
PS/AA/SvdM/pd 19 May 1980

Programme LISTER (AA Version)

S. van der Meer

This programme will list NODAL files. It will repeatedly ask for a
filename and will then list all contents of the file. The programme at
present only works under name RT. Any file to be listed must be preceded
by its own user prefix if this is not RT.

The listing will consist of

a) date and filename
b) NODAL text if any (LIST output)
c) LISV output
d) a list of all simple string variables saved in the file and their

contents (if any)
e) for each array saved in the file, a table giving the contents of

each element. For two-dimensional arrays, this is printed in
matrix form.

Strings will be printed between quotes. "Control characters"
(i.e. those with values i outside the range from 32 to 126 decimal) will
be printed as \i. For instance, a strong A defined with

$SET A = \9\41\4"VARIABLE"\12\0

will be listed as

\9\41\4" VARIABLE" \12\0

Note that the sequence \41 is printed as \41 and not as ")" as would be
expected from the definition above. This will hapen for all sequences
following \9 or \11, since these will usually represent column or line
numbers for displays.

The programme uses a scratch file (of type "symbolic") whose name
is (RT)LIST1.. where .. represents the terminal's ODEV, increased by 9.
Thus, listings made at the same time from different terminals connected
to the same computer will not interfere.

- 2 -

The listing is made both on the terminal screen and on any printer
connected in parallel with it.

All internal variable names used in the programme have names ending
in .987. This is to avoid conflicts with variables in the files to be
listed; it is assumed that no such names occur in these files. In the
following description, this suffix will be omitted.

1.10 All files are closed (this may be necessary if a preceding
LISTER run was interrupted by ESC). The present ODEV is saved.

1.20 The sequence \19 will put the printer "off line", so that the
following input of the filename will not apear there. The
name of the file to be listed is kept in STRARG. If no more
files should be listed, the RETURN key is pressed.

1.30 Then, ODEV is restored, \17 activates the printer and two
pages are ejected.

1.70 If the filename is not "null", the scratch file is opened for
writing.

1.80 Line 1.82 will load the file and initiate the listing. If a
wrong (non-existing) filename was given, line 1.84 will recover.

1.82 Variable T2 is predefined and saved with the programme. Its
contents are executed by the nested $D0 commands. The $D0
is needed because line 1.82 may be overwritten by a line with
the same number from the file to be listed. The nesting is
needed to obtain sufficient space for all commands between
ERASE ALL and GO 1.86.

T2 First, the LISTER text and variables are erased, then the file
to be listed is loaded. T3 contains further commands.

T3 The line printer is activated with \17 and will start on a new
page (\12). The date is printed, followed by the filename
in the top right corner. The WAIT command is needed with the
present printers used at AA, which otherwise may lose lines
at this point because of the long time taken for the "page
eject". Back to T2.

T2 The LIST output now goes to the normal ODEV (i.e. terminal +
printer), followed again by a WAIT to let the printer recover.
Then, the LISV output follows, first to screen and printer,
then to the scratch file. Finally, groups 1 and 2 are erased.

1.82 The other groups, corresponding with groups in LISTER, are
also erased to avoid interference when LISTER is loaded again.
Note that the same effect might be obtained with ERASE ALLP;
this command is, however, not yet available in the present
PS NODAL version. After this line, the text buffer will
contain the LISTER text, as well as perhaps some (irrelevant)
groups from the file to be listed. All variables from the
file to be listed are still present, as well as the LISTER
variables.

1.86 The original ODEV is recovered.
1.90 The scratch file, containing the LISV output, is closed for

writing and opened for reading. Group 2 will analyse its
contents line by line.

- 3 -

2.10-2.16 Initialization, explained later.
2.17 LM contains the maximum number of characters allowed on a

printer line. If typing the last character on a line will
automatically result in a line feed, LM should not include
this last character.

2.20 A line is read and put into T. If T begins with a number
rather than a letter, control goes to 3.05. This means that
the last LISV line has been reached; all other lines begin
with a variable name.

2.30 The variable name (with trailing blanks removed) is stored
in VN.

2.40 If this name represents a defined function, line 2.42 is done.
2.42 M was initialized to zero in 2.1. It will contain the number

of defined functions in the file. D is a string array
containing their names; TT will contain the entire
corresponding LISV line, which will later be printed above
the listing of the defined function. Return to 2.2 for
reading the next LISV line.

2.44 Reached from 2.4 if the variable was not a defined function.
W will contain

VAR for a simple string variable
ARR for a string array
INT for an integer array
FLO for a floating array.

2.46 0 will contain the number of simple string variables, the
string array ST their names. These were initialized in 2.15.

2.48 For string arrays, 2.54 is first executed.
2.54 N will contain the total number of arrays (string , integer

or floating), V their names.
2.48 13 is an array that will contain zero for string arrays,

7 for integer arrays, 13 for floating arrays. Note that
7 and 13 represent the width foreseen in the output listing
for integers and floating point numbers.

2.50-2.65 See above. For integer and floating arrays, the programme
continues with 2.58.

2.58 IM will contain the maximum number of columns that may be
printed side by side (for 2-dimensional arrays). LM is
reduced by 8 to make space for the column containing the
element numbers and for the inter-column spacing.

2.60 T is further decoded. D1 and D2 will contain the array
dimensions (as strings). D2 will be 1 for one-dimensional
arrays.

2.62 A will contain the first dimension (i.e. the number of lines
needed in the listing), 14 the second one.
If the latter is so high that not all columns may be printed
side by side in a single matrix, the array is treated (and
later listed) as several different sub-arrays, all with the
same name, and each containing a number of columns that can
fit inside a page width. 11 will contain the index

- 4 -

corresponding to the first column, 12 the one corresponding
to the last column of the sub-array.

2.64 If the whole array will fit into a single matrix, 12 is
simply equal to 14.

2.68 S will contain the lateral space needed for printing the
array (or sub-array), excluding the first column with
element numbers.

2.66 If 14 was too large for a single matrix, 12 is now defined
and 2.68 will again define the total width S.

2.70 The number of arrays is then increased by one. The variable
name V and the "vertical" size A are copied for the next
sub-array.

2.72 11 and 13 are also defined and control goes to 2.64, where
the same process repeats until the entire original array is
treated.

3.05 Reached from 2.2 when the analysis of the LISV output is
completed. For each simple string variable, group 5 is
executed.

5.10 First, the variable name (saved in array ST) is typed.
The contents of the string are placed into E.

5.20 Group 29 will decode the string, differentiating between
control characters and normal string contents. This group
is also used for string arrays (called from 11.1).

29.10- In principle, an entire 80-character string might have to be
29.20 printed in the form of 4-character control sequences like,

e.g. \132. The decoded string (in the form in which it
will be listed) would then contain 320 characters.
To provide intermediate storage for this, a string array C
(defined in 5.2) is used. Note that for string arrays,
all elements must be decoded before they may be printed,
because the width reserved for an array table depends on its
largest decoded element. Each of these decoded strings will
be temporarily stored in C, starting at a position C(SH).
For array elements, C(SH), C(SH+1), C(SH+2), C(SH+3) and
C(SH+4) are reserved for the decoded string; C(SH+5) will
contain the corresponding element number. In the present
case of a simple string variable, SH = 1 (see 5.2).

29.10 Decoding a string is a complicated process that may take
a considerable time. Group 29 therefore first tries if a
string contains no "control sequences" in which case the
decoding is simple and quick. Y is predefined and saved
with the program; it contains all characters up to\174,
except those in the range from \32 to \126, which are not
considered as control characters.

29.20 If the match is unsuccessful (i.e. no control characters),
this line provides the decoding. It just adds the quotes
to the original string E. Q will contain the size of the
decoded string.

- 5 -

Note that E might contain 79 or 80 characters. In that
case, an error would occur, and group 30 would recover
(see 5.2). Group 30 is also called from 29.1 if control
characters are found.

30.10 Initialization. CF contains the string size, NC points to
the first element of C to be used. This is emptied, and
the flag FL (used for treating the \9 and \11 sequences)
is set to zero.

30.20 Q will contain the size of the decoded string.
30.30 All characters are looked at by group 31.
31.10 AS will contain the ASCII equivalent. The next three

lines are skiped if FL is equal to 1, i.e. if the preceding
character was \9 or \11.

31.20 If the character is a "printable" one, AS is made negative,
and ROF will return control to 30.4.

31.30- Otherwise, a check on \9 and \11 is made first.
31.40

31.50 If sufficient space remains in C(NC), line 31-6 does the
decoding by adding the contents of Q1(AS) to C(NC). Q1
is predefined; it contains the decoded control characters.

30.72 If C(NC) did not contain at least 4 unused spaces, this
line will increase NC by one and empty the corresponding C
element after updating Q.

30.40 If a non-control character was found, AS is negative and
control goes to 30.5. If AS is zero or positive, this
means that the FOR command of 30.3 has been terminated in
the normal way, so that all characters have been treated
(the last one being a control character). Then, 30.9 will
end the process by updating the total size Q.

30.50 If character CH was of non-control type, this line will
put all successive non-control characters into ZZ, starting
from CH and up to the next control character.

30.60 IL will contain nothing if no more control characters are
found. This case is catered for here.

30.70 Otherwise, if space remains, a quote is first added to
C(NC).

30.72- If not, the next C element is taken as before, and the
30.74 process repeats.

30.76- Similarly, TL is added to C.
30.78

30.80- The same for the second quote.
30.82 Note that the three operations 30.7 - 30.82 cannot be

combined, because ZZ might contain more than 78 characters.
30.84 CH is updated and the process (unless finished) is continued

with line 30.3.
5.30 LI is the maximum number of characters that may be printed

on a line (8 being needed for the variable name and a small
space). Group 6 will list each relevant C element; line
6.5 recovers if an undefined one is encountered (i.e. if
the string needed less than 5 elements).

- 6 -

6.10 The C element is put into E. SP is only used for string
arrays, not for simple string variables, (itwas initialized
in 2.15, however, to prevent errors here).

6.20 If E fits on a single line, it is typed after the variable
name (which was already typed by 5.1). Its size is then
subtracted from LI (only used for string arrays).

6.30 If the string was too long, its first part is printed,
some space is made on the next line (below the variable
name or, for arrays, the element number), and the rest of
the string is put into E again.

6.40 The available space is redefined and the process continues.
An illustration of the result may be seen at variable Y.987
in the listing of LISTER itself.

3.07 If no arrays are to be listed, control goes to 3.7.
3.10 Initialization. F(N) will contain the first element number

of C used for string array no. N. Array C is emptied again
because it might still contain something from the simple
string variables.

3.15 SH is also initialized. For each string array, group 10
is done.

10.10 This group does the decoding. It also finds which elements
are defined; only these will be listed. A contains the
number of defined elements (and therefore the number of
lines in the table, cf. 2.62).

10.20- Each element (J=0, J=1, ...) of the array will be considered.
10.30 If it is defined, MF will be increased by one, and the

element will be decoded. The largest decoded size found
will be kept in S. (Minimum 6, to obtain a correct layout,
even if not a single element is defined). The present C
pointer is saved in array F for later use (in 4.3). Group 11
is done for each element, until all defined ones have been
found. Recovery for errors in group 11 (undefined elements)
is provided.

11.10 The element is transferred to E and the decoding is done by
groups 29 and 30 as described before. The maximum size S,
and the number of defined elements found MF are updated.
The element number and a double space are kept in C(SH+5)
and, finally, SH is increased by 6 for use by the next
element.

3.20 All string arrays have been decoded, so that their table
width S is now known. The tables will be printed in batches,
each batch containing a group of arrays that will fit side
by side across the width of the page. P will contain the
serial number of the first array to be output in the next
batch, Q the one for the last array. Q is first set to
zero, and lines 3.25 - 3.65 will be executed repeatedly,
once for each batch.

3.25 P is defined. L will contain the total width needed for all
arrays of this batch considered so far.

- 7 -

3.30 The next array is taken. If no more exist, control goes to
3.4 and printing starts.

3.35 The width is increased by S and by 12, providing room for
the column with the element numbers, and for 4 blanks
(inter-table spacing). If L becomes too large for the page
width, control goes to 3.4. Note that LM+4 is used, for
the comparison, because the inter-table spacing is not needed
for the last table of the batch.

3.40 Since the last array considered was too much for the width
available, Q must be decreased by 1. However, if the batch
only contains a single array, this is of course not done.
The width needed for a single array may be larger than LM,
if it is a string array whose decoded elements may contain
up to 320 characters. Such long strings will be spread over
several lines.

3.45 The array names are typed above the tables by group 12.
12.10 The name is printed. If it is the last one of the batch,

this is all.
12.20 Otherwise, the name is followed by a space of SP blanks,

calculated so that the next name will be printed in the
correct place. Group 15 prints this space (which may
contain more than 80 blanks and may therefore not be produced
by a simple T&SP command).

3.47 After a line feed, group 14 will print the second subscripts
of two-dimensional arrays above their corresponding columns.

14.10 For string arrays, only a space will be produced by 14.5.
14.20 The same for one-dimensional arrays.
14.25 A different space is made for integer and floating arrays,

to obtain a correct layout.
14.30 The second subscripts are printed.
14.35 Additional space for floating arrays.
14.60 Inter-table space (not for last array of batch).
3.50 J was made zero in 3.47. If any second subscripts were

printed, it is now larger than zero (see 14.3) and an
additional line feed is made. R will be made equal to the
largest table size A of the present batch; it is made zero
fi rst.

3.55 Finding the largest table size.
3.60 For each line I, group 4 prints the elements; J denotes

the serial number of the array.
4.10 If I is larger than A(J), there are no more elements for

this array, and a space consisting of S(J)+8 blanks must
be printed.

4.50 This is not necessary for the last array of the batch.
4.60 As explained before, four blanks for inter-table spacing.
4.20 For numerical arrays, the next lines are skiped.
4.30 SH is the pointer for C at which this decoded element is

stored. SP is the maximum width for the array table
concerned.

- 8 -

4.40 The element number is typed and the available page width
LI is defined. Then, as explained before, group 6 prints
the string, using more than one line if necessary. The
remaining space will then be in SP (see line 6.1); lines
4.5 and 4.6 as before.

4.70 This line is reached from 4.2 if the array is a numerical
one. The element number (or first subscript) is typed and
for each value of the second subscript group 8 is done.

8.10 $V(J) is the array name; B will contain the value to be
printed.

8.20 For integer arrays.
8.30-8.40 If the array is a floating one, a check is made for very

small or very large numbers; these are printed in a somewhat
reduced E format by line 8.6.

8.50 Otherwise, a fixed-point format is chosen.
4.80 After each array, a space of four blanks.
3.65 If any arrays remain, continue with the next batch.
3.70 If there are no defined functions, restart for the next

file. The RUN command erases all information from the file
that was just listed to avoid clashes.

3.80 If there are defined functions to be listed, the file is
loaded into the defined function area.

3.90 Then, T1 (predefined and saved with LISTER) is executed and
the program restarted as before.

T1 For each defined function the relevant LISV line is printed
(defined in 2.42). The function is then opened and listed.
Since the OPEN command erases the LISTER programme, the
whole T1 sequence must be executed by a $D0. The two
nested $DO's are needed because the RUN command in 3.9
cannot follow at the end of T1; it should only be
executed after the entire FOR loop contained in T1 is
satisfied. The first $D0 ensures that the RUN command is
not erased by the OPEN command.

