-angle scattering

Here we consider high-energy s, t → ∞, fixed-angle (s/t − fixed) behavior of the amplitude.
Let us consider first the universal limit [6] when both s, t > 0.12 In this limit, the amplitude

12To avoid the poles we as usual go slightly in the complex direction (s, t) → (s(1 + iϵ), t(1 + iϵ)).
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Figure 12. Region in the (c0, c1, λ) space, where unitarity is satisfied. λ = 0 corresponds to the
Veneziano amplitude. The smallest λ for which unitarity was checked is λ = 1

24 . Notice that points
(0, 1/2, λ) and (−1/2, 1/2, λ) are unitary for any 0 ≤ λ ≤ 1

2 (the same is trivially true for (0, 0, λ)). On
the right panel, the lines indicate that unitarity is expected to hold for λ ≤ λ∗, where λ∗ is marked by
a dot.

is large and we find that its leading asymptotic takes the following form

lim
s,t→∞

logTc0,c1,λ(s, t)= (s+t) log(s+t)−s logs−t log t

+c1
(
t log 12

(
1−λ̃

s−t

s+t
+
√
1−λ̃

√
1−λ̃

(s−t)2
(s+t)2

)
+{s↔ t}

)
, (4.12)

where it was convenient to introduce the following effective coupling

0 ≤ λ̃ = 4λ(1− λ) ≤ 1. (4.13)

This expression can be derived for example by evaluating (4.6) using a saddle point approxima-
tion as in [4]. Let us comment on several features of this result. First, the leading term does
not depend on c0. Second, for λ = 1/2 or λ̃ = 1 the result simplifies dramatically and we get

lim
s,t→∞

log Tc0,c1,1/2(s, t) = (1− c1)
[
(s + t) log(s + t)− s log s − t log t

]
. (4.14)

Third, for unitary amplitudes, namely c1 ≥ 0, we find that

lim
s,t→∞

log Tc0,c1,λ(s, t) ≤ (s + t) log(s + t)− s log s − t log t, (4.15)

and we further comment on this below. Finally, let us define the asymptotic Regge tra-
jectory jasy(t)

lim
s→∞

lim
s,t→∞

log Tc0,c1,λ(s, t) ≃ jasy(t) log s + . . . . (4.16)

For 0 ≤ λ < 1/2 we find that

j(t) = jasy(t) = t, (4.17)

– 24 –



J
H
E
P
1
0
(
2
0
2
4
)
0
7
5

however for λ = 1
2 we find that

j(t) = t, jasy(t) = (1− c1)t. (4.18)

where recall that j(t) is the Leading Regge trajectory defined by lims→∞ log Tc0,c1,λ(s, t) ≃
j(t) log s. Therefore we see that for λ = 1/2, the two limits are not continuously related.

In the language of [6], j(t) counts the total number of the excess zeros zi(t), and jasy(t)
counts those excess zeros that do not escape to infinity, namely limt→∞

zi(t)
t < ∞, as we

take the limit t → ∞. Therefore jesc(t) ≡ j(t) − jasy(t) ≥ 0 measures the fraction of the
escape zeros. For this picture to be consistent with (4.18) we need c1 ≥ 0. This is precisely
the condition that we found when imposing unitarity!

The result (4.12) sheds interesting light on the bootstrap analysis of [6], where the behavior
of stringy amplitudes at high energies lims,t→∞ log T (s, t) was constrained on general grounds.
In particular, we see that two assumptions made in that paper are too restrictive:

• The asymptotic Regge limit assumption j(t) = jasy(t) made in [6] is explicitly violated
by the amplitudes with λ = 1/2. In other words, there are amplitudes for which the
number of escape zeros is large so that jesc(t) ∼ t.

• The assumption about the support of zeros of Legendre polynomials made in [6] related
to the support of Discβ∂β log T (s, sβ) being restricted to an ellipse extended between
−1 ≤ β ≤ 0 is explicitly violated by the amplitudes with 0 < λ < 1/2. In this case the
support of zeros is given by −1− 2

√
λ̃

1−
√

λ̃
≤ β ≤ 0.

We see therefore that already at the level of amplitudes with equidistant spectrum and
exactly linear Regge trajectories, the result of [6] was based on too restrictive assumptions. It
is a very interesting question: which extra properties of the amplitude lead to the asymptotic
uniqueness of the Veneziano amplitude? For example, the emergent s−u asymptotic crossing
property discussed in [71] is not satisfied by the amplitudes 0 < λ < 1/2 and c1 ̸= 0.
Similarly, it would be very interesting to understand upon which extra assumptions the
property j(t) = jasy(t) holds.

4.5 Results for Wilson coefficients

As the finite sum ansatz is never unitary, we could not use the same primal approach that we
adopted for the closed string amplitudes in section 3.3. However, it is still interesting to see
the region in the space of Wilson coefficients that is covered by the unitary amplitude (4.6).
The status of this exercise is very different compared to what we have done in the previous
section because it could be that by generalizing our model further, a larger region of the
parameter space could be covered.

To define the Wilson coefficients, we expand the general open string amplitude (4.3)
at low energy13

T (s, t) = b0,0
u

st
+ g0,0 + g1,0(s + t) + g2,0(s2 + t2) + 2g2,1st + . . . (4.19)

13Here, we follow the convention of [27].
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Figure 13. The space of Wilson coefficients {g̃2, g̃′
2} covered by the unitary amplitudes (4.6) (in blue).

We highlighted a few special lines. For example,
(
0, 1

2 , λ
)

corresponds to the Matsuda amplitude [67].
In red, we highlighted the only region that has the same high-energy, fixed-angle behavior as the
Veneziano amplitude — see section 4.4. Finally, in orange, we show the line covered by the Cheung-
Remmen amplitude (4.4). The gray region corresponds to the usual bootstrap constraints (ACU) (A)
using kmax = 15.

As before, we consider bounds on ratios of Wilson coefficients. Here, we normalize everything
by g1,0 and define14

g̃2 =
g2,0
g1,0

, g̃′2 =
2g2,1
g1,0

. (4.20)

Furthermore, note that only the i = k = 0 term contributes to the massless pole.
In figure 13, we present the region covered by the amplitude (4.6) and compare it with

the dual bound found in [27] and obtained using only causality, unitarity, and crossing
symmetry (A). The amplitudes (4.6) cover a portion of the allowed space.

In a recent work [28], the authors pointed out that the spin 0 contribution can be removed
from string amplitude to generate new unitary amplitudes. The scalar contribution can be
removed from the amplitude by considering

T>0(s, t) = T (s, t)−
∞∑

n=1

(
cn

s − n
+ cn

t − n

)
, (4.21)

where cn are fixed to remove the spin 0 contribution for all n. The second term, however,
clearly violates RSR and so will the resulting amplitude. It is thus not possible to remove
such contributions without changing the shape of the leading Regge trajectory for negative t.

We can now impose linearity of the leading Regge trajectory for positive t (B) using
the dual formalism. We present the results in figure 14. Adding a finite number of RSR
constraints in the dual approach does not lead to stronger bounds. Similar to what we

14Since the Regge intercept is j0 = 0, the coefficient g1,0 is dispersive (in other words, it can be expressed in
terms of the discontinuity of the amplitude). The constant term g0,0, however, is not dispersive.
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T̂st�pole

��
�=� log 2

Figure 14. Comparison of the spaces of allowed Wilson coefficients {g̃2, g̃′
2} coming from different

assumptions (in gray and red), and the space covered by the unitary amplitudes (4.6) (in blue). The
gray region corresponds to the usual bootstrap constraints (A). In red, we further imposed maximum
spin J ≤ m2 in the dual approach (B). The number of null constraints used to produce this plot is
kmax = 9.

observed in the closed string case, the maximum spin constraint removes part of the region
in the vicinity of g̃2 = 1. This can be expected since the line g̃2 = 1 only allows for exchange
particles of mass m = 1 and is populated by the following amplitudes

T̂st−pole =
1

(1− s)(1− t) + γ

( 1
1− s

+ 1
1− t

)
(4.22)

with γ ≥ − log 2 to satisfy unitarity. The line g̃2 = 1 is described by varying γ ∈ [− log 2,∞).
The upper-right kink saturates this inequality, at which point the spin 0 contribution to the
residue of the amplitude vanishes. Clearly, all these amplitudes violate the maximal spin
constraint for the linear leading Regge trajectory.

5 Conclusions

Charting out the space of stringy tree-level amplitudes is largely an open problem. Among
other things, this space is important because it contains large N QCD and weakly coupled
UV completions of Einstein gravity.

In this paper, we developed the S-matrix approach to this problem. We utilized extra
knowledge about the leading Regge trajectory which we considered to be linear. On one
hand, it puts an upper bound on the maximal spin of exchanged particles at a given mass.
On the other hand, scattering amplitudes in this class exhibit superpolynomial softness:
they decay faster than a polynomial at high energies and fixed angles. This condition can
be conveniently restated as an infinite set of Regge sum rules (2.9) that the discontinuity
of the amplitude has to obey.
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Our basic conclusion is that superpolynomial softness does not lead to any obvious
low-energy imprint as exhibited by the low-energy Wilson coefficients. In contrast to that, the
maximal spin constraint leads to slightly more stringent bounds compared to the standard
bootstrap scheme based on causality and unitarity.15

Let us provide a simple, intuitive explanation of these results. The low-energy Wilson
coefficients are dominated by the contribution from the lightest degrees of freedom that were
integrated out. The maximal spin constraint puts a bound on the maximal spin of these
lightest massive degrees of freedom and thus affects the low-energy Wilson coefficients. The
UV softness, however, can kick in at energies sUV ≫ m2

gap and therefore leave very little
imprint on the low-energy observables. It is not obvious that it is possible to construct
amplitudes with the separation of these two scales (the mass gap, and the energy scale at
which the UV soft behavior becomes visible). For example, in the standard string amplitudes,
the UV softness can be already seen at energies sUV ∼ m2

gap and not just asymptotically.
Our primal ansatz achieves precisely that: it delays the kick-in of the UV soft behavior to
higher energies and thus effectively hides it from a low-energy experimentalist.

In the statements above, we effectively assumed that properties of the leading Regge
trajectory j(t) for positive and negative t are unrelated. It is quite probable that this is
not the case. For example, in all known examples, j(t) is a convex function of t.16 On a
related note, for the amplitudes of the type considered in [20] (assuming they could be made
unitarity for the closed string case as well) we can make the leading Regge trajectory at
negative t arbitrarily flat while keeping it intact for positive t.

For the closed string case, we focused on the MHV scattering of gravitons in four
dimensions with the leading Regge trajectory j(t) = 2 + 2t, where we work in the units
m2

gap = 1.17 We put forward a primal bootstrap scheme, see section 3.2, which is analogous
to the one for the nonperturbative case put forward in [73]. In this scheme, analyticity and
crossing are manifest, but unitarity is a nontrivial constraint that is imposed numerically.
We then derived bounds on Wilson coefficients using both the primal and dual methods. The
results are presented in section 3.3. We found bounds that are slightly more stringent than
the ones that follow simply from analyticity, unitarity, and crossing. We also observed an
approximate agreement between the primal and the dual bounds. This fact is interesting
because in our dual implementation, only a finite number of RSR could be added and they are
not used in the numerics. Our primal ansatz, on the other hand, satisfies infinitely many RSR.

For the open string case, we considered the scattering of massless scalars and took the
leading Regge trajectory to be j(t) = t. As opposed to the closed string case, we showed
in appendix D that there are no unitary ansatzes with a finite number of satellite terms
in this case. There are, however, unitarity amplitudes that satisfy Regge sum rules and

15Strictly speaking, to strengthen this conclusion it would be desirable to extend our primal ansatzes both
for the closed and open string cases. For the closed string case, it would be interesting to construct amplitudes
that do not satisfy RSR more systematically. For example, including terms considered in [20] would be an
obvious way to do it. For the open string case, on the opposite, we would like to have a better understanding
of the landscape of the amplitudes that do satisfy RSR, beyond the example considered in the present paper.

16Convexity of the leading Regge trajectory can be proven for nonperturbative CFTs [72], it is not known if
it holds for planar CFTs which are dual to weakly coupled stringy scattering in AdS.

17Here mgap is the mass of the lightest massive state that appears in the amplitude.
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have infinitely many satellite terms. We constructed a three-parameter deformation of the
Veneziano amplitude (4.6) and we showed that it obeys unitarity in a finite region of the
parameter space (c0, c1, λ). We then explored the space of Wilson coefficients covered by this
family of amplitudes and compared them to the bounds derived using the dual method.

We also found that (4.6) exhibits nontrivial behavior in the high-energy, fixed-angle region
which goes beyond the analysis of [6] in several interesting ways. In particular, we observed
that a technical assumption about the support of excess zeros made in [6] needed to prove the
uniqueness of the high-energy limit of the amplitude does not follow from basic principles, and
is thus genuinely an extra assumption. It would be very interesting to remove it completely.

In appendix F,18 we set up a dual bootstrap version of the analysis [6] assuming the
asymptotic distribution of zeros of Legendre polynomials is supported along the negative
axis. It leads to the following bound

lim
s,t→∞

log T (s, t) ≲ α′ ((s + t) log(s + t)− s log s − t log t) , (5.1)

where α′ is the slope of the Regge trajectory j(t) ≃ α′t at large positive t. This bound should
be understood as either the statement about the residues of the amplitude or as the statement
about the high-energy limit taken slightly away from the real axis.

Using (5.1),19 in appendix G, we derived a lower bound on the behavior of stringy
amplitudes at high energies and fixed physical angles, namely s, t → ∞, s/t fixed and t < 0,

max
|z|≤z0

∣∣∣T(s, t = −s

2(1− z)
)∣∣∣ ≳ e

−α′s log
1+
√

1−z2
0

z0 . (5.2)

This generalizes the Cerulus-Martin bound [74] derived in the context of gapped QFTs to
the case of tree-level stringy amplitudes.

There are many open directions that we think are worth exploring further. These are
naturally related to relaxing various assumptions made in the paper. Stringy amplitudes
that exhibit an accumulation point in the spectrum were analyzed in [15–17, 33–40]. Stringy
amplitudes with the spectrum different from linear were constructed recently in [21]. Stringy
amplitudes, with linear spectrum and no accumulation point that exhibit power-like behavior
at high energies and fixed angles, were explored in [13, 20]. Stringy amplitudes that satisfy
monodromy relations were studied in [30–32]. It would also be very interesting to generalize
our analysis to general number of spacetime dimension d,20 as well as to the scattering of
gauge bosons as in, for example, [76]. Finally, the soft behavior of the amplitudes at high
energies and fixed angles is essential for celestial holography [77], and it would be interesting
to explore the models studied in the present paper in that context.

An important problem in the stringy S-matrix bootstrap program is the construction and
consistency of multi-point amplitudes. Once these are constructed a consistent factorization
must be checked. In the case of string theory, the factorization of multi-particle amplitudes

18We thank Miguel Correia for collaboration on this topic.
19In the original work of Cerulus and Martin [74], the analog of (5.1) is played by the assumption of

polynomial boundedness needed for the Mandelstam representation to hold.
20Bound on Wilson coefficient assuming (ACU) (A) of the graviton amplitude in higher dimension were

recently derived in [75].
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reveals the degeneracy of states not visible at the level of the 2 → 2 amplitudes and the
Hagedorn growth of their density with energy [78]. Similarly, multi-particle amplitudes
with satellite terms studied in this paper can be constructed, and their factorization can
be analyzed [79].21 It would be very interesting to revisit this question and explore it in
conjunction with unitarity and, in particular, for the concrete unitary models studied in
the present paper.
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A Review of the dual method

In this appendix, we review the dual method of [81] used to bound Wilson coefficients using
causality, unitarity, and crossing symmetry. Here, we will focus on the case of the MHV
scattering amplitude of gravitons. For a review of this method in open string scattering,
see for example [27]. See also [12, 29] for a detailed explanation of the dual bootstrap as
an SDP problem.

A.1 Dispersion relation and Wilson coefficients

We start by writing a dispersion relation for f(s|t, u)

f(s|t, u) =
∮

ds′

2πi

f(s′|t,−s′ − t)
s − s′

= 8πGN

stu
+ |βR3 |2

tu

s
− |βϕ|2

1
s

− 1
π

∫ ∞

m2
gap

dm2

 ∞∑
J=0

1 + (−1)J

2
ρ++

J (m2)dJ
0,0

(
1 + 2t

m2

)
m8(s − m2)

+
∞∑

J=4

ρ+−
J (m2)dJ

4,4

(
1 + 2t

m2

)
(t + m2)4(−s − t − m2)


(A.1)

21In [40], the factorization of the multi-point Baker-Coon-Romans amplitude was explored. In [80], multi-
point amplitudes, which generalize the Lovelace-Shapiro model of pion scattering, were analyzed.
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where we recall that the spectral densities ρ++
J (m2), ρ+−

J (m2) are the imaginary part of
the partial amplitude

ImT++−−(s, t, u) =
∞∑

J=0

1 + (−1)J

2 ρ++
J (m2)dJ

0,0

(
1 + 2t

s

)
(A.2)

ImT+−−+(s, t, u) =
∞∑

J=4
ρ+−

J (m2)dJ
4,4

(
1 + 2t

s

)
, (A.3)

and from unitarity ρ++
J (m2), ρ+−

J (m2) ≥ 0. In writing the dispersion relation for f(s|t, u),
we used that the intercept of the amplitude is j0 = 2 and thus f(s|t,−s − t) ≲ 1/|s|2 and
the arc at infinity can be dropped.

By expanding the dispersion relation (A.1) at low energy and comparing it with the
low-energy expansion (3.2), it is straightforward to obtain dispersive representation for the
ak,j and for example

ak,0 =
〈 1
(m2)4+k

〉
++

+
〈

(−1)k

(m2)4+k

〉
+−

(A.4)

a2,1 =
〈 J

m14

〉
++

+
〈22− J

m14

〉
+−

(A.5)

a4,1 =
〈 J

m18

〉
++

+
〈24− J

m18

〉
+−

(A.6)

a4,2 =
〈J (J − 2)

4m18

〉
++

+
〈J (62− J ) + 864

4m18

〉
+−

(A.7)

where J = J(J + 1) and we used the notation

⟨(. . . )⟩++ = 1
π

∫ ∞

m2
gap

dm2

m2

∞∑
J=0

1 + (−1)J

2 ρ++
J (m2)(. . . ) (A.8)

⟨(. . . )⟩+− = 1
π

∫ ∞

m2
gap

dm2

m2

∞∑
J=4

ρ+−
J (m2)(. . . ), (A.9)

to represent the moment with positive measures. It is also convenient to name the function
inside the brackets

ak,j =
〈
a++

k,j (m
2,J )

〉
++

+
〈
a+−

k,j (m
2,J )

〉
+−

. (A.10)

Clearly, for even k (A.4) imposed positivity of ak,0 and the ordering a0,0 ≥ a2,0 ≥ a4,0 ≥ . . . .
No simple statement can be made for the other coefficients and we will use a numerical
method as explained in the next subsections.

A.2 Crossing symmetry and null constraints

The function f(s|t, u) is symmetric in t − u. However, the dispersion relation (A.1) is
performed at fixed t and makes this symmetry not manifest. By imposing the r.h.s. of (A.1)
to be symmetric in t − u, we obtain extra constraints. Explicitly we obtain the ‘master
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null constraint’ 〈
dJ
0,0

(
1 + 2t

m2

)
m6(s − m2)

〉
++

+
〈

m2 dJ
4,4

(
1 + 2t

m2

)
(t + m2)4(u − m2)

〉
+−

=
〈

dJ
0,0

(
1 + 2u

m2

)
m6(s − m2)

〉
++

+
〈

m2 dJ
4,4

(
1 + 2u

m2

)
(u + m2)4(t − m2)

〉
+−

.

(A.11)

By expanding (A.11), at low s, t, we obtain a sequence of null constraints Xk,j = 0. They
are labeled similarly as the coefficients ak,j in (3.2)

0 =
∑

k≥j≥0
Xk,jsk−jtj . (A.12)

They are yet another set of null constraints. Indeed, the same function also appears
in a third amplitude

T+−+−(s, t, u) = ([13]⟨24⟩)4f(t|s, u) = t4f(t|s, u) (A.13)

ImT+−+−(s, t, u) =
∞∑

J=4
ρ+−

J (s)(−1)JdJ
4,−4(1 + 2t/s), (A.14)

and thus the function has another dispersion representation. As the intercept for the
gravitational amplitude is j0 = 2, we write a 3SDR for f(t|s, u) using (A.13)

f(t|s,u)=
∮

ds′

2πi

s3f(t|s′,−s′−t)
(s′)3(s−s′) = 8πGN

stu
+|βR3 |2 su

t
−|βϕ|2

1
t
+c0(s2+u2)+c1su+f0(t)

− 1
π

∫ ∞

m2
gap

dm2

( ∞∑
J

(−1)Jρ+−
J (m2)

dJ
4,−4

(
1+ 2t

m2

)
s3

t4

(
1

m6(s−m2) +
1

(m2+t)3(−s−t−m2)

))
.

(A.15)

The coefficients c0, c1 and the function f0(t) are unknown subtraction terms. The Mandelstam
dependence is only in the kernel and we can thus write

f(s|t, u) = 8πGN

stu
+ |βR3 |2

tu

s
− |βϕ|2

1
s
+ c0(t2 + u2) + c1tu + f0(s)

−
〈
(−1)J

dJ
4,−4

(
1 + 2s

m2

)
t3

s4

(
1

m4(t − m2) +
m2

(m2 + s)3(−s − t − m2)

)〉
+−

(A.16)

Equating with (A.1), we obtain a second ‘master null constraint’. By expanding at low energy,
we get a second sequence of null constraints Yk,j . As the subtraction terms are unknown,
it implies that these null constraints are valid for k − j ≥ 3 and j ≥ 1. We emphasize here
that we need 3 subtractions as the intercept is exactly j0 = 2. If one considers constraints
on an EFT where the UV is nonperturbative, two subtractions are enough [82], see [25]
where such constraints were imposed.

A.3 Dual bootstrap algorithm

To derive dual bounds, we start by writing the bootstrap equation. Without loss of generality,
we will explain the case where the Wilson coefficients are normalized by a0,0 and we set
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mgap = 1 for clarity. We will consider here carving out a 2d region {g, λ} where g, λ can
by any of the ak,j . Let us define the vectors

v⃗++(m2, J) =
(
a++
0,0 (m2, J), g++(m2, J), λ++(m2, J), n⃗++(m2, J)

)
(A.17)

v⃗+−(m2, J) =
(
a+−
0,0 (m2, J), g+−(m2, J), λ+−(m2, J), n⃗+−(m2, J)

)
(A.18)

v⃗o = (−1, 0, 0, 0⃗) (A.19)
v⃗g = (0,−1, 0, 0⃗) (A.20)
v⃗λ = (0, 0,−1, 0⃗) (A.21)

where n⃗(m2, J) is a vector of null constraint n⃗ = (X⃗ , Y⃗) and thus

0⃗ =
〈
n⃗++(m2, J)

〉
++

+
〈
n⃗+−(m2, J)

〉
+−

. (A.22)

We denote the number of null constraints used by kmax, the highest value of k in (A.12).
We can then write the bootstrap equation

0 = a0,0 v⃗0 + g v⃗g + λ v⃗λ +
〈
v⃗++(m2, J)

〉
++

+
〈
v⃗+−(m2, J)

〉
+−

. (A.23)

The corresponding bootstrap problem is to find a functional α⃗ such that

• α⃗ is normalized by α⃗ · v⃗g =

+1 , for upper bound
−1 , for lower bound

• α⃗ maximize α⃗ ·
(
v⃗o + λ

a0,0
v⃗λ

)
. We call the result of this optimization A(λ).

• α⃗ is positive on the spectrum:

α⃗ · v⃗++(m2, J) ≥ 0 for all (m, J) ∈ spectrum
α⃗ · v⃗+−(m2, J) ≥ 0 for all (m, J) ∈ spectrum.

(A.24)

In this case, without specific spectrum assumption (A)

spectrum :

 (++) channel : m ≥ mgap, J = 0, 2, . . .

(+−) channel : m ≥ mgap, J = 4, 5, . . .
(A.25)

For α⃗ solution to the bootstrap problem, applying the functional α⃗ to the bootstrap equation
and using linearity of the average ⟨. . .⟩ we obtain

α⃗ ·
(

v⃗o +
λ

a0,0
v⃗λ

)
± g

a0,0
≤ 0 (A.26)

which leads to the two-sided bound

A−(λ) ≤ g

a0,0
≤ −A+(λ). (A.27)

This procedure can be efficiently implemented in SDPB [62, 63]. It led to all the dual bounds
using only causality, unitarity, and crossing symmetry presented in this work (gray regions in
our plots). This procedure can be extended to carve a 3d region as shown in figure 9.

In practice, we need to truncate the number of constraints in spin. However, as already
observed in [81], the convergence in spin is fast and we truncated at Jmax = 100.
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A.4 Maximal spin constraint in the dual approach

Let us explain next how the maximal spin constraint (B) is imposed in the dual approach.
It changes the sum over spins in (A.1) into

∞∑
J

→
j(m2)∑

J

. (A.28)

This change propagates all the way to the definition of the averages (A.8) and (A.9).
It has the effect of changing the spectrum in the constraint (A.24) on the functional

α. Instead of (A.25), we now have

spectrum with
the maximal spin constraint :

 (++) channel : m ≥ mgap, J = 0, 2, . . . , j(m2)
(+−) channel : m ≥ mgap, J = 4, 5, . . . , j(m2)

, (A.29)

and can be efficiently implemented in SDPB. To do so, we invert the relation j(m2) → m2(j).
Then the constraint has to be applied on all J , and m2 ≥ m2(J). Finally, by a change of
variable m2 = m2(J) + x, the constraint can be written as a polynomial in x and imposed
for all x ≥ 0.

Similarly, we can impose a discrete spectrum. Following the same steps, we have (for
example with an equidistant spectrum)

equidistant spectrum with
the maximal spin constraint :

 (++) channel : m2 = n ∈ Z+, J = 0, 2, . . . , j(n)
(+−) channel : m2 = n ∈ Z+, J = 4, 5, . . . , j(n)

.

(A.30)
This can also be implemented in SDPB with the difference that the spectrum in m2 cannot
be implemented as a polynomial in x and we have to choose a grid for n. In practice we
chose a grid of the form n = 1, 2, . . . , nmax and added some points at large n ∼ 105, 106, . . . .
The convergence in the size of the grid was fast.

With these extra constraints on the spectrum, the convergence in the number of spin
constraints is slower than by considering (A.25). However, in practice, it is sufficient to add
several constraints at large spin J ∼ 105, 106 to obtain the final result.22

A.5 RSR as null constraints

Here we will discuss how RSR can be added to the dual method described above and why it
does not change the bound in the present formalism. For simplicity, we will describe here
the case of the open string but the same argument applies for closed string.

Following the same procedure as above, the Wilson coefficients can be written using
dispersion relations

gn,ℓ =
〈
2ℓ

ℓ!
P

(ℓ)
J (1)
m2n

〉
(A.31)

22Similar observation was made in [27] in a different context.
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where P
(ℓ)
J (x) is the ℓ-derivative of the Legendre polynomial and the average is defined via

Ts(s, t) =
∞∑

J=0
ρJ(s)PJ

(
1 + 2t

s

)
, (A.32)

⟨. . .⟩ = 1
π

∞∑
J=0

∫ ∞

m2
gap

dm2

m2 ρJ(m2)(. . . ). (A.33)

Null constraints that follow crossing symmetry are easily obtained using gn,ℓ = gn,n−ℓ and
we denote them Xn,ℓ.23

Let us now write the RSR in a similar form. Starting from (2.9), we obtain

RSR: Rn(t) ≡
〈

m2nPJ

(
1 + 2t

m2

)〉
= 0, j(t) < −n, n ≥ 2. (A.34)

For n = 0, 1, one would pick the constant and pole of the amplitude at s = 0. This is a new
family of null constraints. Let us focus on the linear trajectory j(t) = t, which implies that
t < −n. Looking at the argument of the Legendre polynomials, we see that

1 + 2t

m2 < −1, for − t < m2 < m2
gap, (A.35)

this region always exists for t < −n and mgap = 1. Using properties of the Legendre
polynomials, it implies that at large J and any fixed m∗ in this interval

[Rn(t)] (m2
∗, J) ∼ m2n

∗ cJ(−1)J , c > 1, (A.36)

and thus grows exponentially with an oscillating sign. This contrasts with the sum rules
for the Wilson coefficients (and thus also the usual null constraints X ), which grows as a
polynomial in J . Let us see what it implies for the bootstrap algorithm. As in appendix A.3,
we build the vector v⃗ and add one RSR constraint

v⃗(m2, J) =
(
g1,0(m2, J), gn,ℓ(m2.J), χ⃗(m2, J), [Rn(t)](m2, J)

)
(A.37)

at large J , it behaves as

v⃗(m2, J) ∼ (0, 0, 0⃗, cJ(−1)J) + O(Jk). (A.38)

Thus, the constraints on the functional α⃗ · v⃗(m2, J) ≥ 0 at large J imposes that the last
coefficient of α⃗ is set to zero. Thus, the constraint Rn(t) = 0 is not used by the dual algorithm.
The conclusion does not change for any finite number of RSR constraints included as the
coefficient c in (A.36) depends on t, m∗.

When supplemented by the maximal spin constraint (B), the argument presented above
fails as one forbids arbitrary large spin at fixed m∗. However, it is easy to see how a single
RSR cannot be used in this case as well. Let us consider the large mass behavior of (A.37).
Clearly, from (A.31), all Wilson coefficients and null constraints decay at large m2. In
contrast, the RSR (A.34) grows and we get

v⃗(m2, J) ∼
m2≫1

(
0, 0, 0⃗, m2nPJ

(
1 + 2t

m2

))
+ O(m−2). (A.39)

23See for example [27] for detailed expressions. A second set of null constraints can also be obtained but
does not influence the argument in this section.
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For large but finite mass, the argument of the Legendre polynomial is x = 1 − δ < 1 and
oscillates in J . Provided that j(m2) is larger than this oscillation period, the constraint on
the functional α⃗ · v⃗(m2, J) ≥ 0 will also set the last coefficient of α⃗ to zero. Note that this
mechanism is ‘softer’ as the growth is polynomial and not exponential as in (A.38). However,
a single constraint still cannot be used. It is less clear that a large or infinite number of
constraints (A.34) could not be used, for example, by using a single n and various t.

With infinitely many constraints included, the argument above fails, and it might be
that the sum rules could be used. It is also possible that by applying a ‘smart’ functional
to this constraint, they could be included (for example, by ‘smearing’ in t?). We leave this
investigation to future work. Instead, in the present paper, we use a primal approach and
build an ansatz that satisfies all constraints Rn(t) by construction.

B Constraints on the closed string sum

In the closed string ansatz (3.4), there are constraints on the ci, di summed over as indicated

by the symbol
′∑ . These constraints are fourfold and are detailed in this section.

First, not all terms are independent. The terms with ct ̸= cu and dt ̸= du are redundant
and can therefore be removed from the sum, as shown in (3.10). Then, to remove the
remaining dependence, we solve order by order in Nmax.24 We then renamed ctu ≡ ct = cu

and similarly for dtu. Second, there are constraints on the ranges of ci, di to ensure that all
residues are polynomials. This imposes the conditions

cs + ctu ≥ dtu, 2ctu ≥ ds . (B.1)

Third, we impose that the leading trajectory is j(t) = 2 + 2t. This leads to the Regge
boundedness conditions for the satellite terms

ctu ≤ dtu + 1, 2 + cs − ds ≤ dtu − ctu . (B.2)

Finally, we only consider terms with cs, ctu ≥ 0, which have poles at nonnegative integer mass
square. From the inequalities above, it implies that and ctu, dtu ≥ 1 and ds ≥ 2.

The minimal solution to these inequalities, namely ds = 2, ctu = dtu = 1, and cs = 0 is
precisely the deformation corresponding to the heterotic string amplitude.

C Examples of amplitudes

This appendix lists various meromorphic amplitudes of massless particles satisfying unitarity
and crossing symmetry. They are listed in table 1 for the scalar amplitudes and table 2 for
the gravitational amplitudes. We also show that an amplitude built out of a sum of single,
double, and triple poles is consistent with unitarity for the gravitational amplitude.

24We do not know of a general rule to eliminates all dependence.
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Name Amplitude Regge behavior

Veneziano TV = Γ(−s)Γ(−t)
Γ(−s−t) j(t) = t

Cheung-Remmen TCR = Γ(−s)Γ(−t)
Γ(−s−t) 3F2(−s,−t, r;−s − t, 1 + r; 1) j(t) =

{
t t ≥ −1
−1 t < −1

Matsuda T0,1/2,λ = Γ(−s)Γ(−t)
Γ(−s−t) 2F1(−s,−t; 1−s−t

2 ;λ) j(t) = t

Mandelstam Tc0,0,λ = Γ(−s)Γ(−t)
Γ(−s−t) 3F2(−s,−t,−c0;− s+t

2 , 1−s−t
2 ;λ) j(t) = t

Spin 0 exchange Tspin 0 = m2

m2−s + m2

m2−t j(t) = 0

st-pole Tst−pole = M4

(m2−s)(m2−t) j(t) = −1

Table 1. Here we list examples of unitary amplitudes with T (s, t) = T (t, s) and no u-channel poles.
More amplitudes with spin 1 and spin 2 exchanges can be found in [27, 28].

Name Amplitude Regge behavior

Virasoro-Shapiro fV S = − Γ(−s)Γ(−t)Γ(−u)
Γ(1+s)Γ(1+t)Γ(1+t) j(t) = 2 + 2t

Spin 0 exchange fspin 0 = λ2

m6
1

m2−s
j(t) = 3

tu-pole ftu−pole = g
m4

1
(m2−t)(m2−u) j(t) = 3

stu-pole fstu−pole = κ
m2

1
(m2−s)(m2−t)(m2−u) j(t) = 2

Table 2. Here we write examples of the MHV graviton amplitude using the functions f(s|t, u). If not
explicit, one needs to add the graviton pole to have a gravitational amplitude. We removed it here for
brevity.

A pole amplitude for the MHV gravitational amplitude. Let us show here that an
amplitude built as a sum of 1, 2, 3 poles is consistent with unitarity (positivity). We start
with the following combination of terms

fpoles(s|t, u) = λ

m6
1

m2 − s
+ g

m4
1

(m2 − t)(m2 − u) +
κ

m2
1

(m2 − s)(m2 − t)(m2 − u) (C.1)

We will show below that this amplitude is unitary for

λ ≥ −κ
2 log(2)

3 , g ≥ −κ
12(195790 log(2)− 135711)
7096320 log(2)− 4918777 , κ ≥ 0. (C.2)

At fixed κ, saturation of λ removes spin 0 in the (++) channel and saturation of g removes spin
5 in the (+−) channel. We can also immediately see that any single term is independently
unitary for positive coefficients.

To show it, recall that we can invert (A.2) and (A.3)

ρ++
J (s) = aJ s4

∫ 1

−1
dx fs(s|t(x), u(x))PJ(x) (C.3)

ρ+−
J (s) = aJ s4

∫ 1

−1
dx (1 + x)4fs(u(x)|s, t(x))dJ

4,4(x), (C.4)
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where aJ = 1
2(2J + 1).25 Plugging fpoles(s|t, u) into the formula above, we obtain for the

(++) channel

ρ++
J (s) = aJπδ(s − m2)

∫ 1

−1
dx

( 4κ

9− x2 + λ

)
PJ(x). (C.5)

Performing the integral for the spin 0, we obtain the constraint on λ ≥ −κ2 log(2)
3 . For higher

spins, we use the Froissart-Gribov formula (see for example [83, 84]) to see that all partial
waves are proportional to Legendre Q-function ρ++

J (s) ∼ κδ(s−m2)QJ (3) and are nonnegative
for κ ≥ 0. This analysis was performed analogously in [81] in the context of scalar amplitudes.

Let us now turn our attention to the other channel. We obtain

ρ+−
J (s) = aJπδ(s − m2)

∫ 1

−1
dx(1 + z)4dJ

4,4(x)
( 4
9− x2 + 2g

3− x

)
(C.6)

= aJπδ(s − m2)
∫
[−1,1]

dz

πi
(1 + z)4eJ

4,4(z)
( 4
9− z2

+ 2g

3− z

)
. (C.7)

In the second line, we wrote the integral as a counterclockwise contour in the complex plane
along the axis z = [−1, 1] using the Wigner e-function [60, 85].26 It is defined such that its
discontinuity in x ∈ [−1, 1] is given by the Wigner d matrices. They are analogous to the
Legendre Q-functions but for spinning particles in d = 4. Explicitly, we have

eJ
λµ(z)=

(−1)λ−µ

2 [Γ(J+λ+1)Γ(J−λ+1)Γ(J+µ+1)Γ(J−µ+1)]
1
2

(1+z

2

)λ+µ
2

×
(1−z

2

)−λ−µ
2
(

z−1
2

)−J−µ−1 1
Γ(2J+2)2F1

(
J+λ+1,J+µ+1,2J+2,

2
1−z

)
,

(C.8)
for λ + µ ≥ 0 and λ − µ ≥ 0.27

We can now deform the contour and pick the pole at z = ±3 to obtain28

ρ+−
J (s) = δ(s − m2)4πaJ

3
[
(1 + 3g)44eJ

4,4(3)− 24eJ
4,4(−3)

]
(C.10)

which is positive if29

16(1 + 3g)eJ
4,4(3) + (−1)JeJ

4,−4(3) ≥ 0. (C.11)

Using positivity properties of the Wigner e-function e J
4,±4(z) ≥ 0 for z > 1, J ≥ 4, the

strongest constraint comes from odd spins. Finally, using that eJ
4,4(3)

eJ
4,−4(3)

is a growing function
of J , the strongest constraint comes from J = 5 which leads to the second constraint in (C.2)

g ≥ −κ
12(195790 log(2)− 135711)
7096320 log(2)− 4918777 . (C.12)

Saturation of this constraint removes the spin 5 exchange in the (+−) channel.
25Compared to [83], we absorbed the prefactor nJ in ρJ in (A.2). Thus aJ = nJN4/2 in their convention.
26See [86] for a recent use of the Wigner e-functions in a different context.
27The other ranges are defined through the identities

e J
λµ(z) = (−1)λ−µe J

µλ(z) = (−1)λ−µe J
−λ,−µ(z). (C.9)

28Note that the Wigner e-function has extra singularities at z = ±1 but they are precisely canceled by the
prefactor (1 + x)4.

29Here we used that eJ
µ,λ(−z) = (−1)1+J+µ−2λeJ

µ,−λ(z), see for example [60].
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Comment on the Regge behavior. Finally, let us comment on the Regge behavior of
amplitudes presented in table 2. Two of the functions for the MHV amplitude presented
above grow too fast in the Regge limit, namely they have the Regge intercept j0 = 3. For the
tu-pole amplitude, this can be cured by considering the triple product with different mass

1
(M2−s)(m2−t)(m2−u) . Indeed, performing the same analysis as above shows that for M ≥ m,
this amplitude is unitary. Thus we can define the improved tu-pole amplitude by

f improved
tu−pole = g

m2
1

(M2 − s)(m2 − t)(m2 − u) , M ≫ m. (C.13)

As M ≫ m, the corrections to the Wilson coefficients are suppressed by O(m/M). This
amplitude now has the Regge intercept j0 = 2. Since this amplitude is unitary only for
M ≥ m, a similar improvement cannot be performed for the spin 0 exchange amplitude.

It is sometimes possible to add a contact term to cure the Regge behavior (see for
example [86], appendix A). Here, for the spin 0, one would need to add + λ2

M6s
which

corresponds to the massless scalar exchange amplitude |βϕ|2, but taken with the wrong sign
and is thus not unitary. We do not know how to ‘improve’ the spin 0 amplitude such that
it satisfies unitarity and has j0 ≤ 2. How is it possible then that this amplitude lies at the
boundary of the allowed region in the dual approach? First, while we have not found it, it is
possible that an improvement exists such that it does not change the value of the Wilson
coefficient by adding a tower of particles of mass M ≫ m. Second, in the dual formalism,
this amplitude satisfies all the sum rules written and hence is not excluded.

D Unitarity of open string finite sums

In this section, we extend the argument of Sivers and Yellin [87] to show that any finite
ansatz (4.3) cannot satisfy unitarity. The truncated ansatz reads

TNmax(s, t) =
Nmax∑
i=0

i∑
k=0

bik
Γ(i − s)Γ(i − t)
Γ(i + k − s − t) , (D.1)

where by assumption bik are finite real coefficients.
The residue of a single term in the ansatz is

Γ(i − s)Γ(i − t)
Γ(i + k − s − t) ∼

s→n
−R

(i,k)
n (t)
s − n

(D.2)

where
R(i,k)

n (t) = (−1)i+nΓ(i − t)
(n − i)!Γ(i + k − n − t) (D.3)

is a polynomial of degree n − k in t.
As a first step, we show that a single term with i ̸= 0 does not satisfy unitarity. To this

end, we will show that in the partial wave expansion

R(i,k)
n (t) =

n−k∑
J=0

c
(i,k)
n,J PJ

(
1 + 2t

n

)
(D.4)
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the J = n − k and J = n − k − 1 terms have opposite signs and hence unitarity cannot be
satisfied for all n, J . Using, (D.3), we can expand in x = 1+ 2t

n and focus on the leading power

(n − i)!R(i,k)
n (t)

∣∣∣
t=n

2 (x−1)
= (−1)i+k

(
n

2

)n−k [
xn−k + n − k

n
(1− k − 2i)xn−k−1 + . . .

]
.

(D.5)
Importantly, (1 − k − 2i) < 0 for all i ≥ k > 0 and thus the coefficients in front of xn−k

and xn−k−1 have opposite signs. Moreover, we know that the Legendre polynomials PJ(x)
are expansion in odd/even powers of x for odd/even J . This implies that xn−k and xn−k−1

contributes to different spin. Moreover, using that the coefficient of xJ in PJ(x) is always
positive, comparing (D.4) and (D.5) we can thus conclude that c

(i,k)
n,n−k and c

(i,k)
n,n−k−1 have

opposite signs. We can also write them explicitly
c
(i,k)
n,n−k = (−1)i+k

(
n
4
)n−k

√
πΓ(n−k+1)

(n−i)!Γ(n−k+ 1
2)

c
(i,k)
n,n−k−1 = (−1)i+k+1 (n

4
)n−k 2

√
π(2i+k−1)Γ(n−k+1)
n(n−i)!Γ(n−k− 1

2)
, (D.6)

which makes it clear that they have opposite signs. This concludes the proof showing that
a single term cannot satisfy unitarity as it requires c

(i,k)
n,J ≥ 0.

Let us go back to a finite sum (D.1), (D.3) implies that at large n

n!R(i,k)
n (t) ∼ ni tn−k, (D.7)

and thus the terms with max(i) dominates at large enough n. Therefore, it is enough
to consider an ansatz at fixed i and show that it does not satisfy unitarity. We call the
fixed i amplitude

T (i) =
i∑

k=0
bik

Γ(i − s)Γ(i − t)
Γ(i + k − s − t) (D.8)

Considering the residue at n of this amplitude

R(i)
n (t) =

∑
J=0

c
(i)
n,JPJ

(
1 + 2t

n

)
, (D.9)

where unitarity for the fixed i sum requires c
(i)
n,J ≥ 0. It is straightforward to see from (D.3) that

c
(i)
n,J =

n−J∑
k=0

c
(i,k)
n,J bik (D.10)

and only bi,0 contribute to the residue at J = n, (bi,0, bi,1) contribute to the residue at
J = n − 1 and so on.

Consider first the residue at J = n, from (D.6) it is clear that all c
(i,0)
n,n have the same

sign. This fixed the sign of bi0 and we can also normalize it to bi0 = ±1. The other option
is bi0 = 0 and we will come back to this later.

We turn now to the residue at J = n − 1

c
(i)
n,n−1 = c

(i,0)
n,n−1bi0 + c

(i,1)
n,n−1bi1 (D.11)
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Using (D.6), we have that at large n ∣∣∣∣∣∣c
(i,0)
n,n−1

c
(i,1)
n,n−1

∣∣∣∣∣∣ ∼ n (D.12)

and thus c
(i)
n,n−1 ≥ 0 implies ∣∣∣∣bi1

bi0

∣∣∣∣ ≳ n (D.13)

For bi0 = ±1 this leads to a contradiction with having a regular finite ansatz. Indeed, (D.13)
must be true for all n, it implies bi1 → ∞ which is not compatible with having a well-defined
finite ansatz.

We showed that bi0 cannot be finite or the residue c
(i)
n,n−1 cannot be positive. The other

option is bi0 = 0. In such a case the residue at J = n − 1 fixed the sign of bi1, and we can
choose normalization bi1 = ±1. Now looking at J = n − 2, only bi1 and bi2 contributes.
Repeating the argument above, it is easy to see that bi2 ≳ n bi1 and hence the only option
is bi1 = 0. By iteration, we obtain that bi k<i = 0.

What remains is the term with k = i. However, we showed above that a single term cannot
satisfy unitarity. This concludes the proof that a finite sum ansatz cannot satisfy unitarity.

E Completeness argument for the open string case

Here we would like to comment on the completeness of the ansatz (4.3) following Khuri [66].
The fact that all particles live on equidistant linear Regge trajectories translates to the
following statement

T (s, t) ∼ 1
Γ(1 + t) sin πt

(
a0(t)(−s)t + a1(t)(−s)t−1 + . . .

)
+ . . . , (E.1)

where the last . . . stands for the RSR violating contributions 1
sn that vanish in the s → ∞

limit. The first observation is that ak(t) are entire functions, this is so because the singularities
in t are already captured by the prefactor. Moreover, if we consider the residue at t = n

it should become polynomial, therefore

ak(n) = 0, k > n. (E.2)

We now consider the ansatz

T̃ (s, t) =
∞∑

i=0

i∑
k=0

bik
Γ(i − s)Γ(i − t)
Γ(i + k − s − t) . (E.3)

The basic idea is that by choosing bik we can reproduce a given set of entire functions ak(t).
For example, for the leading one we get the following equation

a0(t) =
∞∑

i=0
bi0

Γ(i − t)
Γ(−t) , (E.4)
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where in writing (E.4) we expanded each term under the series. Eq. (E.4) expresses the
entire function a0(t) in terms of Newton polynomials with interpolating points chosen to
be nonnegative integer t = n.

A sufficient condition for convergence for such an expansion was derived by Buck [88].
Let us introduce the growth indicator of an entire function f(t)

h(θ, f) = lim
r→∞

sup 1
r
log |f(reiθ)|. (E.5)

Then Buck has proven that the expansion (E.4) converges if

h(θ, f) < cos θ log(2 cos θ) + θ sin θ, |θ| < π/2 . (E.6)

Similar conditions hold for subleading trajectories.
We expect that (E.6) follows from consistency in the semiclassical limit s, t ≫ 1 as

discussed in [6]. Note that in all known examples h(θ, f) ≤ 0 for |θ| < π/2 and therefore the
bound (E.6) is trivially satisfied. Assuming this is the case, we consider next the difference

δT (s, t) = T (s, t)− T̃ (s, t). (E.7)

It is an entire function that vanishes at infinity. Therefore δT (s, t) = 0. We do not have
an analogous argument for the closed string ansatz.

F Bound on the asymptotic form of the amplitude

In this appendix, we build up on the methodology of [6], and we refer the reader to this
reference for further details. We consider a stringy amplitude at large s, t → ∞. We focus
on the discontinuity that takes the form

Ts(s, t) =
∑

i

δ(s − m2
i )

j(s)∑
J

ci,JPJ

(
1 + 2t

m2
i

)
. (F.1)

The r.h.s. is a polynomial that is characterized by a set of zeros. If we now perform an
average over many poles, for example, by considering T (s(1 + iϵ), t(1 + iϵ)), it was argued
in [6] that it is these zeros, called the excess zeros, that control the amplitude asymptotically.

It is convenient to introduce a distribution of zeros ρ(z, z̄) and write for the asymptotic
form of the amplitude

log T (s, t) = c0t
k
∫

d2zρ(z, z̄) log
(
1− s

tz

)
, (F.2)

where we assumed the asymptotic form of the Regge trajectory takes the form jasy(s) = c0s
k.

Our task is then to find the distribution of zeros that arises from the sum over Legendre
polynomials with positive coefficients, such that∫

d2zρ(z, z̄) = 1, ρ(z, z̄) ≥ 0, (F.3)
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which satisfies crossing that takes the following form∫
d2zρ(z, z̄)

(
βk log

(
1− 1

βz

)
+ log

(
1− β

z

))
= 0, β > 0, (F.4)

where we introduced β = t/s.
Moreover, the distribution of zeros should come from a positive sum of Legendre poly-

nomials and should correctly reproduce the Regge limit behavior. Introducing the ‘electric
field’ produced by the excess zeros

f(β) ≡
∫

d2z
ρ(z, z̄)
β − z

, (F.5)

one can show that

0 ≤
√

β(1 + β)f(β) < 1, (F.6)

∂β

(√
β(1 + β)f(β)

)
≥ 0 . (F.7)

In addition to that, consistency with the Regge limit implies that

f(β) = −k log ββk−1 + (k + 1)M1β
k + . . . , (F.8)

where M1 = −
∫

d2zρ(z, z̄)z is the dipole moment of the distribution. The asymptotic above
is only consistent with the formulas above for k > 1/2.

F.1 Support of the distribution of excess zeros

To make further progress [6] had to make an assumption on the support of the distribution
of zeros ρ(z, z̄) that arises from the sum over Legendre polynomials with positive coefficients.
The first, rather weak, assumption that zeros are localized for Rez ≤ 0 leads to an additional
constraint

k ≤ 1. (F.9)

Making a stronger assumption that the zeros are located inside an ellipse that touches the
real axis at Rez = 0,−1, [6] then argued that k = 1 and that the amplitude is given by
the asymptotic limit of the Veneziano amplitude.

F.2 Extending the support of the distribution

It is clear from the results of this paper that the assumption above about the effective support
of zeros is too restrictive. Let us consider the generalized Veneziano amplitude Tc0,c1,λ with
c1 ̸= 0. There is a nontrivial range of parameters for which it satisfies unitarity and crossing
and takes the following form in the asymptotic region s, t → ∞

log Tc0,c1,λ = (s + t) log(s + t)− s log s − t log t

+ c1

(
t log 1

2

(
1− λ̃

s − t

s + t
+
√
1− λ̃

√
1− λ̃

(s − t)2
(s + t)2

)
+ {s ↔ t}

)
,
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where the second line vanishes for λ̃ ≡ 4λ(1 − λ) = 0.
In this case the amplitude can be written as follows

log Tc0,c1,λ = t

∫ 0
√

λ̃+1√
λ̃−1

dxρ(x) log
(
1− s

tx

)
. (F.10)

In particular, we have

lim
λ̃→1

√
λ̃ + 1√
λ̃ − 1

→ ∞. (F.11)

Therefore, we see that positive sums over Legendre polynomials consistent with the Regge
limit can generate distributions of zeros that ‘spills’ arbitrarily far beyond −1 ≤ x ≤ 0
considered in [6].

F.3 Maximal value of the amplitude

To make some progress it is interesting to consider a dual formulation of [6]. We consider
the case of a linear Regge trajectory j(t) = α′

asyt, k = 1, and we ask the following question:
what is the maximal value that the amplitude can attain at the crossing-symmetric point
log T (s, s) ≤ αmaxs?

We assume that all zeros are localized along the negative real axis parameterized by
z ≤ 0 and we set s = 1 so that everything only depends on β = t

s . Let us quickly demonstrate
that such a bound exists. To do it we introduce a set of ‘null constraints’ by expanding
the crossing equation around β = 1

β log
(
1− 1

βz

)
+ log

(
1− β

z

) ∣∣∣
β=1−ϵ

=
∞∑

i=1
ni(z)ϵi, (F.12)

such that ∫ 0

−∞
dzρ(z)ni(z) = 0. (F.13)

One can check that not all of the null constraints are linearly independent. We find that a
convenient choice is to consider (n1, n2, n3, n5, n7, . . .). As an example

n1(z) = log
(
1− 1

z

)
− 2

1− z
, (F.14)

n2(z) =
1
6

1 + 3z

(z − 1)3 . (F.15)

To derive a bound on the amplitude

log T (1, 1) ≤ α, (F.16)

we look for a functional, or, in other words, an α and a set of di’s, such that

1− 1
α
log

(
1− 1

z

)
+

∞∑
i=1

dini(z) ≥ 0, z ≤ 0. (F.17)
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Figure 15. We plot the optimal functional (F.18) obtained using n1, . . . , n83 null constraints. It
produces α = 0.721138 which corresponds to the upper bound log T (s, s) ≤ 1.38671s.

Indeed, imagine that we have found a functional with this property. We can then integrate
the equation above against the density of zeros to get

∫ 0

−∞
dz ρ(z)

(
1− 1

α
log

(
1− 1

z

)
+

∞∑
i=1

dini(z)
)

= 1− 1
α
log T (1, 1) ≥ 0, (F.18)

where we used the fact that ρ(z) ≥ 0, the normalization condition (F.3), and, of course, (F.17).
It is not immediately obvious that functionals with the property (F.17) exist, so let us

demonstrate it explicitly. We take α = 2 and d1 = 1
2 to get

1− 1
2 log

(
1− 1

z

)
+ 1

2

(
log

(
1− 1

z

)
− 2

1− z

)
= −z

1− z
≥ 0, z ≤ 0, (F.19)

which immediately tells us that

log T (s, s) ≤ 2s. (F.20)

F.4 Extremal functional and extremality of the Veneziano amplitude

A simple bound above was derived using a single null constraint. We can set a numerical
scheme that employs more and more null constraints. As a result, we get an extremal
functional that tends to zero for −1 ≤ z ≤ 0 and is positive otherwise. We plot the result
for the functional obtained using null constraints up to n83 in figure 15, which produces
the bound log T (s, s) ≤ 1.38671s, whereas the Veneziano amplitude at this point takes the
value 2 log 2 s ≈ 1.38629s.

Therefore, we see that the extremal amplitude that saturates the bound should have the
support of excess zeros ρ(z) only for −1 ≤ z ≤ 0. These are precisely the types of amplitudes
considered in [6]. It was argued there that such amplitudes are unique for any k, however
only for k = 1 it can come from the positive sum of Legendre polynomials.
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Our conclusion here instead is that the asymptotic limit of the Veneziano amplitude
maximizes the bound on the amplitude in the region s, t → ∞, and in this sense, the
Veneziano amplitude is an extremal (but not unique) solution to the axioms considered in [6],
so that in the limit s, t ≫ 1 we have

log T (s, t) ≤ α′
asy

(
(s + t) log(s + t)− s log s − t log t

)
(F.21)

The question of uniqueness and which extra conditions are needed to obtain it, e.g., the extra
asymptotic crossing condition considered in [71], requires further investigation.

F.5 Distribution of excess zeros

Here we present some results on the distribution of the excess zeros of the open string
amplitudes Tc0,c1,λ(s, t). For our purposes, the excess zeros zi(t) are defined as follows. We
consider the residue of the amplitude

−Rest=nTc0,c1,λ(s, t) =
j(n)∑
J=0

cn,JPJ

(
1 + 2s

n

)
∝

j(n)∏
i=1

(
1− s

zi(n)

)
. (F.22)

By taking the logarithm of this formula, we can rewrite it as follows

log
j(t)∏
i=1

(s − zi(t)) =
∫

d2zρ(t, z, z̄) (log(z − s)− log z) . (F.23)

We then take the large s, t ≫ 1 limit of this formula. We define the asymptotic distribution

ρ(t, z, z̄) = jasy(t)
t2

ρasy

(
z

t
,
z̄

t

)
+ . . . , (F.24)

where . . . includes contributions that do not contribute to the limit, e.g., some of the zeros
could escape to infinity. Plugging this into the formula above and rescaling the integration
variables, we get the following representation for the asymptotic amplitude

log T (s, t) ≃ jasy(t)
∫

d2zρasy(z, z̄) log
(
1− 1

βz

)
, β = t

s
. (F.25)

By taking the asymptotic Regge limit s ≫ t we get that∫
d2zρasy(z, z̄) = 1. (F.26)

We are interested in jasy(t) ∼ t therefore the crossing equation log T (s, t) = log T (t, s) becomes

β

∫
d2zρasy(z, z̄) log

(
1− 1

βz

)
=
∫

d2zρasy(z, z̄) log
(
1− β

z

)
. (F.27)

We can therefore write the following representation of the amplitude

log T (1, β) =
∫

d2zρasy(z, z̄) log
(
1− β

z

)
. (F.28)
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Figure 16. We plot the distribution of excess zeros, see (F.22), for n = 200, c0 = −3/10, c1 = 7/20,
λ = 1/2. We rescaled them by 1

n as in (F.24). As we increase the energy or n, they reach out further
and further into the complex plane.

By taking the derivative with respect to β, we get the relationship between the asymptotic
distribution of zeros ρasy(z, z̄) and the discontinuity of ∂β log T (1, β)

∂β log T (1, β) =
∫

d2z
ρasy(z, z̄)

β − z
. (F.29)

Let us now consider the distribution of zeros in a concrete example. We take n = 200,
c0 = −3/10, c1 = 7/20, λ = 1/2. One can numerically check that at this point the logarithm
of the amplitude is well captured by the asymptotic formula. The distribution of zeros
rescaled by 200 is shown in figure 16.

We see that it has an interesting shape that branches into the complex plane. Moreover,
by increasing n we see that the rescaled zeros go further and further in the complex plane.
We are thus led to the following picture of the asymptotic distribution

∂β log T (1, β) = 1
2πi

∮
γ

dz
ρasy(z)
β − z

, (F.30)

where the contour γ is shown in figure 17.
We can now use our asymptotic result (4.12) to find the explicit form of ρasy(z) in this

case. We get the following result

∂β log T (1, β) = log 1 + β

β
+ c1 log

1− λ̃ + (1 + λ̃)β + (1− λ̃)
√(

β −
√

λ̃+1√
λ̃−1

)(
β −

√
λ̃−1√
λ̃+1

)
2(1 + β) .

(F.31)
By taking the discontinuity, we can write the following representation for this amplitude

∂β log T (1, β) =
∫ 0

−1
dz

1
β − z

+ c1

∫ √
λ̃−1√
λ̃+1√

λ̃+1√
λ̃−1

dz
ρasy(λ̃, z)

β − z
, (F.32)
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Figure 17. Nonuniqueness of the asymptotic distribution of zeros ρasy(z). Given a nonnegative
analytic distribution of zeros in (F.29) along the contour γ we can use the Cauchy theorem to deform
the integral to the location γ′ (which in particular we can choose to be along the negative axis).

where ρasy(z) can be readily computed by taking the discontinuity of (F.32). It has the
following properties

∫ √
λ̃−1√
λ̃+1√

λ̃+1√
λ̃−1

dzρasy(z) = 0, 1 > λ̃ ≥ 0, (F.33)

∫ √
λ̃−1√
λ̃+1√

λ̃+1√
λ̃−1

dzρasy(z) = −1, λ̃ = 1 . (F.34)

It is also bounded from below ρasy(z) ≥ −1 for −1 ≤ z ≤ 0, and it is nonnegative ρasy(z) ≥ 0
for z < −1. Therefore we see that as we turn on λ̃ zeros ‘spill’ outside the −1 ≤ z ≤ 0
region. Moreover, as we set λ̃ = 1 they escape to infinity. We plot examples of distributions
of zeros in figure 18.

The reader might wonder how the distribution that we explicitly got in figure 16 and the
asymptotic distribution (F.33) are consistent with each other. In fact, the two representations
can be deformed into one another using the Cauchy theorem, see figure 17. Therefore we
see that there is no unique way to read off the distribution of zeros starting from the known
form of the amplitude for β > 0. In (F.33) we chose to deform the contour all the way
to lie across the negative axis.

Imagine now we start with a positive ρ(z) ≥ 0 analytic density of zeros along some
contour γ in the complex plan and we deform it to the negative axis. It is not clear a priori
that after the deformation the new effective density of zeros has to be positive. We, however,
observed this to be the case in the example above.

G Stringy Cerulus-Martin bound

The Cerulus-Martin bound on the high-energy scattering at fixed angles [74, 89, 90] effectively
expresses Mandelstam analyticity in the following form

Regge ≤ (Fixed real angle)× (Fixed complex angle). (G.1)
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Figure 18. Here we plot the asymptotic density of zeros for the amplitude with c1 = 1/2 and different
λ̃. The homogeneous distribution between [−1, 0] that corresponds to λ̃ = 0 captures the high-energy
limit of the Veneziano amplitude. We see that for λ̃ > 0 the density of zeros has a larger support.
Finally, for λ̃ = 1 some of the excess zeros escape to infinity.

It is usually presented as a lower bound on scattering as follows

(Fixed real angle) ≥ Regge
(Fixed complex angle) . (G.2)

In nonperturbative QFT, for example in QCD, we do not have a bound on scattering at
complex angles, therefore it is not a rigorous lower bound in this case.

We would like next derive a lower bound on the scattering at physical fixed scattering
angle for stringy amplitudes. Our input will be the following: an upper bound on the
amplitude discussed in the section above, and the polynomial nature of the Regge limit.

We consider fixed-angle scattering so that

t = −s

2(1− z), (G.3)

and we would like to derive a lower bound of the following type

max
|z|≤z0

|T (s, z)| ≥ T0(s, z). (G.4)

We first start with the following simple observation

max
|z|≤z0

|T (s, z)| ≥ max
|z|≤z0

|ImT (s, z)| = max
|z|≤z0

|Ts(s, z)|. (G.5)

Next, we notice that the discontinuity of the amplitude is simply a polynomial (as described
above in (F.1))

Ts(s, z) ∼
j(s)∑
J=0

ci,JPJ(z), ci,J ≥ 0, (G.6)
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and thus, it is an analytic function in the z-plane. To derive a lower bound, we consider
the following mapping

w(z) =
z +

√
z2 − z20

z0
. (G.7)

Under this mapping, the real-line segment −z0 ≤ z ≤ z0 is mapped into a unit circle in
the w-plane.

We now consider three circles in the w-plane: |w| = 1, |w| = r2 and |w| = r3, such
that r3 > r2 > 1. The discontinuity of the amplitude is an analytic function in the annulus
1 ≤ |w| ≤ r3. We also introduce the following notation

Mr = max
|w|=r

|Ts(s, z)|. (G.8)

We then have the three-circle theorem that states the following. For a function analytic
inside the annulus and bounded on its boundary, we have

Mr2 ≤ M
1− log r2

log r3
1 M

log r2
log r3

r3 . (G.9)

We choose r2 at fixed t such that the circle includes the Regge limit of the amplitude, which
is ∼ 1, where the equivalence relation means ‘modulo powers’. We then have

1 ≤ M
1− log w(1)

log r3
1 M

log w(1)
log r3

r3 , (G.10)

where we set r2 = w(1) which is its leading large s behavior.
We next rewrite this bound as follows

M1 ≥ (Mr3)
− log w(1)

log r3
/(1− log w(1)

log r3
)
, (G.11)

where the l.h.s. is related to fixed-angle scattering for physical angles, whereas the r.h.s. is
related to scattering at complex angles.

We next notice the following simple fact

∣∣∣ j(s)∑
J

ci,JPJ(z)
∣∣∣ ≤ j(s)∑

J

ci,J

∣∣∣PJ(z)
∣∣∣ ≤ j(s)∑

J

ci,JPJ(
√
|z|2 + 1), |z| ≥ 1, (G.12)

where we used that ci,J ≥ 0. We then get

Mr3 ≤ Ts(s,
√

z2∗ + 1), (G.13)

where

z∗ ≡ max
|w|=r3

|z(w)| = z0
1 + r23
2r3

. (G.14)

Next, we use the bound discussed in the previous section (F.21) to get

Ts(s, z) ≲ eαasy′sfVen(z),

fVen(z) ≡
z + 1
2 log z + 1

2 − z − 1
2 log z − 1

2 , (G.15)

where we are working modulo power-like corrections.
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Combining all the inequalities above, we get that for any r3

max
|z|≤z0

|T (s, z)| ≥ (eαasy′sfVen(
√

z2
∗+1))−

log w(1)
log r3

/(1− log w(1)
log r3

)
. (G.16)

To optimize the bound, we would like to maximize the r.h.s. . We find that the maximum
is attained at r3 = ∞ which finally gives

max
|z|≤z0

|T (s, z)| ≳ e
−αasy′s log

1+
√

1−z2
0

z0 . (G.17)

This constitutes a stringy generalization of the Cerulus-Martin lower bound on scattering
at fixed angles. In the main text, we discussed the relationship between the asymptotic
Regge trajectory jasy ≃ αasyt, and the leading Regge trajectory j(t) ≃ α′t, and argued that
α′

asy ≤ α′. We can, therefore, write the bound in terms of the leading Regge trajectory

max
|z|≤z0

|T (s, z)| ≳ e
−α′s log

1+
√

1−z2
0

z0 , (G.18)

which is the bound we quoted in the main text.
Let us comment on the following technical subtlety in the argument above. Strictly

speaking, the imaginary part we considered above in (G.6) is ∝ δ(s − m2), and therefore
our bound above directly applies to the residues of the amplitude only. The standard way
to cure this problem (as well as to use the bound (G.18)) is to take the high-energy limit
away from the real axis s → s(1 + iϵ). We expect that in this limit, the imaginary part
of the amplitude is still effectively given by (G.6), see [6] for the discussion of this point,
and therefore our arguments apply.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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