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École Polytechnique Fédéral de Lausanne (EPFL)
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Abstract: We explore the space of meromorphic amplitudes with extra constraints coming

from the shape of the leading Regge trajectory. This information comes in two guises: it

bounds the maximal spin of exchanged particles of a given mass; it leads to sum rules obeyed

by the discontinuity of the amplitude, which express the softness of scattering at high energies.

We assume that the leading Regge trajectory is linear, and we derive bounds on the low-

energy Wilson coefficients using the dual and primal approaches. For the graviton-graviton

scattering in four dimensions, the maximal spin constraint leads to slightly more stringent

bounds than those that follow from general constraints of analyticity, crossing, and unitarity.

The exponential softness at high energies is manifest in our primal approach and is not used

in our implementation of the dual approach. Nevertheless, we observe the agreement between

the bounds obtained from both. We conclude that high-energy superpolynomial softness

does not leave an obvious imprint on the low-energy observables. We exhibit a unitary three-

parameter deformation of the Veneziano amplitude for the open string case. It has a novel,

exponentially soft behavior at high energies and fixed angles. We generalize the previous

analysis of this regime and present a stringy version of the lower bound on high-energy,

fixed-angle scattering by Cerulus and Martin.
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1 Introduction

One of the manifestations of locality in quantum field theory is a polynomial behavior of

scattering amplitudes at high energies [1–3]. Stringy amplitudes famously violate this poly-

nomiality and exhibit an exponential behavior at high energies and fixed angles [4–6]. Grav-

itational amplitudes are expected to violate the simple polynomial behavior as well due to

black holes [7–10].

This paper explores the possible effects of the amplitudes non-polynomiality at high

energies on the low-energy observables, such as the Wilson coefficients. To make the problem

tractable, we consider weakly coupled stringy scattering. In that context, let us introduce

the leading Regge trajectory j(t), which captures the basic high-energy properties of the

amplitude. It is defined by taking the high-energy limit with momentum transfer t kept

fixed1

T (s, t) ∼ f(t)sj(t) , s → ∞ , t fixed . (1.1)

At positive t, it is related to the spectrum of the exchanged particles [6]. For negative t, it

captures the behavior of the amplitude in the actual high-energy scattering experiment. This

paper explores extra constraints on the low-energy observables drawn from some knowledge

about j(t).

The amplitudes of interest are described by meromorphic functions with extra constraints

that we impose:

(A) Standard bootstrap constraints: Analyticity (meromorphy), unitarity, and crossing

symmetry (ACU). Because we effectively work at the tree level, unitarity is reduced

to positivity, see [11, 12].

(B) Maximal spin constraint: J(m2) ≤ j(m2), where J(m2) is the maximal spin of the

exchanged particle of massm, and j(m2) is the leading Regge trajectory that we consider

to be given.

1For meromorphic amplitudes of interest, we take s → ∞ with arg s > 0 kept fixed.
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(C) Superpolynomial softness: we impose that the amplitude decays at high energies faster

than any given power for negative enough t < 0. In other words, for any N ∈ Z+ there

exists t < 0 such that j(t) < −N . These conditions are conveniently expressed in the

Regge sum rules (RSR), which will be introduced in the following.

We, therefore, see that the additional assumptions (B) and (C) are related to the properties of

the leading Regge trajectory j(t) for positive and negative t respectively. It is an interesting

question to what extent the properties of j(t) at negative and positive t are related to each

other, and we briefly comment on this question further in our conclusions.

An example of the amplitude that satisfies (A), but violates both (B) and (C) is given

by T (s, t) = 1
(s−m2)(t−m2)

, for which j(t) = −1 and J(m2) = ∞. There are amplitudes

that satisfy (B) and do not satisfy (C), e.g., glueball scattering in large N QCD, or recently

constructed deformations of the Veneziano amplitude considered in [13]. Finally, some am-

plitudes satisfy both (B) and (C), such as for example the Veneziano amplitude [14] or the

Coon amplitude [15–17].

In this paper, we focus on the case when the leading Regge trajectory is linear

j(m2) = j0 + α′m2, (1.2)

where α′ is the string tension and j0 is the so-called Regge intercept. We derive bounds on

the Wilson coefficients using both the so-called dual and primal approaches.

In the dual approach, reviewed in Appendix A, we derive bounds on the low-energy

expansion of the amplitude without explicitly constructing the amplitude. A standard tool

to do it is via dispersion relations [18]. In this case, (B) is implemented at the level of the

discontinuity of the amplitude. On the other hand, (C) can be implemented using the Regge

sum rules that we introduce shortly below. In the primal approach, we explicitly write down

an ansatz for the amplitude that satisfies (B) and (C), as well as analyticity and crossing,

and we impose unitarity numerically.

For our dual results, the assumption (1.2) about the linearity of the leading Regge trajec-

tory can be easily relaxed, and any desired shape of the Regge trajectory (e.g., taken from the

lattice data [19]) could be put in. For the primal approach, our analysis could be generalized

along the lines of [20] or [21], which allow certain flexibility in the shape of the leading Regge

trajectory.

We set the mass of the lightest massive state at m2
gap = 1. We will consider two types

of amplitudes, which we call open and closed, following the example of fundamental strings.

They are distinguished by the structure of poles, as well as by α′ that appear in (1.2)

α′
open = 1, α′

closed = 2 . (1.3)

For the closed string case, we consider the MHV scattering amplitude of gravitons in four

spacetime dimensions. For the open string case, we consider the scattering of massless scalars

in four spacetime dimensions.
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1.1 Review of the results

Our paper is divided into two parts: the closed string case and the open string case. Apart

from (1.3), the difference between the two cases is that for the open string case, we assume

that the amplitude has only poles in the s- and t- channels, whereas for the closed string case

poles in all three channels are present.

Closed string case

We consider the MHV scattering amplitude of gravitons in four dimensions previously consid-

ered in [22–25]. We assume the linear Regge trajectory to be j(t) = 2 + 2t, where m2
gap = 1.

We derive bounds on the Wilson coefficients using the dual and primal approaches.

For the dual approach, this case was previously considered in [22–25], where (A) was

imposed. We find that imposing (B) leads to slightly more stringent bounds excluding the

small regions of parameter space around the amplitudes which involve particles of all spin at

a given mass.

We restate superpolynomial softness in terms of the Regge sum rules (RSR) on the

discontinuity of the amplitude, see (2.9) below. However, due to the ‘oscillating’ nature of

the RSR, stemming from the fact that Legendre polynomials are not sign-definite for t < 0,

we find that these constraints are not used in the numerics. Therefore, we do not get any

difference between the dual bounds obtained from (B) and (C). This issue is similar to the

one described in [26], and we discuss it further in Appendix A.5.

At this point, however, we cannot be sure that this effect is not just a technical artifact

of the current implementation of the dual bootstrap scheme, which, in particular, can impose

only a finite number of RSR constraints. To make progress on this question, we develop

a primal approach, where we explicitly construct amplitudes that satisfy (C), see (3.4). A

remarkable fact about this ansatz is that it satisfies all the desired properties at finite Nmax.

We can, therefore, derive bounds on Wilson coefficients numerically first for finite Nmax, and

then extrapolate them to Nmax → ∞. We do not observe a clear gap between the primal

and dual results within the available precision. We conclude that the extra constraints due to

superpolynomial softness (not used in the dual approach and manifest in the primal approach)

do not lead to stronger bounds.

Our results for various Wilson coefficients are summarized in Figures 4,7 and 10.

Open string case

The dual approach for the open string case leads to results very similar to the closed string

case. Again we find that imposing the maximal spin condition leads to stronger bounds,

whereas the superpolynomial softness, imposed through a finite number of RSR constraints,

does not lead to visible effects.

The situation with the primal approach, however, is very different. In this case, any

truncation of the ansatz (4.3) to a finite number of terms violates unitarity. Therefore we do

not have a systematic way to derive the primal bounds in this case. Nevertheless, we identify
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an interesting Nmax = ∞ class of deformations which satisfy (A), (B), and (C). They are

conveniently given by the worldsheet integral (4.6).

A remarkable property of these amplitudes is a novel behavior at high energies and fixed

angles, see (4.12). In particular, they go beyond the analysis of [6] in several respects, thus

emphasizing the restricting nature of technical assumptions made in that paper.

Based on these results, we propose a bound on the high-energy fixed (complex) angle

behavior of the meromorphic stringy amplitudes and use it to derive a lower bound on high-

energy fixed angle scattering (5.2), which is analogous to the old result by Cerulus and Martin

in the context of gapped, relativistic QFTs.

Our results for various Wilson coefficients are summarized in Figure 14. In this case, our

dual and primal bounds do not coincide. However, it is not very surprising given that our

primal approach is not systematic, and further work is needed to clarify the interplay between

(B) and (C) in that case.

1.2 Connection to recent literature

For the reader’s convenience, let us comment on the relationship of this paper to the recent

work on related topics. For the graviton scattering, bounds on low energy observables us-

ing the usual bootstrap axioms (A) were considered in [22–25]. Here, we consider the same

observables and add extra constraints on the leading Regge trajectory (B) and (C). In [22],

the authors considered a unitary deformation of the Virasoro-Shapiro amplitude with a sin-

gle satellite term. In this work, we systematically constructed such deformations with an

arbitrary number of satellite terms.

For the open string case, bounds on low energy observables using the usual bootstrap

axioms (A) were considered in [27–29] in the context of large N QCD. Here we imposed

extra constraints on the leading Regge trajectory (B) and (C). In [13], the authors derived a

unitary deformation of the Veneziano amplitude. While this amplitude satisfies the maximal

spin constraint (B), it does not satisfy the Regge sum rules (C). In this work, we find a

different family of unitary deformations that satisfy both the maximal spin constraint (B)

and superpolynomial softness (C). These amplitudes have interesting high-energy, fixed-angle

behavior and violate some of the technical assumptions made in [6]. We relax some of these

assumptions and propose a new bound on the high-energy, fixed-angle scattering.

Other approaches have been pursued in the literature to further restrict the space of

stringy amplitudes. One interesting direction was followed in [30–32], where the authors

imposed that amplitudes satisfy certain monodromy relations stemming from the worldsheet

representation of the amplitude. In this case, the space of allowed Wilson coefficients is

drastically reduced. Note that the deformation of the Veneziano considered here (4.6) does

not satisfy the standard monodromy relation.

Extensions of the open string amplitudes to different spectra and nonlinear leading Regge

trajectories were also recently pursued. One notable deformation of the spectrum leads to

the so-called Coon amplitude [15–17] which has been explored recently [33–40]. Keeping

the spectrum of the Veneziano amplitude intact, the authors of [20] constructed an explicit
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amplitude that exhibits bending of the leading trajectory expected in large N QCD. More

recently, open string amplitudes with an arbitrary spectrum were constructed and explored

in [21].

Finally, this work explores constraints from the high-energy superpolynomial softness of

the amplitude at t < 0. A related exploration was done in [41], where the authors studied

the consequences of changing the Regge intercept j0 instead. The authors have observed that

lowering the Regge intercept below j0 < 1 led to little or no improvement of the bootstrap

bounds for the closed string case (in the presence of the u-channel poles).2 The nontrivial

effect appeared when the Regge intercept was lowered further j0 < 0, so no subtractions are

needed in the dispersion relations. The same phenomenon was observed for nonperturbative

amplitudes in [12].

1.3 Plan of the paper

The plan of the paper is as follows. In Section 2, we review the basic assumptions and con-

straints imposed. In Section 3, we explore the closed string case, namely the MHV scattering

amplitude of gravitons. We derive both primal and dual bounds on the low-energy Wilson

coefficients. In Section 4, we consider the open string case, where we take external particles to

be massless scalars. We derive dual bounds on the low-energy observables and construct new

explicit amplitudes with several remarkable properties. We conclude in Section 5, where we

discuss the results of this work and mention some future directions. We provide various ap-

pendices which contain additional details and we refer to them throughout the text in places

where they become relevant. Notably, the appendices contain a review of the dual method in

Appendix A, examples of amplitudes in Appendix C, a bound on the asymptotic form of the

amplitude in Appendix F and a version of the Cerulus-Martin bound for stringy amplitudes

in Appendix G.

2 Assumptions and constraints

Let us start by reviewing the standard assumptions satisfied by the tree-level (or meromor-

phic) scattering amplitudes. We then explain the extra constraints imposed in this work in

more detail.

Here we list properties of tree-level two-to-two scattering amplitudes of massless scalar

particles in four spacetime dimensions. The Mandelstam variables satisfy s+ t+ u = 0.

(i) Meromorphy: The scattering amplitude is described by a meromorphic function of

two variables T (s, t) where all the singularities are simple poles.

T (s, t) ∼
s→m2

n

− Rn(t)

s−m2
n

, (2.1)

and mn are masses of exchanged particles.

2For the open string case when no u-channel poles are present there is an improvement.
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(ii) Crossing symmetry: For general external particles A,B,C,D, crossing symmetry

is the requirement that

TAB→CD(s, t) = TAC̄→B̄D(t, s) = TAD̄→B̄C(u, t) . (2.2)

In this work, we consider different combinations of external particles, and the exact

form of crossing symmetry will be specified for each case separately. This property was

recently proven in the planar limit [42].

(iii) Unitarity: The residues Rn(t) can be decomposed in partial waves

Rn(t) = −Res
s=m2

n

T (s, t) =
∑
J=0

cn,JPJ

(
1 +

2t

m2
n

)
, (2.3)

where PJ(x) are the usual Legendre polynomial. Unitarity is the statement that

cn,J ≥ 0 . (2.4)

In the case of spinning particles, unitarity takes the form of a semi-definite matrix as

reviewed in [23, 43] for the case of graviton scattering.

This ends the list of the usual bootstrap assumptions for the tree-level scattering amplitudes.

In this work, we want to impose extra constraints coming from the shape of the leading Regge

trajectory.

(iv) Maximal spin: We require the residue (2.3) to be polynomial in t whose maximal

power is bounded by the leading Regge trajectory

Rn(t) =

j(m2
n)∑

J=0

cn,JPJ

(
1 +

2t

m2
n

)
. (2.5)

This condition is essentially imposing the finite energy sum rules (FESR) considered in

the past in [44–51].3 This constraint effectively puts in the information about the shape

of the leading Regge trajectory (1.1) for positive t. For the linear trajectory (1.2), it

prevents the appearance of an infinite tower of exchange particles of arbitrary high spin

at a given mass.

(v) Regge sum rules (RSR): It is a statement about the softness of the amplitude at

negative t and is best derived starting from the contour integral

1

2πi

∮
C
ds′(s′)nT (s′, t) = 0 (2.6)

where C is the contour described in Figure 1. We can split the integral into two parts

0 =

∫
C∞

ds′(s′)nT (s′, t) +
1

π

∫ ∞

−∞
ds′(s′)nTs(s

′, t) . (2.7)

3See also [52] for the rigorous formulation of the FESR using Tauberian theorems.
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s

C

Figure 1: The integration contour used to derive the Regge sum rules. Without loss of generality,

we draw a cut along the full real axis.

The integral over the large circle C∞ can be computed using the known Regge behavior

(1.1) ∫
C∞

ds′(s′)nT (s′, t) ∼
∫
C∞

ds′

s′
(s′)j(t)+1+n = 0 , if j(t) < −1− n . (2.8)

We thus obtain the Regge sum rules

RSR:

∫ ∞

−∞
ds′(s′)nTs(s

′, t) = 0, j(t) < −1− n , (2.9)

which conveniently express the superpolynomial softness of the amplitude in terms of

the constraints on the discontinuity of the amplitude. In the case of meromorphic ampli-

tudes, the integral reduces to a sum as Ts ∼ δ(s−m2
n) (plus the u-channel contribution).

In the primal approach, we will explore the space of amplitudes by explicitly constructing

them in a way that they obey all the above constraints. To write an explicit ansatz, we will

have to choose a spectrum, and in this work, we consider amplitudes characterized by the

equidistant spectrum.

(vi) Equidistant spectrum: All particles in the spectrum have m2
n = n with n ∈ Z+ .

Let us emphasize that this is a technical constraint, and we leave to future studies generaliza-

tions to more complicated spectra. However, it is important to emphasize that we found that

adding the equidistant spectrum assumption to the dual approach does not affect the bounds

on Wilson coefficients. In this sense, amplitudes with an equidistant spectrum are generic.
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3 Closed strings: MHV scattering of gravitons

In this section, we consider graviton scattering, which corresponds to the closed string case

α′
closed = 2. In particular, we consider the two-to-two MHV amplitude

T++−−(s, t, u) = ([12]⟨34⟩)4f(s|t, u) CMF
= s4f(s|t, u) , (3.1)

where crossing symmetry implies that f(s|t, u) = f(s|u, t) and all other MHV amplitudes are

described by the same function. By CMF we mean the center-of-mass reference frame, see

[23] for details.

At low energy, the amplitude admits the following expansion

f(s|t, u) = 8πGN

stu
+ |βR3 |2

tu

s
− |βϕ|2

1

s
+
∑

k≥j≥0

ak,js
k−jtj . (3.2)

The coefficients in this expansion define the so-called Wilson coefficients. The first term is the

well-known Einstein term, the second is the correction to the 3-pt coupling from the R3 oper-

ator, and the third is due to the ϕC2 coupling, which describes the massless scalar exchange.

Finally, the ak,j are related to higher dimensional operators. We used the convention of [23],

and we refer the reader to this reference for detailed computation of the low energy expansion

(3.2) starting from the Lagrangian. Bounds on ratios of these Wilson coefficients were derived

using the dual method in [22–25] imposing only the standard bootstrap constraints (ACU)

(A).

Next, we want to impose that the amplitude satisfies the well-known linear Regge behavior

of string theory (1.1) with

j(t) = 2 + 2t , ∀t . (3.3)

As explained in Section 2, we will impose this in two steps. First, it will be imposed for t > 0

by bounding the maximal spin in the spectrum (B). This can be easily done using the dual

method reviewed in Appendix A. Second, we will also superpolynomial softness in the form of

Regge sum rules at negative t. In this case, we observe that adding a finite number of Regge

sum rules to our dual algorithm does not affect the bounds. To explore the space of Wilson

coefficients when infinitely many Regge sum rules (or superpolynomial softness) are imposed,

we will turn to the primal method, where these constraints are built-in. When constructing

an ansatz, further assumptions have to be made about the spectrum, and we will assume an

equidistant spectrum m2
n = n. This assumption can also be made in the dual approach, and

we did not observe any effects on the bounds by including it.

Note that in four spacetime dimensions, one-particle states are not good asymptotic

states in gravity [53]. This fact manifests itself through the IR divergences. There are two

comments that we can make in this regard. First, all the basic ideas in the present paper

are directly generalizable to d > 4, and it would be interesting to do it explicitly. Second, in

d = 4, we expect that our conclusions should hold for the IR finite observables, e.g., for CFT

correlators dual to gravitational theory in AdS4, see [54, 55].
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Next, we describe the ansatz in Section 3.1 and the primal algorithm in Section 3.2, then

we present the result for various Wilson coefficients in Section 3.3.

3.1 Closed string ansatz

Our ansatz for closed string satisfying the constraint described in Section 2 is built out of the

‘Virasoro-Shapiro block’. It takes the following form4

f(s|t, u) = −8πGN
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

+

′∑
cs,ct,cu,ds,dt,du

αcs,(ct,cu),ds,(dt,du)
Γ(cs − s)Γ(ct − t)Γ(cu − u)

Γ(ds + s)Γ(dt + t)Γ(du + u)
, (3.4)

where we used the symmetric notation α(i,j) =
1
2(αi,j +αj,i) to emphasize that the function is

t−u symmetric. The first term is the well-known Virasoro-Shapiro amplitude for superstrings

[57–59]. A unitary deformation with one satellite term α1,(1,1),2,(2,2) = −8πGN ϵ, 0 ≤ ϵ ≤ 1

was recently considered in [22]. The
∑′ indicates that we only keep terms for which the

residues are polynomial and which satisfy the Regge behavior (3.3)

f(s|t, u) ≲ s−2+2t , s → ∞ , t fixed , (3.5)

f(s|t, u) ≲ t2+2s , t → ∞ , s fixed . (3.6)

Not all the terms in the expansion above are independent and it is convenient to remove

dependent terms. The dependence is nontrivial and we do not know of a general rule to select

independent terms. We will discuss this point in more detail below.

Let us discuss the basic properties of this ansatz. It is obviously meromorphic with

equidistant spectrum m2
n = n ∈ Z+ and crossing symmetry is built in. It also automatically

satisfies the maximal spin constraint (B) because for a given s only a finite number of terms in

the ansatz contribute to the sum rule and each of them manifestly satisfies it. Regarding the

superpolynomial softness, while each term satisfies it individually, the (infinite) sum might

not. This point will be further discussed for the infinite sums of similar type in Section 4.2.

Below, we consider the truncated sum for which superpolynomial softness will be manifest.

The only remaining constraint is thus unitarity, the latter is not automatic and imposes

nontrivial constraints on the coefficients α’s.

Let us review here unitarity constraints for the MHV amplitude. As we are considering

the scattering of spinning particles, we have a few different channels to consider. In the case

at hand, the two independent channels are (++ → ++) and (+− → +−) for which the

4A similar ansatz was considered in the past in [56], however, without imposing unitarity.
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residues (2.3) read5

−Res
s=n

T++−−(s, t) =
∑

J=0,2,...

c++
n,J dJ0,0

(
1 +

2t

n

)
(3.7)

−Res
s=n

T+−−+(s, t) =
∑

J=0,2,...

c+−
n,J dJ4,4

(
1 +

2t

n

)
(3.8)

where the dJµ,ν(x) are the usual Wigner small d-matrices (see for example [60]) and dJ0,0(x) =

PJ(x). The coefficients cn,J are square of coupling constants and are thus nonnegative

c++
n,J ≥ 0 , c+−

n,J ≥ 0 . (3.9)

These constraints restrict the allowed space of α’s. The space of amplitudes defined in this

way is still infinite-dimensional and we will study its projection on the space of a few leading

low-energy Wilson coefficients.

In order to explore the space of amplitudes numerically, we consider a truncated ansatz

fNmax(s|t, u) = −8πGN
Γ(−s)Γ(−t)Γ(u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

+

Nmax∑
cs,ctu=0

2Nmax∑
ds,dtu=1

θαind
(α)αcs,ctu,ds,dtu

Γ(cs − s)Γ(ctu − t)Γ(ctu − u)

Γ(ds + s)Γ(dtu + t)Γ(dtu + u)
, (3.10)

where the limit of the sum is chosen such that the residues are polynomial and the Regge

limit satisfies (3.3). This requires additional constraints on α’s that we impose by inserting

θαind
(α) which is 1 when α ∈ αind and zero otherwise, it removes remaining dependent terms,

see Appendix B. This is performed in two steps. First, we realized that terms with ct ̸= cu
and dt ̸= du are redundant and thus can be removed from the sum as in (3.10). Second, we

solve for the remaining dependence order by order in Nmax. All in all, this ansatz contains

3N2
max +Nmax − 2 free parameters. In what follows, we will explore primal bound on Wilson

coefficients numerically. This procedure will be explained in detail next in Section 3.2.

However, before going further, let us remind the reader that already in string theory,

there exists a nontrivial α solution for f(s|t, u) in (3.4), namely the scattering of gravitons in

heterotic string theory [61], where the MHV amplitude is

f (hs)(s|t, u) = −8πGN
Γ(−s)Γ(−t)Γ(−u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)

(
1− tu

1 + s

)
(3.11)

which is simply generated from the ansatz with one nontrivial term α0,(1,1),2,(1,1) = 8πGN .

We know that this amplitude satisfies all the constraints, the space of α’s is thus nontrivial.

5To label the (++ → ++) amplitude, we use the all-in notation and call it T++−− and similarly for the

(+− → +−) amplitude.
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3.2 Primal algorithm

Here we describe the numerical primal algorithm used to find extremal stringy gravitational

amplitudes and derive bounds on Wilson coefficients.

Provided the ansatz (3.10), it is clear that the low-energy Wilson coefficients are linear

combinations of the α’s. Explicitly they take the form

ak,j = −x08πGN +

Nmax∑
cs,ctu=0

2Nmax∑
ds,dtu=1

xcs,ctu,ds,dtuαcs,ctu,ds,dtu , (3.12)

where xi ∈ R and can be computed by expanding the ansatz at low energy. Similar relations

hold for |βR3 |2 and |βϕ|2. The same is true for the partial wave coefficients c++
n,J , c

+−
n,J . The

procedure of bounding Wilson coefficients can thus be efficiently implemented using Linear

Programming, and in practice, we used SDPB [62, 63].6 When imposing unitarity, this cannot

be done numerically for all n, J , therefore we truncate the number of constraints by imposing

c++
n,J ≥ 0 , c+−

n,J ≥ 0 , ∀n ≤ nmax , ∀J . (3.13)

As we will see, in practice, the convergence in nmax is fast. We impose the constraint for all

spins, and due to the linearity of the Regge trajectory, the number of constraints scales as

O(n2
max). In practice, we computed the coefficients c++

n,J , c
+−
n,J for each term in (3.10) using

(3.7) and (3.8).

We now give an example of the procedure of maximizing the quantity A (A is any ratio

of Wilson coefficients and in the gravitational case we can normalize everything to 8πGN )

(a) At fixedNmax for the ansatz (3.10), we maximize A by increasing the number of unitarity

constraints nmax. Experimentally, the extremal value converges to a plateau for nmax ≳
2Nmax + 10.

(b) We extremize A for increasing size of the ansatzNmax. For each fixedNmax, the resulting

amplitude satisfies all the constraints.

(c) We fit the extremal A vs Nmax and when possible, we extrapolate to Nmax → ∞. As we

will see, is it not always clear that A converges to a finite value. The converged value

is then a primal bound on A.

It is straightforward to extend this algorithm to explore a higher-dimensional space of pa-

rameters. This is done by fixing (A1, . . . , An) and maximizing A0.

6We also tried linear solvers such as GLPK and Gurobi [64]. However, we observed that as we increase

Nmax, high precision was needed and we turned to SDPB, where arbitrary precision can be used.

– 11 –



3.3 Bounds on Wilson coefficients

In this section, we present bounds on various ratios of Wilson coefficients.

In section Section 3.3.1 we consider bounds on the Wilson coefficients normalized to GN .

Some of the bounds of this type are known to suffer from IR divergencies in four dimensions.

The simplest example concerns the correction to the graviton three-point coupling which is

bounded as [65]
|βR3 |2

8πGN
≲

log(MHSLIR)

M4
HS

, (3.14)

where MHS is the threshold for higher spin particles and LIR is an IR regulator. This bound

was recently transformed to a sharp inequality in [24] and derived by taking the flat space

limit of AdS [54]. As the ansatz described above is tree-level, the amplitude is manifestly IR

finite. The correction to the graviton three-point coupling |βR3 |2 is the first target for our

primal algorithm. We then proceed by deriving a bound on a0,0, which corresponds to the

contact term R4 in the low-energy effective action. We also normalize it by 8πGN , and the

corresponding upper bound is again known to suffer the IR divergences [23, 24].

Then we consider various bounds on Wilson coefficients ak,j normalized by a0,0 in Sec-

tion 3.3.2. Such ratios are known to admit dual bounds when assuming ACU (A). In this

work, we explore the space of these coefficients where the extra information about the leading

Regge trajectory j(t) is put in. We use the primal method to impose this constraint for all t

(negative and positive), and the dual algorithm when it is effectively only imposed for positive

t > 0 (B).

3.3.1 Bounds normalized by GN

Correction to the 3-pt coupling - |βR3 |2

Let us start by considering the bound on correction to the graviton three-point coupling

|βR3 |2, this example will also allow us to go through the numerical procedure described in

Section 3.2. First, we extremize |βR3 |2 at fixed Nmax as we increase the number of constraints

nmax, see step (a). We present the result in Figure 2 (left panel). This figure shows that at

fixed Nmax,
|βR3 |2
8πGN

converges to a plateau in nmax. The amplitude extracted at finite Nmax

satisfies all the constraints listed in Section 2, see step (b).

In this way, we can explicitly construct stringy tree-level amplitudes with |βR3 |2 ⪅ 3 ·
8πGN . To extract a primal bound, step (c), we need to extrapolate in Nmax, this is shown

in Figure 2 (right panel). Clearly, the data does not allow us to determine if it converges

to a finite value as Nmax → ∞. To highlight this point, we performed two fits, one using a

power law (in gray) which converges to a finite value, whereas the second using a logarithm

(in dashed) diverges. A large Nmax analysis is needed to distinguish between the two options.

While deriving this bound, no assumption was made on βϕ, and thus we allowed for a

massless scalar exchange |βϕ| ≥ 0. Imposing the absence of massless scalar exchange βϕ = 0

does not change the qualitative behavior of the bound and the ∼ logNmax behavior remains.
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Figure 2: Maximum values of the correction to the 3-pt coupling |βR3 |2 normalized by 8πGN . On

the left panel, we present convergence in nmax, i.e., the number of massive states for which unitarity

was imposed. We see that the convergence is fast and quickly stabilizes to a plateau. On the right,

we show the converged value vs. Nmax along with two fits. The dashed line is a divergent log(Nmax)

fit, and the solid line is a convergent power-law fit.
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Figure 3: Maximum values of the first contact term correction a0,0 normalized by 8πGN . On the left

panel, we present convergence in nmax. On the right panel, we show the converged value vs. Nmax

along with two fits. The dashed line is a divergent log(Nmax) fit, and the solid line is a convergent

power-law fit.

Dimension 8 operator – R4

Next, we consider the leading correction due to a contact term R4 parameterized by a0,0. It

is well known from dispersion relations that this coefficient is positive (see Appendix A for a

review). We follow the same procedure as for the correction to the three-point coupling and

present the result in Figure 3 for the upper bound. From the extrapolation, it is clear that

it behaves similarly to the correction to the three-point coupling. As for the lower bound,

the bound can be extrapolated and converge to
(a0,0)min

8πGN
≈ 0 and as such does not change

compared to the dual bound based on assuming causality, unitarity, and crossing symmetry.
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Figure 4: Allowed space of Wilson coefficients |βR3 |2 vs. a0,0 at finiteNmax. Our results are consistent

with the bounds diverging as logNmax. Interestingly, this seems to be analogous to the presence of

the IR regulator in the same bounds obtained in [24].

|βR3 |2 vs. a0,0

The result obtained for a0,0 could have been anticipated. Indeed, it was shown in [23] that
|βR3 |2
a0,0

≤ 1. And thus, if the upper bound for |βR3 |2/(8πGN ) diverges as log(Nmax), so must

the upper bound on a0,0/(8πGN ). We can then bound the correction to the 3-point coupling

|βR3 |2 at fixed a0,0. This result is shown in Figure 4 at various Nmax. We do not perform an

Nmax → ∞ extrapolation. The shape of the allowed region is similar to the one obtained in

[24] and is consistent with a ∼ logNmax divergence in the large Nmax limit.

3.3.2 Bounds normalized by the total cross-section moment a0,0

In this subsection, we will consider bounds on
ak,j
a0,0

. Notice that the coefficients a2k,0 measure

moments of the total cross-section, see Appendix A, and are positive.

Dimension 12 operators – D4R4

We start by looking at the coefficients of dimension 12 operators, namely a2,0, a2,1, a2,2, and

normalize them by a0,0. Out of the three coefficients, only two are independent because by

crossing we have a2,1 = a2,2. From previous works, we know that these ratios are bounded

from causality and unitarity (A), see [24, 25].

Let us first derive the primal bound using the ansatz (3.10). We present the result in

Figure 5 along with the bound assuming only ACU (A). As before, the convergence in nmax

is fast and easy. Regarding the convergence in Nmax we observe different behaviors along the

boundary. In some regions, we observe a ‘fast’ convergence. This corresponds to the points

on the boundary where the dark green goes up to the boundary in Figure 5. The convergence

is harder in other regions and seems to diverge even though we know that a finite bound

exists. We show examples of convergence in Nmax in Figure 6.
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Figure 5: The allowed region for the space of Wilson coefficients a2,0, a2,1. In light gray, we report

the dual bound using only ACU (A) with kmax = 16 null constraints. In red colors, we show primal

results obtained using our ansatz for increasing Nmax. The green region is the extrapolated Nmax → ∞
allowed region. In light green, we show a conservative estimate of the extrapolation error.

To overcome this issue, we use a fit of the form r = a + bN c
max. First, we included only

points along the boundary that converge at least linearly in 1/Nmax, then we used convexity

to close the region. This leads to the boundary of the light green region in Figure 5. To get

an idea of the uncertainty in this procedure, we added points that ‘look’ linear for Nmax ≥ 15

and used a linear fit. This leads to the darker green region in Figure 5 which can be thought

of as an ‘optimistic’ fit. To remain conservative, one should consider the full green region.

Next, we bound the same Wilson coefficients with the dual method supplemented by

the constraints on the leading Regge trajectory. For positive t, it leads to the maximal spin

bound on the spectrum (B)

J(m2) ≤ 2m2 + 2 . (3.15)

Imposing (C) in the form of a finite number of RSR does not lead to a stronger bound.

We compare the primal bound, the dual bound using only ACU, and the one with the

maximal spin constraint in Figure 7. From this plot, one clearly sees that RSR has little to no

effect and the gap seems to close in most regions of the boundary. The dual bounds are also

obtained with finitely many null constraints and the gap would close further as kmax → ∞.

Note that the primal ansatz has the extra assumption of equidistant spectrum m2
n = n. We

check that this constraint has no effect on the allowed region in the dual approach.

It is interesting to see where special amplitudes lie in this region. The simplest amplitude
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Figure 6: Examples of convergences in 1/Nmax along the boundary of Figure 5. r is the distance

between the ‘cross’ and the points. On the left panel, we observe ‘good’ linear convergence. In contrast,

on the right panel, the convergence is extremely slow.

is perhaps the massive spin-0 exchange amplitude given by7

fspin 0 =
8πGN

stu
+

λ2

m6

1

m2 − s
, (3.16)

which leads to the ratios of Wilson coefficients(
a2,0
a0,0

,
a2,1
a0,0

)
=

(
1

m4
, 0

)
(3.17)

and this populate the line a2,1 = 0 as one vary the mass m ∈ [1,∞). Clearly, this amplitude

satisfies (3.15) but not RSR.

We can also understand how the line
a2,0
a0,0

= 1 is excluded by imposing (3.15). From the

sum rules for ak,0, (see (A.4)), the only allowed spectrum allowed is at m2 = 1. Then, we can

explicitly construct the amplitude at the upper-right kink. It is given by an infinite tower of

spins exchanged at m2 = 1

fextr(s|t, u) =
8πGN

stu
+

1

(1− s)(1− t)(1− u)
+

λ

1− s
+

g

(1− t)(1− u)
, (3.18)

with

λ = −2 log(2)

3
, g =

1628532− 2349480 log(2)

7096320 log(2)− 4918777
. (3.19)

Indeed, by computing the ratio of Wilson coefficients for this amplitude, we obtain(
a2,0
a0,0

,
a2,1
a0,0

)
=

(
1,

1 + g

1 + g + λ

)
(3.19)
≈ (1, 2.367) , (3.20)

7In Appendix C, we show that this amplitude is unitary. Note that this amplitude has intercept j0 = 3.

However, it satisfies all the sum rules used in the dual approach. See Appendix C for further discussion.
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which is precisely the location of the upper-right corner. In Appendix C, we show that this

amplitude is unitary and has no spin 0 and spin 5 exchanges. Moreover, the line at
a2,0
a0,0

= 1

is given by scanning over λ. As it is clear from the equation above, except at the spin 0 point

(λ → ∞), the amplitudes on this line are given by an infinite tower of spin at m2 = 1 and

cannot satisfy the polynomial residue constraint J ≤ 2m2+2 (3.15). This is exactly what we

observe in Figure 7.
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J  2m2 + 2

Figure 7: Comparison of various assumptions and the corresponding bounds for the Wilson coeffi-

cients a2,0, a2,1. In gray, we imposed the standard bootstrap constraints (A) in the dual approach, in

red, we further imposed the maximal spin constraint (B). In green, we show the bound obtained using

the primal approach which manifestly satisfies (C), see also Figure 5. For the dual bounds, we used

kmax = 6. We also indicated special amplitudes: fextr given by (3.18) with λ, g given by (3.19), and

the spin 0 exchange at m2 = 1 given by fspin 0 in (3.16).

One advantage of the primal approach is that at any finite Nmax, the amplitude is known

explicitly. It is therefore interesting to study the physical properties of extremal solutions

and how they evolve along the boundary. In particular, we can analyze the contribution of

various spins and channels to the ak,0 sum rule which reads

ak,0 =
1

π

∫ ∞

1

dm2

m2k+10

 ∞∑
J=0,2,...

ρ++
J (m2) +

∞∑
J=4,5...

(−1)kρ+−
J (m2)

 , (3.21)

=
∞∑

J=0,2,...

Jρ++
J Kk + (−1)k

∞∑
J=4,5,...

Jρ+−
J Kk , (3.22)
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where in the second line we introduced the notation J...Kk = 1
π

∫∞
1

dm2

m2k+10 (...) for the integral

over m2.

Setting k = 0, we get

1 = a−1
0,0

 ∞∑
J=0,2,...

Jρ++
J K0 +

∞∑
J=4,5,...

Jρ+−
J K0

 . (3.23)

In Figure 8, we show various contributions to the sum rule along the boundary.8 To this

end, we define an angle variable θ which spans the boundary, see Figure 8(bottom-left) for its

definition. We observe that the lowest spin always dominates along the boundary in the (+−)

channel. This is not true in the (++) channel where on the upper diagonal J = 2 dominates.

On the lower-right panel of Figure 8, we highlight that along the boundary ∼ 90% of the sum

rule comes from the lowest spin contribution in each channel.
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Figure 8: Spectral density moments along the boundary of the allowed region in the space of ratios of

Wilson coefficients
(

a2,1

a0,0
,

a2,0

a0,0

)
for the amplitude with Nmax = 20. Points at the boundary are labeled

by an angle θ defined in the lower-left panel. We indicated special points with A,B,C. From (3.23),

all contributions sum to 1, which is indicated in the plots by a black dotted line. In the lower-right

panel, we present the lowest spin contribution to the spectral density in each channel.

8Here we use the amplitude obtained with Nmax = 20.
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Dimension 16 operators – D8R4

We next consider bounds on the a4,j coefficients normalized by a0,0. At this level, there

are 3 independent coefficients a4,0, a4,1 and a4,2 which carve a finite region in 3d space. We

proceed similarly as in the case of dimension 12 operators. In Figure 9, we present a section

of the allowed space at a4,0/a0,0 = 1/2 and the entire 3d region using the primal ansatz. The

convergence in Nmax is fast except at the origin a4,2 = a4,1 = 0.

In the existing literature, the dual bounds using only causality, unitarity, and crossing

symmetry were never presented. Instead, various authors [22, 23, 25], considered bounds

on the homogeneous ratios
a4,1
a4,0

vs.
a4,2
a4,0

. In this space, [23] highlighted that all theories

populate a smaller region dubbed the low-spin dominance region obtained assuming that

higher spin contributions to the spectral densities ρJ are suppressed. The same effect appears

for the a2,j coefficients, and in a subsequent work [24], the authors emphasized that bounds

on the homogeneous ratios are dominated by a small region close to the free theory point

when considering the inhomogeneous ratios. Here, we observe the same effect. A similar

observation was made in [25], where the authors realized that by fixing the value
a4,0
a0,0

, the

bound on ratios of homogeneous coefficients shrinks significantly (this corresponds to a section

in the 3d region in Figure 9).

Second, we bound the section
a4,0
a0,0

= 1
2 using the dual method by imposing the maximal

spin constraint (B) with (3.15). We present the result in Figure 10. They present a clear

overlap between the assumptions (B) and (C), i.e., RSR has little to no effect. We also checked

that imposing equidistant spectrum m2
n = n in addition to J ≤ 2m2 + 2 does not change the

shape of the allowed region and cannot create a gap between the primal and dual regions. In

this Figure 10, we also draw the line of low spin dominance LSD∞ defined by

LSDα :
Jρ++

0 Kk
Jρ++

J>0Kk
≥ α and

Jρ+−
4 Kk

Jρ+−
J>4Kk

≥ α . (3.24)

It is also interesting to study the content of the extremal primal amplitudes and we

proceed similarly to the case of a2,k. We present the result in Figure 11, and except for

the region close to the upper-right corner, the lowest spin always dominates in each channel.

Furthermore, as for the case of a2,k, the sum of the lowest spin spectral density in each channel

constitutes ∼ 90% of the sum rules all along the boundary.
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Figure 9: The allowed region for the Wilson coefficients a4,0, a4,1, a4,2. In light gray, we report the

dual bound using only causality, unitarity, and crossing (ACU) (A). In color, we present the primal

bounds that also satisfy (B) and (C) using increasing Nmax. The green region is the extrapolated

bound Nmax → ∞. On the right, we show the result for the 3d region and, on the left, we present an

example of the section at a4,0/a0,0 = 1/2. At finite Nmax, the convergence is fast except close to the

origin. The 3d region is built for 0.05 ≤ a4,0

a0,0
≤ 0.95 at Nmax = 20 + extrapolation was used when

necessary.
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<latexit sha1_base64="shCTNEjdBMdwH/xt9WCBlrPZaP0=">AAAB+3icbVBNSwMxEM3Wr1q/1nr0EqyCp7Irih4LXjxWsLXQLks2zbah2WRJZqVl6V/x4kERr/4Rb/4b03YP2vpg4PHeTDLzolRwA5737ZTW1jc2t8rblZ3dvf0D97DaNirTlLWoEkp3ImKY4JK1gINgnVQzkkSCPUaj25n/+MS04Uo+wCRlQUIGksecErBS6FbjMIesB2wMOU6VYNNp6Na8ujcHXiV+QWqoQDN0v3p9RbOESaCCGNP1vRSCnGjg1D5Y6WWGpYSOyIB1LZUkYSbI57tP8ZlV+jhW2pYEPFd/T+QkMWaSRLYzITA0y95M/M/rZhDfBDmXaQZM0sVHcSYwKDwLAve5ZhTExBJCNbe7YjokmlCwcVVsCP7yyaukfVH3r+re/WWtcVrEUUbH6ASdIx9dowa6Q03UQhSN0TN6RW/O1Hlx3p2PRWvJKWaO0B84nz/KV5TU</latexit>

ftu pole

<latexit sha1_base64="otz1mNui9jTyRGfOZtiCLr3mV/Y=">AAACAHicbZDLSsNAFIYn9VbrLerChZvBorgoZVIquiy4cVnBXqANYTKdtEMnkzAzEUrIxldx40IRtz6GO9/GSZuFtv4w8PGfczhzfj/mTGmEvq3S2vrG5lZ5u7Kzu7d/YB8edVWUSEI7JOKR7PtYUc4E7WimOe3HkuLQ57TnT2/zeu+RSsUi8aBnMXVDPBYsYARrY3n2yTCQmKTYS5u1RpblgGooyzy7iupoLrgKTgFVUKjt2V/DUUSSkApNOFZq4KBYuymWmhFOs8owUTTGZIrHdGBQ4JAqN50fkMFz44xgEEnzhIZz9/dEikOlZqFvOkOsJ2q5lpv/1QaJDm7clIk40VSQxaIg4VBHME8DjpikRPOZAUwkM3+FZIJNItpkVjEhOMsnr0K3UXeu6ui+WW1dFHGUwSk4A5fAAdegBe5AG3QAARl4Bq/gzXqyXqx362PRWrKKmWPwR9bnDwJole8=</latexit>a4,2
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="FSCf7EsOulxOXh20Cy5+HECy/wc=">AAAB/HicdVDJSgNBEO2JW4xbNEcvjUHIaZiEaDwG9ODBQ0SzQBJCT6cnadLTM3TXiMMw/ooXD4p49UO8+Td2FsH1QcHjvSqq6rmh4Boc593KLC2vrK5l13Mbm1vbO/ndvZYOIkVZkwYiUB2XaCa4ZE3gIFgnVIz4rmBtd3I69ds3TGkeyGuIQ9b3yUhyj1MCRhrkCz1gt5BcXJ2lg6THpQdxOsgXHbtaqR7XKvg3KdvODEW0QGOQf+sNAxr5TAIVROtu2QmhnxAFnAqW5nqRZiGhEzJiXUMl8ZnuJ7PjU3xolCH2AmVKAp6pXycS4msd+67p9AmM9U9vKv7ldSPwTvoJl2EETNL5Ii8SGAI8TQIPuWIURGwIoYqbWzEdE0UomLxyJoTPT/H/pFWxy0e2c1kt1kuLOLJoHx2gEiqjGqqjc9RATURRjO7RI3qy7qwH69l6mbdmrMVMAX2D9foB0qiVdw==</latexit>

LSD1

<latexit sha1_base64="2sH3jrdUfK5ZL7fXtCTZWv/VWJs=">AAAB9HicdVDJSgNBEO2JW4xb1KOXxigIwjAzROMx4EU8RTALJGPo6dQkTbpnJt09gRDyHV48KOLVj/Hm39hZBNcHBY/3qqiqFyScKe0471ZmaXlldS27ntvY3Nreye/u1VScSgpVGvNYNgKigLMIqpppDo1EAhEBh3rQv5z69SFIxeLoVo8S8AXpRixklGgj+dctDgPsiTsPn3rtfMGxi17xvOTh38S1nRkKaIFKO//W6sQ0FRBpyolSTddJtD8mUjPKYZJrpQoSQvukC01DIyJA+ePZ0RN8bJQODmNpKtJ4pn6dGBOh1EgEplMQ3VM/van4l9dMdXjhj1mUpBoiOl8UphzrGE8TwB0mgWo+MoRQycytmPaIJFSbnHImhM9P8f+k5tnume3cFAvlo0UcWXSADtEJclEJldEVqqAqomiA7tEjerKG1oP1bL3MWzPWYmYffYP1+gEHAZDh</latexit>

J  2m2 + 2

Figure 10: Bounds for a4,1, a4,2 at
a4,0

a0,0
= 1/2 from various assumptions. In gray, the usual bootstrap

assumptions are considered (ACU) (A). In red, we further imposed the maximal spin constraint (B),

and, in green, superpolynomial softness (C) is imposed using the primal approach Figure 9 (left). For

the dual bounds, we used kmax = 6. We also indicated special amplitudes: fextr given by (3.18) (but

with the mass of the exchanged tower of particles given by m8 = 2), the tu-pole amplitude, and the

spin 0 exchange amplitude with mass m8 = 2, see Table 2.
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<latexit sha1_base64="IjLhb6WJ3r/0Sx28nchpU4AipKQ=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0UoqGUiii4LbsRVBfuAJIbJdNIOnTyYmQglZO3GX3HjQhG3foE7/8Zpm4W2HrhwOOde7r3HTziTCqFvo7SwuLS8Ul6trK1vbG6Z2zttGaeC0BaJeSy6PpaUs4i2FFOcdhNBcehz2vGHV2O/80CFZHF0p0YJdUPcj1jACFZa8sx9JxCYZLbtiEHs3dxnRye563ooz7CXoWOU555ZRXU0AZwnVkGqoEDTM7+cXkzSkEaKcCylbaFEuRkWihFO84qTSppgMsR9amsa4ZBKN5u8ksNDrfRgEAtdkYIT9fdEhkMpR6GvO0OsBnLWG4v/eXaqgks3Y1GSKhqR6aIg5VDFcJwL7DFBieIjTTARTN8KyQDrbJROr6JDsGZfnift07p1Xke3Z9VGrYijDPbAAagBC1yABrgGTdACBDyCZ/AK3own48V4Nz6mrSWjmNkFf2B8/gB4NJoG</latexit>

[[⇢+�
J ]]0
a0,0

<latexit sha1_base64="An4gAPWLw5qxd/d7c9J+muXZ5Eg=">AAACCnicbVDLSsNAFJ3UV62vqEs30SIUKmUiii4LbsRVBfuAJIbJdNIOnWTCzEQoIWs3/oobF4q49Qvc+TdO2yy09cCFwzn3cu89QcKoVBB+G6Wl5ZXVtfJ6ZWNza3vH3N3rSJ4KTNqYMy56AZKE0Zi0FVWM9BJBUBQw0g1GVxO/+0CEpDy+U+OEeBEaxDSkGCkt+eahGwqEM8dxxZD7N/dZvZ57ng/zDPkZPIF57ptV2IBTWIvELkgVFGj55pfb5ziNSKwwQ1I6NkyUlyGhKGYkr7ipJAnCIzQgjqYxioj0sukruXWslb4VcqErVtZU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLaJykisR4tihMmaW4NcnF6lNBsGJjTRAWVN9q4SHS2SidXkWHYM+/vEg6pw37vAFvz6rNWhFHGRyAI1ADNrgATXANWqANMHgEz+AVvBlPxovxbnzMWktGMbMP/sD4/AF1DpoE</latexit>

[[⇢++
J ]]0
a0,0

<latexit sha1_base64="tedUETVNwtFXWOIc4BsXVep+CuA=">AAAB/XicbVDJSgNBEO1xjXGLy83LYBAigTAjih4DXjxGMAskQ+jp1CRNenqG7hoxDom/4sWDIl79D2/+jZ3loIkPCh7vVVFVz48F1+g439bS8srq2npmI7u5tb2zm9vbr+koUQyqLBKRavhUg+ASqshRQCNWQENfQN3vX4/9+j0ozSN5h4MYvJB2JQ84o2ikdu6wUCyejkYthAdMWY9KCWLYzuWdkjOBvUjcGcmTGSrt3FerE7EkBIlMUK2brhOjl1KFnAkYZluJhpiyPu1C01BJQ9BeOrl+aJ8YpWMHkTIl0Z6ovydSGmo9CH3TGVLs6XlvLP7nNRMMrryUyzhBkGy6KEiEjZE9jsLucAUMxcAQyhQ3t9omAUUZmsCyJgR3/uVFUjsruRcl5/Y8Xy7M4siQI3JMCsQll6RMbkiFVAkjj+SZvJI368l6sd6tj2nrkjWbOSB/YH3+AB8glPI=</latexit>

(++) channel
<latexit sha1_base64="1BF0MIiGYtRk52uPzHMUHYgoftY=">AAAB/XicbVDLSgNBEJyNrxhf8XHzshiEiBh2RdFjwIvHCOYByRJmJ51kcHZ2mekV45L4K148KOLV//Dm3zhJ9qCJBQ1FVTfdXX4kuEbH+bYyC4tLyyvZ1dza+sbmVn57p6bDWDGoslCEquFTDYJLqCJHAY1IAQ18AXX/7mrs1+9BaR7KWxxE4AW0J3mXM4pGauf3iscnR6NRC+EBE9anUoIYtvMFp+RMYM8TNyUFkqLSzn+1OiGLA5DIBNW66ToReglVyJmAYa4Va4gou6M9aBoqaQDaSybXD+1Do3TsbqhMSbQn6u+JhAZaDwLfdAYU+3rWG4v/ec0Yu5dewmUUI0g2XdSNhY2hPY7C7nAFDMXAEMoUN7faJgFFGZrAciYEd/bleVI7LbnnJefmrFAupnFkyT45IEXikgtSJtekQqqEkUfyTF7Jm/VkvVjv1se0NWOlM7vkD6zPHyJKlPQ=</latexit>

(+�) channel

<latexit sha1_base64="9Wm7g6LrqKycFa5oAhN7fbN+ytk=">AAACBXicbVDLSsNAFJ34rPUVdamLYBG6kDIRRZcFN+Kqgn1AEsJkOmmHTmbCzEQoIRs3/oobF4q49R/c+TdO2yy09cCFwzn3cu89Ucqo0hB+W0vLK6tr65WN6ubW9s6uvbffUSKTmLSxYEL2IqQIo5y0NdWM9FJJUBIx0o1G1xO/+0CkooLf63FKggQNOI0pRtpIoX3kxxLh3PN8ORThbRCEsMhRmMNTWBShXYMNOIWzSNyS1ECJVmh/+X2Bs4RwjRlSynNhqoMcSU0xI0XVzxRJER6hAfEM5SghKsinXxTOiVH6TiykKa6dqfp7IkeJUuMkMp0J0kM1703E/zwv0/FVkFOeZppwPFsUZ8zRwplE4vSpJFizsSEIS2pudfAQmVi0Ca5qQnDnX14knbOGe9GAd+e1Zr2MowIOwTGoAxdcgia4AS3QBhg8gmfwCt6sJ+vFerc+Zq1LVjlzAP7A+vwB+8yYJg==</latexit>

[[⇢J ]]0
a0,0

<latexit sha1_base64="HpOqT3ECyAeSzETuuqlO7Iao4KU=">AAACCnicbVDLSsNAFJ3UV62vqEs30SJUiiWRim6EghtxVcE+oI1hMp22QyczYWYilJC1G3/FjQtF3PoF7vwbJ20EbT0wcO4593LnHj+kRCrb/jJyC4tLyyv51cLa+sbmlrm905Q8Egg3EKdctH0oMSUMNxRRFLdDgWHgU9zyR5ep37rHQhLObtU4xG4AB4z0CYJKS565X+qKIffi6ws7uYvL5aT8U1fT+jg58syiXbEnsOaJk5EiyFD3zM9uj6MowEwhCqXsOHao3BgKRRDFSaEbSRxCNIID3NGUwQBLN56ckliHWulZfS70Y8qaqL8nYhhIOQ583RlANZSzXir+53Ui1T93Y8LCSGGGpov6EbUUt9JcrB4RGCk61gQiQfRfLTSEAiKl0yvoEJzZk+dJ86TinFbsm2qxVsriyIM9cABKwAFnoAauQB00AAIP4Am8gFfj0Xg23oz3aWvOyGZ2wR8YH98J35kf</latexit>

(⇢++
J=0 + ⇢+�

J=4)

<latexit sha1_base64="SoCJkGUYCgcSdU7sCy+LIU/Der0=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCQSyJVHQjFNyIqwr2AW0Mk+mkHTqZCTMToYZ8iRsXirj1U9z5N07bLLT1wIXDOfdy7z1BzKjSjvNtFVZW19Y3ipulre2d3bK9t99WIpGYtLBgQnYDpAijnLQ01Yx0Y0lQFDDSCcbXU7/zSKSigt/rSUy8CA05DSlG2ki+Xe7LkfDT26t69pCenGa+XXFqzgxwmbg5qYAcTd/+6g8ETiLCNWZIqZ7rxNpLkdQUM5KV+okiMcJjNCQ9QzmKiPLS2eEZPDbKAIZCmuIaztTfEymKlJpEgemMkB6pRW8q/uf1Eh1eeinlcaIJx/NFYcKgFnCaAhxQSbBmE0MQltTcCvEISYS1yapkQnAXX14m7bOae15z7uqVRjWPowgOwRGoAhdcgAa4AU3QAhgk4Bm8gjfryXqx3q2PeWvBymcOwB9Ynz/79pKQ</latexit>

⇢+�
J=4

<latexit sha1_base64="CW2qJRCcKdWQ05iugU9jn9nGVyg=">AAAB+HicbVBNS8NAEJ34WetHox69LBahUCiJKHoRCl7EUwX7AW0Mm+22XbrZhN2NUEN+iRcPinj1p3jz37htc9DWBwOP92aYmRfEnCntON/Wyura+sZmYau4vbO7V7L3D1oqSiShTRLxSHYCrChngjY105x2YklxGHDaDsbXU7/9SKVikbjXk5h6IR4KNmAEayP5dqknR5Gf3l452UNarWa+XXZqzgxombg5KUOOhm9/9foRSUIqNOFYqa7rxNpLsdSMcJoVe4miMSZjPKRdQwUOqfLS2eEZOjFKHw0iaUpoNFN/T6Q4VGoSBqYzxHqkFr2p+J/XTfTg0kuZiBNNBZkvGiQc6QhNU0B9JinRfGIIJpKZWxEZYYmJNlkVTQju4svLpHVac89rzt1ZuV7J4yjAERxDBVy4gDrcQAOaQCCBZ3iFN+vJerHerY9564qVzxzCH1ifP/LEkoo=</latexit>

⇢++
J=0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0

<latexit sha1_base64="xfReq38WrtxJUVr5ETUrmQcTl1w=">AAACAHicbZC7SgNBFIbPxluMt6iFhc1gUCxCmJWIlgEbywjGBJJlmZ3MJkNmL8zMCmHZxlexsVDE1sew822cTbbQxB8GPv5zDmfO78WCK43xt1VaWV1b3yhvVra2d3b3qvsHDypKJGUdGolI9jyimOAh62iuBevFkpHAE6zrTW7yeveRScWj8F5PY+YEZBRyn1OijeVWjwa+JDQlbtqs21mWA67jLHOrNdzAM6FlsAuoQaG2W/0aDCOaBCzUVBCl+jaOtZMSqTkVLKsMEsViQidkxPoGQxIw5aSzAzJ0apwh8iNpXqjRzP09kZJAqWngmc6A6LFarOXmf7V+ov1rJ+VhnGgW0vkiPxFIRyhPAw25ZFSLqQFCJTd/RXRMTCLaZFYxIdiLJy/Dw0XDvmzgu2atdVbEUYZjOIFzsOEKWnALbegAhQye4RXerCfrxXq3PuatJauYOYQ/sj5/AADZle4=</latexit>a4,1
a0,0
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<latexit sha1_base64="otz1mNui9jTyRGfOZtiCLr3mV/Y=">AAACAHicbZDLSsNAFIYn9VbrLerChZvBorgoZVIquiy4cVnBXqANYTKdtEMnkzAzEUrIxldx40IRtz6GO9/GSZuFtv4w8PGfczhzfj/mTGmEvq3S2vrG5lZ5u7Kzu7d/YB8edVWUSEI7JOKR7PtYUc4E7WimOe3HkuLQ57TnT2/zeu+RSsUi8aBnMXVDPBYsYARrY3n2yTCQmKTYS5u1RpblgGooyzy7iupoLrgKTgFVUKjt2V/DUUSSkApNOFZq4KBYuymWmhFOs8owUTTGZIrHdGBQ4JAqN50fkMFz44xgEEnzhIZz9/dEikOlZqFvOkOsJ2q5lpv/1QaJDm7clIk40VSQxaIg4VBHME8DjpikRPOZAUwkM3+FZIJNItpkVjEhOMsnr0K3UXeu6ui+WW1dFHGUwSk4A5fAAdegBe5AG3QAARl4Bq/gzXqyXqx362PRWrKKmWPwR9bnDwJole8=</latexit>a4,2
a0,0

Figure 11: The spectral density moment along the boundary of the allowed region in the space(
a4,2

a0,0
,

a4,1

a0,0

)
at fixed

a4,0

a0,0
= 1

2 for the amplitude with Nmax = 20. Points at the boundary are labeled

by
a4,1

a0,0
. The upper branch is depicted in solid and the lower in dashed, as shown in the lower-left

panel. From (3.23), all contributions sum to 1, indicated in the plots by a black dotted line. In the

lower-right panel, we present the lowest spin contribution in each channel.
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4 Open strings: scattering of massless scalars

In this section, we consider the same problem but for open strings: we assume that T (s, t)

has poles only in the s- and t-channels; it obeys the crossing relation T (s, t) = T (t, s); in the

Regge limit, it takes the form (1.1) with

j(t) = t, (4.1)

where as before we set m2
gap = 1.

The main difference compared to the case of closed strings is that we find that unitarity

excludes any ansatz with a finite number of satellite terms, see Appendix D. Due to this fact,

we were not able to set up a systematic primal bootstrap scheme to derive bounds on Wilson

coefficients for the open string case.

There are however nontrivial solutions with infinitely many satellite terms which satisfy

unitarity. We find a three-parameter family of such unitarity amplitudes which can be rep-

resented through a simple worldsheet integral. They exhibit novel high-energy, fixed-angle

behavior.

4.1 Ansatz

As before we consider the amplitudes with exactly equidistant spectrum m2 = n, polynomial

residues, that satisfy crossing. For the open string case where the amplitude only has poles

in the s- and t-channels we get the following ansatz

T (s, t) =

∞∑
cs,ct=0

cs+ct∑
cu=max(cs,ct)

αcs,ct,cu

Γ(cs − s)Γ(ct − t)

Γ(cu − s− t)
, αcs,ct,cu = αct,cs,cu (4.2)

where the lower bound on cu comes from imposing the Regge behavior st+(cs−cu) and the

upper bound from imposing that residues are polynomials.

Not all the terms in the ansatz above are independent. Eliminating the redundancies, we

can write a simpler ansatz

T (s, t) =

∞∑
i=0

i∑
k=0

bik
Γ(i− s)Γ(i− t)

Γ(i+ k − s− t)
, (4.3)

which was considered by Khuri in [66].

The term k = i = 0 corresponds to the Veneziano amplitude. Notice that the amplitude

(4.3) automatically satisfies the maximal spin constraint. The reason is that taking the

discontinuity in s automatically truncates the sum over i and one can trivially check that

Ts ∼ st. In Appendix E, we argue that this ansatz is complete for amplitudes with an

equidistant spectrum and linear trajectories.
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4.2 Regge sum rules

Checking RSR for the amplitude (4.3) is more subtle. Here we can distinguish two cases:

when the sum over i truncates to ≤ Nmax; when the sum over i goes all the way to infinity.

Let us first discuss the case i ≤ Nmax. In this case, superpolynomial softness is trivial

because for given i and k, the amplitude behaves in the Regge limit as T (s, t) ∼ st−k. However,

we show in Appendix D that all such amplitudes violate unitarity. Thus, we conclude that

no unitary deformations of the Veneziano amplitude with i ≤ Nmax exist. This makes the

method used to derive bounds on Wilson coefficients in the previous section inapplicable, see

Section 3.2.

Next, we consider the case when the sum over i goes all the way to infinity. In this

case, a class of unitary deformation was recently found by Cheung and Remmen in [13]. In

particular, they found an amplitude depending on the parameter r

TCR(s, t) =
∞∑
i=0

1

i!

r

r + i

Γ(i− s)Γ(i− t)

Γ(i− s− t)
=

Γ(−s)Γ(−t)

Γ(−s− t)
3F2(−s,−t, r;−s− t, 1 + r; 1) (4.4)

which for r = 0 reduces to the Veneziano amplitude. Unitarity imposes an additional con-

straint on r. For example, in d = 4, it requires that r ≥ −1/2. In the Regge limit, this

deformation takes the form

TCR(s, t) = st +
r

(1 + t)s
+ ... , (4.5)

where the second term explicitly violates RSR. The mechanism by which this term emerges

is interesting: the Regge limit and sum over i above do not commute. Therefore even though

each term in the sum (4.4) satisfies RSR, the full amplitude given by an infinite sum does

not.

To the best of our knowledge, the existence of unitary deformations of the Veneziano

amplitudes that satisfy RSR has not been explicitly demonstrated so far, and it is what we

will show next. We will not try to be exhaustive and it would be very interesting to classify

all such deformations. We leave this problem for future work.

4.3 Unitary amplitudes

We do not know what is a complete set of unitary amplitudes (4.3) that satisfy RSR. Here

we consider a three-parameter family of amplitudes and explore it in detail. The easiest way

to define them is via the worldsheet-like integral

Tc0,c1,λ(s, t) =

∫ 1

0
dz z−s−1(1− z)−t−1(1− 4λ(1− z)z)c0+c1(s+t), 0 ≤ λ ≤ 1

2
, (4.6)
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where the restriction on λ comes from imposing RSR.9 Moreover, the Regge behavior (4.1)

further requires that c1λ < 1
4 with the leading Regge behavior given by Tc0,c1,λ(s, t) ≃

Γ(−t)(1− 4c1λ)
t(−s)t.

The integral can be evaluated explicitly and the result takes the following form

Tc0,c1,λ(s, t) =
Γ(−s)Γ(−t)

Γ(−s− t)
3F2

(
−s,−t,−c0 − c1(s+ t);−s+ t

2
,
1− s− t

2
;λ

)
. (4.7)

For λ = 0 it becomes the Veneziano amplitude T0,0,0 = Γ(−s)Γ(−t)
Γ(−s−t) . Similar amplitudes have

been considered in the past: Matsuda [67] considered the case c1 = 1/2 , c0 = 0; Mandelstam

[68] considered the case c1 = 0. For these particular cases, expansion coefficients in (4.3) can

be found explicitly

• For c1 = 1/2 , c0 = 0 (the Matsuda case), the coefficients read

bik =
λi

i!

(−1)k2i−kΓ(i+ k + 1)

Γ(k + 1)Γ(i− k + 1)
. (4.8)

• For c1 = 0 (the Mandelstam case), the coefficients read

bik =

{
bii = λi

i!
4iΓ(i−c0)
Γ(−c0)

bik = 0 , k ̸= i
. (4.9)

Let us also mention a couple of special cases which further simplify dramatically

T0,1/2,1/2(s, t) =
1

2

Γ(− s
2)Γ(−

t
2)

Γ(− s+t
2 )

, (4.10)

T−1/2,1/2,1/2(s, t) =
1

2

Γ(− s
2)Γ(−

t−1
2 ) + Γ(− s−1

2 )Γ(− t
2)

Γ(− s+t−1
2 )

. (4.11)

These amplitudes satisfy unitarity, however they have c1λ = 1
4 and their Regge limit T (s, t) ∼

st/2 differs from (4.1).

Our next step is to impose unitarity. It imposes further nontrivial constraints on the

allowed values of (c0, c1, λ). We analyzed unitarity numerically by choosing a grid in the space

of parameters (c0, c1, λ) and explicitly checking unitarity up to level 100. We then further

checked unitarity at level 200, 300, 400. The results are shown in Figure 12. In particular,

we find that unitarity implies that c1 ≥ 0. As λ → 0, the number of levels needed to check

unitarity increased and we do not exclude that the lowest level (in blue-violet in Figure 12)

might be reduced further as the number of levels goes to infinity. We provide the list of points

satisfying unitarity in an ancillary file linked to this publication. We conclude that there is a

finite region of unitary amplitudes that satisfy RSR in the three-dimensional space (c0, c1, λ).

9We do not have a rigorous derivation of this fact and we cannot with full confidence exclude the possibility

that there are interesting amplitudes that satisfy RSR beyond that range. Notice that analyticity of the

amplitude constraints λ ≤ 1 for real λ. Similarly, we do not analyze here the case of complex (c0, c1, λ), or the

case where we insert multiple deformation factors into the worldsheet integral.
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Figure 12: Region in the (c0, c1, λ) space, where unitarity is satisfied. λ = 0 corresponds to the

Veneziano amplitude. The smallest λ for which unitarity was checked is λ = 1
24 . Notice that points

(0, 1/2, λ) and (−1/2, 1/2, λ) are unitary for any 0 ≤ λ ≤ 1
2 (the same is trivially true for (0, 0, λ)).

On the right panel, the lines indicate that unitarity is expected to hold for λ ≤ λ∗, where λ∗ is marked

by a dot.

Verifying unitarity for stringy amplitudes is a famously difficult problem because they

have infinitely many poles. Even for the Veneziano amplitude, the original proof is via the

no-ghost theorem [69]. This was recently revisited in [70] and proven for all superstring

amplitudes in d ≤ 6 directly for the residues. Here, we checked unitarity numerically up to a

certain maximal mass by explicitly computing the residues.

4.4 High-energy, fixed-angle scattering

Here we consider high-energy s, t → ∞, fixed-angle (s/t − fixed) behavior of the amplitude.

Let us consider first the universal limit [6] when both s, t > 0.10 In this limit, the amplitude

is large and we find that its leading asymptotic takes the following form

lim
s,t→∞

log Tc0,c1,λ(s, t) = (s+ t) log(s+ t)− s log s− t log t

+ c1

(
t log

1

2

(
1− λ̃

s− t

s+ t
+

√
1− λ̃

√
1− λ̃

(s− t)2

(s+ t)2

)
+ {s ↔ t}

)
,

(4.12)

where it was convenient to introduce the following effective coupling

0 ≤ λ̃ = 4λ(1− λ) ≤ 1. (4.13)

This expression can be derived for example by evaluating (4.6) using a saddle point approx-

imation as in [4]. Let us comment on several features of this result. First, the leading term

10To avoid the poles we as usual go slightly in the complex direction (s, t) → (s(1 + iϵ), t(1 + iϵ)).
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does not depend on c0. Second, for λ = 1/2 or λ̃ = 1 the result simplifies dramatically and

we get

lim
s,t→∞

log Tc0,c1,1/2(s, t) = (1− c1)
[
(s+ t) log(s+ t)− s log s− t log t

]
. (4.14)

Third, for unitary amplitudes, namely c1 ≥ 0, we find that

lim
s,t→∞

log Tc0,c1,λ(s, t) ≤ (s+ t) log(s+ t)− s log s− t log t, (4.15)

and we further comment on this below. Finally, let us define the asymptotic Regge trajectory

jasy(t)

lim
s→∞

lim
s,t→∞

log Tc0,c1,λ(s, t) ≃ jasy(t) log s+ ... . (4.16)

For 0 ≤ λ < 1/2 we find that

j(t) = jasy(t) = t, (4.17)

however for λ = 1
2 we find that

j(t) = t, jasy(t) = (1− c1)t. (4.18)

where recall that j(t) is the Leading Regge trajectory defined by lims→∞ log Tc0,c1,λ(s, t) ≃
j(t) log s. Therefore we see that for λ = 1/2, the two limits are not continuously related.

In the language of [6], j(t) counts the total number of the excess zeros zi(t), and jasy(t)

counts those excess zeros that do not escape to infinity, namely limt→∞
zi(t)
t < ∞, as we take

the limit t → ∞. Therefore jesc(t) ≡ j(t) − jasy(t) ≥ 0 measures the fraction of the escape

zeros. For this picture to be consistent with (4.18) we need c1 ≥ 0. This is precisely the

condition that we found when imposing unitarity!

The result (4.12) sheds interesting light on the bootstrap analysis of [6], where the be-

havior of stringy amplitudes at high energies lims,t→∞ log T (s, t) was constrained on general

grounds. In particular, we see that two assumptions made in that paper are too restrictive:

• The asymptotic Regge limit assumption j(t) = jasy(t) made in [6] is explicitly violated

by the amplitudes with λ = 1/2. In other words, there are amplitudes for which the

number of escape zeros is large so that jesc(t) ∼ t.

• The assumption about the support of zeros of Legendre polynomials made in [6] related

to the support of Discβ∂β log T (s, sβ) being restricted to an ellipse extended between

−1 ≤ β ≤ 0 is explicitly violated by the amplitudes with 0 < λ < 1/2. In this case the

support of zeros is given by −1− 2
√

λ̃

1−
√

λ̃
≤ β ≤ 0.

We see therefore that already at the level of amplitudes with equidistant spectrum and

exactly linear Regge trajectories, the result of [6] was based on too restrictive assumptions. It
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is a very interesting question: which extra properties of the amplitude lead to the asymptotic

uniqueness of the Veneziano amplitude? For example, the emergent s−u asymptotic crossing

property discussed in [71] is not satisfied by the amplitudes 0 < λ < 1/2 and c1 ̸= 0.

Similarly, it would be very interesting to understand upon which extra assumptions the

property j(t) = jasy(t) holds.

4.5 Results for Wilson coefficients

As the finite sum ansatz is never unitary, we could not use the same primal approach that

we adopted for the closed string amplitudes in Section 3.3. However, it is still interesting to

see the region in the space of Wilson coefficients that is covered by the unitary amplitude

(4.6). The status of this exercise is very different compared to what we have done in the

previous section because it could be that by generalizing our model further, a larger region

of the parameter space could be covered.

To define the Wilson coefficients, we expand the general open string amplitude (4.3) at

low energy11

T (s, t) = b0,0
u

st
+ g1,0(s+ t) + g2,0(s

2 + t2) + 2g2,1st+ . . . (4.19)

As before, we consider bounds on ratios of Wilson coefficients. Here, we normalize everything

by g1,0 and define12

g̃2 =
g2,0
g1,0

, g̃′2 =
2g2,1
g1,0

. (4.20)

Furthermore, note that only the i = k = 0 term contributes to the massless pole.

In Figure 13, we present the region covered by the amplitude (4.6) and compare it with the

dual bound found in [27] and obtained using only causality, unitarity, and crossing symmetry

(A). The amplitudes (4.6) cover a portion of the allowed space.

In a recent work [28], the authors pointed out that the spin 0 contribution can be removed

from string amplitude to generate new unitary amplitudes. The scalar contribution can be

removed from the amplitude by considering

T>0(s, t) = T (s, t)−
∞∑
n=1

(
cn

s− n
+

cn
t− n

)
, (4.21)

where cn are fixed to remove the spin 0 contribution for all n. The second term, however,

clearly violates RSR and so will the resulting amplitude. It is thus not possible to remove

such contributions without changing the shape of the leading Regge trajectory for negative t.

We can now impose linearity of the leading Regge trajectory for positive t (B) using

the dual formalism. We present the results in Figure 14. Adding a finite number of RSR

constraints in the dual approach does not lead to stronger bounds. Similar to what we

observed in the closed string case, the maximum spin constraint removes part of the region

11Here, we follow the convention of [27].
12Since the Regge intercept is j0 = 0, the coefficient g1,0 is dispersive (in other words, it can be expressed

in terms of the discontinuity of the amplitude).
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Figure 13: The space of Wilson coefficients {g̃2, g̃′2} covered by the unitary amplitudes (4.6) (in blue).

We highlighted a few special lines. For example,
(
0, 1

2 , λ
)
corresponds to the Matsuda amplitude [67].

In red, we highlighted the only region that has the same high-energy, fixed-angle behavior as the

Veneziano amplitude – see Section 4.4. Finally, in orange, we show the line covered by the Cheung-

Remmen amplitude (4.4). The gray region corresponds to the usual bootstrap constraints (ACU) (A)

using kmax = 15.

in the vicinity of g̃2 = 1. This can be expected since the line g̃2 = 1 only allows for exchange

particles of mass m = 1 and is populated by the following amplitudes

T̂st−pole =
1

(1− s)(1− t)
+ γ

(
1

1− s
+

1

1− t

)
(4.22)

with γ ≥ − log 2 to satisfy unitarity. The line g̃2 = 1 is described by varying γ ∈ [− log 2,∞).

The upper-right kink saturates this inequality, at which point the spin 0 contribution to the

residue of the amplitude vanishes. Clearly, all these amplitudes violate the maximal spin

constraint for the linear leading Regge trajectory.
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Figure 14: Comparison of the spaces of allowed Wilson coefficients {g̃2, g̃′2} coming from different

assumptions (in gray and red), and the space covered by the unitary amplitudes (4.6) (in blue). The

gray region corresponds to the usual bootstrap constraints (A). In red, we further imposed maximum

spin J ≤ m2 in the dual approach (B). The number of null constraints used to produce this plot is

kmax = 9.

5 Conclusions

Charting out the space of stringy tree-level amplitudes is largely an open problem. Among

other things, this space is important because it contains large N QCD and weakly coupled

UV completions of Einstein gravity.

In this paper, we developed the S-matrix approach to this problem. We utilized extra

knowledge about the leading Regge trajectory which we considered to be linear. On one hand,

it puts an upper bound on the maximal spin of exchanged particles at a given mass. On the

other hand, scattering amplitudes in this class exhibit superpolynomial softness: they decay

faster than a polynomial at high energies and fixed angles. This condition can be conveniently

restated as an infinite set of Regge sum rules (2.9) that the discontinuity of the amplitude

has to obey.

Our basic conclusion is that superpolynomial softness does not lead to any obvious low-

energy imprint as exhibited by the low-energy Wilson coefficients. In contrast to that, the

maximal spin constraint leads to slightly more stringent bounds compared to the standard

bootstrap scheme based on causality and unitarity.13

13Strictly speaking, to strengthen this conclusion it would be desirable to extend our primal ansatzes both

for the closed and open string cases. For the closed string case, it would be interesting to construct amplitudes

that do not satisfy RSR more systematically. For example, including terms considered in [20] would be an

obvious way to do it. For the open string case, on the opposite, we would like to have a better understanding
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Let us provide a simple, intuitive explanation of these results. The low-energy Wilson

coefficients are dominated by the contribution from the lightest degrees of freedom that were

integrated out. The maximal spin constraint puts a bound on the maximal spin of these

lightest massive degrees of freedom and thus affects the low-energy Wilson coefficients. The

UV softness, however, can kick in at energies sUV ≫ m2
gap and therefore leave very little

imprint on the low-energy observables. It is not obvious that it is possible to construct

amplitudes with the separation of these two scales (the mass gap, and the energy scale at

which the UV soft behavior becomes visible). For example, in the standard string amplitudes,

the UV softness can be already seen at energies sUV ∼ m2
gap and not just asymptotically. Our

primal ansatz achieves precisely that: it delays the kick-in of the UV soft behavior to higher

energies and thus effectively hides it from a low-energy experimentalist.

In the statements above, we effectively assumed that properties of the leading Regge

trajectory j(t) for positive and negative t are unrelated. It is quite probable that this is

not the case. For example, in all known examples, j(t) is a convex function of t.14 On a

related note, for the amplitudes of the type considered in [20] (assuming they could be made

unitarity for the closed string case as well) we can make the leading Regge trajectory at

negative t arbitrarily flat while keeping it intact for positive t.

For the closed string case, we focused on the MHV scattering of gravitons in four dimen-

sions with the leading Regge trajectory j(t) = 2+2t, where we work in the units m2
gap = 1.15

We put forward a primal bootstrap scheme, see Section 3.2, which is analogous to the one

for the nonperturbative case put forward in [73]. In this scheme, analyticity and crossing

are manifest, but unitarity is a nontrivial constraint that is imposed numerically. We then

derived bounds on Wilson coefficients using both the primal and dual methods. The results

are presented in Section 3.3. We found bounds that are slightly more stringent than the ones

that follow simply from analyticity, unitarity, and crossing. We also observed an approximate

agreement between the primal and the dual bounds. This fact is interesting because in our

dual implementation, only a finite number of RSR could be added and they are not used in

the numerics. Our primal ansatz, on the other hand, satisfies infinitely many RSR.

For the open string case, we considered the scattering of massless scalars and took the

leading Regge trajectory to be j(t) = t. As opposed to the closed string case, we showed

in Appendix D that there are no unitary ansatzes with a finite number of satellite terms

in this case. There are, however, unitarity amplitudes that satisfy Regge sum rules and

have infinitely many satellite terms. We constructed a three-parameter deformation of the

Veneziano amplitude (4.6) and we showed that it obeys unitarity in a finite region of the

parameter space (c0, c1, λ). We then explored the space of Wilson coefficients covered by this

family of amplitudes and compared them to the bounds derived using the dual method.

We also found that (4.6) exhibits nontrivial behavior in the high-energy, fixed-angle region

of the landscape of the amplitudes that do satisfy RSR, beyond the example considered in the present paper.
14Convexity of the leading Regge trajectory can be proven for nonperturbative CFTs [72], it is not known

if it holds for planar CFTs which are dual to weakly coupled stringy scattering in AdS.
15Here mgap is the mass of the lightest massive state that appears in the amplitude.
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which goes beyond the analysis of [6] in several interesting ways. In particular, we observed

that a technical assumption about the support of excess zeros made in [6] needed to prove the

uniqueness of the high-energy limit of the amplitude does not follow from basic principles, and

is thus genuinely an extra assumption. It would be very interesting to remove it completely.

In Appendix F,16 we set up a dual bootstrap version of the analysis [6] assuming the

asymptotic distribution of zeros of Legendre polynomials is supported along the negative

axis. It leads to the following bound

lim
s,t→∞

log T (s, t) ≲ α′ ((s+ t) log(s+ t)− s log s− t log t) , (5.1)

where α′ is the slope of the Regge trajectory j(t) ≃ α′t at large positive t. This bound should

be understood as either the statement about the residues of the amplitude or as the statement

about the high-energy limit taken slightly away from the real axis.

Using (5.1),17 in Appendix G, we derived a lower bound on the behavior of stringy

amplitudes at high energies and fixed physical angles, namely s, t → ∞, s/t fixed and t < 0,

max
|z|≤z0

∣∣∣T(s, t = −s

2
(1− z)

)∣∣∣ ≳ e
−α′s log

1+
√

1−z20
z0 . (5.2)

This generalizes the Cerulus-Martin bound [74] derived in the context of gapped QFTs to the

case of tree-level stringy amplitudes.

There are many open directions that we think are worth exploring further. These are

naturally related to relaxing various assumptions made in the paper. Stringy amplitudes

that exhibit an accumulation point in the spectrum were analyzed in [15–17, 33–40]. Stringy

amplitudes with the spectrum different from linear were constructed recently in [21]. Stringy

amplitudes, with linear spectrum and no accumulation point that exhibit power-like behavior

at high energies and fixed angles, were explored in [13, 20]. Stringy amplitudes that satisfy

monodromy relations were studied in [30–32]. It would also be very interesting to generalize

our analysis to general number of spacetime dimension d,18 as well as to the scattering of

gauge bosons as in, for example, [76]. Finally, the soft behavior of the amplitudes at high

energies and fixed angles is essential for celestial holography [77], and it would be interesting

to explore the models studied in the present paper in that context.

An important problem in the stringy S-matrix bootstrap program is the construction and

consistency of multi-point amplitudes. Once these are constructed a consistent factorization

must be checked. In the case of string theory, the factorization of multi-particle amplitudes

reveals the degeneracy of states not visible at the level of the 2 → 2 amplitudes and the

Hagedorn growth of their density with energy [78]. Similarly, multi-particle amplitudes with

16We thank Miguel Correia for collaboration on this topic.
17In the original work of Cerulus and Martin [74], the analog of (5.1) is played by the assumption of

polynomial boundedness needed for the Mandelstam representation to hold.
18Bound on Wilson coefficient assuming (ACU) (A) of the graviton amplitude in higher dimension were

recently derived in [75].
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satellite terms studied in this paper can be constructed, and their factorization can be ana-

lyzed [79].19 It would be very interesting to revisit this question and explore it in conjunction

with unitarity and, in particular, for the concrete unitary models studied in the present paper.
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A Review of the dual method

In this appendix, we review the dual method of [81] used to bound Wilson coefficients using

causality, unitarity, and crossing symmetry. Here, we will focus on the case of the MHV

scattering amplitude of gravitons. For a review of this method in open string scattering, see

for example [27]. See also [12, 29] for a detailed explanation of the dual bootstrap as an SDP

problem.

A.1 Dispersion relation and Wilson coefficients

We start by writing a dispersion relation for f(s|t, u)

f(s|t, u) =
∮

ds′

2πi

f(s′|t,−s′ − t)

s− s′
=

8πGN

stu
+ |βR3 |2

tu

s
− |βϕ|2

1

s

− 1

π

∫ ∞

m2
gap

dm2

( ∞∑
J=0

1 + (−1)J

2

ρ++
J (m2)dJ0,0

(
1 + 2t

m2

)
m8(s−m2)

+

∞∑
J=4

ρ+−
J (m2)dJ4,4

(
1 + 2t

m2

)
(t+m2)4(−s− t−m2)

) (A.1)

19In [40], the factorization of the multi-point Baker-Coon-Romans amplitude was explored. In [80], multi-

point amplitudes, which generalize the Lovelace-Shapiro model of pion scattering, were analyzed.
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where we recall that the spectral densities ρ++
J (m2), ρ+−

J (m2) are the imaginary part of the

partial amplitude

ImT++−−(s, t, u) =
∞∑
J=0

1 + (−1)J

2
ρ++
J (m2)dJ0,0

(
1 +

2t

s

)
(A.2)

ImT+−−+(s, t, u) =
∞∑
J=4

ρ+−
J (m2)dJ4,4

(
1 +

2t

s

)
, (A.3)

and from unitarity ρ++
J (m2), ρ+−

J (m2) ≥ 0. In writing the dispersion relation for f(s|t, u), we
used that the intercept of the amplitude is j0 = 2 and thus f(s|t,−s− t) ≲ 1/|s|2 and the arc

at infinity can be dropped.

By expanding the dispersion relation (A.1) at low energy and comparing it with the low-

energy expansion (3.2), it is straightforward to obtain dispersive representation for the ak,j
and for example

ak,0 =

〈
1

(m2)4+k

〉
++

+

〈
(−1)k

(m2)4+k

〉
+−

(A.4)

a2,1 =

〈
J
m14

〉
++

+

〈
22− J
m14

〉
+−

(A.5)

a4,1 =

〈
J
m18

〉
++

+

〈
24− J
m18

〉
+−

(A.6)

a4,2 =

〈
J (J − 2)

4m18

〉
++

+

〈
J (62− J ) + 864

4m18

〉
+−

(A.7)

where J = J(J + 1) and we used the notation

⟨(. . . )⟩++ =
1

π

∫ ∞

m2
gap

dm2

m2

∞∑
J=0

1 + (−1)J

2
ρ++
J (m2)(. . . ) (A.8)

⟨(. . . )⟩+− =
1

π

∫ ∞

m2
gap

dm2

m2

∞∑
J=4

ρ+−
J (m2)(. . . ) , (A.9)

to represent the moment with positive measures. It is also convenient to name the function

inside the brackets

ak,j =
〈
a++
k,j (m

2,J )
〉
++

+
〈
a+−
k,j (m

2,J )
〉
+−

. (A.10)

Clearly, for even k (A.4) imposed positivity of ak,0 and the ordering a0,0 ≥ a2,0 ≥ a4,0 ≥ . . . .

No simple statement can be made for the other coefficients and we will use a numerical method

as explained in the next subsections.

A.2 Crossing symmetry and null constraints

The function f(s|t, u) is symmetric in t − u. However, the dispersion relation (A.1) is per-

formed at fixed t and makes this symmetry not manifest. By imposing the RHS of (A.1)
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to be symmetric in t− u, we obtain extra constraints. Explicitly we obtain the ‘master null

constraint’ 〈
dJ0,0

(
1 + 2t

m2

)
m6(s−m2)

〉
++

+

〈
m2 dJ4,4

(
1 + 2t

m2

)
(t+m2)4(u−m2)

〉
+−

=

〈
dJ0,0

(
1 + 2u

m2

)
m6(s−m2)

〉
++

+

〈
m2 dJ4,4

(
1 + 2u

m2

)
(u+m2)4(t−m2)

〉
+−

.

(A.11)

By expanding (A.11), at low s, t, we obtain a sequence of null constraints Xk,j = 0. They are

labeled similarly as the coefficients ak,j in (3.2)

0 =
∑

k≥j≥0

Xk,js
k−jtj . (A.12)

They are yet another set of null constraints. Indeed, the same function also appears in a

third amplitude

T+−+−(s, t, u) = ([13]⟨24⟩)4f(t|s, u) = t4f(t|s, u) (A.13)

ImT+−+−(s, t, u) =
∞∑
J=4

ρ+−
J (s)(−1)JdJ4,−4(1 + 2t/s) , (A.14)

and thus the function has another dispersion representation. As the intercept for the gravi-

tational amplitude is j0 = 2, we write a 3SDR for f(t|s, u) using (A.13)

f(t|s, u) =
∮

ds′

2πi

s3f(t|s′,−s′ − t)

(s′)3(s− s′)
=

8πGN

stu
+ |βR3 |2

su

t
− |βϕ|2

1

t
+ c0(s

2 + u2) + c1su+ f0(t)

− 1

π

∫ ∞

m2
gap

dm2

( ∞∑
J

(−1)Jρ+−
J (m2)

dJ4,−4

(
1 + 2t

m2

)
s3

t4

(
1

m6(s−m2)
+

1

(m2 + t)3(−s− t−m2)

))
.

(A.15)

The coefficients c0, c1 and the function f0(t) are unknown subtraction terms. The Mandelstam

dependence is only in the kernel and we can thus write

f(s|t, u) = 8πGN

stu
+ |βR3 |2

tu

s
− |βϕ|2

1

s
+ c0(t

2 + u2) + c1tu+ f0(s)

−

〈
(−1)J

dJ4,−4

(
1 + 2s

m2

)
t3

s4

(
1

m4(t−m2)
+

m2

(m2 + s)3(−s− t−m2)

)〉
+−

(A.16)

Equating with (A.1), we obtain a second ‘master null constraint’. By expanding at low energy,

we get a second sequence of null constraints Yk,j . As the subtraction terms are unknown, it

implies that these null constraints are valid for k− j ≥ 3 and j ≥ 1. We emphasize here that

we need 3 subtractions as the intercept is exactly j0 = 2. If one considers constraints on an

EFT where the UV is nonperturbative, two subtractions are enough [82], see [25] where such

constraints were imposed.
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A.3 Dual bootstrap algorithm

To derive dual bounds, we start by writing the bootstrap equation. Without loss of generality,

we will explain the case where the Wilson coefficients are normalized by a0,0 and we set

mgap = 1 for clarity. We will consider here carving out a 2d region {g, λ} where g, λ can by

any of the ak,j . Let us define the vectors

v⃗++(m2, J) =
(
a++
0,0 (m

2, J), g++(m2, J), λ++(m2, J), n⃗++(m2, J)
)

(A.17)

v⃗+−(m2, J) =
(
a+−
0,0 (m

2, J), g+−(m2, J), λ+−(m2, J), n⃗+−(m2, J)
)

(A.18)

v⃗o = (−1, 0, 0, 0⃗) (A.19)

v⃗g = (0,−1, 0, 0⃗) (A.20)

v⃗λ = (0, 0,−1, 0⃗) (A.21)

where n⃗(m2, J) is a vector of null constraint n⃗ = (X⃗ , Y⃗) and thus

0⃗ =
〈
n⃗++(m2, J)

〉
++

+
〈
n⃗+−(m2, J)

〉
+− . (A.22)

We denote the number of null constraints used by kmax, the highest value of k in (A.12). We

can then write the bootstrap equation

0 = a0,0 v⃗0 + g v⃗g + λ v⃗λ +
〈
v⃗++(m2, J)

〉
++

+
〈
v⃗+−(m2, J)

〉
+− . (A.23)

The corresponding bootstrap problem is to find a functional α⃗ such that

• α⃗ is normalized by α⃗ · v⃗g =

{
+1 , for upper bound

−1 , for lower bound

• α⃗ maximize α⃗ ·
(
v⃗o +

λ
a0,0

v⃗λ

)
. We call the result of this optimization A(λ).

• α⃗ is positive on the spectrum:

α⃗ · v⃗++(m2, J) ≥ 0 for all (m,J) ∈ spectrum

α⃗ · v⃗+−(m2, J) ≥ 0 for all (m,J) ∈ spectrum .
(A.24)

In this case, without specific spectrum assumption (A)

spectrum :

{
(++) channel : m ≥ mgap, J = 0, 2, . . .

(+−) channel : m ≥ mgap, J = 4, 5, . . .
(A.25)

For α⃗ solution to the bootstrap problem, applying the functional α⃗ to the bootstrap equation

and using linearity of the average ⟨. . .⟩ we obtain

α⃗ ·
(
v⃗o +

λ

a0,0
v⃗λ

)
± g

a0,0
≤ 0 (A.26)
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which leads to the two-sided bound

A−(λ) ≤ g

a0,0
≤ −A+(λ) . (A.27)

This procedure can be efficiently implemented in SDPB [62, 63]. It led to all the dual bounds

using only causality, unitarity, and crossing symmetry presented in this work (gray regions in

our plots). This procedure can be extended to carve a 3d region as shown in Figure 9.

In practice, we need to truncate the number of constraints in spin. However, as already

observed in [81], the convergence in spin is fast and we truncated at Jmax = 100.

A.4 Maximal spin constraint in the dual approach

Let us explain next how the maximal spin constraint (B) is imposed in the dual approach. It

changes the sum over spins in (A.1) into

∞∑
J

→
j(m2)∑

J

. (A.28)

This change propagates all the way to the definition of the averages (A.8) and (A.9).

It has the effect of changing the spectrum in the constraint (A.24) on the functional α.

Instead of (A.25), we now have

spectrum with

the maximal spin constraint
:

{
(++) channel : m ≥ mgap, J = 0, 2, . . . , j(m2)

(+−) channel : m ≥ mgap, J = 4, 5, . . . , j(m2)
, (A.29)

and can be efficiently implemented in SDPB. To do so, we invert the relation j(m2) → m2(j).

Then the constraint has to be applied on all J , and m2 ≥ m2(J). Finally, by a change of

variable m2 = m2(J)+x, the constraint can be written as a polynomial in x and imposed for

all x ≥ 0.

Similarly, we can impose a discrete spectrum. Following the same steps, we have (for

example with an equidistant spectrum)

equidistant spectrum with

the maximal spin constraint
:

{
(++) channel : m2 = n ∈ Z+, J = 0, 2, . . . , j(n)

(+−) channel : m2 = n ∈ Z+, J = 4, 5, . . . , j(n)
.

(A.30)

This can also be implemented in SDPB with the difference that the spectrum in m2 cannot

be implemented as a polynomial in x and we have to choose a grid for n. In practice we chose

a grid of the form n = 1, 2, . . . , nmax and added some points at large n ∼ 105, 106, . . . . The

convergence in the size of the grid was fast.

With these extra constraints on the spectrum, the convergence in the number of spin

constraints is slower than by considering (A.25). However, in practice, it is sufficient to add

several constraints at large spin J ∼ 105, 106 to obtain the final result.20

20Similar observation was made in [27] in a different context.
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A.5 RSR as null constraints

Here we will discuss how RSR can be added to the dual method described above and why it

does not change the bound in the present formalism. For simplicity, we will describe here the

case of the open string but the same argument applies for closed string.

Following the same procedure as above, the Wilson coefficients can be written using

dispersion relations

gn,ℓ =

〈
2ℓ

ℓ!

P
(ℓ)
J (1)

m2n

〉
(A.31)

where P
(ℓ)
J (x) is the ℓ-derivative of the Legendre polynomial and the average is defined via

Ts(s, t) =
∞∑
J=0

ρJ(s)PJ

(
1 +

2t

s

)
, (A.32)

⟨. . .⟩ = 1

π

∞∑
J=0

∫ ∞

m2
gap

dm2

m2
ρJ(m

2)(. . . ) . (A.33)

Null constraints that follow crossing symmetry are easily obtained using gn,ℓ = gn,n−ℓ and we

denote them Xn,ℓ.
21

Let us now write the RSR in a similar form. Starting from (2.9), we obtain

RSR: Rn(t) ≡
〈
m2nPJ

(
1 +

2t

m2

)〉
= 0 , j(t) < −n, n ≥ 2 . (A.34)

For n = 0, 1, one would pick the constant and pole of the amplitude at s = 0. This is a new

family of null constraints. Let us focus on the linear trajectory j(t) = t, which implies that

t < −n. Looking at the argument of the Legendre polynomials, we see that

1 +
2t

m2
< −1 , for − t < m2 < m2

gap , (A.35)

this region always exists for t < −n and mgap = 1. Using properties of the Legendre polyno-

mials, it implies that at large J and any fixed m∗ in this interval

[Rn(t)] (m
2
∗, J) ∼ m2n

∗ cJ(−1)J , c > 1 , (A.36)

and thus grows exponentially with an oscillating sign. This contrasts with the sum rules

for the Wilson coefficients (and thus also the usual null constraints X ), which grows as a

polynomial in J . Let us see what it implies for the bootstrap algorithm. As in Appendix A.3,

we build the vector v⃗ and add one RSR constraint

v⃗(m2, J) =
(
g1,0(m

2, J), gn,ℓ(m
2.J), χ⃗(m2, J), [Rn(t)](m

2, J)
)

(A.37)

21See for example [27] for detailed expressions. A second set of null constraints can also be obtained but

does not influence the argument in this section.
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at large J , it behaves as

v⃗(m2, J) ∼ (0, 0, 0⃗, cJ(−1)J) +O(Jk) . (A.38)

Thus, the constraints on the functional α⃗ · v⃗(m2, J) ≥ 0 at large J imposes that the last

coefficient of α⃗ is set to zero. Thus, the constraint Rn(t) = 0 is not used by the dual

algorithm. The conclusion does not change for any finite number of RSR constraints included

as the coefficient c in (A.36) depends on t,m∗.

When supplemented by the maximal spin constraint (B), the argument presented above

fails as one forbids arbitrary large spin at fixedm∗. However, it is easy to see how a single RSR

cannot be used in this case as well. Let us consider the large mass behavior of (A.37). Clearly,

from (A.31), all Wilson coefficients and null constraints decay at large m2. In contrast, the

RSR (A.34) grows and we get

v⃗(m2, J) ∼
m2≫1

(
0, 0, 0⃗,m2nPJ

(
1 +

2t

m2

))
+O(m−2) . (A.39)

For large but finite mass, the argument of the Legendre polynomial is x = 1 − δ < 1 and

oscillates in J . Provided that j(m2) is larger than this oscillation period, the constraint on

the functional α⃗ · v⃗(m2, J) ≥ 0 will also set the last coefficient of α⃗ to zero. Note that this

mechanism is ‘softer’ as the growth is polynomial and not exponential as in (A.38). However,

a single constraint still cannot be used. It is less clear that a large or infinite number of

constraints (A.34) could not be used, for example, by using a single n and various t.

With infinitely many constraints included, the argument above fails, and it might be

that the sum rules could be used. It is also possible that by applying a ‘smart’ functional

to this constraint, they could be included (for example, by ‘smearing’ in t?). We leave this

investigation to future work. Instead, in the present paper, we use a primal approach and

build an ansatz that satisfies all constraints Rn(t) by construction.

B Constraints on the closed string sum

In this section, we present constraints on the ci, di range that appear in (3.10). First, we

impose that all the residues are polynomials. This implies that

cs + ctu ≥ dtu, 2ctu ≥ ds . (B.1)

Second, we impose that the leading trajectory is j(t) = 2 + 2t. This leads to the Regge

boundedness conditions for the satellite terms

ctu ≤ dtu + 1, 2 + cs − ds ≤ dtu − ctu . (B.2)

Finally, we only consider terms with cs, ctu ≥ 0, which have poles at nonnegative integer mass

square. The inequalities above then imply that and ctu, dtu ≥ 1 and ds ≥ 2.

The minimal solution to these inequalities, namely ds = 2, ctu = dtu = 1, and cs = 0 is

precisely the deformation corresponding to the heterotic string amplitude.
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C Examples of amplitudes

This appendix lists various meromorphic amplitudes of massless particles satisfying unitarity

and crossing symmetry. They are listed in Table 1 for the scalar amplitudes and Table 2 for

the gravitational amplitudes. We also show that an amplitude built out of a sum of single,

double, and triple poles is consistent with unitarity for the gravitational amplitude.

Name Amplitude Regge behavior

Veneziano TV = Γ(−s)Γ(−t)
Γ(−s−t) j(t) = t

Cheung-Remmen TCR = Γ(−s)Γ(−t)
Γ(−s−t) 3F2(−s,−t, r;−s− t, 1 + r; 1) j(t) =

{
t t ≥ −1

−1 t < −1

Matsuda T0,1/2,λ = Γ(−s)Γ(−t)
Γ(−s−t) 2F1(−s,−t; 1−s−t

2 ;λ) j(t) = t

Mandelstam Tc0,0,λ = Γ(−s)Γ(−t)
Γ(−s−t) 3F2(−s,−t,−c0;− s+t

2 , 1−s−t
2 ;λ) j(t) = t

Spin 0 exchange Tspin 0 =
m2

m2−s
+ m2

m2−t
j(t) = 0

st-pole Tst−pole =
M4

(m2−s)(m2−t)
j(t) = −1

Table 1: Here we list examples of unitary amplitudes with T (s, t) = T (t, s) and no u-channel poles.

More amplitudes with spin 1 and spin 2 exchanges can be found in [27, 28].

Name Amplitude Regge behavior

Virasoro-Shapiro fV S = − Γ(−s)Γ(−t)Γ(−u)
Γ(1+s)Γ(1+t)Γ(1+t) j(t) = 2 + 2t

Spin 0 exchange fspin 0 =
λ2

m6
1

m2−s
j(t) = 3

tu-pole ftu−pole =
g
m4

1
(m2−t)(m2−u)

j(t) = 3

stu-pole fstu−pole =
κ
m2

1
(m2−s)(m2−t)(m2−u)

j(t) = 2

Table 2: Here we write examples of the MHV graviton amplitude using the functions f(s|t, u). If not
explicit, one needs to add the graviton pole to have a gravitational amplitude. We removed it here for

brevity.

A pole amplitude for the MHV gravitational amplitude

Let us show here that an amplitude built as a sum of 1, 2, 3 poles is consistent with unitarity

(positivity). We start with the following combination of terms

fpoles(s|t, u) =
λ

m6

1

m2 − s
+

g

m4

1

(m2 − t)(m2 − u)
+

κ

m2

1

(m2 − s)(m2 − t)(m2 − u)
(C.1)
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We will show below that this amplitude is unitary for

λ ≥ −κ
2 log(2)

3
, g ≥ −κ

12(195790 log(2)− 135711)

7096320 log(2)− 4918777
, κ ≥ 0 . (C.2)

At fixed κ, saturation of λ removes spin 0 in the (++) channel and saturation of g removes

spin 5 in the (+−) channel. We can also immediately see that any single term is independently

unitary for positive coefficients.

To show it, recall that we can invert (A.2) and (A.3)

ρ++
J (s) = aJ s

4

∫ 1

−1
dx fs(s|t(x), u(x))PJ(x) (C.3)

ρ+−
J (s) = aJ s

4

∫ 1

−1
dx (1 + x)4fs(u(x)|s, t(x))dJ4,4(x) , (C.4)

where aJ = 1
2(2J + 1).22 Plugging fpoles(s|t, u) into the formula above, we obtain for the

(++) channel

ρ++
J (s) = aJπδ(s−m2)

∫ 1

−1
dx

(
4κ

9− x2
+ λ

)
PJ(x) . (C.5)

Performing the integral for the spin 0, we obtain the constraint on λ ≥ −κ2 log(2)
3 . For

higher spins, we use the Froissart-Gribov formula (see for example [83, 84]) to see that all

partial waves are proportional to Legendre Q-function ρ++
J (s) ∼ κδ(s − m2)QJ(3) and are

nonnegative for κ ≥ 0. This analysis was performed analogously in [81] in the context of

scalar amplitudes.

Let us now turn our attention to the other channel. We obtain

ρ+−
J (s) = aJπδ(s−m2)

∫ 1

−1
dx(1 + z)4dJ4,4(x)

(
4

9− x2
+

2g

3− x

)
(C.6)

= aJπδ(s−m2)

∫
[−1,1]

dz

πi
(1 + z)4eJ4,4(z)

(
4

9− z2
+

2g

3− z

)
. (C.7)

In the second line, we wrote the integral as a counterclockwise contour in the complex plane

along the axis z = [−1, 1] using the Wigner e-function [60, 85].23 It is defined such that its

discontinuity in x ∈ [−1, 1] is given by the Wigner d matrices. They are analogous to the

Legendre Q-functions but for spinning particles in d = 4. Explicitly, we have

e J
λµ(z) =

(−1)λ−µ

2
[Γ(J + λ+ 1)Γ(J − λ+ 1)Γ(J + µ+ 1)Γ(J − µ+ 1)]

1
2

(
1 + z

2

)λ+µ
2

×
(
1− z

2

)−λ−µ
2
(
z − 1

2

)−J−µ−1 1

Γ(2J + 2)
2F1

(
J + λ+ 1, J + µ+ 1, 2J + 2,

2

1− z

)
,

(C.8)

22Compared to [83], we absorbed the prefactor nJ in ρJ in (A.2). Thus aJ = nJN4/2 in their convention.
23See [86] for a recent use of the Wigner e-functions in a different context.
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for λ+ µ ≥ 0 and λ− µ ≥ 0.24

We can now deform the contour and pick the pole at z = ±3 to obtain25

ρ+−
J (s) = δ(s−m2)

4πaJ
3

[
(1 + 3g)44eJ4,4(3)− 24eJ4,4(−3)

]
(C.10)

which is positive if26

16(1 + 3g)eJ4,4(3) + (−1)JeJ4,−4(3) ≥ 0 . (C.11)

Using positivity properties of the Wigner e-function e J
4,±4(z) ≥ 0 for z > 1 , J ≥ 4, the

strongest constraint comes from odd spins. Finally, using that
eJ4,4(3)

eJ4,−4(3)
is a growing function

of J , the strongest constraint comes from J = 5 which leads to the second constraint in (C.2)

g ≥ −κ
12(195790 log(2)− 135711)

7096320 log(2)− 4918777
. (C.12)

Saturation of this constraint removes the spin 5 exchange in the (+−) channel.

Comment on the Regge behavior

Finally, let us comment on the Regge behavior of amplitudes presented in Table 2. Two

of the functions for the MHV amplitude presented above grow too fast in the Regge limit,

namely they have the Regge intercept j0 = 3. For the tu-pole amplitude, this can be cured

by considering the triple product with different mass 1
(M2−s)(m2−t)(m2−u)

. Indeed, performing

the same analysis as above shows that for M ≥ m, this amplitude is unitary. Thus we can

define the improved tu-pole amplitude by

f improved
tu−pole =

g

m2

1

(M2 − s)(m2 − t)(m2 − u)
, M ≫ m. (C.13)

As M ≫ m, the corrections to the Wilson coefficients are suppressed by O(m/M). This

amplitude now has the Regge intercept j0 = 2. Since this amplitude is unitary only for

M ≥ m, a similar improvement cannot be performed for the spin 0 exchange amplitude.

It is sometimes possible to add a contact term to cure the Regge behavior (see for example

[86], Appendix A). Here, for the spin 0, one would need to add + λ2

M6s
which corresponds to

the massless scalar exchange amplitude |βϕ|2, but taken with the wrong sign and is thus

not unitary. We do not know how to ‘improve’ the spin 0 amplitude such that it satisfies

unitarity and has j0 ≤ 2. How is it possible then that this amplitude lies at the boundary of

the allowed region in the dual approach? First, while we have not found it, it is possible that

an improvement exists such that it does not change the value of the Wilson coefficient by

adding a tower of particles of mass M ≫ m. Second, in the dual formalism, this amplitude

satisfies all the sum rules written and hence is not excluded.
24The other ranges are defined through the identities

e J
λµ(z) = (−1)λ−µe J

µλ(z) = (−1)λ−µe J
−λ,−µ(z) (C.9)

25Note that the Wigner e-function has extra singularities at z = ±1 but they are precisely canceled by the

prefactor (1 + x)4.
26Here we used that eJµ,λ(−z) = (−1)1+J+µ−2λeJµ,−λ(z), see for example [60].
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D Unitarity of open string finite sums

In this section, we extend the argument of Sivers and Yellin [87] to show that any finite ansatz

(4.3) cannot satisfy unitarity. The truncated ansatz reads

TNmax(s, t) =

Nmax∑
i=0

i∑
k=0

bik
Γ(i− s)Γ(i− t)

Γ(i+ k − s− t)
, (D.1)

where by assumption bik are finite real coefficients.

The residue of a single term in the ansatz is

Γ(i− s)Γ(i− t)

Γ(i+ k − s− t)
∼

s→n
−R

(i,k)
n (t)

s− n
(D.2)

where

R(i,k)
n (t) =

(−1)i+nΓ(i− t)

(n− i)!Γ(i+ k − n− t)
(D.3)

is a polynomial of degree n− k in t.

As a first step, we show that a single term with i ̸= 0 does not satisfy unitarity. To this

end, we will show that in the partial wave expansion

R(i,k)
n (t) =

n−k∑
J=0

c
(i,k)
n,J PJ

(
1 +

2t

n

)
(D.4)

the J = n − k and J = n − k − 1 terms have opposite signs and hence unitarity cannot be

satisfied for all n, J . Using, (D.3), we can expand in x = 1 + 2t
n and focus on the leading

power

(n− i)!R(i,k)
n (t)

∣∣∣
t=n

2
(x−1)

= (−1)i+k
(n
2

)n−k
[
xn−k +

n− k

n
(1− k − 2i)xn−k−1 + . . .

]
.

(D.5)

Importantly, (1 − k − 2i) < 0 for all i ≥ k > 0 and thus the coefficients in front of xn−k

and xn−k−1 have opposite signs. Moreover, we know that the Legendre polynomials PJ(x)

are expansion in odd/even powers of x for odd/even J . This implies that xn−k and xn−k−1

contributes to different spin. Moreover, using that the coefficient of xJ in PJ(x) is always

positive, comparing (D.4) and (D.5) we can thus conclude that c
(i,k)
n,n−k and c

(i,k)
n,n−k−1 have

opposite signs. We can also write them explicitly c
(i,k)
n,n−k = (−1)i+k

(
n
4

)n−k
√
πΓ(n−k+1)

(n−i)!Γ(n−k+ 1
2)

c
(i,k)
n,n−k−1 = (−1)i+k+1

(
n
4

)n−k 2
√
π(2i+k−1)Γ(n−k+1)

n(n−i)!Γ(n−k− 1
2)

, (D.6)

which makes it clear that they have opposite signs. This concludes the proof showing that a

single term cannot satisfy unitarity as it requires c
(i,k)
n,J ≥ 0.
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Let us go back to a finite sum (D.1), (D.3) implies that at large n

n!R(i,k)
n (t) ∼ ni tn−k , (D.7)

and thus the terms with max(i) dominates at large enough n. Therefore, it is enough to

consider an ansatz at fixed i and show that it does not satisfy unitarity. We call the fixed i

amplitude

T (i) =
i∑

k=0

bik
Γ(i− s)Γ(i− t)

Γ(i+ k − s− t)
(D.8)

Considering the residue at n of this amplitude

R(i)
n (t) =

∑
J=0

c
(i)
n,JPJ

(
1 +

2t

n

)
, (D.9)

where unitarity for the fixed i sum requires c
(i)
n,J ≥ 0. It is straightforward to see from (D.3)

that

c
(i)
n,J =

n−J∑
k=0

c
(i,k)
n,J bik (D.10)

and only bi,0 contribute to the residue at J = n, (bi,0, bi,1) contribute to the residue at J = n−1

and so on.

Consider first the residue at J = n, from (D.6) it is clear that all c
(i,0)
n,n have the same

sign. This fixed the sign of bi0 and we can also normalize it to bi0 = ±1. The other option is

bi0 = 0 and we will come back to this later.

We turn now to the residue at J = n− 1

c
(i)
n,n−1 = c

(i,0)
n,n−1bi0 + c

(i,1)
n,n−1bi1 (D.11)

Using (D.6), we have that at large n ∣∣∣∣∣c
(i,0)
n,n−1

c
(i,1)
n,n−1

∣∣∣∣∣ ∼ n (D.12)

and thus c
(i)
n,n−1 ≥ 0 implies ∣∣∣∣bi1bi0

∣∣∣∣ ≳ n (D.13)

For bi0 = ±1 this leads to a contradiction with having a regular finite ansatz. Indeed, (D.13)

must be true for all n, it implies bi1 → ∞ which is not compatible with having a well-defined

finite ansatz.

We showed that bi0 cannot be finite or the residue c
(i)
n,n−1 cannot be positive. The other

option is bi0 = 0. In such a case the residue at J = n − 1 fixed the sign of bi1, and we can

choose normalization bi1 = ±1. Now looking at J = n − 2, only bi1 and bi2 contributes.
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Repeating the argument above, it is easy to see that bi2 ≳ n bi1 and hence the only option is

bi1 = 0. By iteration, we obtain that bi k<i = 0.

What remains is the term with k = i. However, we showed above that a single term

cannot satisfy unitarity. This concludes the proof that a finite sum ansatz cannot satisfy

unitarity.

E Completeness argument for the open string case

Here we would like to comment on the completeness of the ansatz (4.3) following Khuri

[66]. The fact that all particles live on equidistant linear Regge trajectories translates to the

following statement

T (s, t) ∼ 1

Γ(1 + t) sinπt

(
a0(t)(−s)t + a1(t)(−s)t−1 + ...

)
+ ..., (E.1)

where the last ... stands for the RSR violating contributions 1
sn that vanish in the s → ∞

limit. The first observation is that ak(t) are entire functions. Moreover, if we consider the

residue at t = n it should become polynomial, therefore

ak(n) = 0, k > n. (E.2)

We now consider the ansatz

T̃ (s, t) =
∞∑
i=0

i∑
k=0

bik
Γ(i− s)Γ(i− t)

Γ(i+ k − s− t)
. (E.3)

The basic idea is that by choosing bik we can reproduce a given set of entire functions ak(t).

For example, for the leading one we get the following equation

a0(t) =

∞∑
i=0

bi0
Γ(i− t)

Γ(−t)
, (E.4)

where in writing (E.4) we expanded each term under the series. Eq. (E.4) expresses the

entire function a0(t) in terms of Newton polynomials with interpolating points chosen to be

nonnegative integer t = n.

A sufficient condition for convergence for such an expansion was derived by Buck [88].

Let us introduce the growth indicator of an entire function f(t)

h(θ, f) = lim
r→∞

sup
1

r
log |f(reiθ)|. (E.5)

Then Buck has proven that the expansion (E.4) converges if

h(θ, f) < cos θ log(2 cos θ) + θ sin θ, |θ| < π/2 . (E.6)

Similar conditions hold for subleading trajectories.
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We expect that (E.6) follows from consistency in the semiclassical limit s, t ≫ 1 as

discussed in [6]. Note that in all known examples h(θ, f) ≤ 0 for |θ| < π/2 and therefore the

bound (E.6) is trivially satisfied. Assuming this is the case, we consider next the difference

δT (s, t) = T (s, t)− T̃ (s, t). (E.7)

It is an entire function that vanishes at infinity. Therefore δT (s, t) = 0. We do not have an

analogous argument for the closed string ansatz.

F Bound on the asymptotic form of the amplitude

We consider a stringy amplitude at large s, t → ∞. We focus on the discontinuity that takes

the form

Ts(s, t) =
∑
i

δ(s−m2
i )

j(s)∑
J

ci,JPJ

(
1 +

2t

m2
i

)
. (F.1)

The RHS is a polynomial that is characterized by a set of zeros. If we now perform an average

over many poles, for example, by considering T (s(1 + iϵ), t(1 + iϵ)), it was argued in [6] that

it is these zeros, called the excess zeros, that control the amplitude asymptotically.

It is convenient to introduce a distribution of zeros ρ(z, z̄) and write for the asymptotic

form of the amplitude

log T (s, t) = c0t
k

∫
d2zρ(z, z̄) log

(
1− s

tz

)
, (F.2)

where we assumed the asymptotic form of the Regge trajectory takes the form jasy(s) = c0s
k.

Our task is then to find the distribution of zeros that arises from the sum over Legendre

polynomials with positive coefficients, such that∫
d2zρ(z, z̄) = 1, ρ(z, z̄) ≥ 0, (F.3)

which satisfies crossing that takes the following form∫
d2zρ(z, z̄)

(
βk log

(
1− 1

βz

)
+ log

(
1− β

z

))
= 0 , β > 0, (F.4)

where we introduced β = t/s.

Moreover, the distribution of zeros should come from a positive sum of Legendre poly-

nomials and should correctly reproduce the Regge limit behavior. Introducing the ‘electric

field’ produced by the excess zeros

f(β) ≡
∫

d2z
ρ(z, z̄)

β − z
, (F.5)
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one can show that

0 ≤
√

β(1 + β)f(β) < 1, (F.6)

∂β

(√
β(1 + β)f(β)

)
≥ 0 . (F.7)

In addition to that, consistency with the Regge limit implies that

f(β) = −k log ββk−1 + (k + 1)M1β
k + ..., (F.8)

where M1 = −
∫
d2zρ(z, z̄)z is the dipole moment of the distribution. The asymptotic above

is only consistent with the formulas above for k > 1/2.

F.1 Support of the distribution of excess zeros

To make further progress [6] had to make an assumption on the support of the distribution

of zeros ρ(z, z̄) that arises from the sum over Legendre polynomials with positive coefficients.

The first, rather weak, assumption that zeros are localized for Rez ≤ 0 leads to an additional

constraint

k ≤ 1. (F.9)

Making a stronger assumption that the zeros are located inside an ellipse that touches the

real axis at Rez = 0,−1, [6] then argued that k = 1 and that the amplitude is given by the

asymptotic limit of the Veneziano amplitude.

F.2 Extending the support of the distribution

It is clear from the results of this paper that the assumption above about the effective support

of zeros is too restrictive. Let us consider the generalized Veneziano amplitude Tc0,c1,λ with

c1 ̸= 0. There is a nontrivial range of parameters for which it satisfies unitarity and crossing

and takes the following form in the asymptotic region s, t → ∞

log Tc0,c1,λ = (s+ t) log(s+ t)− s log s− t log t

+ c1

(
t log

1

2

(
1− λ̃

s− t

s+ t
+

√
1− λ̃

√
1− λ̃

(s− t)2

(s+ t)2

)
+ {s ↔ t}

)
,

where the second line vanishes for λ̃ ≡ 4λ(1− λ) = 0.

In this case the amplitude can be written as follows

log Tc0,c1,λ = t

∫ 0

√
λ̃+1√
λ̃−1

dxρ(x) log
(
1− s

tx

)
. (F.10)

In particular, we have

lim
λ̃→1

√
λ̃+ 1√
λ̃− 1

→ ∞. (F.11)
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Therefore, we see that positive sums over Legendre polynomials consistent with the Regge

limit can generate distributions of zeros that ‘spills’ arbitrarily far beyond −1 ≤ x ≤ 0

considered in [6].

F.3 Maximal value of the amplitude

To make some progress it is interesting to consider a dual formulation of [6]. We consider

the case of a linear Regge trajectory j(t) = α′
asyt, k = 1, and we ask the following question:

what is the maximal value that the amplitude can attain at the crossing-symmetric point

log T (s, s) ≤ αmaxs?

We assume that all zeros are localized along the negative real axis parameterized by z ≤ 0

and we set s = 1 so that everything only depends on β = t
s . Let us quickly demonstrate

that such a bound exists. To do it we introduce a set of ‘null constraints’ by expanding the

crossing equation around β = 1

β log

(
1− 1

βz

)
+ log

(
1− β

z

) ∣∣∣
β=1−ϵ

=
∞∑
i=1

ni(z)ϵ
i, (F.12)

such that ∫ 0

−∞
dzρ(z)ni(z) = 0. (F.13)

One can check that not all of the null constraints are linearly independent. We find that a

convenient choice is to consider (n1, n2, n3, n5, n7, ...). As an example

n1(z) = log

(
1− 1

z

)
− 2

1− z
, (F.14)

n2(z) =
1

6

1 + 3z

(z − 1)3
. (F.15)

To derive a bound on the amplitude

log T (1, 1) ≤ α, (F.16)

we look for a functional, or, in other words, an α and a set of di’s, such that

1− 1

α
log

(
1− 1

z

)
+

∞∑
i=1

dini(z) ≥ 0, z ≤ 0. (F.17)

Indeed, imagine that we have found a functional with this property. We can then integrate

the equation above against the density of zeros to get∫ 0

−∞
dz ρ(z)

(
1− 1

α
log

(
1− 1

z

)
+

∞∑
i=1

dini(z)

)
= 1− 1

α
log T (1, 1) ≥ 0, (F.18)

– 48 –



where we used the fact that ρ(z) ≥ 0, the normalization condition (F.3), and, of course,

(F.17).

It is not immediately obvious that functionals with the property (F.17) exist, so let us

demonstrate it explicitly. We take α = 2 and d1 =
1
2 to get

1− 1

2
log

(
1− 1

z

)
+

1

2

(
log

(
1− 1

z

)
− 2

1− z

)
=

−z

1− z
≥ 0, z ≤ 0, (F.19)

which immediately tells us that

log T (s, s) ≤ 2s. (F.20)

F.4 Extremal functional and extremality of the Veneziano amplitude

A simple bound above was derived using a single null constraint. We can set a numerical

scheme that employs more and more null constraints. As a result, we get an extremal func-

tional that tends to zero for −1 ≤ z ≤ 0 and is positive otherwise. We plot the result for

the functional obtained using null constraints up to n83 in Figure 15, which produces the

bound log T (s, s) ≤ 1.38671s, whereas the Veneziano amplitude at this point takes the value

2 log 2 s ≈ 1.38629s.

-2.0 -1.5 -1.0 -0.5 0.0

0.0

0.1

0.2

0.3

0.4

0.5

Figure 15: We plot the optimal functional (F.18) obtained using n1, ..., n83 null constraints. It

produces α = 0.721138 which corresponds to the upper bound log T (s, s) ≤ 1.38671s.

Therefore, we see that the extremal amplitude that saturates the bound should have the

support of excess zeros ρ(z) only for −1 ≤ z ≤ 0. These are precisely the types of amplitudes

considered in [6]. It was argued there that such amplitudes are unique for any k, however

only for k = 1 it can come from the positive sum of Legendre polynomials.

Our conclusion here instead is that the asymptotic limit of the Veneziano amplitude

maximizes the bound on the amplitude in the region s, t → ∞, and in this sense, the Veneziano

– 49 –



amplitude is an extremal (but not unique) solution to the axioms considered in [6], so that

in the limit s, t ≫ 1 we have

log T (s, t) ≤ α′
asy

(
(s+ t) log(s+ t)− s log s− t log t

)
(F.21)

The question of uniqueness and which extra conditions are needed to obtain it, e.g., the extra

asymptotic crossing condition considered in [71], requires further investigation.

F.5 Distribution of excess zeros

Here we present some results on the distribution of the excess zeros of the open string ampli-

tudes Tc0,c1,λ(s, t). For our purposes, the excess zeros zi(t) are defined as follows. We consider

the residue of the amplitude

−Rest=nTc0,c1,λ(s, t) =

j(n)∑
J=0

cn,JPJ

(
1 +

2s

n

)
∝

j(n)∏
i=1

(
1− s

zi(n)

)
. (F.22)

By taking the logarithm of this formula, we can rewrite it as follows

log

j(t)∏
i=1

(s− zi(t)) =

∫
d2zρ(t, z, z̄) (log(z − s)− log z) . (F.23)

We then take the large s, t ≫ 1 limit of this formula. We define the asymptotic distribution

ρ(t, z, z̄) =
jasy(t)

t2
ρasy

(z
t
,
z̄

t

)
+ ... , (F.24)

where ... includes contributions that do not contribute to the limit, e.g., some of the zeros

could escape to infinity. Plugging this into the formula above and rescaling the integration

variables, we get the following representation for the asymptotic amplitude

log T (s, t) ≃ jasy(t)

∫
d2zρasy(z, z̄) log

(
1− 1

βz

)
, β =

t

s
. (F.25)

By taking the asymptotic Regge limit s ≫ t we get that∫
d2zρasy(z, z̄) = 1. (F.26)

We are interested in jasy(t) ∼ t therefore the crossing equation log T (s, t) = log T (t, s) becomes

β

∫
d2zρasy(z, z̄) log

(
1− 1

βz

)
=

∫
d2zρasy(z, z̄) log

(
1− β

z

)
. (F.27)

We can therefore write the following representation of the amplitude

log T (1, β) =

∫
d2zρasy(z, z̄) log

(
1− β

z

)
. (F.28)
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Figure 16: We plot the distribution of excess zeros, see (F.22), for n = 200, c0 = −3/10, c1 = 7/20,

λ = 1/2. We rescaled them by 1
n as in (F.24). As we increase the energy or n, they reach out further

and further into the complex plane.

By taking the derivative with respect to β, we get the relationship between the asymptotic

distribution of zeros ρasy(z, z̄) and the discontinuity of ∂β log T (1, β)

∂β log T (1, β) =

∫
d2z

ρasy(z, z̄)

β − z
. (F.29)

Let us now consider the distribution of zeros in a concrete example. We take n = 200,

c0 = −3/10, c1 = 7/20, λ = 1/2. One can numerically check that at this point the logarithm

of the amplitude is well captured by the asymptotic formula. The distribution of zeros rescaled

by 200 is shown in Figure 16.

We see that it has an interesting shape that branches into the complex plane. Moreover,

by increasing n we see that the rescaled zeros go further and further in the complex plane.

We are thus led to the following picture of the asymptotic distribution

∂β log T (1, β) =
1

2πi

∮
γ
dz

ρasy(z)

β − z
, (F.30)

where the contour γ is shown in Figure 17.

We can now use our asymptotic result (4.12) to find the explicit form of ρasy(z) in this

case. We get the following result

∂β log T (1, β) = log
1 + β

β
+ c1 log

1− λ̃+ (1 + λ̃)β + (1− λ̃)

√(
β −

√
λ̃+1√
λ̃−1

)(
β −

√
λ̃−1√
λ̃+1

)
2(1 + β)

.

(F.31)
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Figure 17: Nonuniqueness of the asymptotic distribution of zeros ρasy(z). Given a nonnegative

analytic distribution of zeros in (F.29) along the contour γ we can use the Cauchy theorem to deform

the integral to the location γ′ (which in particular we can choose to be along the negative axis).

By taking the discontinuity, we can write the following representation for this amplitude

∂β log T (1, β) =

∫ 0

−1
dz

1

β − z
+ c1

∫ √
λ̃−1√
λ̃+1√

λ̃+1√
λ̃−1

dz
ρasy(λ̃, z)

β − z
, (F.32)

where ρasy(z) can be readily computed by taking the discontinuity of (F.32). It has the

following properties

∫ √
λ̃−1√
λ̃+1√

λ̃+1√
λ̃−1

dzρasy(z) = 0, 1 > λ̃ ≥ 0, (F.33)

∫ √
λ̃−1√
λ̃+1√

λ̃+1√
λ̃−1

dzρasy(z) = −1, λ̃ = 1 . (F.34)

It is also bounded from below ρasy(z) ≥ −1 for −1 ≤ z ≤ 0, and it is nonnegative ρasy(z) ≥ 0

for z < −1. Therefore we see that as we turn on λ̃ zeros ‘spill’ outside the −1 ≤ z ≤ 0 region.

Moreover, as we set λ̃ = 1 they escape to infinity. We plot examples of distributions of zeros

in Figure 18.

The reader might wonder how the distribution that we explicitly got in Figure 16 and the

asymptotic distribution (F.33) are consistent with each other. In fact, the two representations

can be deformed into one another using the Cauchy theorem, see Figure 17. Therefore we

see that there is no unique way to read off the distribution of zeros starting from the known

form of the amplitude for β > 0. In (F.33) we chose to deform the contour all the way to lie

across the negative axis.

Imagine now we start with a positive ρ(z) ≥ 0 analytic density of zeros along some

contour γ in the complex plan and we deform it to the negative axis. It is not clear a priori
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Figure 18: Here we plot the asymptotic density of zeros for the amplitude with c1 = 1/2 and different

λ̃. The homogeneous distribution between [−1, 0] that corresponds to λ̃ = 0 captures the high-energy

limit of the Veneziano amplitude. We see that for λ̃ > 0 the density of zeros has a larger support.

Finally, for λ̃ = 1 some of the excess zeros escape to infinity.

that after the deformation the new effective density of zeros has to be positive. We, however,

observed this to be the case in the example above.
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G Stringy Cerulus-Martin bound

The Cerulus-Martin bound on the high-energy scattering at fixed angles [74, 89, 90] effectively

expresses Mandelstam analyticity in the following form

Regge ≤ (Fixed real angle)× (Fixed complex angle). (G.1)

It is usually presented as a lower bound on scattering as follows

(Fixed real angle) ≥ Regge

(Fixed complex angle)
. (G.2)

In nonperturbative QFT, for example in QCD, we do not have a bound on scattering at

complex angles, therefore it is not a rigorous lower bound in this case.

We would like next derive a lower bound on the scattering at physical fixed scattering an-

gle for stringy amplitudes. Our input will be the following: an upper bound on the amplitude

discussed in the section above, and the polynomial nature of the Regge limit.

We consider fixed-angle scattering so that

t = −s

2
(1− z), (G.3)

and we would like to derive a lower bound of the following type

max
|z|≤z0

|T (s, z)| ≥ T0(s, z). (G.4)

We first start with the following simple observation

max
|z|≤z0

|T (s, z)| ≥ max
|z|≤z0

|ImT (s, z)| = max
|z|≤z0

|Ts(s, z)|. (G.5)

Next, we notice that the discontinuity of the amplitude is simply a polynomial (as described

above in (F.1))

Ts(s, z) ∼
j(s)∑
J=0

ci,JPJ(z), ci,J ≥ 0 , (G.6)

and thus, it is an analytic function in the z-plane. To derive a lower bound, we consider the

following mapping

w(z) =
z +

√
z2 − z20
z0

. (G.7)

Under this mapping, the real-line segment −z0 ≤ z ≤ z0 is mapped into a unit circle in the

w-plane.

We now consider three circles in the w-plane: |w| = 1, |w| = r2 and |w| = r3, such

that r3 > r2 > 1. The discontinuity of the amplitude is an analytic function in the annulus

1 ≤ |w| ≤ r3. We also introduce the following notation

Mr = max
|w|=r

|Ts(s, z)|. (G.8)
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We then have the three-circle theorem that states the following. For a function analytic inside

the annulus and bounded on its boundary, we have

Mr2 ≤ M
1− log r2

log r3
1 M

log r2
log r3
r3 . (G.9)

We choose r2 at fixed t such that the circle includes the Regge limit of the amplitude, which

is ∼ 1, where the equivalence relation means ‘modulo powers’. We then have

1 ≤ M
1− logw(1)

log r3
1 M

logw(1)
log r3

r3 , (G.10)

where we set r2 = w(1) which is its leading large s behavior.

We next rewrite this bound as follows

M1 ≥ (Mr3)
− logw(1)

log r3
/(1− logw(1)

log r3
)
, (G.11)

where the LHS is related to fixed-angle scattering for physical angles, whereas the RHS is

related to scattering at complex angles.

We next notice the following simple fact

∣∣∣ j(s)∑
J

ci,JPJ(z)
∣∣∣ ≤ j(s)∑

J

ci,J

∣∣∣PJ(z)
∣∣∣ ≤ j(s)∑

J

ci,JPJ(
√

|z|2 + 1), |z| ≥ 1, (G.12)

where we used that ci,J ≥ 0. We then get

Mr3 ≤ Ts(s,
√
z2∗ + 1), (G.13)

where

z∗ ≡ max
|w|=r3

|z(w)| = z0
1 + r23
2r3

. (G.14)

Next, we use the bound discussed in the previous section (F.21) to get

Ts(s, z) ≲ eαasy′sfVen(z),

fVen(z) ≡
z + 1

2
log

z + 1

2
− z − 1

2
log

z − 1

2
, (G.15)

where we are working modulo power-like corrections.

Combining all the inequalities above, we get that for any r3

max
|z|≤z0

|T (s, z)| ≥ (eαasy′sfVen(
√

z2∗+1))
− logw(1)

log r3
/(1− logw(1)

log r3
)
. (G.16)

To optimize the bound, we would like to maximize the RHS. We find that the maximum is

attained at r3 = ∞ which finally gives

max
|z|≤z0

|T (s, z)| ≳ e
−αasy′s log

1+
√

1−z20
z0 . (G.17)
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This constitutes a stringy generalization of the Cerulus-Martin lower bound on scattering

at fixed angles. In the main text, we discussed the relationship between the asymptotic

Regge trajectory jasy ≃ αasyt, and the leading Regge trajectory j(t) ≃ α′t, and argued that

α′
asy ≤ α′. We can, therefore, write the bound in terms of the leading Regge trajectory

max
|z|≤z0

|T (s, z)| ≳ e
−α′s log

1+
√

1−z20
z0 , (G.18)

which is the bound we quoted in the main text.

Let us comment on the following technical subtlety in the argument above. Strictly

speaking, the imaginary part we considered above in (G.6) is ∝ δ(s−m2), and therefore our

bound above directly applies to the residues of the amplitude only. The standard way to cure

this problem (as well as to use the bound (G.18)) is to take the high-energy limit away from

the real axis s → s(1+ iϵ). We expect that in this limit, the imaginary part of the amplitude

is still effectively given by (G.6), see [6] for the discussion of this point, and therefore our

arguments apply.
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