CERN Accélérateur de science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Title Exploiting Differentiable Programming for the End-to-end Optimization of Detectors
Author(s)

Aehle, Max (Kaiserslautern U.) ; Bawaj, Mateusz (INFN, Perugia ; Perugia U.) ; Belias, Anastasios (Unlisted) ; Boldyrev, Alexey (Higher Sch. of Economics, Moscow) ; de Castro Manzano, Pablo (INFN, Padua) ; Delaere, Christophe (Louvain U., CP3) ; Derkach, Denis (Higher Sch. of Economics, Moscow) ; Donini, Julien (Clermont-Ferrand U.) ; Dorigo, Tommaso (INFN, Padua) ; Edelen, Auralee (SLAC) ; Elmer, Peter (Princeton U.) ; Fanzago, Federica (INFN, Padua) ; Gauger, Nicolas R (Kaiserslautern U.) ; Giammanco, Andrea (Louvain U., CP3) ; Glaser, Christian (Uppsala U.) ; Baydin, Atılım G (Oxford U.) ; Heinrich, Lukas (Munich, Tech. U.) ; Keidel, Ralf (Bergen U. ; Koln, Fachhochschule ; Heidelberg U.) ; Kieseler, Jan (CERN) ; Krause, Claudius (Heidelberg U.) ; Lagrange, Maxime (Louvain U., CP3) ; Lamparth, Max (Munich, Tech. U.) ; Layer, Lukas (INFN, Padua ; Naples U. ; INFN, Naples) ; Maier, Gernot (DESY) ; Nardi, Federico (INFN, Padua ; Padua U. ; Clermont-Ferrand U.) ; Pettersen, Helge E S (Karolinska Inst., Stockholm) ; Ramos, Alberto (Valencia U., IFIC) ; Ratnikov, Fedor (Higher Sch. of Economics, Moscow) ; Rohrich, Dieter (Bergen U.) ; de Austri, Roberto Ruiz (Valencia U., IFIC) ; del Arbol, Pablo Martınez Ruiz (Cantabria U., Santander) ; Savchenko, Oleg (INFN, Padua ; Louvain U., CP3) ; Simpson, Nathan (Lund U. (main)) ; Strong, Giles C (INFN, Padua) ; Taliercio, Angela (Louvain U., CP3) ; Tosi, Mia (INFN, Padua ; Padua U.) ; Ustyuzhanin, Andrey (Higher Sch. of Economics, Moscow) ; Vischia, Pietro (Louvain U., CP3) ; Watts, Gordon (Washington U., Seattle) ; Zaraket, Haitham (Lebanese U.)

Publication 2022
Imprint 2022-10-25
Number of pages 8
Subject category Particle Physics - Experiment ; Detectors and Experimental Techniques ; Computing and Computers
Accelerator/Facility, Experiment MODE
Abstract The coming of age of differentiable programming makes possible today to create complete computer models of experimental apparatus that include the stochastic data-generation processes, the full modeling of the reconstruction and inference procedures, and a suitably defined objective function, along with the cost of any given detector configuration, geometry and materials. This enables the end-to-end optimization of the instruments, by using techniques developed within computer science that are currently vastly exploited in fields such as fluid dynamics. The MODE Collaboration has started to consider the problem in its generality, to provide software architectures that may be useful for the optimization of experimental design. These models may be useful in a ”human in the middle” system as they provide information on the relative merit of different configurations as a continuous function of the design choices. In this short contribution we summarize the plan of studies that has been laid out, and its potential in the long term for the future of experimental studies in fundamental physics.
Other source Inspire

 


 Notice créée le 2023-10-26, modifiée le 2023-10-26


Fichiers:
Télécharger le document
PDF