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INTRODUCTION

A collection of Accelerator Algorithms for the Personal Computer

This file gives an introduction to the package of programs "Accelerator Algorithms for the 
Personal Computer". It gives also the contents of the chapters, and sums up the different 
ways to use the programs.

The Personal Computers (PC’s) have made a very fast progress in the last years. The 
ability to perform large computations accurately is now present in small and cheap 
computers. In the same time a very great number of software applications have been 
developed in all fields, particularly for scientific and technical works.
Beside high-level languages used by programmers for all purposes, dedicated software 
applications are now available to perform efficiently scientific and technical calculations. 
By means of these most recent programs, it is now possible to replace the common 
scenario which was: programming, debugging, computation, presentation of results, 
reporting and editing, by only one task taken over by only one integrated software. These 
software applications now available on the market present a large choice of mathematical, 
graphical and statistical routines, and have replaced the arcane syntax of so-called high- 
level languages by real math notation. The possibility to help repetitive floating point 
computations by means of symbolic tools begins to be used.
It is impossible or inefficient to use the numerous and powerful codes developed on and 
for mainframe computers, on PCs and it is likely that these programs will continue to be 
used in the same way by the accustomed experts. The rare programs which have been 
ported from the mainframe to the PC don't show the common easiness of PC programs.

In the following a collection of algorithms (i.e. methods of computation) developed on and 
for PC's is presented to make various calculations, in several fields of particle accelerators 
physics, with a very good accuracy. Though it might be possible to describe the proposed 
algorithms in a way completely independant of any mathematical software or language, it 
has been decided to write them with MathcadR in order to show that: they run as they are, 
provide accurate results, and can be exploited (curves, tables, files, reports, etc) in various 
ways. As they are written in real math notation, as transparently as possible, an eventual 
user who is not willing to change his or her software can easily rewrite them in any other 
language , or in any other dedicated math programs.

NOTA BENE: These programs are given as examples, to be modified if necessary by the 
user for his or her own problem...

BRIEF CONTENTS
PART 1:
Thick lens FODO
Beam distribution visualizations
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Linear axisymmetric magnetic lens optics
Magnetic biconical horn shape
Magnetic horn skew trajectories
System of ordinary first order differential equtions

PART 2:
Production target optics ( pbars, positrons)
Electron linac modes of acceleration
Solenoid fields
Converter skew trajectories
Multiple Coulomb Scattering

PART 3:
Magnet cost optimization
Superconducting magnet shapes
Design of kicker and septum magnets for injection and ejection
Synchrotron radiation fields
2D Laplace equation by finite differences

USAGE
For a reader of the written version:
Each part is made of independant chapters. Each chapter is made of algorithms treating 
close subjects in the same field, and their DOS names are similar, differing only by their 
last character (a number). Each chapter has its own introduction where some comments 
are given and advices specific to the chapter are reminded. Each algorithm is separated in 
two spaces: first one part for the purpose and input data of the program , and a second 
part ( after a line of stars*********) where are the equations, the results, the curves, etc. 
The units have been omitted for the sake of brevity; they are those of the Systeme 
International (SI i.e. MKSA...), except when it is otherwise stated.

For a CERN user having an access to the PC server the previous comments stay the same.
The access to the collection of algorithms is the following:
1) In the Windows program manager click twice onto the MathCad icone.
2) Open the File menu
3) Click onto the Open Document command.
4) Open the right drive and/or directory where is the collection of algorithms: 

G:\home\s\schnurig\aapc
5) Open first the introduction file ( FODO for the Fodo chapter...) and read it.
6) Choose a file, MathCad being in automatic mode by default, the program is executed by 
going down into the file ( e.g. with the mouse clicking on the right-hand scroll bar ). For 
the impatient browser or for anyone who is shocked by the density of equations it is 
possible to go directly to the results by CTRL END together. It is possible to change the 
input data in the first part of the program, before the line of stars. To change the 
assignments of the variables in the second part of the program could give erroneous 
results, but curves, tables of results can be added at will, very simply in that region.
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The minimum hardware configuration is the same as required by WindowsR, but an 
arithmetic coprocessor is recommended, and four Mb RAM is needed. The programs will 
run at best on a 486 PC with 8 Mb RAM or more.

For a stand-alone user the previous remarks are the same. The majority of the programs 
can be run on smaller computers with the DOS version of MathCadR, but as the 
WindowsR version of the programs cannot work on DOS, they have to be rewritten or can 
be provided upon request

Jean-Claude Schnuriger, CERN, PS-AR
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FODO

Introduction

These files give the essential formulae to develop the algorithms for a periodic FODO cell 
in a accelerator ring or transfer line according to the known linear theory. It takes the exact 
lengthes of the various elements: bending magnets, quadrupoles and straight sections.

The calculation is made by means of products of 3x3 matrices obtained by passing the 
relevant parameters to a General-Purpose-Matrix. For instance k>0 gives the matrix of a 
focusing quadrupole whilst k<0 gives the matrix of a defocusing quadrupole. Another matrix 
built of 2 orthogonal trajectories plus the dispersion, multiplied by the relevant transfer 
matrix allows an automatic calculation of the amplitude function β, the phase advance μ, the 
dispersion D and their derivatives. The various integrals of the theory can then be 
calculated as for instance the chromaticity.

The accuracy of the results is only dependant of the computer used for the calculations and 
generally is of the order of 15 digits by computing with 8 bytes, but several optimization and 
solving algorithms may eventually give less accuracy. A special effort has been made to 
preserve the best obtainable precision by going back to the initial matrices whenever 
possible instead of using functions or integration algorithms where rounding-off introduces 
some inaccuracy.

The notations are the common ones except those which are otherwise stated.
Each file is split in two parts by a line made of *. The first part is where the input data are 
collected for a chosen example, but these data can be changed by the user to solve another 
problem : as indicated below some programs use data from another file which has to be run 
before. The second part is for the formulae and the results, eventually also for the curves of 
the example. There the formatting of results can be changed, curves can be added, but to 
change the assignments of the input data there would give erroneous results!

It is useful to add some remarks about the matrices: a name can be a scalar, 
a one-column vector or a 3x3 matrix: e.g. k is a scalar and kk is a vector needed for the 
same physical quantity. A name with a superscript is a column taken from a matrix, whilst a 
superscript on a transposed matrix (marked with a T) is a line of that matrix. A subscript 
applied to a vector gives the element. The function lengfh() gives the number of elements of 
a vector. The 'vectorize' operator marked by an arrow above an operator or a function of a 
vector or a matrix apply the operation to all their elements.

Usage: these files give the algorithms i.e. the numerical methods to compute accurately a 
FODO periodic cell in an accelerator ring or in a transfer line. An example is completely 
treated to show that these algorithms are self-consistent and give very accurate results. An 
eventual user should first read them, run them on a Personal Computer (PC) if he has an 
access to the CERN server and modify them to solve his own problem. He can also run 
them on his PC if he has MathCad and the diskette with the programs or write the 
corresponding programs in the language of his choice.

To study a new lattice it is advised to run first a thin lens model FODO1, then put the 
lengthes of the elements in FODO3, and run the solving routine by introducing the thin lens 
model results as a first guess to find the main parameters needed in the further calculation.

N.B. ALL UNITS IN SI except otherwise stated.
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FODO: this file.
FODO1: Thin lenses —> k, βmax, βmin, Dmax, Dmin, Φ per cell, chromaticity.
FODO2: Thick lenses, no bending magnets, k —> βh max, βv min.
FODO3: with bending magnets --> k, βh max, βv min, dispersion D max, phase advances 
per cell μh and μv.
FODO4: files from FODO3 --> Cos, Sin-like h trajectories, D outside elements.
FODO5: files from FODO3 —> Cos, Sin-like v trajectories outside elements.
FODO6: files from FODO4 and FODO5 —> β, μ, D (h and v), chromaticity .
FODO7: files from FODO3 and FODO5 --> exact h and v values everywhere.
FODO 10: necessary and useful routines.

5



FODOl

Thin lens approximation

This program calculates beta max and beta min, and the dispersion in a FODO half cell with 
thin lenses.
p := 400 GeV/c

Bending magnets: Nb ;= 744 L := 6.26

Quadrupoles: Nq := 216 1Q := 3.085 g := 19 T*m

Half cell length: 1 := 32

Bp = 1334.256

B = 1.8

ρ =741.255

N = 108

k = 0.014

f = 45.526

φ =44.66

βmax = 108.993

βmin = 19.016

R = 947.29

Dmax = 2.957

Dmin =1.419

α = 0.003

N = 108

ksi =-33.971 _
b

Momentum compaction α:

Chromaticity ksi = dQ/dδ (arcs, N cells):

Estimated fraction of cell length filled with bending magnets ff:

(half quadrupole!)



Sextupolar strength rls ( with r=dg/ds) to cancel ksi (localized in the QF for x and in the QD 
for z):

 

 rlsh =-0.012

 rlsv =-0.026

Other relations:

f2 =2.073-103 βmax-βmin = 2.073-103

i.e. g being Bmax/a, with a the half aperture, the product l.lq/a.p = sin(Φ) approximately.
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FODO2

A FODO cell with quadrupoles

This program calculates the beta max (H) and beta min (V), k being given in a FODO 
period with quadrupoles only.
P := 400 N := 744 Nq := 216 B := 1.8

δp := 0.p

Quadrupole length:
1Q := 3.085

Straight sections lengthes:
L := 6.26
1 := 4-L + 0.36 + 0.4 + 0.39 + 0.38 + 2.3427
k := 0.015

sinφ(K) := sin(φ(K)) 
shφ(K) := sinh(φ(K))

1 = 28.913
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Matrices for the cell :

Mx(k) := F(k)-O-D(k)-D(k)-O-F(k)
Mz(k) := D(k)-O-F(k)-F(k)-OD(k)

Straight sections:

Quadrupole matrices:



Two orthogonal trajectories: _

βh(k.βh0) ;= [(y1h(k,βh0)o)2 ÷ (y2h(k,βhθ)o)2

The condition of periodicity is now achieved (within a given tolerance):

TOL := 10-10
guess: βh0 := 100
βh0 := root((βh(k,βh0) - βh0),βh0)
Result for the horizontal coordinate:
βh(k,βh0) = 10858 k= 0.015 βh0 = 10858
Similarly for the vertical coordinate: 

βv(k.βv0) := [(ylv(k,βv0)o)2 ÷ (y2v(k,βv0)o)2

guess: βv0 := 20
βv0 := root((βv(k,βv0) - βv0),βv0)
βv(k,βv0) = 18.382 βv0 = 18.382
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FODO3

A FODO cell with dipoles and quadrupoles

This program calculates beta max and beta min, k, max dispersion and phase advance 
in a FODO periodic cell with bending magnets, by means of a general purpose matrix. 
It writes 4 data files: Lengthes, values of k, values of B, and βh0, βv0, Do...etc 
p := 400 GeV/c

Bending magnets: Nb ;= 744

Bending magnet length: L := 6.26 m

Quadrupoles: Nq := 216

Quadrupole length: IQ := 3.085 m

Lengthes(the subscript is the number of the element or straight section):

 11. := 0.36 12 := L 13 := 0.4 14 := L 15 := 0.39

16 := L 17 := 0.38 l8 := L 19 := 2.3427

 l11:= 0.35 l12 := L  113 := 0.38 114 := L 115 := 0.39

l16 := L  117 := 0.4 l18 := L  119 := 2.3527

length (1) =21 ∑1 = 63.99539999999999

Bp = 1334.256

B = 1.799997442330278

p =741.254598153917

Quadrupole half length:

A General-Purpose-Matrix M(K,s,B) is built which can give the matrix of a focusing 
quadrupole, or a defocusing quadrupole, a bending magnet, a straight section (eventually 
a combined-function magnet):

10
Kz(k) := k



Quadrupole matrices: 
K is kept as a parameter:

QF(K) ≔ M(K,lq,o) 
QD(K) ≔ M(-K,lq,o)

Straight sections:

Bending magnets:
The focusing strength is 0: kb ≔ 0

 
 

Matrices for the dipoles: Kz:= 0 = 0.000001819974065

 
BFx(L) ≔ M(Kx,L,B) 

Blx(L) ≔ BFx(L)-θ(l7) BFx(L)-O(l5) BFx(L) O(l3) BFx(L)

Blx(L) ≔ BFx(L)-θ(l17) BFx(L)-O(l15) BFx(L) O(l13) BFx(L)

1B1 ≔ 4 L + 13 + 15 + 1, IB 1 = 26.21

1B2 ≔ 4 L + 113 + 115 + 1]7 1B2 = 26.21

Biz ≔ O(1B1)
B2z ≔ O(1B2)

Matrices for one period:

Mx(K) ≔ QF(K)-O(119)-B2x(L) O(111) QD(K) QD(K) O(19) B1x(D O(11)-QF(K)

Mz(K) ;= QD(K) O(l19]-B2z-O(l11)-QF(K) QF(K)-O(l9)-Blz O(l1)-QD(K) 

Verification:

2-lQ + IBl + 1B2 + 1j + 19 + l11 + 119 = 63.9954 ∑l = 63.99539999999999

Two orthogonal trajectories (cos-like and sin-like) in the horizontal plane are computed: 

 

βh(K,βh0) ≔ (ylh(K,βh0)o)2 ÷ (y2h(K,βh0)o)2 

gamma h:
gh(K.βh0) f (ylh(K,βh0) J2 + [y2h(K,βh0)V] 11



phase advance:
 μh(K) ≔ if(μh(K)>o,μh(K) ,μh(K) + i80)

Two orthogonal trajectories in the vertical plane:

βv(k,βv0) ≔ [(ylv(k,βv0)o)2 + (y2v(k,βv0)o)2]

gv(K.βv0) ≔ (ylv(K.βv0) Y + (y2v(K,βv0)V

    μv(K) ≈ if(μv(K)>o,μv(K) ,μv(K) + 180)

The dispersion trajectory is given by the following periodicity condition:

To start the solving routine which will fit the periodicity conditions the needed 
tolerance on the accuracy of the results and some guess values (cf FODO1) are 
given in the following:

TOL ≔ 10-9
guess: K ≔ 0.015 βh0 ≔ IIO βv0 ≔ 20 DO = 3 D'O .= 0
Given

βh(K,βh0)-βh0

 

βv(K,βv0)-βv0

 

Dh(K,D0,D'0)0=D0

Dh(K,D0,D'0)1=D0

μh(K)<92
μv(K)<92

R ≔ Find(K,βh0,βv0,D0,D'0)
The results are placed in the matrix R: 

K ≔ Rθ βh0 ≔ Rj βv0 ≔ Rj DO ≔ R3 D'O ≔ R4
12



Verifications:
K = 0.014999994
Phase advance for one period:

μh(K) = 9159987161571343
μv(K) =91.46407925448619

βh(K,βh0) = 108.4984467896161 βh0 = 108.498446789616

gh( K, βh0) = 0.009216722739578 

βv(K,βv0) = 18.38196702058287 βv0 = 1838196702058286

gv(K, βv0) = 0.054401142101945 

Dh(K,D0,D'0)0 = 2.846009239778958 D0 = 2846009239778958

Dh( K, DO, D'O) 1 = -0.001066804140302 D'0 = -0.001066804140302

The phase advances per cell are added to the results: n

R5 ≔ μh(K) R6 ≔ μv(K) 

The results for the cell are stored in the file FODO3.PRN: 
WRITEPRN(FODO3) ≔ R
It is now possible to store the values of 1, k and B for each element. According to the 
common practice, k is negative for a horizontally focusing quadrupole (but then K is

l0 = 15425 l1 =0.36 12 = 6.26 13 =0.4 14. = 6.26 15 = 0.39

kk0 = -K kk1 ≔ 0 kk2 kb kk3 ≔ 0 kk. ≔ kb 4 kk5 ≔ 0

BB0 ≔ 0 BB1 ≔ 0 BB2 ≔ B BB3 ≔ 0 BB. ≔ B 4 BB5 ≔ 0

16 = 6.26 17 = 0.38 L8 = 6.26 19 = 2.3427

kk6, ≔ kb kk7 ≔ 0 kk. ≔ kb kk9 ≔ 0

BB, ≔ B BB7 ≔ 0 BB8 ≔ B BB9 ≔ 0

110=3.085 111 = 0.35 l12 =6.26 l13=0.38 l14 = 6.26 l15

kk10 ≔ K kk11 = 0 kk12 .= kb kk13 :=0 kk14 ≔ kb kk15 ≔ 0

BB10 = 0 BB11 ≔ 0 BB12 ≔ B BB13 ≔ 0 BB14 ≔ B BB15 := 0

l16=6.26 1i7=0.4 118=6.26 119 = 2.3527

kk16, ≔ kb kkl7 = 0 kk18 ≔ kb kk19 ≔ 0

BB16 ≔ B BB17 ;= 0 BB18 ≔ B BB19 ≔ 0

120 = 15425 kk20 :=-K BB20 = 0
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The various results are stored in the files LENGTHES.PRN, KK.PRN and BB.PRN:
PRNPRECISION ≔ 15
PRNCOLWIDTH ≔ 8
WRITEPRN(LENGTHES) ≔ 1
WRITEPRN(kk) ≔ kk length(kk) =21
WRITEPRN(BB) ≔ BB
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FODO4

Horizontal trajectories, dispersion

This program calculates the horizontal cös-like ylh and sin-like y2h trajectories and 
their derivatives, the dispersion at beginning and exit of each element by means of a 
general purpose matrix, in a FODO cell with bending magnets. It uses the data of 
FODO3.

p ≔ 400 GeV/c

 _  B ≔ 1.8  P = 741254

The data from FODO3 are reintroduced. Lengthes(the subscript is the number of the 
element or straight section) for the lengthes of all elements, kk for the focusing 
coefficients and BB for the bending magnet field:

1 ≔ READPRN(LENGTHES)
kk ≔ READPRN(kk)
BB ≔ READPRN(BB)

∑1 =63.995 length(l) =21 i ≔ o..length(l) - 1
The results of the solving routine of FODO3 are also called back:

R ≔ READPRN(Fodo3) 

K ≔ R0 βh0 ≔ R1 βv0 ≔ R2 DO ≔ R3 D'0 ≔ R4 μh0 ≔ R5 μv0 == R6

A General-purpose-matrix M(K,s,B) is necessary for the trajectory calculation:

cosφ(K,s) ≔ cos(φ(K,s)) sinφ(K,s) .= sin(φ(K,s))

SS: distance from the middle of the 1st quad.

length(l) =21 i .= o..length(l) - 1

SSθ ≔ 0 SSi+1 ≔ SSi + li length(SS) =22 15



Initializations: 
 

 

Iterative matrix multiplication: 

ylh<i+1> M(KKxi,li,BBi)-ylh<i>

y2h<i+1> ≔ M(KKxi,lj,BBi)-y2h<i>

Dh<i + 1> ≔(KKxi>li>BBj Dh<l>

Verifications and results:

(ylh<2‘ >)0]2 + [(y2h<21>)0p = 108.497 βh0 = 1085

(ylh<21>)1]2 ÷ [(y2h<21>).]2 = 0.009 

 (ylh<21>)2]2 ÷ [(y2h<21>).]2 =0

(Dh<2l>)0 = 2.846 DO =2.846

The results: abscissa, cos-like trajectory and its derivative, sin-like trajectory and its 
derivative, dispersion and its derivative are put in the table Rh:

Rh ≔ augment [SS,(y1hT) <0>]

Rh ≔ augment [SS,(y1hT) <1>] 

Rh ≔ augment [SS,(y1hT) <0>]
Rh ≔ augment [SS,(y1hT) <1>]

 
Rh ≔ augment [SS,(y1hT) <0>] 

Rh ≔ augment [SS,(y1hT) <1>]

Cos-like and sin-like trajectories in the cell 16



Saving of the cos-like, sin-like, dispersion trajectories and their derivatives in the file 
FODO4.PRN:

PRNPRECISION ≔ 15

WRITEPRN(FODO4) ≔ Rh
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FODO5

Vertical trajectories

This program calculates the vertical cos-like ylv and sin-like y2v trajectories and their 
derivatives, at beginning and exit of each element by means of a general purpose matrix, 
in a FODO cell with bending magnets. It uses the data of FODO3.

p ≔ 400 GeV/c

The data from FODO3 are reintroduced. Lengthes(the subscript is the number of the 
element or straight section) for the lengthes of all elements, kk for the focusing 
coefficients and BB for the bending magnet field:

1 ≔ READPRN(LENGTHES)
kk ≔ READPRN(kk)
BB ≔ READPRN(BB)

∑1 =63.995 length(l) =21

R ≔ READPRN(Fodo3) 

K ≔ Ro βh0 ≔ R1 βv0 ≔ R2 DO ≔ R3 D’O ≔ R4 μhO ≔ R5 μvO ≔ R6

General purpose matrix M(K,s,B):
  cosφ(K,s) ≔ cos(φ(K,s)) sinφ(K,s) ≔ sin(φ(K,s))

 

SS: distance from the middle of the 1st quad.

length(l) =21 i ≔ 0..length(l) - 1
SSθ ≔ 0 SSi+ 1 ≔ SSi +li length(SS) =22

Initializations: 
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Iterative matrix multiplication:
ylv<i+1> ≔ M(kki,li,0)-ylv<i:>

y2v<i +1 ≥ ≔ M (kki, 1i, 0) • y2v≤i ≥

Verifications and results: 

[(ylv<21> )0 + (y2v<21> )0]2 = 18.384 βv0 = 18.38

[(ylv<21> )1 + (y2v<21> )1]2=0.054 
 

 
[(ylv<21> )2 + (y2v<21> )2]2 = 0

Saving of results in the file FODO4.PRN: 

Rv ≔ augment[ SS,(ylvT )<0>] 

Rv ≔ augment[ SS,(ylvT )<1>] 
 

Rv ≔ augment[ SS,(ylvT )<0>]

Rv ≔ augment[ SS,(ylvT )<1>]

 
Vertical cos-like and sin-like trajectoriesin the cell

PRNPRECISION ≔ 15 
WRITEPRN(FODO5) ;= Rv
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Results for the vertical trajectories:
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FODO6

Interpolated results, curves, integrals.

This file uses the data from FODO4, and FODO5. It calculates, by means of the vectorize 
operator, the amplitude functions βh and βv, the phase advances μh and μv. It then 
interpolates these values, as well as the horizontal dispersion Dh, all along the periodic 
cell and draws their curves. As an example of an integral of these betatron functions, the 
natural chromaticity is calculated. The accuracy of the results can be raised at will by 
adding exact results in a chosen region of the cell by means of FODO7.
1 ≔ READPRN(LENGTHES)
R ≔ READPRN(FODO3)
Rh ≔ READPRN(FODO4)
Rv ≔ READPRN(FODO5)

Smax ≔ max(Rh<0>)
Smax = 63.995 S ≔ 0,0.5.. Smax 

length(Rh <0>)=22 length(Rv<0>) =22

Interpolations (the linear interpolation is used in that example but the parabolic pspline or 
the cubic cspline might be used as well):

βh(S) ≔ interp(lspline(Rh<0> ,βh) ,Rh<0> ,βh,S)

gammah(S) ≔ interp(lspline(Rh<0>,gammah),Rh<0>,gammah,S)

μh( S) ≔ inteip(lspline(Rh<0 ≥ , μh), Rh<0 > , μh, S)

Dh(S) ≔ interp(lspline(Rh<0> ,Rh<5>) ,Rh<0> ,Rh<5> ,S)

βv(S) .= interp(lspline(Rv<0≥, βv), Rv<0>, βv, S)

gammav ( S ) ≔ interp( lspline( Rv<0 > , gammav ), Rv<0 ≥ , gammav, S )

μv(S) ≔ interp(lspline(Rv<0≥,μv), Rv<0≥ ,μv, S)

21



Curves of the betatron functions, dispersion and phase advances.

Various results:

 βh(32) = 18.441016081 βv( 32) = 107.864597752
 μh(32) =45.811413863 μv(32) =45.736382685
 gammah(32) =0.066429756 gammav(32) =0.066323673
 Dh(32) = 1.369139407

 βh(Smax) = 108.496896051 βv(Smax) = 18.383931683
 μh(Smax) =91.609032116 μv(Smax) =91.463922654
 Dh(Smax) =2.845988257

Quadrupole chromaticity:

SS Rh<0> K R0 K= 0.015
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Cell: ksih = -0.324808
ksiv = -0324504

N ≔ 108 Ksih ≔ ksih-N Ksiv ≔ ksiv-N Ring: Ksih =-35.079
Ksiv =-35.046

By assuming a sextupole of length Is is located at the beginning of the QF for x and at the 
beginning of the QD for z, the sextupolar strengthes rls ( with r=dg/ds ) to cancel ksi 
become:

SS20 =62.453 rlsh =-0.014
βh(SS20) = 104.691

 Dh(SS20) = 2,797

 SS10 = 30.455 rlsv = -0.028
βv(SS10) = 104.772

Dh(SSw) = 1391

Miscellaneous:

μh0 ≔ R5 μv0 ≔ R6

 Qh = 27.48
Qv = 27.438

ffac(x) ≔ x - fl∞r(x)
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FODO7

Exact results inside elements.

This program calculates the horizontal and vertical yl and y2 trajectories and their 
derivatives, βh, βv, μh ,μv and the dispersion at distance S inside any element by means 
of a general purpose matrix, in a FODO cell with bending magnets. It uses the data of 
FODO3.PRN, kk.PRN, BB.PRN and LENGTHES.PRN. The value of S can be changed in 
random order and the calculation repeated to get accurate results in the region of interest 
These results can be added after reordering in the files FODO4.PRN obtained by FODO4, 
and in the file FODO5.PRN obtained by FODO5.

Enter a new abscissa where the betatron functions have to be calculated:

S ≔ 63.995 m

p ≔ 400 GeV/c

 B ≔ 1.8  P =741.254

1 ≔ READPRN(LENGTHES) ∑1 =63.995

SS: distance of the elements from the middle of the 1st quad.

length(l) =21 i ≔ 0..1ength(l) - 1 j ≔ o..length(l)
SSθ ≔ 0 SSi+1 ≔ SSi +li length(SS) =22

The data from previous calculations are called back:

R ≔ READPRN(Fodo3)

K ≔ R0 βh0 ≔ R1 βv0 ≔ R2 D0 ≔ R3 D'0 ≔ R4 μh0 ≔ R5 μv0 ≔ R6 

kk ≔ READPRN(KK)
BB ≔ READPRN(BB)
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Table of abscissa, lengthes, focusing coefficients and dipole fiele
SSj. 1- kkj. KKxi. BBi.

0 1.543 -0.014999994 0.014999994 0
1.543 0.36 0 0 0
1.903 6.26 0 0.00000182 1.8
8.163 0.4 0 0 0
8.563 6.26 0 0.00000182 1.8
14.823 0.39 0 0 0
15.213 6.26 0 0.00000182 1.8
21.473 0.38 0 0 0
21.853 6.26 0 0.00000182 1.8
28.113 2.343 0 0 0
30.455 3.085 0.014999994 -0.014999994 0
33.54 0.35 0 0 0
33.89 6.26 0 0.00000182 1.8
40.15 0.38 0 0 0
40.53 6.26 0 0.00000182 1.8
46.79 0.39 0 0 0
47.18 6.26 0 0.00000182 1.8
53.44 0.4 0 0 0
53.84 6.26 0 0.00000182 1.8
60.1 2.353 0 0 0

62.453
63 095

1.543 -0.014999994 0.014999994 0

Number of the element at the chosen distance S from the 1st quad:
Smax ≔ max(SS)
Sc .= if (S< Smax, S,mod(S, Smax))

II ≔ SS - Sc III ≔ if(IIi<0,i,0)  I max(III) I =20

A general-purpose-matrix is necessary:

cosφ(K,s) ≔ cos(φ(K,s)) sinφ(K,s) ≔ sin(φ(K,s))

A matrix Yh is built for the matrix calculation. Its first two columns are the two 
orthogonal trajectories, the third column is the dispersion Dh.
Initialization of Yh, Mx, ylh, y2h, Dh:
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ylh<0> ≔ Yh<0> y2h<0> ≔ Yh≤1> Dh<0> .= Yh<2>

Similarly a matrix Yv is created for the matrix calculation. Its first two columns are 
the two orthogonal trajectories, the third column is the dispersion Dv (here≈O). 
Initialization of Yv, Mz, ylv, y2v, Dv:

 Yv≔Yv0 

 ylv<0> .= Yv<0> y2v<0> ≔ Yv<1> 
 ff ff ff ffff ff ff ff ff It It It II It

The matrix to the beginning of the Ith element is the product of the matrices of all 
elements from 0 to 1-1 in the reverse order:

":=I-1 .. 0

The matrix down to S is: 

Mx ≔ M(KKxI,Sc - SSIBBI)-Mx

Yh ≔ Mx-YhO 

A additional row Rha made of the results of Yh is added to Rh:

Rha:-[S (Yh<0>)0 (Yh<0>)1 (Yh<1>)0 (Yh<1>), (Yh<2>)0 (Yh<2>), '

Rha = ( 63.995 -0.292 -0.096 10.412 -0.003 2.846 -0.001 ) 

Rh ≔ READPRN(FODO4) 

Rh ≔ csort( (augment(RhT ,RhaT ))T,0)

Similarly for the vertical coordinate:
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The matrix down to S is:

Mz ≔ M(kkISc - SSI,0)-Mz

Yv ≔ Mz-YvO 

A additional row Rva made of the results of Yv is added to Rv:

Rva≔[s (Yv<0>)0 (Yv<0>)1 (Yv<1≥)0 (Yv<1>)1 '

Rva = ( 63.995 -0.109 -0.233 4.286 -0.006)

Rv ≔ READPRN(FODO5)

Rv ≔ csort(( augment(RvT ,RvaT ))T ,0)

Results:
βh ≔ [[(Yh<0>)0]2 + [(Yh<1>)0]2

βh ≔ [[(Yh<0>)0]2 + [(Yh<1>)0]2

 μh ≔ if(μh>o,μh,μh + 180)

 μv ;= if(μv>o,μv,μv + 180)

The various results for the chosen abscissa are in the second column:

S = 63.995

βh0 = 108.5 βh = 108.497

βv0 = 18.38 βv = 18.384

Dh ≔ (Yh<2>)0 μhO =91.6 μh =91.609

μvO =91.46 μv =91.463
Dv (Yv<2>)0

DO = 2.846 Dh = 2.846

Dv = 0

If the present results must be added to the results of FODO4 and FODO5, to get a better 
accuracy in the region of interest, the following commands have to be activated. By 
executing again the present program several times, it is possible to add many accurate 
results in the region where the accuracy must be better.

PRNPRECISION ≔ 15d

WRITEPRN(FODO4) ≔ Rho
WRITEPRN(FODO5) ≔ Rvo



FODOlO

Useful routines

The calculation of a FODO cell cannot be achieved without a set of routines at hand (if 
not they have to be written). First for the arrays ( one-column vector, matrices) it is 
required to have the functions: min, max, length, last element and sorting of a vector, 
number of rows or columns, min, max, trace of a matrix. It is needed also to join matrices. 
All operations on matrices: multiplication, cross products, inverse, integer power, 
transposition, sum of vector elements, sorting, vectorization (to apply a function or 
operator to all elements of an array), eigenvalues should be available.lt is requested to 
calculate complex numbers.
Rectangular arrays of numbers have to be stored in ASCII files for further use, without 
loss of accuracy (15 digits is a must).
In the following some simple routines relevant to the analysis of complicated cell are 
given.

Function for the focusing strength k(S):

1 ≔ READPRN(lengthes)
kk ≔ READPRN(kk)
Rh ≔ READPRN(FODO4) SS ≔ Rh<0>

length(l) =21 i ≔ 0..length(l) - 1

length(SS) =23 j ≔ 0..length(SS) - 1

Smax ≔ max(SS) S ≔ 132

S ≔ if(S>Smax,mod(S,Smax) ,S) 
k(S) ≔ ∑[if[(S - SSi.)-(S - SSi+1) ≤0.kki.0]]

i
k( 30.454) = 0

 k( 30.456) =0.015 

k(3355) = 0 
 SS20 = 601 k(SSM) = -0.015

 SS =62.453 k(SS_.) =-0.015

 k(5θ) = 0

Number I of the element corresponding to an abscissa S:

S ≔ 132 Sc ≔ if(S>Smax,mod(S,Smax) ,S) Sc =4.009

II ≔ SS - Sc III ≔ if(lL<o,i,o) I ≔ max(III) 1=2

Numbers In of the elements for a regular range of abscissa Sn:

N ≔ 10 n≔0..N 

Scn ≔ if(Sn >Smax,mod(Sn .SmaxVsJ) 

Π<n> ≔ SS - Scn 
IIIi n≔ if[(II<n>)i<0,i,0] In ≔ max(III<n>) 28

available.lt


i ssi Sn Scn In

0 0 0 0 0
1 1.543 10 10 4
2 1.903 20 20 6
3 8.163 30 30 9
4 8.563 40 40 13
5 14.823 50 50 17
6 15.213 60 60 19
7 21.473 70 6.005 2
8 21.853 80 16.005 6
9 28.113 90 26.005 8
10 30.455 100 36.005 13
11 32
12 33.54
13 33.89
14 40.15
15 40.53
16 46.79
17 47.18
18 53.44
19 53.84
20 60.1

Matrix made of elements equal to i up to i:
I ≔ 5 i ≔ 0..I j ≔ 0..I

ÜL,. ≔ if(i≤j,i,O)

Matrix made of elements equal to i up to i in the reverse order:
I ≔ 5 i ≔ 0..I j ≔ 0..I

iiiUj ≔ if(i≤j,j - i,0)

i
0

2
3
4
5

i
0

2
2
3
4
5

General-Purpose-Matrix:
The linear theory of the betatron oscillations in an accelerator is commonly made by 
means of specific matrix types: focusing, defocusing, bending magnet, combined function, 
straight section matrices. It is possible to work with a single type of matrix ( 
General-Purpose-Matrix) able to replace all the previous types, where the type is 
obtained by passing an argument to it. For this it is only necessary to point out that:



sin(iφ) = i sinh(φ) 
cos(iφ) = cosh(φ)

Commonly the K coefficient is kept positive and the focusing matrix is made of 
trigonometric functions whilst the defocusing matrix is made of hyperbolic functions. 
From now onwards K is considered positive for the focusing matrix and NEGATIVE for 
the defocusing one. Then φ is real for the focusing case and imaginary for the defocusing 
case, e.g. for the most general case:
S ≔ 3 k ≔ -o.l P ≔ 100

  φ = 0.949

 
S ≔ 3 Kz ≔ k  φ = 0.949i

The focusing matrix is:

According to the sign of K, one gets for instance:

K≔Kx  φ =0.949

K ≔ Kz  φ = o.949i

 

This last matrix was commonly obtained with:
K ≔ k k =-0.1 

 

 

Then taking into account that p is infinite for a straight section and that there is a small 
focusing term in a bending magnet for x, the General-Purpose-Matrix is: 30



Bp ≔ 200 B ≔ 2 

 k=-0.l Kx =0.1001

Kz ≔ k Kz =-0.1

  cosφ(K,s) ≔ cos(φ(K,s)) sinφ(K,s) ≔ sin(φ(K,s))

GENERAL-PURPOSE-MATRIX

Examples:
Combined function magnet: 

 

 

Bending magnet: 
k ≔ 0 

 Kx = 2.10-4

Bx ≔ M(Kx,3,2) 

Bz ≔ M(0,3,0)
B ≔ 0 

Pure quadrupole: 
QF ≔ M(0.1,3,0) 

QD ≔ M(-0.1,3,0) 
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Straight section: 

O(s) ≔ M(0,s,0) 

The General-Puipose-Matrix can be used efficiently in various routines: see for 
instance FODO3 to FODO7.
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GAUSSEL

Gaussian truncated distribution of a beam 
in an elliptic or rectangular vacuum chamber

This program simulates a gaussian beam distribution in an elliptic or a rectangular 
vacuum chamber.
Enter a: horizontal half aperture of the vacuum chamber 

b: vertical half aperture of the vacuum chamber 
N: number of points in x and y 
σx: horizontal rms 
σy: vertical rms 
δx:horizontal error 
δyrvertical errror 
L: horizontal width 
H: vertical height

N.B. All units in SI except otherwise stated.
a ≔ 2 b ≔ 2 N ≔ 30

σx ≔ 1 σy ≔ 1 δx ≔ 1 δy ≔ 0 
L ≔ 8-σx H ≔ 8-σy

*********************************************************************************

General 2D distribution:
 

Truncated distribution in an elliptic vacuum chamber

 

Truncated distribution in a rectangular vacuum chamber: 
ff(x,y) ≔ if(|x|>a,o,if(|y|>b,o,F(x,y)))

Generation of the 3D diagrams:

i ≔ 0.. N j ≔ 0..N

mi,j ≔ f(xi’yi) (Coptic)

mm. j ≔ ff(x.,y^ (rectangular)

Mi j ≔ F(xi,yj) (not truncated)
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3D diagram of the truncated distribution
(To obtain the density distribution in an elliptic vacuum chamber enter m in the lower left 
comer of the diagram, or mm for a rectangular vacuum chamber):

Transmission::

Elliptic vacuum chamber: 

Rectangular vacuum chamber: : 

 (verification: the result must be 1)
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SHOWBEAM

Simulation of a beam distribution

This program simulates the distribution of a particle beam in a vacuum chamber.

All units are in SI, except otherwise stated, δp is the momentum error, δx, δy are the closed 
orbit errors and αp is the dispersion):
Enter:

βx ≔ 100 m εx ≔ 5-10’6 m*rad δx ≔ 0 m αp ≔ 5 m

βy ≔ 50 m εy ≔ 2-10’6 m*rad δy ;= 0 m δp ;= 1O‘3

Dimensions of vacuum chamber. L ≔ 0.1 H ≔ 0.05

Radial position of scraper: s ≔ 0.01

Number of calculated points: N ≔ 2500

Calculation of the rms horizontal and vertical dimensions of the beam:

 σx = 0.01118 σy = 0.005

Number of particles between 2 σ and 3 σ:

     N3 ≔ floor(Nb3-N) N3 =310

i≔0..N3 θ3. ≔ md(2-π) r3. .= 2 + md(i)

x3i ≔ r3i-cos(03i)σx + αp-δp + δx y3i ≔ r3j-sin(θ3i)-σy + δy

Number of particles between σ and 2 σ:

     N2 = floor(Nb2-N) N2 = 1.177-103

j ≔ 0..N2 62^ ≔ md(2-π) r2j ≔ 1 + md(i)

x2j ≔ r2j-cos(θ2j)-σx ÷ αp-δp ÷ δx y2j ≔ r2j-sin(02j)-σy + δy

Number of particles between 0 and σ:

 Nl .. floor(Nbl-N) N1 =983

k ≔ o..Nl θl ≔ md(2-π) rl. ≔ md(i) 

xl. .= rl.-cos(θlk. )-σx + αp-δp + δx yl. ≔ rl.-sin(01k)σy + δy
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Simulation of the distribution of the beam 
(the vertical line shows the scraper location)

Losses due to the scraper in %: 
l)in a transfer line:

2)in a ring:
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SHOWSTAC

Simulation of a stacked beam distribution

This program simulates the distribution of a stacked beam in a vacuum chamber.
All units are in the SI, except otherwise stated, δp is the momentum error δx, δy are the 
closed orbit errors and αp is the dispersion:

βx ≔ 100m εx ≔ 4-10-6 m*rad δx ≔ 0.002 m δp ≔ 10-2

βy ≔ 20 m εy ≔ 2-10-6 m*rad δy ≔ 0 m αp ≔ 5 m

Dimensions of vacuum chamber: L ≔ 0.15 H ≔ 0.05

Number of points N ≔ 2000
*****************************************************************************

Calculation of the rms beam dimensions:

 σx = o.oi σy = 0.003

Number of particles between 2 σ and 3 σ:

 N3 ≔ floor(Nb3-N) N3 =248

i ≔ 0..N3 θ3. ≔ md(2-π) r3i ≔ 2 + md(i)

x3j ≔ r3i-cos(03i)σx + αp-(md(δp) + md(-δp)) + δx

y3j ≔ r3i-sm(03i)σy + δy

Number of particles between 1 σ and 2 σ:

 N2 ≔ floor(Nb2-N) N2 =942

j ≔ 0..N2 θ2j ≔ md(2-π) r2j ;= i + md(i)

x2j ≔ r2j-cos(θ2^-σx + αp-(md(δp) + md(-δp)) + δx

y2j ≔ r2ysm(θ2^-σy + δy

Number of particles between 0 and σ:

Nbl ≔ 1 - exp^yj N1 ≔ floor(Nbl-N) N1 =786

k ≔ o..N1 θlk ≔ md(2-π) rlk ≔ md(i)

xlk ≔ rl cos(θlk) σx + αp√md(δp) + md(-δp)) + δx

ylk ≔ rlk-sin(θlk) σy + δy
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Simulation of the stacked beam
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LILENS

Linear axisymmetric lens optics

These programs develop the simple algorithms for the optics of a linear axisymmetric lens 
as the lenses used to collect the pbars in the target zone of the CERN- ACOL: Lithium lens, 
magnetic horn, plasma lens (as far as they can be considered as linear). The magnetic field 
is assumed here to rise (linearly) with the distance to the axis, and to be constant on a circle 
drawn around this axis. The common laws of the light optics and of the particle optics in the 
small angles approximation can then be used. Because these lenses are always placed in a 
transfer line, it is very useful to link the traditional concepts of light optics e.g. the focal 
length, the depth of focus, with the common variables used in the particles optics: betatron 
amplitude functions, phase advances, etc...

The role of any collecting lens being to focuse the highly divergent beam of secondary 
particles issued from the production target into a quasily parallel beam, its focal length will 
naturally be defined as the ratio of this exiting beam radius upon the divergence angle of the 
incoming beam. In the following it is therefore assumed that the beam is parallel to the axis 
in the exit plane of the lens, but there is a non-zero divergence of the beam in that plane: the 
product of max radius times the divergence angle is according to the Liouville theorem ( or 
better to the Lagrange-Helmoltz law of old light optics) constant, and this applied to the 
focus corresponds to a non-zero size of the source, which even within the present 
assumptions of linearity and small angles, is definitely not point-like in the radial direction 
as well as in the longitudinal direction .

The complete treatement of a production target and lens optimization needs to introduce the 
angular distribution of secondary particles as well as the effects of the reabsorption and 
scattering,etc and for this, numerical calculations have been necessary: the main result of 
these calculations is the rule of the three diameters which is sufficient for the scope of this 
programs. The primary proton beam diameter, the target diameter and the secondary beam 
diameter reflected backwards to the focus of the lens have to be equal; the focus has to be 
located slightly upstream of the middle of the (long) target. The first equality is obvious, the 
second corresponds to the fact that secondary particles produced beyond the limits of the 
betatron amplitude limits of the transfer line are lost; the last rule about the location of the 
focus may be explained by the natural decay of the primary beam in the highly dense 
material of the target. It is very unfortunate that these rules cannot always be fully matched in 
real conditions, for practical reasons: for instance the target may be so long that it is 
impossible to place it sufficiently close to the Lithium lens. Another drastic limitation is the 
maximum current which can be achieved in any type of lens, which definitely state the 
maximum collected angle for this type of lens, for a given secondary particle energy.
In the programs of this chapter the following matters are covered:

LILENS: this introduction.
LILENS 1: Relations between betatron functions at focus and exit plane.
LILENS2: Relations of optical parameters and lens cuirrent.
LILENS3: Limitations due to the distance from the focus to the lens
LILENS4: Optimisation of the length of the lens. 
LILENS5: Maximum collected angles.
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LILENSl

Transfer relations between the source and the lens exit

This file collects the formulae linking the source optical parameters and the similar 
quantities at exit of the lens, particularly the betatron functions which are requested to match 
the source to the transfer line.
Enter A: acceptance of the transfer line.

Rmax: beam radius at exit of the lens
Rmin: beam radius at source

A ≔ 200-10"6 Π*rad*m
Rmax ≔ 0.01 Rmin ≔ 0.0015

µθ ≔ 4-π-iθ"7

The exit plane divergence is:

 
 αmin = 0.02

The source divergence is:

 
-------------------------------- -------- αmax = 0.133

The focal length defined as the ratio of Rmax upon αmax becomes:

------------ f = 0.075

The focal length is also Rmin divided by αmin:
 f = 0.075

The betatron function at exit is (because the amplitude of a matched beam is equal to Rmax):
 

  βmax = 05

The betatron function slope is zero at this point because the beam is parallel to the axis in 
that plane.

The betatron function at source is then:

     βmin = 0.011

or otherwise:

     βmin =0.011 

One can point out a very simple relation:
   βmax-βmin =0.006

f2 =0.006
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Definition of LILENS betatron parameters
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LILENS2

Relations between the focal length and the lens cunent

This file shows the relation between the main optical parameter: the focal length and the 
intensity of cunent feeding the lens.
Enter A: acceptance of the transfer line.

Rmax: beam radius at exit of the lens
Rmin: beam radius at source
L: lens length
d: distance from focus to lens
Bp: magnetic rigidity of the particles
I: lens cunent

A ≔ 200-10"6 Π*rad*m L ≔ 02
Rmax ≔ 0.01 Rmin ≔ 0.0015 Bp ≔ 11.926 I ≔ 400000

μO ≔ 4-π-iθ’7
In a transfer line the optics is calculated by means of products of matrices. Here to find the 
focal length one considers a drift space of length d followed by a lens where the gradient is 
g or where the common focusing coefficient is k with the definitions:

----------------------- ----------- ----------- ----------- ----------- ----------- ----------- k = 67.08

The matrix for a focusing lens is the same as the matrix of a quadrupole (for the coordinate 
where this quad is focusing):

The matrix for a drift space is:

The product of matrices in the reverse order is:

The focal length is therefore obtained by applying this matrix to a trajectory issued from the 
origin with the coordinate 0 and slope αmax:
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The slope being zero at exit the second term of this matrix is zero and then:

Replacing in the first term of the last matrix which is equal to Rmax, one gets f≈Rmax/αmax:

This holds for the other radial coordinate, and in fact as the lens is axisymmetric, for any 
radial direction. One may deduce from that, by substracting the two previous squared 
equations:

 

or even by introducing the current density j:

One may for instance draw the curve of f(I):

for a range: I ≔ 300000,302000.. 700000

and constant length and radius of the lens: L = 0.15 Rmax = 0.01
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LILENS3

Limitations due to the distance from the focus to the lens

This file states the limitation due to the distance d already introduced in LILENS2. As the 
target length is approximately equal to the absorption length of the metal of the target (e.g. 6 
to 12 cm depending of the chosen material ), it is difficult to place the target, for instance, in 
front of a Lithium lens, according to the requirement to have the focus slightly upstream of 
the middle of the target.
Enter A: acceptance of the transfer line.

Rmax: beam radius at exit of the lens
Rmin: beam radius at source
L: lens length
Bp: magnetic rigidity of the particles
I: lens current

A ≔ 200-10’6 Π*rad*m R∞ax :≈ 0.01 Rmin ≔ 0.0015

Bp ≔ 11.926 L ≔ 0.15 I ≔ 400000

µθ ≔ 4-π-iθ’7
It is equivalent to use the focusing coefficient k or the characteristic angle of the lens θ as 
we have:

or 

and 
 

therefore: 

It is better to keep the characteristic angle as it is closely related to the maximum collected 
angle.

Replacing k, one gets : 

 d=0 044

For the given values of Rmax, L and θ (or current I) the front space d is too short :
One should change I to get d=0.06 for instance:

L ≔ 0.15 Rmax ≔ 0.01

 

 

For a Lithium lens this yields a max current: Imax ≔ — Imax = 4.33- 1০5

Also: 
 αmax =0.069
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LILENS4

Optimization of the length of the lens

This file considers a possible way to get rid of the limitation due to the distance d already 
considered in LELENS3. It is difficult to place the target, for instance, in front of a Lithium 
lens, according to the requirement to have the focus slightly upstream of the middle of the 
target. The length of the lens is assumed here to be free at the design stage of the lens. 
Enter A: acceptance of the transfer line.

Rmax: beam radius at exit of the lens
Rmin: beam radius at source
d: distance from focus to lens
Bp: magnetic rigidity of the particles
I: lens current

A ≔ 200- 1O~6 Π*rad*m d ;= 0.06
Rmax ≔ 0.01 Rmin ≔ 0.0015 Bp ≔ 11.926 I ≔ 400000

μ0 ≔ 4-π-10-7
It is equivalent to use the focusing coefficient k or the characteristic angle of the lens θ as 
we have:

and 
 

therefore: 

It is better to keep the characteristic angle as it is closely related to the maximum collected 
angle.

Replacing k, one gets :

As:    it is possible to express αmax:

 

Rmax, d, I being assumed to be fixed:
Rmax ≔ 0.01 d ≔ 0.06 θ = 0.082

 L = 0.903

The length of the lens has to be shorter than in LILENS3 to get the focus in the right location 
and then:

αmax = 0.077

For a Lithium lens, this is for a max current Imax :
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LILENS5

Maximum collected angle

This file gives the maximum collected angle in a linear lens with the constraint due to the 
distance d already introduced in LILENS2. As already said the target length is 
approximately equal to the absorption length of the metal of the target (e.g. 6 to 12 cm 
depending of the chosen material ), it is difficult to place the target, for instance, in front of 
a Lithium lens, according to the requirement to have the focus slightly upstream of the 
middle of the target. Here we investigate the problem to find the max collected angle for 
given d and Rmax( which corresponds to a fixed transfer line), and again with the 
assumption of a parallel beam at exit of the lens: 
Enter A: acceptance of the transfer line.

Rmax: beam radius at exit of the lens
Rmin: beam radius at source
d: front space between focus and lens
Bp: magnetic rigidity of the particles

A ≔ 200-10-6 Π*rad*m Rmax ≔ 0.01 Rmin ≔ 0.0015

Bp ≔ 11.926 d ≔ 0.06

μ0 ≔ 4-π-10-7
It is equivalent to use the focusing coefficient k or the characteristic angle of the lens θ as 
we have:

 or 

and 
 

therefore: 

It is better to keep the characteristic angle as it is closely related to the maximum collected 
angle.

Replacing k, one gets : 

Similarly we have:
 

 

But f is Rmax/αmax, therefore:

 

Then: - ------------------ or inversely: ----------------------------
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If d=0 αmax is equal to θ: for an immersed focus the maximum collected angle is the 
characteristic angle of the lens and is only dependant of the current for a given panicle 
momentum. It is now possible to draw the curve of the max collected angle according to the 
current for a given front space d, with the requirement to get a parallel beam at exit. The 
length has to be adapted accordingly:

For a range: I ≔ 250000,310000 ..500000
d ≔ 0.06 Rmax ≔ 0.01

Max collected angle, characteristic angle and length 
as functions of the max current in a Lithium lens
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HORN

Magnetic horn for pbar collection

These files present the essential algorithms to prepare the design of a magnetic biconical 
horn similar to the one which has been used in the target zone of CERN-ACOL for pbar 
production.
The pbars are produced by a primary beam of protons hitting a metallic target, with large 
angles: it is the role of the magnetic horn to focuse these pbars and create a parallel beam. 
The shape is defined according to two constraints: to be not reentrant (i.e. its diameter is 
maximum at ends ), and to have a constant focal length ( not varying with the angle of the 
trajectory with the axis ):

Homi: Theoretical shape to keep the focal length constant.
Hom2:Shape including a neck of minimal radius.
Hom3:Shape and thickness in parametric form.
Hom4:Interpolated function for the shape.
Hom5:Estimated mechanical stress in a magnetic horn.

The trajectories in and around a magnetic horn present a real challenge to the designer: the 
magnetic field is decreasing as the inverse of the distance to the axis and the equations of the 
movement are therefore non-linear, and secondly the angles are so large that the common 
paraxial approximation is no longer valid. The treatement presented here use the basic 
differential equations of the movement of a panicle in a general field and solves these 
equations by the classical Runge-Kutta (or similar) routines as the ones the reader may find 
in the enclosed chapter on this subject (cf. SRK).

Homtral: Hom meridian trajectories (approximative solution).
Homtra2: Hom skew trajectories (rigorous solution making use of data from Hom4). 
Homtra3: Traversal lengthes of trajectories issued from the focus.
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HORNl

Shape of a biconical magnetic horn

This program delivers the parametric equations of the theoretical shape of a biconical 
magnetic horn, with a focal length which does not vary with the trajectory angle.
All units in SI except otherwise stated, 
Enter:
I ≔ 400000 Rmax ≔ 0.03

Bp ≔ 11.675 n ≔ 30

µθ ≔ 4-π-10-7
Characteristic angle: 

  θ = 0.082778

Focal length:   f = 0.362414
 

i≔o..n 

Parametric equations: 

 

2nd cone: RS(a) ≔ f.α

Theoretical horn shape
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HORN2

Shape of a biconical magnetic horn

This program delivers the parametric equations of a biconical magnetic horn, with a neck of 
radius Rmin.
All units in SI except otherwise stated,
Enter:
I ≔ 400000 Rmax ≔ 0.03 Rmin ≔ 0.006

Bp ≔ 11.675 n ≔ 30

µθ ≔ 4-π-10-7
Characteristic angle: 

 θ = 0.082778

 f = 0.362414

Range: i:=o..n 

Parametric equations:

isiαme; 

RH(a) := if(RRH(a)>Rmin,RRH(a),Rmin)

 
 

2nd cone: RRS(a) ≔ fα

RS(a) ≔ if(RRS(a)>Rmin,RRS(a) ,Rmin) 
 

Hom shape
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HORN3

Shape and thickness of a biconical magnetic horn

This program delivers the parametric equations for the inner and the outer sides of a 
biconical magnetic horn.
All units in SI except otherwise stated, 
Enter:
I ≔ 400000 Rmax ≔ 0.03 Rmin ≔ 0.006

Bp ≔ 11.675 emax 0.003 emin ≔ 0.001 n ≔ 30

µθ ≔ 4-π-10-7

Characteristic angle: 
 

-------------- θ = 0.082778

Focal length: 

Range: i ≔ o.. n
Parametric equations:
1st cone:

 
 

RH(a) ≔ if(RRH(a)>Rmin ,RRH(a) ,Rmin)

 

RRS(a) ≔ f-α
RS(a) ≔ if(RRS(a)>Rmin ,RRS(a) ,Rmin)

 

Thickness definition:

eH(a) if(eeH(a)<emax ,eeH(a) ,emax)

eS(a) ≔ if(eeS(a)<emax ,eeS(a) ,emax)

Parametric equations of the inner side of the horn: 
1st cone:

RHi(α) ≔ RH(a) - eH(a) 
 

  
zna cone:

RSi(α) ≔ RS(a) - eS(α)
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Hom shape and thickness
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H0RN4

Interpolated shape of a biconical magnetic horn

This program delivers a interpolation function R(Z) for a biconical magnetic horn. 
All units in SI, except otherwise stated,
Enter:
I ≔ 400000 Rmax ≔ 0.03 Rmin ;= 0.006
Bp ≔ 11.675 T*m emax ≔ 0.003 emin ≔ 0.001 n ≔ 30

μ0 ≔ 4-π-10-7

Characteristic angle: 
  θ = 0.082778

Focal length: 
   f = 0.362414

^8« i;=0..n 

Parametric equations: 
1st cone: 

 

RH(a) ≔ if(RRH(a)>Rmin,RRH(a),Rmin)

 
 

2nd cone:
RRS(a) ≔ f-a
RS(a) ≔ if(RRS(a)>Rmin,RRS(a),Rmin)

 

Hom shape according to the parametric equations 
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Auxiliary vectors tor the interpolation:
i ≔ O..n - 1

Rh. ≔ RH(θ - αi) Rs. ≔ RS(αi.) Rs ≔ RS(αn)
Zh. - ZH(e - αi) Zsi := Zs(αi) Zsn := Zs(αn)

Merging of the auxiliary vectors:

RR ≔ augment(Rh T, Rs T)T ZZ ≔ augment (Zh T, Zs T)T

New range: j ≔ o.. last(RR) last(RR) =60

Interpolation:
R(Z) ≔ interp(pspline(ZZ,RR) ,ZZ,RR,Z)
R(0.3) =0.015268

Range of Z: ZZθ = 0.219815 ^lastζZZ) = θ-529905

Hom shape according to the interpolation function
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H0RN5

Force, pressure, stresses in a magnetic hom

This file gives a set of practical formulae relevant to the design of a magnetic hom, as well 
as remarks about the mechanical problems raised by a magnetic hom.
One considers first a cylindrical hollow conductor fed by a DC current of intensity I. The 

current density j being then constant between the inner and outer radii RO and RI, the current 
in a cylinder of radius R between RO and RI is:

I(R) ≔ jπ-(R2 - RO2)
By applying the Ampère theorem:

 

On the external surface of the conductor:
I(R1) ≔ j π (Rl2 - RO2)

which yields: 

The magnetic field is then inside the conductor:

Outside the conductor and inside another coaxial return conductor the field is:

One has also:
I ≔ I(R1)

The electromagnetic force is a volume force given by the cross product j*B. For an 
elementary volume between two meridian planes, by summing up between RO and RI and 
for one meter length:

The equivalent pressure on the external surface is then (by considering the material of the 
conductor as being uncompressible):

By introducing the magnetic field on the outer surface:

which yields for a thin tube (R0~R1):
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For a thick tube (R0=0) the pressure becomes:

It is clearly seen that replacing the electromagnetic force by an external pressure can lead to 
an underestimate of the effect of this force ( this is equivalent to considering only one term 
in the Maxwell tensor).
A rigorous analysis of the mechanical stress differential equation would need to express the 
elementary volume force, and to solve the resultant differential equation. One considers here 
only the simple solutions as given in textbooks about elasticity and resistance of materials 
for the model of a thick cylinder, under an external pressure, and keeping a constant length:

These are compression stresses, the circumferential stress being always higher than the 
others and achieving a max value on the inner surface of the tube:

For a tube without a hole the max stress rises up to:

σmax := 2.p
For a thin tube (of thickness e): 

 
The different following cases can be considered: 
l)Conductor without a hole, DC current:

 
 

 
2)Conductor without a hole, short pulse current: 

 

3) Hollow conductor: 

 
 

but there may be buckling.

The preceding formulae allow to calculate the order of magnitude of the max stress in a 
magnetic horn and to compare them with the max allowed stress in case of fatigue. In the 
case of vibrations or pulse loading, and for aluminium alloys these values are very 56 



inaccurate ana long ana caretui tests are necessary, it is nevertheless interesting to consiαer 
the case of a hollow conductor, and by introducing the field, this yields:

In order to have a constant stress along the axis for a varying tube radius, the product e*Rl 
must be constant. This rule has been chosen in the case of the biconical magnetic horn (cf 
H0RN3), but this is no longer valid in the case of buckling for which the critical pressure 
is, for a hollow and thin tube:

(E is the elasticity modulus, v is the Poisson modulus)

from which, by introducing the current, it is the product e3/Rl which must be constant. 
This is anyway approximative because in the case of the magnetic horn the magnetic 
pressure is not uniform and the buckling mode is not known; the curvature of the surface 
along the axis and the proximity of the flanges improve the withstanding to buckling. Here 
again tests are needed.

The following remarks about pulse loading are relevant: for a half-sinus pulse and for the 
axisymmetric mode:

 

where τ is the ratio of the pulse duration and the mechanical period (supposedly <1). The 
variation of pulse stress is given in the following curve:

This factor becomes proportional to τ for the small values of τ from which one gets:
 

It is then better to minimize the pulse duration (this holds also to reduce the Joule heating). 
For the lower mechanical axisymmetric mode the period is proportional to the radius, and 
therefore the product e*Rl^ which should be kept constant. All these remarks apply to the 
case of the horn within the limits of the assumptions made and call for experimental 
verifications in real conditions.

Finally the longitudinal force applied on the radial connections between the inner conductor 
(radius RI) and the external coaxial conductor (radius R2) has to be considered. The current 
density is in one of these connections:

 
where s is the current depth (along the axis). 
The magnetic field is Bext(R) on the surface as given previously; its mean value in s is half 
of that amount, from which the force density is: 57



 
and the force between R and R+dR is: 

 

or: 

whose integral is: 
 

and the total longitudinal force is then:

The same force but reversed applies onto the other connection of the central conductor. These 
forces are supported by the external conductor (whose thickness may be as large as needed) 
and by the central conductor which is therefore subject to axial stresses which add to the 
previously given axial stress . To these electromagnetic forces the stress due to the assembly 
tolerances, the thermal stress due to Joule heating and to the residual proton beam coming 
from the production target have to be added. A complete and careful analysis of all these 
effects needs a very good design office, but only long and methodological tests on prototypes 
can give reliable results and are anyway necessary.
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HORNTRAl

Meridian trajectories in a biconical magnetic horn

This program delivers the parametric equations for the meridian trajectories of a biconical 
magnetic hom( meridian means in a plane containing the axis).
All units in SI except otherwise stated, 
Enter:
I ≔ 400000 Rmax ≔ 0.03 Rmin ≔ 0.006

Bp ≔ 11.675 n ≔ 20

µθ ≔ 4-π-iO“7 
Characteristic angle:  θ =0.082778

Focal length: 
Range: i;=o..n 

Parametric equations: 
1st cone: 

 

RH(a) ≔ if(RRH(a)>Rmin,RRH(a) ,Rmin) 
RRS(a) ≔ f-a
RS (a) ≔ if(RRS(a)>Rmin ,RRS(a) ,Rmin)

\  

Meridian trajectory ending at radius RS(α): 
k ;= n.. o 

r(a,β) ≔ if(β<a,if(β«o,RS(a) ,n(a,β)) ,o) '
z(a,β) ≔ if(β<a,if(β«o,ZS(θ)-3.3,zz(a,β)) ,o)

2(ai’ßk) , ZH(αi),Zs(αi)
Meridian trajectories in a biconical horn 59



H0RNTRA2

Skew trajectories in a biconical magnetic hom

This program provides an exact solution to the calculation of trajectories inside and outside 
of a magnetic hom without the common assumptions that this trajectories have small angles 
with the axis and are in meridian planes. The shape of the biconical hom is caculated by 
means of H0RN4 whose data were stored in the files RR.PRN and ZZ.PRN.
All units in SI except otherwise stated,
Enter:

I ≔ 400000 Rmax ≔ 0.03 Rmin ;= 0.006

Bp ≔ 11.675 n ≔ 20
Initial values of the trajectory:

sO ≔ 0 sf ≔ 0.5299 xO ≔ 0 y0 ≔ 0 zO ≔ 0

Number of intervals: N ≔ 200

Number of points: n ≔ 20

Characteristic angle:  θ = 0083

Focal length:  f = 0 362

RR ≔ READPRN(RR)
ZZ ≔ READPRN(ZZ)
Range: j ≔ o..last(RR) last(RR) =60
Interpolation:
R(Z) ≔ interp(pspline(ZZ,RR) ,ZZ,RR,Z)
R(0.3) =0.015

Range of Z: ZZθ = 0.219815071   zzlastfZZ) = 0.529905143

Hom shape according to the interpolation function 60



The six right-hand sides of the differential equations for the trajectory of a particle in the 
field of a hom are written in the following vector below 1:

 

These equations become the following where the field is zero:

Therefore the system of equations for the two domains in the range of Z previously defined 
is:

The solution to this set of differential equations is the one developed in SRI2:
Interval size: 

 h = 0.003

Range: i≔o..2-N

Initializations:

Sθ ≔ sO sf ≔ Xθ ≔ ×O yθ ≔ yO zθ ≔ zO

Vxθ ≔ VxO Vyθ ≔ θ Vzθ ≔ VzO 61



Skew trajectory: y(z) and x(z)
62

First auxiliary point:



Table of result

Reduced number of points: j o, floor 

sj xj. yj zj. Vxj. Vyj

0 0

 

0 0 0.01 0.083 0
0.026 0 0.002 0.026 0.01 0.083 0.002
0.053 0.001 0.004 0.053 0.01 0.083 0.004
0.079 0.001 0.007 0.079 0.01 0.083 0.007
0.106 0.001 0.009 0.106 0.01 0.083 0.009
0.132 0.001 0.011 0.132 0.01 0.083 0.011
0.159 0.002 0.013 0.158 0.01 0.083 0.013
0.185 0.002 0.015 0.185 0.01 0.083 0.015
0.212 0.002 0.018 0.211 0.01 0.083 0.018
0.238 0.002 0.02 0.238 0.009 0.076 0.02
0.265 0.003 0.022 0.264 0.008 0.068 0.022
0.291 0.003 0.023 0.291 0.007 0.06 0.023
0.318 0.003 0.025 0.317 0.006 0.052 0.025
0.344 0.003 0.026 0.343 0.005 0.045 0.026
0.371 0.003 0.027 0.37 0.005 0.038 0.027
0.397 0.003 0.028 0.396 0.004 0.032 0.028
0.424 0.003 0.029 0.423 0.003 0.026 0.029
0.45 0.004 0.03 0.449 0.002 0.019 0.03
0.477 0.004 0.03 0.476 0.002 0.013 0.03
0.503 0.004 0.03 0.502 0.001 0.007 0.031
0.53

f = 0.362

0.004 0.03 0.529 0 0.002 0.031

The focal length is approximately constant (within 5% for the larger angles≤θ).
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H0RNTRA3

Traversal length in a biconical magnetic horn

This program caculates the traversal length of a particle issued from the focus through the 
material of a biconical magnetic hom. The reabsoiption and the multiple Coulomb scattering 
depend of the material traversal length of the particles focused by this magnetic hom.
Therefore this traversal length settle the efficiency of the magnetic hom.
All units in SI except otherwise stated,
Enter:
I ≔ 400000 Rmax :≈ O.O3 Rmin ≔ 0.006

Bp ≔ 11.675 emax ≔ 0.003 emin ≔ O.∞i n 30

μ0 ≔ 4-π-10-7

Characteristic angle: 
 

Focal length: 

Range: 

Parametric equations:
1st cone: 

 

RH(a) ≈ if(RRH(a)>Rmin,RRH(a) ,Rmin)

RRS(a) ≔ f a
RS(a) ≔ if(RRS(a)>Rmin ,RRS(a) ,Rmin) 

Thickness definition:

eH(a) ≔ if(eeH(a)<emax ,eeH(a) , emax)
eS(a) ≔ if(eeS(a)<emax, eeS(a) ,emax)

The slope p of the curve defining the hom shape is the derivative of R: dR/dZ which is also 
(dR/dα)/(dZ/dα). This yield for the first pan of the hom:
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Therefore the slope is: 

Similarly for the second part of the hom:
The derivative of RRS(α) is: f
The derivative of ZS(a) is: 

Therefore the slope is: 
 

The traversal paths dl(α) and d2(α) are then for R≥Rmin:
 

When R<Rmin the traversal length is either 0 below αθ (i.e. through the central hole):

or approximately 

 

above αθ ( but for a<Rmin/f).
The total traversal length is finally:

Material traversal length for particles coming from the focus
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System of differential equations 
of first order

These programs show a collection of routines to solve a set of differential equations of 
first order. Some of them are the common Runge-Kutta routines of second or fourth order 
applied to a set of six differential equations taken as an example: it solves without 
approximation the problem of the trajectory of a particle in a magnetic field decreasing as 
the inverse distance to the axis, and draws as a test the front view of a trajectory which is 
known to stay on a constant radius helix. Another program is an interleaved algorithm of 
second order applied to the same set of equations for the sake of comparison.

They apply to any set of differential equations of first order, coupled or not, the 
derivatives being any function of the other variables and/or of the common parameter. 
They apply also to a differential equation of higher order by considering the different 
derivatives as variables.

These routines are elementary i.e. they are not implemented with any means to solve stiff 
differential equations. Any routine can eventually provide inaccurate or even wrong 
results in cases presenting a singularity or a fractal-like behavior. The eventual user 
should take them as examples and use them with care. It is advisable in any case to run the 
program with different numbers of intervals and check that the results stay the same. In 
another chapter an example of adaptative step solution will be given.

SRI2:interleaved routine of 2nd order(fast), 6 equations.
SRK4:common Runge-Kutta of 4th order, 6 equations.
SRK40:modified Runge-Kutta of 4th order, 6 equations.
SRK2:Runge-Kutta of 2nd order, 6 equations. 
S2RK4:Runge-Kutta of 4th order, 2 equations.
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SRI2

System of differential equations 
of first order

This program shows a interleaved routine of second order, in each interval the derivative 
is calculated at the middle of the interval. To start it is necessary to calculate a first 
auxilliary set of derivatives from which the first middle derivatives are calculated. 
Initialization of the parameter s, the variables x,y,z and their derivatives Vx, Vy, Vz, sf is 
the end point of the s range:

s0 ≔ 0 sf ≔ 80 x0 ≔ 1 y0 ≔ 0 z0 ≔ 0
θ ≔ 0.08 Vx0 ≔ 0 Vy0 ≔ θ 

Number 0f intervals: N ;= 100

Number 0f p0ints: n ≔ 20

The six right-hand sides 0f the differential equati0ns 0f the first 0rder are written in the 
f0ll0wing vect0r bel0w 1:

Interval size: 

Range: i.-0.. 2-N

Initializati0ns:

S0 := S0 sf = sf  X0 := x0 yθ := y0 Z0 := z0

Vx0 := Vx0 Vy0 := Vy0 Vz0 := Vz0

First auxiliary p0int: 
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First middle point: 
 

 

 

hterleaved iteration: 
 

Results: 

 
  

 Reduced number of points: 

Curve of y as a function of x 68



Table of all results

sjxj yj zj Vxj Vyj
0 1 0 0 0 0.08 1
4 0.949 0.315 3.987 -0.025 0.076 1
8 0.803 0.597 7.974 -0.048 0.064 1.001
12 0.575 0.82 11.962 -0.065 0.046 1.001
16 0.289 0.959 15.949 -0.076 0.023 1.002
20 -0.026 1.002 19.936 -0.08 -0.002 1.003
24 -0.339 0.944 23.923 -0.075 -0.027 1.003
28 -0.617 0.791 27.911 -0.063 -0.049 1.003
32 -0.833 0.558 31.898 -0.044 -0.066 1.003
36 -0.966 0.269 35.885 -0.021 -0.077 1.003
40 -1.001 -0.047 39.872 0.004 -0.08 1.002
44 -0.935 -0.358 43.86 0.029 -0.075 1.001
48 -0.775 -0.633 47.847 0.051 -0.062 1.001
52 -0.536 -0.844 51.834 0.068 -0.043 1
56 -0.243 -0.97 55.821 0.078 -0.019 1
60 0.074 -0.997 59.808 0.08 0.006 1
64 0.384 -0.924 63.795 0.074 0.031 1.001
68 0.655 -0.757 67.783 0.061 0.052 1.001
72 0.86 -0.514 71.77 0.041 0.068 1.002
76 0.979 -0.219 75.757 0.018 0.078 1.003
80 0.998 0.098 79.744 -0.008 0.079 1.003

69



SRK4

System of differential equations 
of first order

This program shows a Runge-Kutta routine of fourth order in each interval the 
derivatives are calculated at four points of the interval.
Initializations of the parameter s, the variables x,y,z and their derivatives Vx, Vy, Vz, sf 
is the end point:

sO := 0 sf := 80 xO := 1 y0 := 0 zO := 0
θ := 0.08 VxO := 0 VyO := θ 

Number of intervals: N := 100
Number of points: n := 20

The six second members of the differential equations of the first order are written in
the following vector below 1:

 

*****************************************************************************

Interval size:  h = 0.8

i:=0..N
Initializations:

Kl(u) := F(u0,U1,u2,u3,u4,u5,u6) 
ul(u) := u + h2 Kl(u) 
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K2(u) := F(u1(u)0,u1(u)1,u1(u)2,u1(u)3,u1(u)4,u1(u)5,u1(u)6)

u2(u) := u +■ h2-K2(u) 

K3(u) := F(u2(u)0,u2(u)1,u2(u)2,u2(u)3,u2(u)4,u2(u)5,u2(u)6)

u3(u) := u + h-K3(u) 

K4(u) := F(u3(u) ,u3(u) ,u3(u) ,u3(u) ,u3(u) ,u3(u) ,u3(u) ) 

Initialization of the matrix of the results: 

U<0> := U 
Iteration: 

U≤i +1 > ~ u<i:> + RK(u≤i>)-h 

Results:
N = 100 h = 0.8

Curve of y as a function of x 71



Table of all results

(u<j>)0(u<j>),
2

(u<j>)
3

(u<j>)
4

(u<j>)5

0 1 0 0 0 0.08 1
4 0.949 0.315 3.987 -0.025 0.076 1
8 0.803 0.597 7.974 -0.048 0.064 1.001
12 0.575 0.82 11.962 -0.065 0.046 1.001
16 0.289 0.959 15.949 -0.076 0.023 1.002
20 -0.026 1.002 19.936 -0.08 -0.002 1.003
24 -0.338 0.944 23.923 -0.075 -0.027 1.003
28 -0.617 0.791 27.911 -0.063 -0.049 1.003
32 -0.833 0.559 31.898 -0.044 -0.066 1.003
36 -0.966 0.27 35.885 -0.021 -0.077 1.003
40 -1.001 -0.046 39.872 0.004 -0.08 1.002
44 -0.935 -0.357 43.86 0.029 -0.075 1.001
48 -0.775 -0.633 47.847 0.051 -0.062 1.001
52 -0.537 -0.844 51.834 0.068 -0.043 1
56 -0.244 -0.97 55.821 0.078 -0.02 1
60 0.073 -0.998 59.808 0.08 0.006 1
64 0.383 -0.924 63.795 0.074 0.03 1.001
68 0.655 -0.758 67.783 0.061 0.052 1.001
72 0.86 -0.515 71.77 0.041 0.068 1.002
76 0.978 -0.22 75.757 0.018 0.078 1.003
80 0.998 0.097 79.744 -0.008 0.079 1.003
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SRK40

System of six differential equations 
of first order

This program shows a modified Runge-Kutta routine of fourth order in each interval the 
derivative is calculated at four points of the interval.

Initializations of the parameter s, the variables x,y,z and their derivatives Vx, Vy, Vz, sf is 
the end point:

sO := 0 sf := 80 xO := 1 yO := 0 zO := 0
θ := 0.08 VxO 0 VyO := θ VzO - fl - VxO2 - VyO2

Number of intervals: N ;= too
Number of points: n := 20

The six right-hand sides of the differential equations of the first order are written in the 
following vector below 1:

 
***************************************************************************** 
Interval size:       h = 0.8

Range: i := 0.. N

Initializations:

 

Kl(u) := Ffu ,u ,u ,u ,u ,u ,u ) 
 

ul(u) := u + h3-Kl(u) 
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K2(u) x F(ul(u)0,ul(u)rul(u)2,ul(u)3,ul(u)4,ul(u)5,ul(u)6} 

u2(u) := u + h-K2(u) - h3-Kl(u) 

 

K3(u) := F(u2(u)0.ulCuJ,u2(u)2.u2(u)3.u2(u)4.u2(ulj.uî(u),.)

u3(u) x u + h-Kl(u) - h-K2(u) + h-K3(u) 

K4(u) := F(u3(u)0,u3(u)1,u3(u)2,u3(u)3,u3(u)4,u3(u)5,u3(u)J 

. Kl(u) + 3-K2(u) 1- 3-K3(u) + K4(u) 

Initialization: 
U<0> XU 
Iteration: 

U<i+1> X U<i≥ + h-RK(u<i>)

Results:

Curve of y as a function of x
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N = 100 h = 0.8

 

Table of all results

u(0,j) 

0

u1.j U(2.j)

0

U2.J

0

U4,J

0

U5.j

0.08

u6.J

0.997 1

75

4 0.949 0.315 0.315 -0.025 0.076 0.997 1.000161
8 0.803 0.597 0.597 -0.048 0.064 0.997 1.000612
12 0.575 0.82 0.82 -0.065 0.046 0.997 1.001263
16 0.289 0.959 0.959 -0.076 0.023 0.997 1.001981
20 -0.026 1.002 1.002 -0.08 -0.002 0.997 1.002623
24 -0.338 0.944 0.944 -0.075 -0.027 0.997 1.00306
28 -0.617 0.791 0.791 -0.063 -0.049 0.997 1.003206
32 -0.833 0.559 0.559 -0.044 -0.066 0.997 1.00303
36 -0.966 0.27 0.27 -0.021 -0.077 0.997 1.002569
40 -1.001 -0.046 -0.046 0.004 -0.08 0.997 1.001914
44 -0.935 -0.357 -0.357 0.029 -0.075 0.997 1.001196
48 -0.775 -0.633 -0.633 0.051 -0.062 0.997 1.00056
52 -0.537 -0.844 -0.844 0.068 -0.043 0.997 1.000133
56 -0.244 -0.97 -0.97 0.078 -0.02 0.997 1.000001
60 0.073 -0.998 -0.998 0.08 0.006 0.997 1.000192
64 0.383 -0.924 -0.924 0.074 0.03 0.997 1.000667
68 0.655 -0.758 -0.758 0.061 0.052 0.997 1.001329
72 0.86 -0.515 -0.515 0.041 0.068 0.997 1.002046
76 0.978 -0.22 -0.22 0.018 0.078 0.997 1.002674
80 0.998 0.097 0.097 -0.008 0.079 0.997 1.003087



SRK2

System of differential equations 
of first order

This program shows a Runge-Kutta routine of second order: in each interval the derivative 
is calculated at two points of the interval.

Initializations of the parameter s, the variables x,y,z and their derivatives Vx, Vy, Vz, sf is 
the end point :

sO := 0 sf := 80 x0 := 1 y0 := 0 zO •- 0
θ = 0.08 VxO := 0 VyO := θ VzO := jl - VxO2 - VyO2

Number of intervals: N too
Number of points: n := 20
The six second members of the differential equations of the first order are written in
the following vector below 1:

Interval size:  h = 0.8

RanSe: i:=0..N

Initializations: 

 Two
Eθtir estimates of the derivatives are made: 

Kl(u) := F(u ,u ,u ,u ,u ,u ,u ) 

ul(u) U t h2-Kl(u) 
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K2(u) := Fful(u) ,ul(u) ,ul(u) ,ul(u) ,ul(u) ,ul(u) ,ul(u) )

 

 
 
 

Initialization of the matrix of all results:
U<0> := u

Iteration:

u<i + 1> := U<i> + K2(u<i:>)-h
Results:

N = 100 h=0.8 

 
Curve of y as function of x
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Table of all results

(u<j>)0 (u<j>)1 (u<j>)2 (u<j>)3 (u<j>)4 (u<j>)5

0 1 0 0 0 0.08 1
4 0.949 0.315 3.987 -0.025 0.076 1
8 0.803 0.598 7.974 -0.048 0.064 1.001
12 0.575 0.82 11.962 -0.065 0.046 1.002
16 0.289 0.96 15.949 -0.076 0.023 1.003
20 -0.026 1.003 19.936 -0.08 -0.002 1.003
24 -0.338 0.945 23.923 -0.075 -0.027 1.004
28 -0.617 0.793 27.911 -0.063 -0.049 1.004
32 -0.833 0.56 31.898 -0.044 -0.066 1.004
36 -0.966 0.272 35.885 -0.021 -0.077 1.003
40 -1.002 -0.044 39.872 0.004 -0.08 1.003
44 -0.936 -0.356 43.86 0.029 -0.075 1.002
48 -0.777 -0.631 47.847 0.051 -0.062 1.001
52 -0.539 -0.843 51.834 0.067 -0.043 1
56 -0.246 -0.969 55.821 0.078 -0.02 1
60 0.072 -0.998 59.808 0.08 0.006 1
64 0.382 -0.925 63.796 0.074 0.03 1.001
68 0.654 -0.759 67.783 0.061 0.052 1.002
72 0.86 -0.517 71.77 0.041 0.068 1.003
76 0.979 -0.222 75.757 0.018 0.078 1.004
80 1 0.095 79.745 -0.007 0.079 1.004
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S2RK4

System of two differential equations 
of first order

Initializations of the parameter t and variables x and y, tf is the end value: 
tθ := 0 tf := 15 Xθ := 1 yQ := 3

Number of intervals: π := 100 intervals

Two differential equations of the first order:

x'(t,x,y) := 15*x - x-y

y(t.x.y) :=-3-y+2-x-y 

*****************************************************************************

Interval size:  h=0.15

k:=0..n j := 0..n- 1

 

4th order Runge-Kutta:

kkl(t,x,y) := FF(t,x,y)

kk2(t,x,y) := FF^t + h2,x + h2-kkl(t,x,y)0,y + h2-kkl(t,x,y)1)

kk3(t,x,y) := FF(t + h2,x + h2-kk2(t,x,y)0,y+ h2-kk2(t,x,y)^

kk4(t,x,y) := FF(t + h.x + h-kk3(t,x,y)θ,y + h-kk3(ttx,y)^

 

Iteration:
 

 
 

 

Results: 

 
x and y as functions of t. 
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EASY ACCESS TO THE AAPC PR∞RAMS

1) for a PS division user on the PC network two methods are at disposal:

a) In the Program Manager click the CAD/CAE icon,
Open MATHCAD (by double clicking the MATHCAD icon),
click File,
click Open Document,
then in the following window go to the Drives cell and ch∞se g:\srvl_ps\usr, 

then go to the directory: G:\home\s\schnurig\aapc
and open the chosen file.

It is advisable to go first to an introduction file, e.g. Fodo for any Fodo*.mcd file. At this point it is 
possible to use the programs which don't need to write onto the previous mentioned directory ( as it is 
the case for all introduction file), but to use extensively the programs any user must copy the needed 
files into his or her own directory in order to enable the computer to write data files related to his or 
her own work.

b) In the Program Manager,
go first to the File Manager,
goto G:\ drive by clicking on it
find G:\home\s\schnurig\aapc
open by clicking the chosen file: as the files with .doc and .med extensions are live the corresponding 
programs WORD or MATHCAD will automatically be loaded. The further use is the same as in the 
previous method but copying the files is here particularly easy as it can be made by the user by simply 
draging the AAPC directory icon to his or her own C:\ disk.

2) for a CERN user on the PC network:
As the access through Windows is not very simple, it is proposed here to access and copy the AAPC 
files in the following way:
at the DOS prompt type F:\Login
then type: login srvl_ps/guest
when hooked to the PS server,
load Norton Comander by simply typing nc at the DOS prompt,
open the G:\home\s\schnurig\aapc directory by typing it at the DOS prompt
The user has now to create a private directory in his or her own disk (aapc for example) by pressing 
F7 (once h∞ked to C:\)
Then Norton can do the copying of the files by selecting them, pressing F5...
Any further use of the programs goes through the common procedure of WINDOWS as in 1) but the 
files are now in C:\aapc.

3) for a stand-alone user
It is only possible to use the programs if MATHCAD is available. Then it is possible to get the 
programs on a diskette upon request. It is worthwhile to say that a great majority of these programs 
have been developed on the DOS version of MATHCAD and can then run on smaller computers. As 
the WINDOWS version of the programs cannot worked on the DOS version the requested programs 
have to be specified (WINDOWS or DOS).

any request or advice to : J.-C. Schnuriger CERN/PS-AR
TEL (767) 4169 or SCHNURIG@CERNVM


