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Abstract

The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the
harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular,
the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize de-
tailed information from sub-detectors at the bunch crossing rate: the upgraded Global Trigger will use
high-precision trigger objects to provide the Level-1 decision. Besides cut-based algorithms, novel
machine-learning-based algorithms will also be included in the Global Trigger to achieve a higher
selection efficiency and detect unexpected signals. Implementation of these novel algorithms is pre-
sented, focusing on how the neural network models can be optimized to ensure a feasible hardware
implementation. The performance and resource usage of the optimized neural network models are
discussed in detail.
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ABsTrACT: The CMS detector [1] will be upgraded to maintain, or even improve, the physics accep-
tance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations.
In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned
to utilize detailed information from sub-detectors at the bunch crossing rate: the upgraded Global
Trigger will use high-precision trigger objects to provide the Level-1 decision. Besides cut-based
algorithms, novel machine-learning-based algorithms will also be included in the Global Trigger to
achieve a higher selection efficiency and detect unexpected signals. Implementation of these novel
algorithms is presented, focusing on how the neural network models can be optimized to ensure a
feasible hardware implementation. The performance and resource usage of the optimized neural
network models are discussed in detail.
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1 Introduction

The new CMS trigger system for the High-Luminosity LHC upgrade [2] will exploit detailed
information from the calorimeter, muon and tracker subsystems at the bunch crossing rate. The
final stage of the Level-1 Trigger apparatus, the Global Trigger (GT), will receive high-precision
trigger objects from the upstream systems. Implemented in modern Field Programmable Gate
Arrays (FPGA), it will determine the Level-1 decision based on a trigger menu consisting of
more than 1000 trigger algorithms. The current system relies on cut-based algorithms that act on
specific combinations of reconstructed particle properties. To reach higher selection efficiency and
selection of unexpected signals, the upgraded GT will include also neural-network-based conditions.
Implementing these neural-network-based conditions in the GT algorithm chain requires meeting
stringent requirements in terms of latency and resources. The upgrade targets a total latency of 1 us
(40 Bunch Crossings, BX) for the entire GT. Three quarters of it is used by high speed serial links,
demultiplexers, distribution and the Final-OR stage. Given neural networks (NN) are typically
resource intensive, extensive optimization is required during and after training to ensure they can
be integrated alongside the cut-based algorithms while meeting the target latency of ~10 BXs. Two
different flavours of NN are considered: deep binary classifiers and deep auto-encoders. To reduce
the models’ resource usage and latency, multiple optimizations have been applied. Some of these
optimizations, such as synapse pruning, hyper-parameter quantization and precision tuning, can be
performed without completely redesigning the model. However, others require a new model to be
designed and trained from scratch. In this work a technique known as knowledge distillation was
used to further reduce the resource usage of the final NN model.

2 Neural network model development

Deep binary classifiers and deep auto-encoder are studied. The primary purpose of the deep binary
classifiers is to discern specific signal signatures, while the deep auto-encoders are designed to
learn the unlabeled data and flag anything that deviates from it as anomalous. The latter rely on an



unsupervised learning technique, and in this particular case aim to understand efficient encoding of
the feature of the well-understood physics scenarios ("background"). They aim to encode the input
data into a lower-dimensional representation (latent space) and then decode it back to its original
form, attempting to minimize the reconstruction error. As a result, any signature which differs
substantially from the background will be reconstructed poorly. The distance between the input and
the reconstructed event is then used as anomaly score. To compare the performances of deep binary
classifiers and auto-encoders, we consider three different signal signatures denoted as A, B and C.
Each unique signal signature will be associated with its own trained binary classifier, whereas a
single auto-encoder will be trained using background events. Binary classifiers are trained with a
mixture of signal and background events and supervised learning is used.

Hardware used for real-time inference in the Level-1 Trigger has limited computational capacity
due to size and latency constraints. Incorporating resource-intensive models without a loss in
performance poses a great challenge. Significant model compression is then necessary. Hyper-
parameter and input/output precision quantization using gkeras [3] is employed to reduce the
multiplication’s complexity. Additionally, synapse pruning is implemented through Tensorflow
model optimization [4]. These optimization processes occur during training and result in a reduction
in model size by more than threefold compared to the uncompressed model implementation [5].
Despite the aforementioned compression methods, the auto-encoders typically remain too large to
be implemented in FPGAs. To tackle this challenge, one more compression technique is harnessed:
a basic implementation of knowledge distillation [6]. First, a bigger auto-encoder (referred to as the
"teacher") is trained with only background events. A secondary, more compact model (referred to as
the "student") is then trained to reproduce the teacher’s anomaly score using the background events
and random samples!. The anomaly score is computed as Mean Squared Error (MSE). Figure 1
depicts the training procedure for the two different approaches.
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Figure 1. Left: In the supervised learning a model is trained knowing the output labels. Right: auto-encoders
rely on unsupervised learning where the model is trained with only background events. With the knowledge
distillation technique the student model is trained to behave like the teacher model.
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Data pre-processing is performed with a normalization layer: the training dataset’s variables
are re-scaled to have a mean equal to zero and a standard deviation equal to one. Such re-scaling
parameters are applied during training and in the hardware inference. In Table 1, input variables
are listed for the two model topologies. Pr, 1, ¢ are the representation of the candidate particle’s
momentum [7]. Since the usage of the ¢ variables does not result in notable increase in the signal
efficiency in the case of binary classifiers, they are ignored during training. Binary classifiers
feature a single hidden layer with 64 nodes with ReL.U activations, the output is a single node with

1¢ and 7 uniformly distributed and a decaying distribution for p7 and E %’I iSS required to increase the phase space of
the student’s training dataset



Table 1. Input variable of the two model topologies.
L1T Objects Binary classifier | Auto-encoder

First 6 jets prT.Nn prsn, ¢
First 4 electrons PT> N pr.n, ¢
First 4 muons prs1n pr. 1, ¢
First 4 photons pT,1N pr>n, @
First 2 taus pTs M pT> 1, ¢
Missing energy EMSS ETISS, ¢

a sigmoid activation function. The auto-encoder (teacher) features multiple hidden layers for the
encoder part, a latent space with 7 nodes and a decoder with the inverted encoder’s architecture.
The student is a deep neural network with one output (the anomaly score). ReLU activations are
used in the hidden layers and linear activation at the output.

Table 2. Relative performance of auto-encoder with respect to binary classifiers

Model Hidden layers Hyper-paremeter E/Eff ginaryBaseline
Architecture Quantization A ‘ B ‘ C
Keras Bl.nary(A) 41641 FP32 100.0% - -
hls4ml Binary(A) <6/8,1/4> 98.8% - -
Keras Bl.nary(B) 41641 FP32 - 100.0% -
hls4ml Binary(B) <6/8,1/4> - 99.0% -
Keras Bl'nary(C) 41641 FP32 - - 100.0%
hls4ml Binary(C) <6/8,1/4> - - 94.4%
Keras AE (teacher) | Latent space:7 nodes FP32 55.9% 70.0% 37.2%
Qkeras AE (student) 61.3% 72.0% 37.0%
2—32/1 1 172
his4ml AE (student) | 02221075 <8.1/2> 612% | 72.0% | 37.0%

To translate NN models into firmware, hls4ml [5], developed by the CMS community, is used.
It translates high level description models (Keras/Qkeras) into synthesizable C code, which is then
translated by the AMD VITIS High Level Synthesis compiler [8] into a VHDL module. This results
in a block for integration into an FPGA design, and eventually, firmware can be built using AMD
VIVADO [9]. In Table 2, signal selection efficiency at a given fixed rate for the three reference
samples is compared between the binary classifiers and the auto-encoder. Keras models are trained
with single-precision floating-point (FP32) without synapse pruning. In Qkeras and hls4ml models,
different quantizations are applied for hidden and output layers, favoring higher bit precision in the
output layer for enhanced performance. Hardware deployable models usually loose performance
when quantization (fixed-point with 8/6 bits) and pruning (50%) are applied. In this work, Keras
to hls4ml porting for binary classifiers incurs in less than 6% signal efficiency loss the target rate,
which is small considering the reduction in the model size (see Section 4). The results presented
above demonstrate that the auto-encoder is sensible to the signal samples, albeit with reduced
efficiency compared to the binary classifiers, even though it was not trained with signal events.

3 Interface between the Global Trigger and neural networks

As was mentioned in Section 2, a pre-processing step is applied at the inputs of the NN models,
where the re-scaling parameters have to be passed to the hardware. The mathematical operation



is described in eq. 3.1, where two passed parameters are the mean (u) and the standard deviation
(o). Each object variable has its own set of parameters, resulting in 124 parameters in total for the
student and 82 for the binary classifiers.

x = 3.1

In the upgraded GT, within a BX, collections of up to 12 objects are streamed at 480 MHz so
that these objects arrive at the algorithm logic, sequentially [10]. For each collection, the re-scale
operation is implemented within a single DSP per variable. The pre-adder takes care of the mean
subtraction, while the multiplier multiplies by the inverse of the standard deviation?. Its parameters
are updated on each clock cycle to target different objects within the same collection. The process
is depicted in Figure 2. A fully pipelined design with 5 stages has been chosen to reach a clock
frequency of 480 MHz [11] and to reduce congestion.
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Figure 2. Re-scaler simplified architecture. Data are streamed at 480 MHz, parameters are updated on
each clock cycle. Output resizing is applied to match the neural network fixed-point precision. If the result
exceeds the selected range (positive or negative) the value saturates to the given limits. Register stages are
inserted at the input, pre-adder, multiplier, result and resize & saturate steps.
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Figure 3. Interface with GT infrastructure. Data have to go through re-scaling, object selection, deserializa-
tion and bit-vector production. To extract algorithm-bits thresholds must be applied to the output score.

The interface between the Global Trigger infrastructure [10] and the neural networks consists of
multiple layers. Data have to go through re-scaling, object selection, deserialization and bit-vector
production. To extract algorithm-bits one or multiple thresholds must be applied to the output score.
Such bits are then sent to the final decision logic. A diagram of the process is shown in Figure 3.
A single input vector is injected every BX (25 ns, in the 240 MHz domain), while NN blocks run
at 240 MHz. This allows the possibility to increase the Initiation Interval (II) up to 6, enabling
the reuse of the multiplying logic within the dense layers. A reuse factor of 4 was selected for the
student model which is a good compromise between DSP usage and latency, while a factor of 1 was
selected for the binary classifiers thanks to their simpler architecture.

2Implementing division is rather complicated in hardware



4 Implementation of neural networks in the Global Trigger hardware

Each development step, if not managed properly, could lead to timing violations in the final hardware
implementation. The hls4ml step inherits all the optimizations described in Section 2. During VITIS
HLS compilation, the target clock frequency for the auto-encoder (student) was increased to 300
MHz to avoid possible timing violations, while 240 MHz was kept for binary classifiers. The clock
uncertainty was increased to 33% for both. To relax any possible routing congestion within the NN
block, the input vector is registered twice to allow the place and route process to focus on the NN
itself rather than its external connections [12]. Crossing from 240 MHz back to 480 MHz at the
output stage requires multi-cycle path constraints. Finally, timing constraints were met enabling
most of the aggressive implementation strategies in VIVADO [9].

Table 3. Resource usage breakdown of the relevant modules. Uncompressed vs. compressed synthesizable
models’ size comparison. On the bottom, the resource usage of the re-scaler modules is shown.

Module Clk hls4ml (uncompr. keras) hls4ml (compr. gkeras)
[MHz] LUT [k] ‘ FF [k] ‘ DSP ‘ lat[ns] || LUT [k] | FF [k] | DSP | lat[ns]
Auto-encoder 240 Non-synthesizable 42.0 15.5 301 70.8
Binary classifier (A) 240 44.1 24.0 1729 | 45.8 4.6 23 19 333
Binary classifier (B) 240 43.7 23.5 1766 | 45.8 4.6 2.3 19 333
Binary classifier (C) 240 45.5 23.6 1552 | 45.8 5.4 3.3 20 333
Module Clk [MHz] LUT [k] FF [k] DSP lat [ns]
Re-scaler (AE) 480 1.1 33 17 22.9
Re-scaler (classifier) 480 0.8 2.2 11 22.9

A breakdown of the resource usage and latency is given in Table 3. Post Training Quantization
(PTQ) was used for the uncompressed models, while Quantization Aware Training (QAT) was used
for the compressed ones. The latency shown for the re-scaler modules comprises the normalization
and the clock domain crossing (CDC) logic. The prototype firmware is implemented in a Serenity
ATCA board [13] equipped with a Xilinx VU9P FPGA part with 3 Super Logic Regions (SLR). The
prototype design features one auto-encoder (student) and the three binary classifiers, each replicated
in all SLRs for a total of 3 auto-encoders (student) and 9 binary classifiers (Figure 4).

[ GT demultiplexers and distribution
[ Link buffers

W TTC & DMA

B Anomaly detection

[ Binary classifiers

B NNs interfaces

Figure 4. Full design floorplan, 3 auto-encoders (student) and 9 binary classifiers (three per signal signature).
Infrastructure logic is highlighted in yellow (data regions) and purple (DMA and TTC). The full design uses
320k (27%) LUTSs, 452k (19%) Registers, 723 (33%) Block RAM and 1290 (19%) DSPs.

First, data are read from the data link buffers, they are demultiplexed and distributed in the
whole chip and finally are injected in the NN interfaces. Algorithm bits are written to the output
channels and sent to the Final-OR board where monitoring, pre-scaling and masking take place [10].



5 Summary

The CMS Global Level-1 Trigger for Phase-2 features novel algorithms based on machine learning.
In this study, we utilized quantization-aware training, pruning and knowledge distillation to com-
press the neural network models for the implementation in the FPGA fabric. Binary classifiers offer
better performance on discerning known signal signatures with low latency and low resource usage
with respect to auto-encoders, but a distinct model is needed for each signal type, requiring prior
knowledge to generate the requisite dataset. Conversely, a single trained auto-encoder can be em-
ployed to detect known and unknown signatures, utilizing solely background events for its training.
Furthermore, there is a notable difference in the final model sizes between the two approaches. De-
spite the inclusion of knowledge distillation, the auto-encoder (student) is approximately ten times
larger than the binary classifier. Meeting timing constraints in this intricate architecture necessi-
tated the employment of particular coding techniques [12] to guide the VIVADO implementation
algorithm. Deep neural network models have been developed, evaluated and successfully tested in
a Serenity prototype board.
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