002880052 001__ 2880052
002880052 005__ 20241011064412.0
002880052 0248_ $$aoai:cds.cern.ch:2880052$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002880052 0247_ $$2DOI$$9APS$$a10.1103/PhysRevLett.131.222503$$qpublication
002880052 0247_ $$2DOI$$9APS$$a10.1103/PhysRevLett.131.222503
002880052 037__ $$9arXiv$$aarXiv:2310.16915$$cnucl-ex
002880052 035__ $$9arXiv$$aoai:arXiv.org:2310.16915
002880052 035__ $$9Inspire$$aoai:inspirehep.net:2714507$$d2024-10-09T16:35:31Z$$h2024-10-11T02:34:31Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002880052 035__ $$9Inspire$$a2714507
002880052 041__ $$aeng
002880052 100__ $$aNies, L.$$jORCID:0000-0003-2448-3775$$uCERN$$uGreifswald U.$$vEuropean Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland$$vInstitut für Physik, Universität Greifswald, 17487 Greifswald, Germany
002880052 245__ $$9arXiv$$aFurther evidence for shape coexistence in $^{79}$Zn$^{m}$ near doubly-magic $^{78}$Ni
002880052 246__ $$9APS$$aFurther Evidence for Shape Coexistence in <math><mrow><msup><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>79</mn></mrow></mmultiscripts></mrow><mrow><mi>m</mi></mrow></msup></mrow></math> near Doubly Magic <math><mrow><mmultiscripts><mrow><mi>Ni</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>78</mn></mrow></mmultiscripts></mrow></math>
002880052 269__ $$c2023-10-25
002880052 260__ $$c2023-11-30
002880052 300__ $$a10 p
002880052 500__ $$9arXiv$$a10 pages, three figures, two tables. Accepted to Phys. Rev. Lett
002880052 520__ $$9APS$$aIsomers close to doubly magic <math display="inline"><mrow><mmultiscripts><mrow><msub><mrow><mi>Ni</mi></mrow><mrow><mn>50</mn></mrow></msub></mrow><mprescripts/><mrow><mn>28</mn></mrow><mrow><mn>78</mn></mrow></mmultiscripts></mrow></math> provide essential information on the shell evolution and shape coexistence near the <math display="inline"><mi>Z</mi><mo>=</mo><mn>28</mn></math> and <math display="inline"><mi>N</mi><mo>=</mo><mn>50</mn></math> double shell closure. We report the excitation energy measurement of the <math display="inline"><mrow><mn>1</mn><mo>/</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math> isomer in <math display="inline"><mrow><mmultiscripts><mrow><msub><mrow><mi>Zn</mi></mrow><mrow><mn>49</mn></mrow></msub></mrow><mprescripts/><mrow><mn>30</mn></mrow><mrow><mn>79</mn></mrow></mmultiscripts></mrow></math> through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the <math display="inline"><mn>1</mn><mo>/</mo><msup><mn>2</mn><mo>+</mo></msup></math> isomer at 942(10) keV, slightly below the <math display="inline"><mn>5</mn><mo>/</mo><msup><mn>2</mn><mo>+</mo></msup></math> state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other <math display="inline"><mi>N</mi><mo>=</mo><mn>49</mn></math> isotones. The <math display="inline"><mn>1</mn><mo>/</mo><msup><mn>2</mn><mo>+</mo></msup></math> isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in <math display="inline"><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts/><none/><mrow><mn>80</mn></mrow></mmultiscripts></mrow></math>, and points to shape coexistence in <math display="inline"><mrow><mmultiscripts><mrow><mi>Zn</mi></mrow><mprescripts/><none/><mrow><mn>79</mn><mo>,</mo><mn>80</mn></mrow></mmultiscripts></mrow></math> similar to the one observed in <math display="inline"><mrow><mmultiscripts><mrow><mi>Ni</mi></mrow><mprescripts/><none/><mrow><mn>78</mn></mrow></mmultiscripts></mrow></math>. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.
002880052 520__ $$9arXiv$$aIsomers close to doubly-magic $^{78}_{28}$Ni$_{50}$ provide essential information on the shell evolution and shape coexistence near the ${Z=28}$ and ${N=50}$ double shell closure. We report the excitation energy measurement of the $1/2^{+}$ isomer in $^{79}_{30}$Zn$_{49}$ through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP Multi-Reflection Time-of-Flight Mass Spectrometer. We unambiguously place the $1/2^{+}$ isomer at 942(10) keV, slightly below the $5/2^+$ state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with Discrete Non Orthogonal shell-model calculations which are used here the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other ${N=49}$ isotones. The $1/2^{+}$ isomer is interpreted as the band-head of a low-lying deformed structure akin to a predicted low-lying deformed band in $^{80}$Zn, and points to shape coexistence in $^{79,80}$Zn similar to the one observed in $^{78}$Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.
002880052 540__ $$3preprint$$aCC BY 4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002880052 540__ $$3publication$$aCC-BY-4.0$$fCERN-RP: APS$$uhttps://creativecommons.org/licenses/by/4.0/deed.en
002880052 542__ $$3publication$$dauthors$$fPublished by the American Physical Society$$g2023
002880052 595__ $$cHAL
002880052 65017 $$2arXiv$$anucl-th
002880052 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002880052 65017 $$2arXiv$$anucl-ex
002880052 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002880052 690C_ $$aCERN
002880052 690C_ $$aARTICLE
002880052 700__ $$aCanete, L.$$uJyvaskyla U.$$uSurrey U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland$$vDepartment of Physics, University of Surrey, Guildford GU2 7X5, United Kingdom
002880052 700__ $$aDao, D.D.$$jORCID:0000-0001-9884-4591$$uStrasbourg, IPHC$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
002880052 700__ $$aGiraud, S.$$jORCID:0000-0001-6542-5091$$uGANIL$$vGANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France
002880052 700__ $$aKankainen, A.$$jORCID:0000-0003-1082-7602$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aLunney, D.$$jORCID:0000-0002-3227-305X$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002880052 700__ $$aNowacki, F.$$jORCID:0000-0002-7854-8717$$uStrasbourg, IPHC$$vUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
002880052 700__ $$aBastin, B.$$jORCID:0000-0001-5959-0875$$uGANIL$$vGANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France
002880052 700__ $$aStryjczyk, M.$$jORCID:0000-0001-6515-2409$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aAscher, P.$$uLP2I, Bordeaux$$vUniversité de Bordeaux, CNRS/IN2P3–Université, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
002880052 700__ $$aBlaum, K.$$jORCID:0000-0003-4468-9316$$uGarching, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
002880052 700__ $$aCakirli, R.B.$$jORCID:0000-0002-8400-1718$$uIstanbul U.$$vDepartment of Physics, Istanbul University, Istanbul 34134, Turkey
002880052 700__ $$aEronen, T.$$jORCID:0000-0003-0003-6022$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aFischer, P.$$jORCID:0000-0002-1985-313X$$uGreifswald U.$$vInstitut für Physik, Universität Greifswald, 17487 Greifswald, Germany
002880052 700__ $$aFlayol, M.$$jORCID:0000-0002-1215-2269$$uLP2I, Bordeaux$$vUniversité de Bordeaux, CNRS/IN2P3–Université, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
002880052 700__ $$aGirard Alcindor, V.$$uGANIL$$vGANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France
002880052 700__ $$aHerlert, A.$$jORCID:0000-0003-1619-0964$$uFAIR, Darmstadt$$vFAIR GmbH, Planckstraße 1, 64291 Darmstadt, Germany
002880052 700__ $$aJokinen, A.$$jORCID:0000-0002-0451-125X$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aKhanam, A.$$jORCID:0000-0003-1563-7277$$uJyvaskyla U.$$uAalto U.$$uHelsinki U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland$$vDepartment of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland$$vDepartment of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
002880052 700__ $$aKöster, U.$$jORCID:0000-0001-5701-3249$$uCERN$$uLaue-Langevin Inst.$$vEuropean Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland$$vInstitut Laue-Langevin, 38000 Grenoble, France
002880052 700__ $$aLange, D.$$jORCID:0000-0002-4559-6739$$uGarching, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
002880052 700__ $$aMoore, I.D.$$jORCID:0000-0003-0934-8727$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aMüller, M.$$jORCID:0000-0002-7281-9002$$uGarching, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
002880052 700__ $$aMougeot, M.$$jORCID:0000-0003-1372-1205$$uJyvaskyla U.$$uGarching, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aNesterenko, D.A.$$jORCID:0000-0002-6103-2845$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aPenttilä, H.$$jORCID:0000-0001-8720-1515$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aPetrone, C.$$jORCID:0009-0000-1194-3600$$uBucharest, IFIN-HH$$vIFIN-HH, P.O. Box MG-6, 077125 Bucharest-Magurele, Romania
002880052 700__ $$aPohjalainen, I.$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$ade Roubin, A.$$jORCID:0000-0002-6817-7254$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aRubchenya, V.$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aSchweiger, Ch.$$jORCID:0000-0002-7039-1989$$uGarching, Max Planck Inst.$$vMax-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
002880052 700__ $$aSchweikhard, L.$$uGreifswald U.$$vInstitut für Physik, Universität Greifswald, 17487 Greifswald, Germany
002880052 700__ $$aVilen, M.$$jORCID:0000-0002-0375-2502$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 700__ $$aÄystö, J.$$jORCID:0000-0003-2531-7453$$uJyvaskyla U.$$vUniversity of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
002880052 773__ $$c222503$$mpublication$$n22$$pPhys. Rev. Lett.$$v131$$y2023
002880052 773__ $$n22$$pPhys. Rev. Lett.$$v131$$y2023
002880052 8564_ $$82492379$$s9868$$uhttp://cds.cern.ch/record/2880052/files/fig2.png$$y00001 Occupancy differences between excited states in $^{79,80}$Zn, and $^{78}$Ni with their respective ground states. The data for $^{78}$Ni is taken from~\cite{Nowacki2016}.
002880052 8564_ $$82492380$$s63464$$uhttp://cds.cern.ch/record/2880052/files/fig3.png$$y00002 DNO-SM expansions in the ($\beta, \gamma$) plane (using the same energy scale) for low-lying states in $^{79}$Zn ($9/2^+_1$, $1/2^+_1$ and $5/2^+_1$ in upper panel) and $^{80}$Zn ($0^+_1$ and $0^+_2$ in lower panel). The radius of circles represents the normalized probability of finding a deformation of ($\beta, \gamma$) in the corresponding state.
002880052 8564_ $$82492381$$s736628$$uhttp://cds.cern.ch/record/2880052/files/2310.16915.pdf$$yFulltext
002880052 8564_ $$82492382$$s54438$$uhttp://cds.cern.ch/record/2880052/files/fig1.png$$y00000 (a) A typical ToF-ICR spectrum for the $1/2^+$ state in $^{79}$Zn$^+$. Colored bins indicate the number of detected ions. Darker shades correspond to more ions and lighter shades to fewer ions. The solid red line represents the fit to the data points (black) using the model from Ref.~\cite{Konig1995}. The cyclotron frequencies are indicated with a vertical black dashed line for the ground state (not present in this spectrum) and a vertical blue dash-dotted line for the isomer. (b) Time-of-Flight spectrum for the MR-ToF MS data. The ToF of the ground state is indicated by a vertical black dashed line, and the ToF of the isomer by a vertical blue dash-dotted line. The solid red line represents the fit to the data using the model from Ref.~\cite{2017_Purushothaman_hyperEMG}.
002880052 960__ $$a13
002880052 980__ $$aARTICLE