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1. Introduction

The available aperture in the AA is measured by injecting a proton 

beam, blowing it up transversely until a good fraction is lost (presumably 

on the aperture limits) and then observing the circulating beam intensity 

vs scraper position. This method works well in the horizontal plane if 

the injection kicker is used for blowing up the beam. A sharp-edged 

distribution is then produced and the aperture limit is clearly seen.

In the vertical plane, the only practical way to produce a blow-up 

is excitation of the betatron oscillations by aplying noise to the 

transverse damper kickers. This results in a distribution with faint 

tails and the estimation of the exact aperture is not reliable.

It will be shown in the following that the amplitude distribution 

after blow-up can be calculated and that its dependence on the initial 

distribution is negligible, provided about 70% of the beam is killed 

by the blow-up.

2. Calculation of the Distribution

We consider a distribution of particles in phase space, where the 

position x is normalized to the aperture (i.e. x = 1 at the limit) and x1 

is normalized so that particles describe circles in the x, x' diagram. 

The particle density in this plane is called V.
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The blow-up by random noise produces small, random angular 

kicks. Because of the rotation of the particles in phase space the 

distribution will always be circularly symmetric around the origin. 

The diffusion in phase space is exactly analogous to heat diffusion 

in a cylindrical bar towards the outside. The aperture limit corresponds 

to zero temperature on the outside surface of the cylinder.

For circulating symmetric distributions the diffusion equation is:

 (1)

where x is the betatron amplitude.

The solution, for V = 0 at x = 1, is

 (2)

where the j are the zeros of Jo (in increasing order) and the 

coefficients an depend on the initial distribution Vo(x) as follows:

 (3)

It is clear from (2) that higher-order terms die out rapidly, 

because of the increasing j in the exponential factor.

The total number of particles is proportional to

 (4)
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3. Aplication to the Aperture Measurement

Figure 1 shows the result of numerical calculations, starting 

from two somewhat extreme initial distributions:

a) all particles have zero amplitude (δ function of V);

b) constant V across the aperture.

The maximum error made by neglecting all terms with n > 1 in 

equation (2), anywhere for  , divided by the density at , 

is plotted against the remaining fraction of particles after blow-up. 

Clearly, for any reasonable initial distribution (which must be 

between the two extremes shown), the final distribution will be known 

to within better than 2% if the blow-up is continued until 30% of the 

beam remains.

The distribution vs. amplitude dN/dx is related to the phase 

space density by

dN/dx = 2ttxV .

The curve obtained by plotting the remaining intensity vs. scraper 

position is the integral of this and by using the first term of (2) 

we find that the result must be proportional to

A normalized plot of this function is shown in Fig. 2 and 

tabulated below. By comparing the "scraper curve" to this result, it 

should be possible to find the aperture limit with better precision.
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.05 .006

.1 .023

.15 .051

.2 .090

.25 .138

.3 .195

.35 .259

.4 .329

.45 .404

.5 .481

.55 .558

.6 .635

.65 .709

.7 .778

.75 .840

.8 .894

.85 .939

.9 .972

.95 .993

1 1.000
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