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PS/AR Note 93-23 (Min.)

SAP-07

2 December 1993

Minutes of the Forum of
Symbolic Computing for Accelerator Physics

held on Friday 5 November 1993

Present: B. Autin (Chairman), F. Barbarin, G. Dôme, W. Fischer, J. Gareyte, Μ. Giovannozzi, 
S. Hancock, E. Jensen, J. Jowett (Deputy), Μ. Martini (Secretary), D. Manglunki, F. Méot, 
H. Mulder, J.C. Schnuriger, G. Shirkov.

1 Dynamic aperture visualization: J. Jowett
The graphics facilities of Mαthemαticα are used to display 3D dynamic apertures. Input data are 
provided by tracking results performed with MAD. The technical point which has to be solved 
concerns the treatment of data which are not evenly distributed on a grid (scatter plot).
A description of the program is given in the appendix.

2 Time dependent perturbation of dynamical systems: B. Autin
The perturbative treatment of dynamical systems has been one of the very first topics treated by 
symbolic codes, especially in the field of celestial mechanics. The method developed in the package 
NLDynamics is based on a classical iterative procedure (Picard method) for solving ordinary dif­
ferential equations. It is sometimes called time dependent perturbations in contrast with frequency 
domain perturbation. Such a method is the natural extension of Courant and Snyder theory to 
non-linear fields and can be considered as the symbolic counterpart of numerical tracking programs.

The complete theory involves 2 steps:

• Perturbative form of the differential system at each iteration.

• Integration of the perturbed equations.

The present version of the program deals only with the first step but the formalism is prepared 
for a further integration. The integration contains indeed multiple integrals which express the 
correlation of the various field sources and the “time” variable is thus labelled to be recognized by 
the multiple integrals.

The program can be applied to any system which has to be linearized or expanded to a higher- 
order. It is then able to provide analytical formulae which can be used for correction systems or for 
checking numerical simulations. Two examples are given in the attached slides: one concerns the 
transverse coupled motion in the non-linear field of an accelerator, and the second the equations of 
a Free-Electron-Laser.



2

3 Porting a program on MathSource: B. Antin

Many programs have been developed with Mathematica. The authors are encouraged to port them 
on MathSource, the electronic forum of Wolfram Research. Two conditions must be fulfilled:

1. The program must be thoroughly documented in a Notebook;

2. the functions of the program have to be accessible from outside.

A package is typically:

BeginPackage[·· ... *··] (♦ package name *)

Function!: : usages" ... " (* description of functions *)

Begin[", ... (♦ private context *)

Function! [paraml_, ... ] :=...(* definition of functions *)

End[] (* end of private context *)

EndPackage []

See the attached slide.

J.C. Schnuriger has kindly accepted to help the authors who wish to establish a communication 
with MathSource.

The next meeting will be held on:

Thursday 16 December at 16.00 hr in the Adams room - Prévessin, Bldg 864, 2-B14

Μ. Martini

Distribution list
AT, MT, PS and SL Division Leaders and Deputies.
AT, MT, PS and SL Group Leaders and Associates.
SAP list.
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A Dynamic aperture visualization: J. Jowett
A.l Introduction
This notebook manipulates and displays dynamic aperture data, usually found by tracking with 
MAD. To be able to use this notebook the choice of initial conditions for the tracked particles must 
follow the rules given in “Selection of initial conditions” below. The data are normally read in from 
an external file specified as defined in “Input file format” below. The notebook will provide functions 
which operate on these data to display various views of the 3-dimensional dynamic aperture. These 
include various 2-dimensional cuts, including the cuts along the 3 coordinate planes and along the 
“fully-coupled” emittance plane. All functions, variables and objects defined in this notebook (to 
become a package?) will have names beginning with “dynap”. The remainders of the names will 
consist of complete words with the initial letter capitalized.

A.2 Input file format

For now at least, the input file is created from the output of several MAD tracking jobs using a 
Unix “awk” program script. (It would have been nice to do it with Mathematica but, at least on 
the PC, there seem to be some bugs in the file searching functions. See the notebook prfilt2.ma 
in this directory for attempts in this direction. This may be something to do with the DOS file 
system and may not happen on Unix, so there is still hope to filter the MAD print jobs using 
Mathematica itself.

The input file has the following structure:

<MAD title line>
Qx Qy Qs
Ex Ey sigmae
phiPoints thetaPoints
SAxll SAy11 SAtll
SAxl2 SAy12 SA12

SAx_lphiPoints SAy_lphiPoints SAt_lphiPoints
SAx21 SAy21 SAt21
SAx22 SAy22 SAt22

SAx_thetaPoints_phiPoints SAy_thetaPoints_phiPoints
SAt_thetaPoints_phiPoints

The tunes {Qx.Qy,Qs} will usually be just the fractional parts. The emittances Ex and Ey are 
given in micro-metres. The points {SAx.SAy ,SAt} define the boundary of the dynamic aperture. 
Each corresponds to a definite direction in spherical polar coordinates in square-root-of-action 
or “squaetion” variable space. The units are square-root metres for SAx and SAy, fractional 
momentum deviation for SAt.

A.3 Implementation of data structure

A.3.1 Units and rescaling of input data

We usually need to convert the input data to standard units of squaction: 10“3 Sqrt[Ax/m], 
10~3 Sqrt[Ay/m] and % (percent) momentum deviations. These factors are automatically applied
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when the dynamic aperture data is read in using the function dynapRead defined below.

dynapInputRescaleFactor={10-3,10-3,10-2}
{1000, 1000, 100}

A.3.2 Rescaling in squaction space

A simple way to rescale a 3-dimensional point is just to multiply it by another one. The first 
part of the definition of the following function rescales the point {a,b,c} along each coordinated 
axis by the factors {fx,fy,ft} to get {fx a, fy b, ft c}; the functions makes sure that the 
“coordinates” themselves have no deeper structure. The rest of the definition applies the same 
rescaling to 1- and 2-dimensional lists of points (e.g. an emittance ellipsoid).

Clear[dynapStretch]
dynapStretch[{fx_,fy_,ft_},pnt, _, _}] : =

{fx,fy,ft} pnt /;Depth[pnt]==2
dynapStretch[{fx_,fy_,ft_},pntList{{ _, _, _}..}]:«

Map[dynapStretch[{fx ,fy, ft},#]ft,pntList] 
dynapStretch[{fx_,fy_,ft_},pntArray-, _}·.}..}]:=

Map[dynapStretch[{f x,fy,ft},#]&,pntArray,<2}]

The following anticipates the structure of a dynapData object which is defined in the functions 
dynapRead and dynapEmittanceEllipsoid below. It performs surgery on such objects, rescaling 
the array of points representing a surface and recording the fact by prefixing the title string with 
the values of {fx, fy, ft}. In the case of an emittance ellipsoid which is rescaled just once (the 
most likely usage), this will produce something readable. We do not bother to do much about other 
cases.

dynapStretch[{fx. ,fy_ ,ft_}.dynap.dynapData] : =
ReplacePart[Join[Drop[dynap,-1]

,dynapData[dynapStretch[{fx,fy,ft}»Last[dynap]]]
] '

,StringJoin[ToString[{fx,fy,ft}],Part[dynap,2]]
,2]

We shall use this kind of pattern-matching approach in the definitions of several other functions 
(including graphics functions) below. Define a standard set of values for {fx,fy,ft} which will be 
used in certain standard plots.

dynapStandardStayClear={10,10,7}
{10, 10, 7}

A.4 Function to read a dynamic aperture from a file

The following function reads a file (whose name is given as argument) and returns a dynamic 
aperture object. The dynamic aperture object has its own data type, dynapData (which might 
otherwise be a nested list). The structure of this object is implicit in the definition of this function.

The first few elements contain information on the dynamic aperture being studied, e.g. the first 
element will always be the input stream assigned to the file. The following elements contain other 
things, whose number may grow. The last element of the dynamic aperture object is the most 
important and is a matrix of points in 3-dimensional square-root-of-action variable space. Note
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that the boundary data points are automatically re-scaled, using the function dynapStretch and 
the dynapInputRescaleFactor, as they are read in.

dynapRead [filename.] :=
Block [{dynapStream,dynapPhiPoints, dynapThetaPoints}, 

dynapData[
dynapStream=OpenRead[filename] ,
Read[dynapStream,String],
Read[dynapStream,{Number,Number,Number}],
Read[dynapStream,{Number,Number,Number}], 
dynapPhiPo int s =Read [dynapStream, Number] , 

dynapThetaPoints=Read[dynapStream,Number] , 
dynapStretch[dynapInputRescaleFactor, 

Part it ion [ReadList [dynapStream, {Number, Number, Number}] 
,dynapPhiPoints 
]

]
]

]

A.5 Functions to extract pieces of a dynamic aperture
The following functions can be used to extract pieces of the dynamic aperture object. It may be 
necessary to add to this list of definitions when the structure of the dynamic aperture object is 
extended. dynapFileName [dynap_dynapData] : =First [First [dynap] ] The first line in the file can 
be up to 133 characters long. Generally we don’t want the first character (which is for line-printer 
carriage control) and those towards the end which usually give the MAD version number.

dynapTitle[dynap_dynapData] : =
StringTake[Part[dynap,2],{1,Min[50

,StringLength[Part[dynap,2]]
]

}
]

dynapTunes [dynap.dynapData] :=Part [dynap ,3]
dynapEmittances [dynap.dynapData] : =Part [dynap ,4]
dynapPhiPoints [dynap.dynapData] : =Part [dynap, 5] 
dynapThetaPoints [dynap.dynapData] :=Part [dynap ,6] 
dynapBoundary [dynap.dynapData] : «Last [dynap]

A.6 The natural emittance ellipsoid
This function generates a matrix of points on any emittance ellipsoid, defined by emittance values 
(in micrometer) and a fractional energy deviation (in units of the beam energy). Besides it’s obvious 
use to generate the "1-sigma” ellipsoid, we can easily scale it (using either an overall multiplicative 
factor or, more usefully, the function dynapStretch) to get the “10-sigma” ellipsoid or whatever. 
When the argument is a dynamic aperture object it uses the natural emittances specified in the 
object.
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A.7 The 3D dynamic aperture as points
A function which makes a scatter plot in 3D of all the points in a dynamic aperture list. To do 
this it needs to suppress one level of structure in the matrix of boundary points (so obtaining a 
list of points) and then feed the result to the package function ScatterPlot3D. It turns out to be 
convenient to define this function for two different patterns of argument. When the argument is 
a dynamic aperture object, the function calls itself recursively on the dynamic aperture boundary. 
When the argument has the form of a dynamic aperture boundary (checked by pattern matching) 
then the work actually gets done.

A.8 The 3D dynamic aperture as a surface

Essentially, we want a function which makes a surface plot in 3D of all the points in a dynamic 
aperture list. Here the order of the points and the matrix structure of the dynamic aperture 
boundary are important. The basic idea is similar to the function ListSurfacePlot3D in standard 
package Graphics‘Graphics3D‘. It turns out to be convenient to define our own function in a 
few steps. The “innermost” one does pattern matching to make sure we really have the boundary 
point matrix. Other patterns include unwrapping the boundary from inside a dynapData object. I 
have partly added information, axes etc. to these plots using the mechanism of dynap0ptions3D. 
It seems we can’t easily plot two surfaces with ListSurf acePlot3D, so looking inside to see how 
it works, we copy the following definition from the Graphics‘Graphics3D package. Then we can 
construct a surface plot of two or more surfaces quite easily. This led me to further overload the 
definition of dynapSurf acePlot3D to make it accept a list of surfaces.

A.9 Two-dimensional cuts of dynamic aperture

Projection operators which will project points, lists of points, arrays of points or dynamic aperture 
data objects onto any of the three coordinate planes. Selections of points close to particular surfaces 
in action space provide 2D cross-sections of the dynamic aperture.

Create transportable package.

Applications.

Reading files into data structures.

Views of dynamic aperture data to compare LEP2 optics.
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Perturbation of a differential system

The mechanism of the perturbation technique will first be explained for a single differential 
equation then generalized to a set of differential equations. Let us consider the first order equa­
tion which describes the evolution of the action J of a dynamical system with respect to a vari­
able s:

dJ/ds = f(J)

In its ground state, the system is submitted to a certain field of forces F such that the action is a 
constant of the motion and has the value J0. The right hand side of the equation is then zero. 
Under the effect of new fields assumed to be small with respect to F, the action J0 is modified 
and can be expanded in the form

J = J0 + J J + J 2 + · · ·

where J^, ... are the first, second, ... order perturbations of J. The iterative solution of the
differential equation at the order n is obtained by substituting to J at the right hand side its ex­
pression at the order n-1. J1 is thus obtained by integrating

dJ1 /ds = f(j0)

and the integral form is

At the second order, the differential equation becomes

d(j1+j2)/ds=/(jo+j1)

which is reduced to

The right hand side is known since the derivative of f with respect to J is taken for Jq and Jps 
the result of the previous iteration. The solution to the equation is thus
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There is at this point a confusion to be avoided in the notations. Jj is an integral and the previ­
ous result is therefore a double integral whose two variables need be distinguished. The detailed 
form of the solution will therefore be written

At the third order, the need for a truncation of the right hand side appears so that the full expan­
sion

 

is reduced to

since the terms in and J2 are of diird and fourth order respectively and the integration 
gives:

The first contribution is a triple integral and the second one a double integral whose detailed 
forms are

The multiple integrals are the signature of the correlations between the perturbing fields for 
which a detailed discussion at the second order is given in [2]. Once the perturbation has been 
illustrated for a single differential equation, its extension to a system of differential equations is 
done by replacing the scalar J by a vector J.
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Symbolic treatment of the perturbation

As soon as the calculation deals with a high order of iteration, the method becomes untractable 
by hand and one has to resort to a symbolic technique which is composed of two parts: the 
transformation of the exact but (insolvable system into an approximate solvable system at any 
order and the integration of the approximate systems starting at the lowest order. The integra­
tion is outside the scope of this paper but the perturbation calculation is organized to be suitable 
for a further integration.

As it has been seen in the previous section , the initial system is split into as many sub-systems 
as there are iterations, say n. The program thus produces a list of the right hand sides of the 
sub-systems. If the initial set contains a single equation, the list is a n-vector, if it is made of m 
equations, the output list is a (n*m)-matrix. The integration of these lists provide J1 J2. — or 
j1.j2,...

The code is written with Mαthemαticα and sets the perturbation in a recursive form as it has 
been presented so that the expression of the n-th iteration contains the non evaluated results of 
the n-1 previous iterations. Each approximation of J is denoted J[i] where i is the iteration num­
ber. The evaluation is made by means of substitution rules collected in a single list:

{j[l] -- > ràsl,j[2]— > rhs2, · ·  }

The right hand sides result from a Taylor expansion of the initial right hand side to the order n 
of the iteration and the expansion is truncated to eliminate spurious higher order terms. The rec­
ognition of the order of a special term uses the argument of J and the power of the term in the 
series expansion; if the sum of the argument and of the exponent exceeds n, the term is rejected.

At the iteration n+1, the name s of the variable is updated to sn so that s is converted to the 
sequence of values (sO, s1, s2,...) in the same way as J is split into (J[l], J[2],...). The purpose 
of this re-labeling of the variable is to obtain expressions ready for multiple integrations.

Description of the code

The program of perturbation of differential equations is part of a package of non linear dynam­
ics called NLDynamics. Its name is ODEPerturbation and it is called with the command

ODEPerturbation[ {equations} .iteration]

The ’’equations" are logical equalities of the type

J[s] ==f[S,J]

where means the derivative of J with respect to s. "iteration" is an integer denoting the 
wanted iteration. This syntax is remarkably simple as compared with the Mαthemαticα com­
mand for differential equations

DSolve[ {equations}, {functions},variable]
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It automatically detects the variable and the functions by deciphering the left hand sides. The 
perturbation of a single differential equation is thus given by

ODEPerturbation 

The result is a list of two elements which are the result j(l) and j(2) of the two iterations

and

As f acts on two variables s and j, is the Mathematica notation for the partial derivative 
of f with respect to the second variable j. The variable s is labled s0 at the first iteration so that, 
after substitution of j(l), there is no ambiguity to integrate j(2) first with respect first to si from 
0 to s0 then to s0 from 0 to some fixed limit say L.

Application to a dynamical system

Λ dynamical system is in the most general case described in the so called phase-space by three 
actions Jχ, Jy· Jz and three angles ϕχ, ϕy, ϕz corresponding to the coordinates (x, y, z) of the 
real space. The system of differential equations is derived from the potential V of the non-linear 
field through the Hamilton’s equations [3]:

dJ / ds =-ÒV / dφ 
dϕ / ds = av/az

In particle accelerators, the functions of the right hand sides can be decomposed into a product 
of three functions which depend either on the action or on the angles or even on the variable 
only. One of the most crucial points is the determination of the transverse motion to determine 
as a basic parameter as the aperture of the vacuum chamber. The system to solve is then made 
of four coupled equations

If the entire system is called sys, its perturbative solution at the second order is given by

ODEPerturbation[sys,2]

which returns:
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At this level, it is easy to check the result at a glance but, as soon as the order increases, the 
number of terms grows in an an inflationary way and the interest of a symbolic code becomes 
obvious.

Acknowledgments
Fabrice Ajalbert from the University of Clermont-Ferrand made a major contribution to the de­
velopment of the symbolic code.
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Integration of first order equations:

sol=DSolve[ODEPerturbation[eqn,2][[l]],{ gamma[l],theta[l]} z] 

{gamma[l][x],theta[l][x] }/.sol

FEL Equations

eqn={ gamma’[z]=(al/gamma)f[e,theta]-€, 

theta* [z]=a2-a3(l -a4/(gammaA2))A(-1/2)}

ODEPcrturbation[eqn,2]
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Complete equations for 2 electrons
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BeginPackage["NLDynamics' " ]
Needs [ "Utilities 'FilterOptions ' " ]
NLDynamics::usage="fonctions permettant de tabuler les resonnnances d'un 

multipole (couples {mx,my}) , de tracer les 
diagrammes de resonance Qx,Qy a un ordre donne , de 
calculer le potentiel scalaire d'un multipole et 
débuter la resolution 
d'un système d'équations differentielles .

Contient : Couple , Resonance, multiOrdre, machineDiagr 
Potential, ODEPerturbat ion "

Couple::usage="Couple[m,ordre] tabule les couples caractéristiques de la 
resonance d'un multipole m a un ordre donne , 
ordre 1 par defaut"

Resonance ::usage="Resonance[m, ordre,opts] trace les resonances 
d'un multipole m a un ordre donne , 

les options sont {NLColor->Red, NLWindow->{0,1,0,1} r NLDisplay-> 
on peut aussi 
ajouter ou remplacer des options graphiques ”

Potential::usage="Potential [m,bx[s]fby[s],mux(s],muy[s],jx,jy,phix,phiy] 
donne le potentiel scalaire d'un multipole m."
ODEPerturbation: :usage="ODEPertubation[eq_List,iter] résout par perturbation 1 

eq a l'ordre iter ,eq doit avoir la forme 
{a' [s]==f1[s,a,b, ..] ,b' [s]==f2[s,a,b. .],..} "

NLColor::usage=" option de Options[Resonance] "
NLWindow: :usage=" option de Options [Resonance] "
NLDisplay::usage=nselection"
Single::usage="selection"
Multiple::usage="selection"
Cumulated::usage="selection"
Black::usage="selection"
Blue::usage="selection"
Green::usage="selection"
Cyan::usage="selection"
Red::usage="selection"
Magenta::usage="selection"
Yellow::usage="selection"
Options[Resonance]= { NLColor -> Red ,NLWindow -> {0,1,0,1),

NLDisplay -> Single)
Begin["'Afabrice '"] .

mCouple[m ]:= (* catalogue des resonances *)
Block [{r j,k, 11 12, list), 

(* couple + *)
ll=Table[{m-2(i+j) ,2(i-k) }, {i, 0,Floor[m/2]),{j,0,Floor[m/2]-i),{k,0,i}]// 

Partition[Flatten[#] ,2]&//ünion// 
Complement[i,Cases[#,{0,0)]]& ;
(* couples - *)

12=If[EvenQ[m],
(Table[{m-2(i+j),-2(i-k)), {i,0,Floor[m/2]),{j,0,Floor[m/2]-i-1), {k,0,i-l)i 
//Partition[Flatten[#], 2]&//Union ),

End[]
EndPackage[]


