STRANGE MULTIPOLES IN MAGNET ENDS

E.J.N. Wilson

1. Description of End Fields

The three-dimension solution of Laplace's Equation in the end field of a magnet is to be found in any standard text on electron optics¹. Figure 1 shows a magnet's scalar potential expressed to fourth order in the transverse coordinates x and y. The dash signifies a derivative in the z direction, i.e., along the axis of the magnet.

Each of the coefficients, H, Q, etc., refers to a multipole component. We can rearrange the terms, derive fields and gradients and form Table 1, which relates the terms to the well known multipole magnets of accelerator theory.

There are two lines at the end of this table labelled "End Quadratic and Cubic" which do not correspond to a normal two dimensional multipole component. They are somewhat like sextupole and octupole fields in the x plane, but not in the y plane. In this paper we shall discuss their form and their effect on the beam.

2. Shape of the Strange Multipole

The coefficients H" and Q" are the second derivatives describing the axial variation of the horizontal bending strength and the quadrupole gradient. These second derivatives change sign in the bell-shaped end field of a magnet so that their integral along a paraxial trajectory is zero. They nevertheless have an effect for a particle which is either bent or focused in the end field.

Their transverse distribution is best described by the variation of their focusing strength, $k = \partial By/\partial x$ or $\partial Bx/\partial y$, as a function of x and y. Ideally a quadrupole's focusing strength would be constant over the whole x,y plane. An octupole:

¹⁾ Glaser - Handbuch der Physik 1956 p. 162.

$$k = 12Q_1(y^2 - x^2)$$

produces a perturbation of k as shown in Fig. 2. Imagine the magnet is standing on end like an umbrella stand. The x and y coordinates in the Figure are the normal transverse coordinates. The vertical coordinate is k as a function of x and y. The surface is a saddle. In one direction focusing is depressed as one moves off axis, in the other, it is enhanced.

The "end cubic" focusing strength:

$$k = \frac{Q''}{4} (x^2 + y^2)$$

is shown in Fig. 3. Clearly it is not an octupole, and resembles a hammock and enhances focusing in a way which is always positive.

By overlaying Figs 2 and 3 one can immediately see that an octupole could correct for the end field in one plane but would make things worse in the other. This may still be a useful thing to do where the dispersed beam is very wide and where end fields have their maximum effect.

3. The Effect on the Beam

The effect on the beam of such a cubic end field has been calculated by $W\ddot{u}$ sterfeld².

He takes into account that beta changes in the fringe field:

$$\beta = \beta_0 - 2d_0\Delta z + \frac{(1 + \alpha^2)}{\beta_0} \Delta z^2$$

to find the integral of the effect on focusing:

$$\Delta Q = \frac{1}{2\pi} \int \frac{k}{B\rho} B ds = \frac{\epsilon k}{32\pi B\rho} \left[\alpha_0 \beta_0 \right] .$$

His treatment does not include dispersion and the effect appears small:

$$\Delta Q = 1.46 \times 10^{-4}$$
 for AA,
 $\Delta Q = 1.12 \times 10^{-3}$ for AC.

2) G, Wüsterfeld - Argonne/Jülich AAD-N-26.

We have extended the theory to include dispersion and find that the effect of a pseudo-octupole, where there is dispersion, will be much larger. The normal expressions for the effect of an octupole give an increased effect in dispersive regions of a factor:

 $1 + 4(d^2/a^2)$

where d = $\alpha p \Delta p/p$ and a = $\sqrt{\beta \epsilon}$.

This leads to larger values for ΔQ :

 $\Delta Q = 0.0127$ for the AA, $\Delta Q = 0.008$ for the AC.

This would appear as a curvature to Q v. $\Delta p/p$. Such a curvature would make itself apparent - and have to be corrected by octupole shims - even after all precautions had been taken to eliminate field errors in the paraxial distributions of magnet fields. This is exactly what happened in the case of the AA. See Fig. 4³.

Even when compensated, they might still drive fourth order stopbands due to the lumped nature of the corrections. Such stopbands would be systematic and appear at all even multiples of 0.25 in the Q diagram. The AA working point is remote from such lines but the AC is within 0.004 of 4Q = 22.

Acknowledgement

I would like to thank V. Chohan and H. Renshall for help with the three dimensional plotting.

- 3 -

³⁾ B. Autin et al., CERN/PS/AA/81-20 and 1981 PAC.

dby/dy.	Eling S.	0	0	0	0	×42-	-2E,y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1-240124	0	- <u>9'(zz+g2</u> ,		13.2.84.
d Bx/dx	(h+2×2)(1)12 +1, I Z, -	0	0	ф-	d12	-241 2	26,x.	hx13h2-	(h-2 K) (21	Q	-Q"xy		EJWN
dby/dy	- 2 " " (2 2 + 3 y)	0	0	0	- 4/2	2414	2 E, 2	hx that	(2K-2G)21×17	$\mathcal{F}_{"}\mathcal{H}$	-5" xy	to order 4	
dby/dx	Z(1) 2 4	0	0	- 4	0	-2+1,3	26, y	$(\iota \kappa - \iota h)^{l} h^{l}$	- 24D1 xy	0	(2h+2x)"4-	F Ends up	
bx	$\frac{1}{I_{1}^{(u)}} \begin{pmatrix} x^{2} + x y^{2} \\ x^{2} + x y^{2} \end{pmatrix}$	0	Ŀ	- Qy	x Z	-2H1xy	$G_{1}(x^{2}-y^{2})$	(h2 x2- 2h) (h+	(2h x21-5 KH/17	Q	(24+ hrs)"2-	n of Magne	•
Ву	-1 \$ " + + " \$ 1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	H	0	- Ø x	- 104	$(\imath x - \varkappa \imath)'_{H}$	$\frac{2}{3}G, xy$	49, (3xy2-x3)	(h1x21-244)'D	H" 2 <u>7</u> '' 2	$(h_{2}x_{2}+3x)''$	Enc para si er	
Gen	Im - 1 I'm2 + 1 2 11-4	h#-	кЭ –	hx h	(2h-2x) PT	(h2x2-2h) 'HF	$\frac{1}{3}G_{1}(x^{3}-3xy)$	49(2y3-239)	(+ h+2h2×3+x) 10	<u></u> 1 1 1 1 1 1 1 1 1 1	- <u>Q''(x</u> ry)xy	Table 1	
NAME	SCZENUTD	HLRIZUNTAL BENDING	VERTICAL BENDING	QUADRUPUL	SKEW- GUADRUPUTE	SEXTU ARIE	SKEW SEXTUPORE	OCTUPOLE	SKEW JUGHDNLE	ΕΝD ΨU ΑΦRΑΤΙC	END. CHBIC		

NAME	(fm	ву	R	dby/dx	d By /dy	d Br /dx	dbr/dy
Screnoto	4-100 - 14 + 17 2011-4	'\$ "y + \$^{''}(z ² y+y ³)	$\frac{1}{\mathcal{I}_{w}^{1}} \begin{pmatrix} x_{3} + x_{1}y_{1} \\ x_{1} \\ -\frac{1}{2} \\ x_{1} \\ -\frac{1}{2} \\ -\frac{1}{$	In xy	- / 4 " + 3 yr)	-12 I''+ -12 I''+ -12 I'+ -12 I'+ -	$\frac{\overline{p}^{(n)}}{8} x y.$
HCRIZONTAL BENDING	- HH	#	0	0	0	0	0
VERTICAL BENDING	кЭ –	0	Ŀ	0	0	0	0
GUADRII PUL	бхд	- Ø x	- Qy	9-	0	- d-	0
ЗКЕМ- Фидоририе	(2h-2x) 07	-24	₫ x	0	- 4/2	42	0
SEXTU PUE	$\frac{1}{3}H_{1}(y^{3}-2x^{2}y)$	$H_1(y^2-x^2)$	-24, xy	-2+1/2	2 Hiy	-2H1 Y,	×42-
SKEW SEXTUPORE	$\frac{1}{3}G_{r}(x^{3}-3xy)$	2G, xy	$(z^{2})(z^{2}-y^{2})$	2E, y	2 6,2	2E,x	-26,4
οιταροτε	4 (p/(2y3-23y)	H.G. (3x1,2-x3)	(h2x5-2h) (h4)	(2K-2h)1921	5+412	hx1842-	(2x-2h)1/21
SKEW OCTUPUTE	(*++2223x) 10	(h1x21-2h4)10	(2h x21-2 x4)17	hx1042 -	(2K-2K)21×17	(h-2 ×) 021	-240129
END QU ADRATIC	<u>t</u> H"y3	2 ^R 7	Q	0	б"н	Q	0
END	hx(ch+1x), -	- <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	(2h+h22), J-	(2h+2x)"2-	fx "5-	£" 254	-9"(2+y2) 4
	Table 1	EDE DAM SI CT	n of Magne	F Ends up	to Order 4		
			>			EJNN.	13.2.84.

$$\begin{split} \varphi_{m}(x,y,z) &= \varphi_{m} - G x - H y - \frac{1}{4} (\varphi_{m}'' - \Delta) x^{2} + Q x y - \frac{1}{4} (\varphi_{m}'' + \Delta) y^{2} + \\ &+ \frac{1}{3} (\frac{1}{7} G'' + G_{1}) x^{3} - H_{1} x^{2} y - G_{1} x y^{2} + \frac{1}{3} (\frac{1}{7} H'' + H_{1}) y^{3} + \\ &+ (\frac{1}{64} \Phi_{m}^{(4)} - \frac{1}{48} \Delta'' + \Delta_{1}) x^{4} - (\frac{1}{12} Q'' - 4 Q_{1}) x^{3} y + \\ &+ (\frac{1}{37} \Phi_{m}^{(4)} - 6\Delta_{1}) x^{2} y^{2} - (\frac{1}{72} Q'' + 4 Q_{1}) x y^{3} + \\ &+ (\frac{1}{64} \Phi^{(4)} + \frac{1}{48} \Delta'' + \Delta_{1}) y^{4}. \end{split}$$

Fig.1 Scalar Magnetic Potential

Fig.2 - Octupole Gradient

Fig. 3 - Gradient of End Cubic Potential

Fig.4 _ Q Variation at Start