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1348 Louvain-la-Neuve, Belgium
eHumboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin, Germany
fDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

E-mail: q.bonnefoy@berkeley.edu, gauthier.durieux@uclouvain.be,

jasper.roosmalenepveu@physik.hu-berlin.de

Abstract: We extend the covariant color-kinematics duality introduced by Cheung and

Mangan to effective field theories. We focus in particular on relations between the ef-

fective field theories of gluons only and of gluons coupled to bi-adjoint scalars. Maps

are established between their respective equations of motion and between their tree-level

scattering amplitudes. An additional rule for the replacement of flavor structures by kine-

matic factors realizes the map between higher-derivative amplitudes. As an example of

new relations, the pure-gluon amplitudes of mass dimension up to eight, featuring inser-

tions of the F 3 and F 4 operators which satisfy the traditional color-kinematics duality,

can be generated at all multiplicities from just renormalizable amplitudes of gluons and bi-

adjoint scalars. We also obtain closed-form expressions for the kinematic numerators of the

dimension-six gluon effective field theory, which are valid in D space-time dimensions. Fi-

nally, we find strong evidence that this extended covariant color-kinematics duality relates

the (DF )2+YM(+ϕ3) theories which, at low energies, generate infinite towers of operators

satisfying the traditional color-kinematics duality, beyond aforementioned F 3 and F 4 ones.
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1 Introduction

Scattering amplitudes are of wide interest in high-energy physics for their close connection

to observables and for their remarkable mathematical properties. Their study has led to

new fascinating discoveries, some of which are not at all obvious from the perspective of

Lagrangians or Feynman rules. One prominent example of such unexpected structure is

the relation between Yang-Mills (YM) and gravity theories, originally identified by Kawai,

Lewellen and Tye (KLT) as a mapping from open to closed string amplitudes [1]. In its low-

energy limit, this relation enables the calculation of tree-level graviton amplitudes from the

product of two, arguably simpler, gluon amplitudes convoluted with a matrix of kinematic

functions dubbed the KLT kernel. The basis independence of these double-copy relations

relies on the low-energy limit of string monodromy relations.

It was later found by Bern, Carrasco and Johansson (BCJ) that the KLT relations

are linked to a color-kinematics (CK) duality [2]. In a nutshell, Yang-Mills amplitudes

can be organized as sums over trivalent graphs, dressed by color and kinematic (or BCJ)
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numerators that share common structural properties. The color numerators are built from

group-theory tensors (such as structure constants) and therefore satisfy linear algebraic

relations (such as the Jacobi identities). The kinematic numerators are functions of the

momenta and polarization vectors which can be chosen to fulfill exactly the same linear

relations [2]. This implies in particular the aforementioned low-energy limit of the string

monodromy relations, known as BCJ relations. Finding BCJ numerators is typically non-

trivial, but methods exist to derive them from known amplitudes [3–6], or to construct them

directly [7–18]. The CK duality then permits to recover the KLT relations in an alternative

way, namely through the replacement of color numerators by kinematic ones [19, 20]. The

linear relations verified by all numerators then promote gauge invariance to diffeomorphism

invariance.

After its discovery in YM amplitudes, a CK duality was shown to also be present

in several other theories, including the non-linear sigma model (NLSM) [21–23], theories

with matter particles [24–31], and the cubic theory of a bi-adjoint scalar (BAS) [5] (see

also [32–34]). In the BAS theory, BCJ numerators are built out of group-theory structure

constants only, and amplitudes generate the aforementioned KLT kernel. Multiplying the

numerators of two theories featuring a CK duality generates a whole web of double-copy

theories, some of which are non-gravitational (see [35] for a recent review).

The NLSM is a non-renormalizable theory, showing that the double copy applies to

effective field theories (EFTs). This is further confirmed by the terms of higher mass

dimensions, i.e. of higher orders in α′, in the low-energy expansion of the original KLT

relations between open and closed string amplitudes. Higher α′ corrections appearing in

the KLT kernel correspond to EFT operators in the cubic bi-adjoint theory [36]. This

motivates the study of the double copy in EFTs. The KLT formulation of the double copy

was explored in this context and generalized in [37–42]. On the other hand, the CK duality

has been studied for higher-derivative corrections to YM theory [43, 44], and bootstrap

approaches towards gluon EFT numerators exist [45, 46]. More recently, the notion of CK

duality was generalized by considering numerators which contain both kinematic and color

information, including rules to build them for scalar particles [47–52]. For instance, these

new numerators are needed for a CK-dual approach to a scalar EFT known as Z theory,

which plays a prominent role in the double copies of field theories to type I/II superstring

theories, where it encodes all the necessary α′ corrections [53–56].

EFTs are defined up to a cutoff scale Λ above which a UV completion kicks in. Calcu-

lations are then performed up to a fixed (E/Λ)n order, for some integer n depending on the

required precision and with E the characteristic energy of a process. As n increases, EFT

operators of higher dimensions can contribute and should be included. In a bottom-up

approach, agnostic about the underlying UV theory, the coefficients of different operators

are all independent (and determined by measurements). However, assumptions about the

UV completion or, for example, on the soft behavior of the amplitudes [57–60] typically

correlate the operator coefficients. Similarly, enforcing the CK duality also constrains the

operators of a theory and their coefficients. An infinite tower of higher-dimensional oper-

ators is for instance required for the tree-level double-copy consistency, to all EFT orders,

of a YM theory including the dimension-six F 3 operator [43, 61, 62]. An elegant way
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Figure 1. Illustration of the covariant-color-kinematics map from GBAS to YM tree-level EFT

amplitudes, for towers of higher-dimensional operators satisfying the traditional color-kinematics

duality. The solid arrows represent the new flavor-kinematic replacement rule of Eqs. (3.7), (4.18),

and (5.10). It yields the all-multiplicity amplitude relations of Eq. (3.8) for YM at dimension six

(red arrow), of Eq. (4.19) for YM at dimension eight (blue arrow), and the conjectured relation of

Eq. (5.11) for the full EFT expansion of the (DF )2+YM theory (green arrow and beyond). The

dashed arrows involve the replacement rule previously identified by Cheung and Mangan [67] for

one of the flavor traces. Beyond the dimension-four single-trace order which they considered (upper

dashed arrow), it leads to intricate cancellations between different GBAS amplitudes (lower dashed

arrows), which originate in the relation displayed in Eq. (4.25) between dimension-six single-trace

GBAS amplitudes and dimension-four double-trace ones. The latter are therefore sufficient to

generate dimension-eight YM amplitudes, as expressed in Eq. (4.29). This is also generalized to

higher dimensions and up to six points in Eq. (5.12).

to capture this tower is through the (DF )2+YM theory [63], which has been shown to

supplement Z theory in the double copies of field theories to bosonic and heterotic string

theories [64]. For the NLSM and other theories, the interplay between the double-copy

consistency and soft behaviors has also been studied in [60, 65, 66].

A different but closely related duality between color and kinematics was exposed by

Cheung and Mangan [67] at the level of classical equations of motion (EOMs) instead of

amplitudes (see also [68–71] for related works). Writing the NLSM EOM in terms of the

chiral current and the YM EOM in terms of the field strength, they uncovered maps to the

EOM of the BAS theory and to that of its gauged variant (the GBAS theory), respectively.

This so-called covariant color-kinematics (CCK) duality was further demonstrated to relate

the color and kinematic algebras of the dual theories, as well as their conserved currents

and, most importantly for the present work, their tree-level scattering amplitudes [67].

These can indeed be extracted from (the functional derivatives of) perturbative solutions

to the EOMs with sources, and are therefore subject to the CCK duality. New relations were

derived between NLSM/BAS amplitudes as well as between YM/GBAS ones (upper dashed
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arrow in Fig. 1), through a replacement rule mapping flavor structures into kinematic ones.

Closed-form expressions for the BCJ numerators of the NLSM and YM theories at any

multiplicity were also established.

In this paper, we study how the CCK duality extends to EFTs.1 More precisely, we

consider EFT corrections of increasing mass dimension to the YM and GBAS theories.

This analysis leads to a set of new relations between the tree-level amplitudes of the GBAS

and YM EFTs. These relations are summarized below.

In the YM EFT, the first higher-dimensional operator we consider involves three field-

strength tensors, F 3. We show that the dimension-six EOM it induces is mapped to the

EOMs of the dimension-four GBAS theory, at the level of single flavor traces.2 With this

extended CCK duality at hand, we derive a relation between the tree-level amplitudes of the

YM+F 3 and GBAS theories (solid red arrow in Fig. 1), which is realized by an additional

replacement rule for flavor structures in terms of kinematic factors. This result (as well

as the ones below) have been confirmed by comparison against explicit Feynman diagram

calculations of the relevant amplitudes. Interestingly, the same single-trace dimension-four

GBAS amplitudes which map to dimension-four YM amplitudes also encode dimension-six

ones.

This mapping moreover allows us to derive a closed-form formula for the BCJ numer-

ators of the YM+F 3 theory, at dimension six and any multiplicity. These numerators are

valid in D space-time dimensions and are manifestly gauge invariant on all legs.

At dimension eight, we focus on the operators that satisfy the traditional CK duality.

We show that they lead to EOMs that are CCK-dual to those of a dimension-six exten-

sion of the GBAS theory, which is obtained by the dimensional reduction of the YM+F 3

theory from D + n to D dimensions. The duality requires a correlated treatment of single

and double traces of flavor structures in the GBAS theory. Note that double-trace am-

plitudes were not involved in the CCK duality below dimension eight. We also observe

that the correlation between dimension-six and dimension-eight coefficients demanded to

satisfy the regular CK duality are at the origin of cancellations that make the CCK dual-

ity possible. Leveraging this CCK duality, we obtain two different amplitude relations at

any multiplicity. One expresses dimension-eight YM amplitudes in terms of dimension-six

single-trace and dimension-four double-trace GBAS amplitudes (solid blue arrow in Fig. 1),

while the other relation requires only dimension-four double-trace GBAS amplitudes (after

exploiting the cancellation illustrated by the lower dashed arrows in Fig. 1). Remarkably,

up to dimension eight, all the tree-level amplitudes of this YM EFT satisfying the regu-

lar CK duality are thus encoded in the renormalizable GBAS theory. This also yields a

straightforward procedure to derive dimension-eight BCJ numerators.

We conjecture a natural extension of the CCK duality beyond dimension eight, in-

volving an increasing number of flavor traces. In particular, explicit calculations up to six

1Following a different approach, the CK duality in off-shell currents of the YM EFT was previously

studied in [72].
2In this paper, we do not make use of the ordering with respect to the color indices shared by the scalar

and the gluon. Therefore, in what follows, “traces” always implicitly refer to the flavor structures whose

indices are only carried by the scalar.
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points show that the new amplitude relations discussed above extend to the full towers of

higher-derivative operators defined by the (DF )2+YM theory and its GBAS analog (solid

green arrow and beyond in Fig. 1). Various other explicit checks are performed.

The rest of this paper is organized as follows. In Sec. 2, we first review the computation

of tree-level scattering amplitudes from EOMs before turning to the CCK duality of Cheung

and Mangan [67]. We then extend this duality to the EFT domain: Sec. 3 addresses

YM+F 3 at dimension six, while the dimension-eight order is investigated in Sec. 4. In

Sec. 5, we then study the CCK duality for the (DF )2+YM theory. We conclude in Sec. 6.

2 Review of the covariant color-kinematics duality

We start by reviewing how to solve EOMs perturbatively and how to extract tree-level

scattering amplitudes from the resulting solutions [73]. After that, we review the CCK

duality at the renormalizable level from [67].

2.1 Tree-level scattering amplitudes from equations of motion

For simplicity, let us consider a massless real scalar field φ with a quartic potential. The

discussion below readily generalizes to other theories. The corresponding Lagrangian reads

L =
1

2
∂µφ∂µφ− λ

4!
φ4 + Jφ , (2.1)

from which the following EOM is obtained,

2φ+
λ

3!
φ3 = J . (2.2)

The source J(x) is non-dynamical and probes the response of the theory to an external

perturbation. At a given order O(Jn) in the source, one can recursively compute the

solution φ(n) to the EOM in perturbation theory:

φ(1)(x) =

(
1

2
J

)
(x) = −

∫
d4y

d4p

(2π)4
eip·(x−y)

p2
J(y) ,

φ(2)(x) = 0 ,

φ(3)(x) = − λ

3!

(
1

2
φ(1)3

)
(x) =

λ

3!

∫
d4y

d4p

(2π)4
eip·(x−y)

p2
φ(1)3(y)

= − λ

3!

∫ ( 3∏

i=1

d4yi
d4pi

(2π)4

)
1

(p1 + p2 + p3)2

(
3∏

i=1

eipi(x−yi)

p2i
J(yi)

)
,

(2.3)

and so on. In Fourier space, φ(p) ≡
∫
d4x e−ip·xφ(x) and one finds

φ(1)(p) = −J(p)

p2
,

φ(2)(p) = 0 ,

φ(3)(p) = − λ

3!

∫ ( 3∏

i=1

d4pi

(2π)4

)
δ(4)(p− p1 − p2 − p3)

p2
J(p1)

p21

J(p2)

p22

J(p3)

p23
,

. . .

(2.4)
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Figure 2. Diagrammatic representation of the perturbative solution to the EOM in the λφ4 theory.

These perturbative solutions can be represented in terms of Feynman graphs, as shown in

Fig. 2. The tree-level scattering amplitudes of the theory are then obtained using the LSZ

reduction formula. At n points and for all particles incoming,

A(p1, ..., pn) =

∫ n∏

i=1

(
d4xi

ie−ipi·xi 2xi

(2π)3/2

)
⟨0|Tφ(x1)...φ(xn)|0⟩ . (2.5)

The n-point correlator computed without source is obtained from the one-point function

with a source, ⟨0|φ(xn)|0⟩J , by taking functional derivatives:

⟨0|Tφ(x1)...φ(xn)|0⟩ = (−i)n−1

(
δn−1

δJ(x1)...δJ(xn−1)
⟨0|φ(xn)|0⟩J

) ∣∣∣∣
J=0

, (2.6)

where, at tree-level, ⟨0|φ(xn)|0⟩J is simply the solution to the EOM with the source,

evaluated at the point xn. Following the terminology of [67], we refer to φ(xn) as the root

leg of the corresponding diagrams, and to φ(x1,...,n−1) as the leaf legs. For illustration,

⟨0|Tφ(x1)...φ(x4)|0⟩ = (−i)3
(

δ3

δJ(x1)...δJ(x3)
⟨0|φ(x4)|0⟩J

) ∣∣∣∣
J=0

= (−i)3
δ3φ(3)(x4)

δJ(x1)...δJ(x3)

= −iλ

∫ 4∏

i=1

(
d4pie

−ipi·xi

(2π)4p2i

)
(2π)4δ(4)

(∑

i

pi

)
,

(2.7)

and

A(p1, ..., p4) =

∫ 4∏

i=1

(
d4xi

−ieipi·xi 2xi

(2π)3/2

)
⟨0|Tφ(x1)...φ(x4)|0⟩ = −i

λ

(2π)2
δ(4)

(∑

i

pi

)
,

(2.8)

consistently with the Feynman rules of the Lagrangian in Eq. (2.1). In the rest of this

paper, we write the amplitudes without momentum-conserving delta function and powers

of 2π or i.

Before closing this section, let us emphasize a point used later on: non-linear terms

depending on the source in the EOMs are irrelevant on shell. For concreteness, let us add

the term Jφ to the right-hand side (r.h.s.) of the EOM in Eq. (2.2). This has the effect of

turning on φ(2),

φ(2)(x) =
1

2

(
Jφ(1)

)
(x) =

∫
d4y

d4p

(2π)4
eip·(x−y)

p2
J(y)

∫
d4z

d4q

(2π)4
eiq·(y−z)

q2
J(z) . (2.9)
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pµ

Figure 3. Portion of diagram arising from a non-linear term Jφ3 involving the source J in the

equation of motion of φ. It leads to diagrams proportional to p2, where pµ is the momentum flowing

through the source.

Differentiating with respect to J(x2) and J(x3) and applying the LSZ formula, one finds

−iA(p1, p2, p3) = p22 + p23 = 0 , (2.10)

i.e. the new term in the EOM has no effect on the on-shell scattering amplitudes. More

generally, terms of the form Jφn in the EOM would generate subdiagrams like that of

Fig. 3, which are proportional to the (vanishing) square of the momentum flowing through

the source.

2.2 Covariant color-kinematics duality between GBAS and YM

We now turn to a review of the CCK duality introduced by Cheung and Mangan [67]. It

establishes maps between EOMs of different theories and, therefore, between their tree-level

scattering amplitudes.

Let us consider the Yang-Mills theory example, which will be most useful for our

purposes. Starting from the Yang-Mills (YM) Lagrangian with a source Ja
µ(x),

Lym = − 1

4F a
µν

F aµν +AaµJa
µ , (2.11)

where the field-strength tensor is F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + g fabcAb

µA
c
ν , one derives the usual

YM EOM,

DµF a
µν = −Ja

ν , (2.12)

where DµF
a
νρ ≡ ∂µF

a
νρ + g fabcAb

µF
c
νρ and fabc are group structure constants which verify

the Jacobi identity. Upon differentiating the EOM above and using the Bianchi identity,

[67] showed that the following equation can be derived:

D2F a
µν + g fabcF b

ρ[µF
cρ
ν] = −D[µJ

a
ν] , (2.13)

where we defined X[µν] ≡ Xµν − Xνµ, and where DJ could be replaced by ∂J without

affecting the on-shell scattering amplitudes, as explained above. This equation has the

crucial property that the space-time indices of the gluon field strength are not contracted

with those of covariant derivatives. Since D2 = 2+non-linear interaction terms dependent
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on Aµ and Fµν , given a solution Aµ and Fµν at a given order in the source, one can solve

for Fµν at the next order by simply inverting 2, without making the relation between Fµν

and Aµ explicit. Consequently, one can reinterpret Eq. (2.13) as describing the propagation

of six flavors of colored scalars

λϕaA ↔ F a
µν , (2.14)

with a cubic interaction. (We have included a factor of λ in accordance with dimensional

analysis.) Moreover, that cubic interaction can be expressed in terms of a structure constant

fABC , to be constructed below, which verifies the Jacobi identity. Therefore, the scalars

form a bi-adjoint multiplet whose first symmetry group has been gauged. Below, we refer

to those two groups as color and flavor, respectively. This theory is known as the gauged

bi-adjoint scalar theory (GBAS). Its Lagrangian reads

Lgbas = Lym +
1

2
DµϕaADµϕ

aA − g λ

3
fabcfABCϕaAϕbBϕcC + JaAϕaA (2.15)

where λ has mass dimension one and leads to the following EOM

D2ϕaA + g λ fabcfABCϕbBϕcC = JaA , (2.16)

from which we can read off the map of the scalar source into the gluon one,

λJaA ↔ −D[µJ
a
ν] , (2.17)

as well as the map for the flavor structure constant in terms of the space-time metric,

fA1A2A3 ↔ −1

4
ην3][µ1ην1][µ2ην2][µ3 . (2.18)

Having connected the EOMs of the two theories, we can also connect their one-point

functions with sources, and therefore their scattering amplitudes. This is however nontrivial

given i ) that the bi-adjoint scalar still interacts with gluons, and ii ) that the sources for

both fields are correlated according to Eq. (2.17).

The complication i ) arises since we artificially separated the gluon field and its field

strength. In order to compute scattering amplitudes as sketched in Sec. 2.1, we could use

⟨0|Aa
µ|0⟩J or ⟨0|F a

µν |0⟩J . Both fields interpolate single-gluon states and can be related after

gauge fixing. So using either of them simply changes the differential operators that act on

the nth field in the LSZ reduction formula. For instance, in an axial gauge where qµAa
µ = 0

for an arbitrary reference vector q,

|ga(p, h)⟩ = ϵνhA
a
ν(p)|0⟩ =

iq
[µ
ϵ
ν]
h F

a
µν(p)

2 q · p |0⟩ , (2.19)

for a gluon of momentum p, helicity h and color a. Reference [67] proposes to use the field

strength, related to ⟨0|ϕaA|0⟩J in the dual theory through the CCK replacement rule,

λ
[
⟨0|ϕaA|0⟩J

]
GBAS CCK

[
⟨0|F a

µν |0⟩J
]
YM

, (2.20)
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which we make explicit below. Differentiating with respect to sources, this implies a dual-

ity between GBAS scattering amplitudes involving at least one scalar and YM amplitudes.

Importantly, one should note that the computation of ⟨0|ϕaA|0⟩J is affected by the fact ii ):

in the perturbative solution for ϕaA, the same source generates both gluons and scalars.

Therefore, n-point scattering amplitudes of gluons in the YM theory are mapped to com-

binations of amplitudes with different numbers of scalars in the GBAS theory; specifically

2 ≤ m ≤ n scalars and n − m gluons (where we used the fact that tree-level GBAS

amplitudes with a single scalar are zero).

Although the GBAS scalar EOM of Eq. (2.16) is in one-to-one correspondence with the

YM field strength EOM of Eq. (2.13), the gluon EOMs in the two theories are different.

The YM gluon propagates according to Eq. (2.12), whereas the GBAS gluon EOM in

principle includes a scalar current of the form ϕDϕ. However, this term can be ignored

when restricting to single-trace GBAS amplitudes calculated from ⟨0|ϕaA|0⟩J , in which case

the two gluon EOMs effectively become identical. The CCK duality can thus be phrased

as a map from GBAS amplitudes with only a single trace of flavor group generators to YM

amplitudes.

What happens in practice is best described through an example, so let us focus on the

three-point gluon amplitude Aym(1, 2, 3). It can be computed from the three-point corre-

lator ⟨0|TAa
µ(x)A

b
ν(y)F

c
ρσ(z)|0⟩, using the usual LSZ reduction formula with the exception

that the third polarization should be replaced by iq
[ρ
ϵ
σ]
3 /(2 q ·p3). That correlator can itself

be derived from ⟨0|F c
ρσ(z)|0⟩J , upon differentiation with respect to Ja

µ(x) and Jb
ν(y), before

fixing all sources to zero. By the CCK duality of the EOMs, this is equivalent to acting on

⟨0|ϕcC |0⟩J . Now, which amplitudes of the regular gauged bi-adjoint theory are generated

by ⟨0|ϕcC |0⟩J? We have that

(−i)
δ

δJbν(y)
⟨0|ϕcC(z)|0⟩J =

∫
d4y′

[
δJb′ν′(y′)

δJbν(y)
⟨0|Ab′

ν′(y
′)ϕcC(z)|0⟩J +

δJb′B(y′)

δJbν(y)
⟨0|ϕb′B(y′)ϕcC(z)|0⟩J

]
(2.21)

where, ignoring non-linear terms involving the source,

δJb′ν′(y′)

δJbν(y)
= δb

′
b δ

ν′
ν δ(4)(y − y′) ,

δJb′B(y′)

δJbν(y)
= −δb

′
b δ

B,ρσ∂[ρησ]νδ
(4)(y − y′) . (2.22)

The second equation here arises from the relation between the sources in Eq. (2.17) and

results in an external polarization of the scalars given by −ip[µϵν]. Differentiating once

more, using the LSZ formula and matching to GBAS amplitudes, one finds

Aym(g1, g2, g3) =
iδαβA3

q[αϵ3β]

2 q · p3

[
δµνA1

δρσA2

(
−ip1[µϵν]1

) (
−ip2[ρϵσ]2

)
Agbas(ϕ

A1
1 , ϕA2

2 , ϕA3
3 )

+
{
δρσA2

(
−ip2[ρϵσ]2

)
Agbas(g1, ϕ

A2
2 , ϕA3

3 ) + (1 ↔ 2)
}

+Agbas(g1, g2, ϕ
A3
3 )

]
,

(2.23)
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where the last amplitude on the r.h.s. actually vanishes.

In general, an explicit restriction to single traces has to be performed on the GBAS

side. However, the amplitudes on the r.h.s. of Eq. (2.23) only involve a single trace of

flavor generators and can therefore be kept. Actually, one obtains simpler formulae by

making those flavor factors explicit, i.e. using flavor-ordered GBAS amplitudes. Let us

look at the first line of Eq. (2.23) above: A(ϕA1
1 , ϕA2

2 , ϕA3
3 ) comes with a factor of λ fA1A2A3

defined in Eq. (2.18). Contracting with the momentum and polarization factors, one finds

−4iTr(F1F2F̃3) where

Fµνi ≡ p
[µ
i ϵ

ν]
i , F̃µνi ≡ − q

[µ
ϵ
ν]
i

2 pi · q
, Tr(Oµν) ≡

1

2
ηµνOµν . (2.24)

Using the antisymmetry of
(∼)

F , one can rewrite −4iTr(F1F2F̃3) = −2iTr(F1F2F̃3 − F2F1F̃3)

and compare with the usual relation, fA1A2A3 = −2iTr(TA1TA2TA3 − TA2TA1TA3). The

flavor factor of the term on the second line of Eq. (2.23) is δA2A3 = −1
4η

ν3][µ2ην2][µ3 , so that

we find 2Tr(F2F̃3), to be compared with δA2A3 = 2Tr(TA2TA3). We can therefore rewrite

Eq. (2.23) as

Agbas(ϕ
A1
1 , ϕA2

2 , ϕA3
3 ) +

{
Agbas(g1, ϕ

A2
2 , ϕA3

3 ) + (1 ↔ 2)
}

CCK
Aym(g1, g2, g3) ,

(2.25)

where the CCK replacement rule on the flavor factors is

λn−2Tr(TA1TA2 ...TAn)
CCK

Tr(F1F2...F̃n) . (2.26)

In terms of flavor-ordered amplitudes, this means

Aym
3 = Aϕϕϕ[123]F[123̃] +Aϕϕϕ[213]F[213̃] +Aϕgϕ[13]F[13̃] +Agϕϕ[23]F[23̃] , (2.27)

where we used the shorthand notation F[σñ] ≡ Tr(Fσ1 ...Fσ|σ| F̃n) with σ being the per-

mutation of the ϕ-scalar subset of the (1, ..., n − 1) particles. The flavor-ordered GBAS

amplitudes on the r.h.s. have [σn] arguments specifying the flavor traces that have been

isolated (along with powers of λ), and have subscript making explicit which of the particles

are scalars and gluons.

Diagrammatically, the CCK map for this three-point amplitude (or one-point function

expanded to O(J2)) is thus the following:

ϕϕ
+

D2ϕ FF
+

D2F
CCK

GBAS YM

,

(2.28)

where the vertices are schematically labeled by the terms which generate them in the

YM-field-strength and GBAS EOMs of Eq. (2.13) and Eq. (2.16). Dashed lines represent ϕ

scalars, solid ones represent the YM field strength F , while wavy ones are gluons. Note that
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on the r.h.s. only pure-gluon amplitudes are generated (external gluons are interpolated by

both Aµ and Fµν), while on the left-hand side (l.h.s.) we start from pure-scalar and mixed

scalar-gluon amplitudes. The EOM evolution of the fields is pictured in these diagrams

from left to right, from the initial root leg to the final leaf legs (or sources). Starting from

a scalar root leg, the restriction to the single-trace sector of the GBAS theory is achieved

by allowing scalar legs to branch into scalars and gluons, while forbidding gluons to branch

back into scalars.

Extending the above to n-point scatterings, [67] found

Aym,n =
∑

Φ∈P+(1...n−1)

∑

σ∈S(Φ)

Agbas[σn]F[σñ] , (2.29)

where the first sum runs over all different choices of m − 1 scalars (with 2 ≤ m ≤ n),

captured by the non-empty power set P+(1...n−1), which is the set of all non-empty subsets

of (1, ..., n−1), while the S(Φ) set captures all permutations of Φ. We stress once more

that factors of the dimensionful coupling λ are taken out of the above formula through the

definition of the flavor-ordered amplitude, as required for a correct matching of amplitude

dimensions. The same applies to all formulae of that sort in what follows.

2.3 Derivation of Yang-Mills numerators

The CCK duality as presented in Eq. (2.29) derives YM amplitudes from GBAS ones with

fewer gluons and more scalars, but not quite from pure-scalar amplitudes yet. Conversely,

it is also known how to relate amplitudes in the opposite direction: namely to obtain GBAS

amplitudes with fewer gluons and more scalars, or to get GBAS amplitudes from YM ones,

through the so-called transmutation operators of Ref. [74]. Combining both techniques,

Cheung and Mangan [67] derived a closed-form expression for the BCJ numerators of YM

at any multiplicity in the trace basis. These allow for an explicit decomposition of gluon

amplitudes in terms of single-trace pure-scalar GBAS (i.e. BAS) amplitudes,

Aym,n =
∑

σ∈S(1...n−1)

Abas
ϕn [σn]K(4)[σn] . (2.30)

The numerator superscript (4) distinguishes it from analogous objects derived below at

higher EFT order. From these trace-basis numerators K(4)[σn] with any ordering σ, one

can straightforwardly obtain BCJ numerators for the YM theory (in the adjoint basis).3

They are therefore directly relevant for the regular CK duality and the BCJ approach to

the double copy.

Because we will follow the same procedure to derive numerators in the EFT below,

we now review this at three points. Let us consider the expression of the three-point YM

amplitude in terms of the polarization vector ϵi of the gluon i. It has been shown in

[74] that acting with the operator ∂ϵ1·ϵ3 on that amplitude generates a GBAS amplitude

3The procedure is identical to the one through which one generates adjoint color structures from traces of

color generators [6, 40, 75]. In this analogy, K(4) plays the role of a trace and the resulting BCJ numerators

have the required adjoint-like properties. Note that the trace-basis numerators K(4) are more redundant

than regular BCJ ones, since certain trace-like structures give rise to vanishing adjoint-like objects.
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according to the transmutation relation −2 ∂ϵ1·ϵ3Aym,3 = Agbas
ϕgϕ [13]. Acting now with this

operator on both sides of Eq. (2.27), we can solve for the mixed scalar-gluon amplitude in

terms of a pure-scalar amplitude,

Agbas
ϕgϕ [13] = Abas

ϕ3 [123] G[1, 2, 3] , (2.31)

where

G[σ, τ, ρ] ≡ −(pσ)µ(Fτ )
µν qν

(pσρ)α qα
, (2.32)

with q an arbitrary reference momentum, pσ = pσ1 + ...+ pσ|σ| and

(Fσ)
µν = (Fσ1)

µ
µ1
(Fσ2)

µ1
µ2
...(Fσ|σ|)

µ|σ|−1ν . (2.33)

Inserting this back into Eq. (2.27), we obtain the YM amplitude in terms of pure-scalar

GBAS amplitudes and, hence, the three-point numerator:

K(4)[123] = F[123̃] + G[1, 2, 3] F[13̃] . (2.34)

The other numerator, K(4)[213], can be derived in a similar way, or it can simply be

obtained as a permutation of the particle labels in the above numerator.

3 Effective-field-theory extension to dimension six

The derivation above relies on the precise form of the EOMs, i.e. of the interactions. It is

therefore natural to ask whether these can be modified while maintaining the CCK duality.

One possible modification is to deform the action by the addition of higher-dimensional

operators, while keeping the spectrum untouched. It is known that a regular CK duality

exists at least for some of those deformations, including the lowest-order dimension-six

correction to the Yang-Mills theory consisting of a trace of three field-strength tensors [43].

In this section, we thus consider the O(1/Λ2) amplitudes of such a YM+F 3 theory:4

L(6)
ym = −1

4
F a
µνF

aµν − g

3Λ2
fabcF a ν

µ F b ρ
ν F c µ

ρ +Aa
µJ

aµ
A . (3.1)

where Λ is an energy scale. We will find that a CCK duality is still present, which will be

expressed in terms of scattering amplitudes at the end of Sec. 3.1. In terms of one-point

functions in the presence of sources, it reads
[
⟨0|Aa

µ|0⟩(4,1)J

]
GBAS CCK

[
⟨0|Aa

µ|0⟩(6)J

]
YM

, (3.2)

where
[
⟨0|χ|0⟩(m[,n])

J

]
Th.

denotes the one-point function of the field χ computed in the

theory Th. at mass dimension m, in the n-trace sector (only for the GBAS theory). This

duality therefore relates the renormalizable GBAS to the dimension-six YM+F 3 effective

field theory. The subscript J indicates that the one-point function is computed in the

presence of sources and, in the GBAS theory, the two sources are correlated as in Eq. (2.17).

Finally, the CCK map is extended to a new treatment of flavor traces, different from that

of Eq. (2.27), which is presented below.

4To avoid confusion with the terminology used there, we stress that the F 3 operator is not related to

the F 3 replacement rule of [67], where higher-derivative interactions are not considered.
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3.1 Covariant color-kinematics duality between GBAS and YM+F 3

To establish this CCK duality, we inspect the EOM of the YM+F 3 theory,

DµF a
µν +

g

Λ2
fabc F b

µρDνF
c,µρ = −Ja

ν , (3.3)

derived using the Bianchi identity, dropping non-linear terms where sources multiply other

fields, and truncating to O(1/Λ2) by using the renormalizable YM EOM of Eq. (2.12) in

terms that are already suppressed by 1/Λ2.

As field-strength and covariant-derivative indices are not contracted together in the

second term of the l.h.s., this EOM can be mapped to the gluon EOM in the GBAS theory,

DµF a
µν + g fabc ϕbADνϕ

cA = −Ja
ν , (3.4)

through the same replacement as in the previous section, F a
µν ↔ λϕaA, but with the notable

difference that the field strength in the first term, DµF a
µν , does not get mapped. Instead,

the variable of interest in this term remains the gluon field Aµ and not Fµν . The EFT

power counting makes this partial map consistent, when solving the EOM perturbatively

in J and in 1/Λ2 as follows. Denoting F (d) the solution at order O
(
1/Λd−4

)
, the EOM of

Eq. (3.3) can be rewritten as

DµF (6)a
µν +

g

Λ2
fabc F

(4)b
αβ DνF

(4)c,αβ = 0 ,

DµF (4)a
µν = −Ja

ν .
(3.5)

We do not consider F (d>6) since we have dropped terms of order O
(
1/Λ4

)
when deriving

Eq. (3.3). Following the steps of the previous section, we can therefore interpret F (4) as

a scalar propagating in a gluon background, while considering F (6) as the field-strength

tensor of that gluon.5 The EOM of F (4) can then be rewritten as

D2F (4)a
µν + g fabcF

(4)b
ρ[µ F

(4)cρ
ν] = −D[µJ

a
ν] , (3.6)

just as in the renormalizable case discussed in Sec. 2.2.

Thanks to this duality between the gluon EOM in YM+F 3 and the gluon EOM in

GBAS (Eq. (3.3) and Eq. (3.4)), YM+F 3 amplitudes are therefore encoded in GBAS ones.

To be precise and as anticipated in Eq. (3.2), the EFT power counting implies that the

relevant GBAS amplitudes are those obtained from the single-trace part of ⟨0|Aa
µ|0⟩J with

at least two scalars. This means that n-gluon amplitudes in YM+F 3 are mapped to

combinations of amplitudes with 2 ≤ m ≤ n − 1 scalars and n − m ≥ 1 gluon(s). We

stress here the difference with Sec. 2.2, where the relevant GBAS object is the single-trace

5One may wonder why we do not also try to interpret F (6) as a scalar. It turns out that manipulating

the dimension-six gluon EOM of Eq. (3.3) as done to obtain Eq. (2.13) leads to the following EOM for F (6),

D2F a
µν + fabcF b

ρ[µF
cρ
ν] − g

Λ2
fabc

(
fbdeF d

µνF
e
ρσF

cρσ +D[µF
cρσDν]F

b
ρσ

)
= −D[µJ

a
ν] ,

which cannot easily be recast as a scalar EOM because of the presence of covariant derivatives with uncon-

tracted indices.
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part of the scalar one-point function ⟨0|ϕaA|0⟩J , and where the relevant amplitudes have

2 ≤ m ≤ n scalars and n−m ≥ 0 gluons.

To relate the GBAS amplitudes to pure-gluon ones, the external polarizations are again

determined by Eq. (2.17) in the same way as in the previous section. Similarly to Eq. (2.26),

the flavor traces are replaced by combinations of momenta and polarization vectors,

λn−2Tr(TA1TA2 ...TAn)
CCK

1

Λ2
Tr(F1F2...Fn) , (3.7)

but F̃ no longer appears since the generating correlator ⟨0|Aa
µ|0⟩J now features the gluon

field. The explicit factor of 1/Λ2 clearly shows that this CCK duality generates higher-

derivative interactions.

It thus follows that the n-point dimension-six YM+F 3 amplitude is encoded in single-

trace GBAS amplitudes through

A(6)
ym,n =

1

Λ2

∑

Φ∈P++(1...n−1)

∑

σ∈S(Φ)/Z|Φ|

Agbas[σ] F[σ] . (3.8)

where F[σ] ≡ Tr(Fσ1 ...Fσ|σ|). This equation is similar to Eq. (2.29), with important differ-

ences arising from the fact that the nth particle is now a gluon. (Note that no new GBAS

amplitude is needed beyond those appearing in Eq. (2.29), particle relabeling is sufficient.)

Since at least two scalars are required in the GBAS amplitudes, there appears the set of

all subsets of (1...n−1) containing at least two elements, denoted P++(1, ..., n−1). In addi-

tion, the set S(Φ)/Z|Φ| contains all permutations that result in inequivalent traces (using

cyclicity). The three-point CCK map at dimension-six is for instance the following:

ϕDϕ FDFCCK

GBAS YM

dim-4 gluon and vertex

dim-6 gluon and vertex

dim-4 gluon field strength

dim-4 bi-adjoint scalar

.

(3.9)

We emphasize the remarkable fact that the higher-derivative amplitudes of YM+F 3

are captured by the GBAS amplitudes without higher-derivative interactions. For example,

at three and four points, Eq. (3.8) is written as

A(6)
ym,3 =

1

Λ2
Agbas

ϕϕg [12]F[12] , (3.10)

and

A(6)
ym,4 =

1

Λ2

(
Agbas

ϕϕϕg[123]F[123] +Agbas
ϕϕϕg[132]F[132]

+Agbas
ϕϕgg[12]F[12] +Agbas

ϕgϕg[13]F[13] +Agbas
gϕϕg[23]F[23]

)
. (3.11)

The diagrams that enter the GBAS calculation at these orders and their YM analogues are

illustrated in Fig. 4.
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GBAS: ;

YM: ;

Figure 4. Diagrammatic representation of the perturbative solution to the gluon EOM in the

YM+F 3 theory at three and four points, using the field-strength tensor as an independent function.

Blue lines correspond to EOM solutions at dimension six and end at blue vertices, indicating

dimension-six interactions.

3.2 Derivation of YM+F 3 numerators

Equation (3.8) derives YM+F 3 amplitudes from a sum of GBAS amplitudes. Exactly as

in Sec. 2.3, the transmutation operation can be used to reduce the latter to BAS ampli-

tudes (i.e. pure-scalar single-trace tree-level GBAS amplitudes) and hence isolate the BCJ

numerators in the trace basis.

For example, at three points, we use Eq. (3.10) and a symmetrized version of Eq. (2.31),

namely

Agbas
ϕϕg [12] =

1

2
Agbas

ϕ3 [231] G[2, 3, 1] +
1

2
Agbas

ϕ3 [321] G[3, 2, 1] , (3.12)

to conclude that

K(6)[123] =
1

2Λ2
F[21]G[2, 3, 1] . (3.13)

The derivation of BCJ numerators at any multiplicity also follows that of [67], with an

extra symmetrization that relates to the fact that the root leg is a gluon rather than a

scalar in the CCK duality at dimension six. The resulting closed-form expression is

K(6)[12...n] =
1

Λ2

n−2∑

ℓ=1

∑

τ

1

|τ1|+ 1
F[τ1ℓ]

|τ |∏

i=2

G
[
(τ1...τi−1)<τi , τi, (τ1...τi−1)>τiℓ

]
, (3.14)

and permutations thereof, with the second sum running over τ ∈ part(ℓ+1, ..., n, 1, ..., ℓ−1).

This expression relies on the notation of [67] with small modifications that we discuss now.

The function part(σ) is defined as the set of all ordered partitions of the set σ into subsets

whose elements follow the ordering of σ. For example, 1 should appear on the right of n

if both appear in the same subset of a partition. We also require that the first subset of

every partition (i.e. τ1) contains the first element of σ but never n. Finally, the greater-

than symbol > and less-than symbol < also refer to the ordering (ℓ+ 1, ..., n, 1, ..., ℓ− 1).

Namely, (τ1...τi−1)<τi are the elements in τ1 ∪ ...∪ τi−1 on the left of the first element of τi
in (ℓ+ 1, ..., n, 1, ..., ℓ− 1), and (τ1...τi−1)>τi are the elements in τ1 ∪ ... ∪ τi−1 on the right

of the first element of τi.
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At lowest orders, the part function is

part(23) = {2, 3}
part(234) = {{23, 4}, {2, 34}, {2, 3, 4}, {2, 4, 3}}
part(341) = {{31, 4}, {3, 41}, {3, 4, 1}, {3, 1, 4}} , (3.15)

such that Eq. (3.14) for n = 4 yields

Λ2K(6)[1234] =
1

3
F[231]G[23, 4, 1] +

1

3
F[312]G[3, 4, 12]

+
1

2
F[21] (G[2, 34, 1] + G[2, 3, 1]G[23, 4, 1] + G[2, 4, 1]G[2, 3, 41])

+
1

2
F[32] (G[3, 41, 2] + G[3, 4, 2]G[34, 1, 2] + G[3, 1, 2]G[3, 4, 12]) ,

(3.16)

where we remind the reader that F[σ] ≡ Tr(Fσ1 ...Fσ|σ|) and G is defined in Eq. (2.32). We

have cross-checked Eq. (3.8) and Eq. (3.14) against explicit Feynman diagram calculations

in amplitudes with up to seven external particles.

4 Effective-field-theory extension to dimension eight

The YM+F 3 theory of Eq. (3.1) does not satisfy the traditional CK duality up to dimension

eight, i.e. O(1/Λ4). However, the duality can be restored at that order by including a

specific dimension-eight interaction [43], resulting in

L(8)
ym = −1

4
F a
µνF

aµν − g

3Λ2
fabc F a ν

µ F b ρ
ν F c µ

ρ − g2

4Λ4
fabefecdF a

µνF
b
ρσF

cµνF dρσ +Aa
µJ

aµ
A .

(4.1)

In this section, we derive a CCK duality up to O(1/Λ4) between this theory and the

following GBAS theory:

L(6)
gbas =L(6)

ym +
1

2
DµϕaADµϕ

aA − g λ

3
fabcfABCϕaAϕbBϕcC + JaAϕaA

− g2

4
fabefecdϕaAϕbBϕcAϕdB − g

2Λ2
fabefecdF a

µνF
c µνϕbAϕdA , (4.2)

which (except for the ϕ3 interaction) results from the dimensional reduction of L(6)
ym after

projection on the massless modes, where the flavors of bi-adjoint scalars correspond to the

space-time components of the gauge field along the compact manifold. This theory therefore

satisfies the BCJ relations for all flavor structures [76], i.e. beyond the single-trace order (see

also [77, 78]). However, we have dropped all double-trace operators appearing at dimension

six in the Lagrangian of Eq. (4.2), consistently with the EFT power counting of the CCK

replacement rule in Eq. (3.7). We will show that this rule generalizes to dimension eight, so

that the CCK duality combines double-trace dimension-four and single-trace dimension-six

GBAS amplitudes to generate pure-gluon dimension-eight amplitudes. The resulting CCK
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relation, expressed in terms of one-point functions and using the notation introduced in

Eq. (3.2), reads
[
⟨0|Aa

µ|0⟩(6,1)J + ⟨0|Aa
µ|0⟩(4,2)J

]
GBAS CCK

[
⟨0|Aa

µ|0⟩(8)J

]
YM

. (4.3)

The corresponding relation in terms of scattering amplitudes and the explicit treatment of

double traces is detailed in Sec. 4.2.

4.1 Covariant color-kinematics duality between GBAS and YM+F 3+F 4

At O(1/Λ2), it was found in the previous section that the gluon EOM of the YM EFT can

be mapped onto the gluon EOM of the GBAS theory. To extend this duality one order

higher, we compare the following EOM in the pure-gluon theory at O(1/Λ4),

DµF a
µν +

g

Λ2
fabcF b

µρDνF
cµρ + 4

g2

Λ4
fabefecdF c

µνD
µF b

ρσF
dρσ = −Ja

ν , (4.4)

with the EOMs in the GBAS theory up to O(1/Λ2),

DµF a
µν+gfabcϕbADνϕ

cA +
g

Λ2
fabcF b

µρDνF
cµρ

+ 4
g2

Λ2
fabefecdF c

µνD
µϕbAϕdA = −Ja

ν , (4.5)

D2ϕaA+λfabcfABCϕbBϕcC − g2fabefecdϕbBϕcBϕdA

− g2

Λ2
fabefecdF b

µνF
cµνϕdA = JaA . (4.6)

To derive the EOMs in this form, which is suggestive of the CCK duality, we used the

lower-order EOMs iteratively in combination with the Jacobi identity. In particular, the

dimension-eight term in Eq. (4.4) receives contributions from iterations at dimension six,

indicating an intricate interplay between different mass dimensions. We comment further

on this point in Sec. 4.5.

At the order we are considering, we can decompose the field strength of the pure-gluon

theory as F = F (4) + F (6) + F (8), where, as previously, F (d) refers to the field strength

solving the gluon EOM at O(1/Λd−4). As in Sec. 3.1, we expand F (6) and F (8) in terms

of gluons, whereas only F (4) is interpreted as a scalar and taken to evolve through the

field-strength EOM of Eq. (2.13), which we repeat here:

D2F (4)a
µν + g fabcF

(4)b
ρ[µ F

(4)cρ
ν] = −D[µJ

a
ν] . (4.7)

We start by inspecting the dimension-eight term in the pure-gluon EOM in Eq. (4.4),

DµF a
µν = −4

g2

Λ4
fabefecdF c

µνD
µF b

ρσF
dρσ + ... . (4.8)

For solutions up to O(1/Λ4), the field strengths on the r.h.s. need only satisfy the renor-

malizable YM EOM. So, at this order, we can actually solve

DµF a
µν = −4

g2

Λ4
fabefecd F c

µν DµF (4)b
ρσ F (4)dρσ + ... , (4.9)
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where F (4) satisfies the renormalizable YM EOM with source J given in Eq. (2.13). We

could have added a superscript (4) to the remaining field strength on the r.h.s. as well, but

as it stands the above has a clear correspondence with the last term (FDϕϕ) of the GBAS

EOM in Eq. (4.5). Indeed, when interpreting the flavor structures in terms of Lorentz

indices as in F a
µν ↔ λϕaA, we know that F (4) maps to ϕ(4) which solves the GBAS EOM

at dimension four with source DJ or, importantly, any EOM like Eq. (4.6) which reduces

to it at O(1/Λ0) and in the single-trace sector. Therefore, the solution to the pure-gluon

theory also solves the following EOM,

DµF a
µν = −4

g2λ2

Λ4
fabefecd F c

µν DµϕbA ϕdA + ... (4.10)

This reproduces the last term of the l.h.s. of Eq. (4.5), up to a factor of λ2/Λ2 which we

set to one, keeping in mind the CCK rule of Eq. (3.7). At the diagrammatic level, this

implies that any GBAS diagram in which a gluon evolves with this dimension-six FDϕϕ

interaction can be mapped to a dimension-eight diagram in the pure-gluon theory, where

the scalar is interpreted as a field strength,

FDϕϕ FDFFCCK

GBAS YM

dim-4 gluon and vertex

dim-6 gluon and vertex

dim-8 gluon and vertex

dim-4 gluon field strength

dim-4 bi-adjoint scalar

.

(4.11)

Besides contributions from this dimension-eight interaction, the solution for ⟨0|Aa
µ|0⟩J

in the pure-gluon theory also involves diagrams with two dimension-six F 3 insertions.

Therefore, the remaining terms in Eqs. (4.4–4.6) need to be compared as well. However,

the F 3 interaction of the pure-gluon theory, which leads to a FDF term in the EOM, seems

to have two counterparts in the gluon EOM of the GBAS theory, namely

gfabcϕbADνϕcA and
g

Λ2
fabcF b

µρD
νF cµρ . (4.12)

Two consecutive6 insertions of FDF in the pure-gluon theory have an immediate analog

in the GBAS theory. At the order we consider, the first insertion of FDF can be written

as an insertion of F (6)D(4)F (4) + F (4)D(4)F (6) + F (4)D(6)F (4), where by definition F (6)

or D(6) creates the ‘branch’ in the diagram which contains the second FDF interaction.7

As in Sec. 3, this branch is in one-to-one correspondence with a GBAS one where FDF

is replaced by ϕDϕ. Therefore, the two FDF insertions in the pure-gluon theory are

6Since the diagrams to calculate ⟨0|Aa
µ|0⟩J from the EOM are read from left to right, there is a clear

ordering in the interactions that occur on the same branch starting from the root leg towards the leaf legs

(i.e. towards the sources).
7By D(6), we refer to the piece of the covariant derivative containing a gluon at order O(1/Λ2).
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equivalent in the GBAS theory to an insertion of FDF followed by that of ϕDϕ,

FDF

ϕDϕ

FDF

FDF

CCK

GBAS YM

. (4.13)

At four points, Eqs. (4.11) and (4.13) capture all possibilities and therefore establish

a map between the amplitudes. However, in general, the GBAS theory contains other

diagrams involving the following terms of the scalar EOM of Eq. (4.6),

− g2

Λ2
fabefecdF b

µνF
cµνϕdA and − g2fabefecdϕbBϕcBϕdA . (4.14)

These have no direct interpretation in the pure-gluon EOM. However, we find that the

tree amplitudes they give rise to, respectively at the dimension-six and double-trace levels,

are related and can cancel each other. This possibility is suggested by the form of the

terms in Eq. (4.14). In the first dimension-six FFϕ term, the field strengths can again be

taken to be dimension-four ones F (4) which are equivalent to λϕ scalars under the CCK

duality. Up to a factor of λ2/Λ2, which we set to one, the two terms therefore become

identical. By including an additional relative sign between the single- and double-trace

CCK replacement rules (made explicit in the next section), these two contributions can

therefore be canceled against each other,

FFϕ
+

ϕϕϕ
∅

CCK

GBAS YM

. (4.15)

This pattern of cancellations between certain dimension-six single-trace and dimension-

four double-trace contributions turns out to be general. They then also occur in diagrams

where a gluon is emitted from a scalar and branches through the term g
Λ2 f

abcF b
µρD

νF c,µρ

in its EOM. As seen in Sec. 3, this is equivalent to using the term gfabcϕbADνϕcA, leading

to a double-trace diagram,

D2ϕ

FDF

+
D2ϕ

ϕDϕ

∅
CCK

GBAS YM

. (4.16)

Furthermore, when the interactions appear on different ‘branches’ emerging from the

root-leg gluon, all outgoing particles satisfy the dimension-four single-trace EOM at the
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order that we consider. The double-trace diagrams then cancel an overcounting that arises

from exchanging the distinguishable vertices of the ϕDϕ and FDF interactions of the

pure-gluon EOM, leading to an exact equivalence with the pure-gluon diagrams involving

a double insertion of the g
Λ2 f

abcF b
µρD

νF c,µρ term,

ϕDϕ

FDF

2× +

ϕDϕ

ϕDϕ

FDF

FDF

CCK

GBAS YM

.

(4.17)

Eventually, using Eq. (4.3) and the appropriate extension of the CCK duality to double

traces, one can effectively retain diagrams in which one branch contains first the interaction
g
Λ2 f

abcF b
µρD

νF cµρ and then gfabcϕbADνϕcA as in Eq. (4.13), as well as diagrams in which

the two interactions occur on different branches as in Eq. (4.17), without degeneracy.

The different cases discussed above correspond to all possibilities at any multiplicity,

proving the validity of our CCK procedure at dimension eight. For illustration, we display

all the five-point diagrams of both the YM+F 3+F 4 and GBAS theories in App.A.

4.2 Explicit CCK replacement rules for scattering amplitudes

As argued above, the CCK duality at dimension eight requires the cancellation of contribu-

tions from the O(1/Λ0) double-trace sector against some of the O(1/Λ2) single-trace ones.

At the level of amplitudes, a relative factor of −1/Λ2 is therefore necessary between the

single- and double-trace replacements rules,

λn−2Tr(TA1 ...TAn)
CCK

1

Λ2
Tr(F1...Fn) ,

λn+m−4Tr(TAi1 ...TAin ) Tr(TAj1 ...TAjm )
CCK

− 1

Λ4
Tr(Fi1 ...Fin) Tr(Fj1 ...Fjm) ,

(4.18)

This generalizes the dimension-six rule of Eq. (3.7) to dimension eight and leads to the

following formula for YM+F 3+F 4 amplitudes:

A(8)
ym,n =

1

Λ2

∑

Φ∈P++(1...n−1)

∑

σ∈S(Φ)/Z|Φ|

A
(6)
gbas[σ] F[σ]−

1

Λ4

∑

Φ,Φ̄

∑

σ,σ̄

A
(4)
gbas[σ|σ̄] F[σ] F[σ̄] ,

(4.19)

where the sums in the second term run over (Φ, Φ̄) ∈ P++(1...n−1) with Φ∩ Φ̄ = ∅,Φ < Φ̄

(in some ordering to avoid double counting) and σ ∈ S(Φ)/Z|Φ| and similarly for σ̄. In

words, these simply span all different double-trace amplitudes with the nth particle being

a gluon. It is then relevant to note that the double-trace amplitudes A
(4)
gbas[σ|σ̄] require a

minimum of four scalar particles. Similarly, the amplitudes A
(6)
gbas[σ] are zero when there

is only one external gluon. We have explicitly confirmed Eq. (4.19) up to six points against

Feynman diagram calculations.
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This formula is best exemplified at lowest multiplicities:

A(8)
ym,4 =

1

Λ2

(
A

(6)
ϕϕgg[12] F[12] +A

(6)
ϕgϕg[13] F[13] +A

(6)
gϕϕg[23] F[23]

)
(4.20)

A(8)
ym,5 =

1

Λ2

(
A

(6)
ϕϕggg[12] F[12] + ...+A

(6)
ggϕϕg[34] F[34]

+A
(6)
ϕϕϕgg[123] F[123] + ...+A

(6)
gϕϕϕg[243] F[243]

)
(4.21)

− 1

Λ4

(
A

(4)
ϕϕϕϕg[12|34] F[12] F[34] + ...+A

(4)
ϕϕϕϕg[14|23] F[14] F[23]

)
,

where we have suppressed some permutations of the displayed terms, noting again that the

nth particle is always a gluon. We also emphasize that the orderings refer to the flavor

structures: no color ordering is taken.

4.3 Dimension eight from dimension four

Although high-multiplicity expressions become lengthy, the strategy is simple: compute

all GBAS amplitudes with 2, ..., n− 1 scalars and replace the flavor traces by traces of the

linearized field-strength tensors F. In fact, we can further leverage a CCK duality, implied

by Eq. (4.15) and Eq. (4.16), between dimension-four double-trace GBAS amplitudes and

dimension-six single-trace ones. After making this duality more precise, we will show that

it allows for the derivation of dimension-eight Yang-Mills amplitudes from dimension-four

GBAS amplitudes.

Let us consider a single-trace dimension-six GBAS amplitude. All relevant terms can

be found in Eq. (4.6). In particular, the amplitude is computed from

D2ϕaA + λfabcfABCϕbBϕcC − g2

Λ2
fabefecdF b

µνF
cµνϕdA = JaA , (4.22)

where, in GBAS theory, the source JaA is independent of the gluon source Ja
µ . At the order

considered, it suffices that the gluon field strength F solves the dimension-four pure-gluon

EOM. Then, CCK for the dimension-four YM theory implies that the EOM of Eq. (4.22)

is equivalent to

D2ϕaA + λfabcfABCϕbBϕcC − g2λ̃2

Λ2
fabefecdϕ̃bB̃ϕ̃cB̃ϕdA = JaA ,

D2ϕ̃aÃ + λ̃fabcf̃ ÃB̃C̃ ϕ̃bB̃ϕ̃cC̃ = J̃aÃ ,

(4.23)

where f̃ and J̃ are given by Eq. (2.17) and Eq. (2.18), respectively. The amplitude which

now arises is “twice single-trace”, i.e. it features one trace of ϕ flavor and one trace of ϕ̃

flavor. Now, since ϕ̃ verifies the same EOM as ϕ, we notice that the diagrams relevant

for a given amplitude would precisely be found in the double-trace sector arising from the

following EOM,

D2ϕaA + λfabcfABCϕbBϕcC − g2fabefecdϕbBϕcBϕdA = JaA , (4.24)
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which is nothing but the double-trace part of in Eq. (4.6). The resulting CCK duality is

such that the replacement rule of Eq. (3.7) should only be applied on the trace that does

not involve the root leg.

At the level of the GBAS amplitudes, this implies

A(6)
gbas,n[Φ ∈ P++(1...n)] =

1

Λ2

∑

Φ̄ ∈ P++(1...n)

Φ ∩ Φ̄ = ∅

∑

σ̄∈S(Φ̄)/Z|Φ̄|

A
(4)
gbas,n[Φ|σ̄] F[σ̄] ,

(4.25)

where the amplitudes can be computed from diagrams with any of the scalars in the set Φ

as the root leg. For example,

A
(6)
ϕϕgg[12] = A

(4)
ϕϕϕϕ[12|34] F[34] (4.26)

A
(6)
ϕϕϕgg[123] = A

(4)
ϕϕϕϕϕ[123|45] F[45] (4.27)

A
(6)
ϕϕggg[12] = A

(4)
ϕϕϕϕg[12|34] F[34] +A

(4)
ϕϕϕgϕ[12|35] F[35] +A

(4)
ϕϕgϕϕ[12|45] F[45]

+A
(4)
ϕϕϕϕϕ[12|345] F[345] +A

(4)
ϕϕϕϕϕ[12|354] F[354] (4.28)

where we again emphasize that only flavor orderings are explicitly shown.

Such relations, together with the results of previous sections, lead to two new ways

of generating A(8)
ym from GBAS amplitudes. In the first relation, we conclude that any

amplitude of the considered YM EFT up to mass dimension eight can be obtained from

renormalizable GBAS amplitudes using the CCK duality. The general formula, which we

explicitly confirmed through Feynman diagrammatic computations up to six points, reads

A(8)
ym =

1

Λ4

∑

Φ,Φ̄

∑

σ,σ̄

A
(4)
gbas[σ|σ̄] F[σ] F[σ̄] , (4.29)

where the sums run over Φ, Φ̄ ∈ P++(1...n) with Φ ∩ Φ̄ = ∅, Φ < Φ̄, σ ∈ S(Φ)/Z|Φ| and

σ̄ ∈ S(Φ̄)/Z|Φ̄|. In words, we sum over all different double-trace amplitudes where, in

contrast to before, the nth particle can be of any type.

The second relation is practically less useful, but conceptually appealing, because it

unifies the CCK amplitude relations across mass dimensions. It makes use of the fact that

Eq. (4.25) leaves one flavor trace untouched, so it is still true when this trace is replaced

according to the dimension-four replacement rule of Eq. (2.26). This results in the following

more symmetric amplitude relation,

∑

Φ

(
A(4,1)

Φ +A(4,2)
Φ +A(6,1)

Φ

)

CCK

A(4)
ym,n +A(6)

ym,n +A(8)
ym,n (4.30)

where the sum now runs over all subsets of the external particles, including the nth one,

i.e. Φ ∈ P++(1...n). The superscripts of the GBAS amplitudes refer to mass dimension and

number of flavor trace factors, respectively, while their subscripts indicate which external

particles are scalars (all others being gluons). Following the CCK replacement rule, flavor

traces are replaced according to λ|σ|−2Tr(σ) → F[σ]/Λ2 if the root leg is a gluon (n /∈ σ)
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and according to λ|σ|−1Tr(σn) → F[σñ] if it is a scalar (n ∈ σ), with an overall minus sign

for the double-trace contribution.

It is now tempting to speculate that the relations between the GBAS and YM theories

extend to even higher orders in their EFT expansions, although the cancellations between

single- and higher-trace are not a priori obvious. We explore this in the next section.

4.4 Derivation of YM+F 3+F 4 numerators

As done in Sections 2.3 and 3.2, the r.h.s. of Eq. (4.29) can also be expressed in terms of

(single-trace) BAS amplitudes, allowing for a derivation of the BCJ numerators. In fact,

with the closed form of Yang-Mills numerators at hand [67], the procedure is straightfor-

ward. Starting from the dimension-eight amplitude,

A(8)
ym =

1

Λ4

(
A

(4)
ϕϕϕϕ[12|34] F[12] F[34] +A

(4)
ϕϕϕϕ[13|24] F[13] F[24] +A

(4)
ϕϕϕϕ[14|23] F[14] F[23]

)
,

(4.31)

and using the fact that [74]

A
(4)
ϕϕϕϕ[12|34] = 4 ∂ϵ1·ϵ2∂ϵ3·ϵ4 A

(4)
ym,4 , (4.32)

it follows that

K(8)[1234] =
4

Λ4

(
F[12]F[34] ∂ϵ1·ϵ2∂ϵ3·ϵ4

+F[13]F[24] ∂ϵ1·ϵ3∂ϵ2·ϵ4

+F[14]F[23] ∂ϵ1·ϵ4∂ϵ2·ϵ3

)
K(4)[1234] .

(4.33)

We leave the derivation of a closed form formula for arbitrary multiplicity at dimension

eight for future work.

4.5 Comments on restricting to dimension eight only

From Eq. (4.11), and the associated study at the level of the EOMs, it might seem that

the CCK duality can be applied separately to the dimension-eight vertex, even though

this vertex does not satisfy the traditional CK duality by itself. It is however important

to realize that the dimension-eight interaction in the EOM of Eq. (4.4) is not in one-

to-one correspondence with the dimension-eight operator in the Lagrangian of Eq. (4.1).

Instead, iterations of the dimension-six terms in the EOM are necessary to bring the

interaction in this form. It would therefore not be consistent to consider the dimension-

eight term separately at the level of the EOM. This suggests that the traditional CK duality

is necessary for the CCK duality.

5 Effective-field-theory extension beyond dimension eight

The EFT analysis above suggests that gluon amplitudes at higher mass dimensions can

be obtained from lower-order GBAS amplitudes using the CCK duality. This provides a

map from the GBAS EFT into the YM EFT, where both theories consist of a tower of

operators that satisfy the traditional CK duality. It was previously found that such CK-

dual towers of operators are encoded by the so-called (DF )2+YM and (DF )2+YM+ϕ3

– 23 –



theories [63, 64]. Their double copies were also been studied in [79, 80]. In this section,

we explore the correspondence between these theories and the EFTs considered above, as

well as the CCK duality between them.

(DF )2+YM. In four space-time dimensions, the (DF )2+YM Lagrangian can be written

as [63]

L(DF )2+YM = − 1

4
(F a

µν)
2 +

1

2m2
(DµF a

µν)
2 +

1

2
(Dµφ

α)2 − m2

2
(φα)2

+
mg

3!
dαβγφαφβφγ +

g

2m
CαabφαF a

µνF
bµν − g

3m2
fabcF a ν

µ F b ρ
ν F c µ

ρ , (5.1)

where φα is a real scalar with mass m in a real representation of the SU(N) gauge group.

The Clebsch-Gordan coefficients Cαab and dαβγ satisfy the following relations [63],

CαabCαcd = facefedb + (c ↔ d) (5.2)

Cαabdαβγ = (T a)βα(T b)αγ + CβacCγcb + (a ↔ b) , (5.3)

where (T a)αβ are the generators of the representation of φα. The (DF )2 term gives cor-

rections to the gluon propagator, which (after gauge fixing) can be written as

p
µ ν =

−i ηµν

p2 − p4

m2

= −i ηµν

(
1

p2
− 1

p2 −m2

)
, (5.4)

indicating the presence of a ghost of mass m. It was found in [63] that the (DF )2+YM

theory satisfies the traditional CK duality at tree level for any value of the mass m.

To compare with the dimension-eight YM Lagrangian of Eq. (4.1), we take the heavy-

mass limit and integrate out the scalar at tree level by replacing it recursively by its classical

solution, which solves the EOM,

φα
cl =

g

2m3
CαabF a

µνF
bµν − g

2m5
CαabD2(F a

µνF
bµν) +O

(
1/m7

)
. (5.5)

This yields the EFT Lagrangian

LEFT
(DF )2+YM

fr
= − 1

4
(F a

µν)
2 − g

3m2
fabcF a ν

µ F b ρ
ν F c µ

ρ − g2

4m4
fabefecdF a

µνF
b
ρσF

cµνF dρσ

− g2

m6
fabefecdF a

µνDτF
b
ρσD

τF cµνF dρσ +O
(
1/m8

)
. (5.6)

We emphasized that we have also performed a field redefinition (FR) in order to replace

(DF )2 by operators involving more fields and higher mass dimensions. Indeed, (DF )2 can

be treated perturbatively in the EFT limit of small 1/m. In other words, we integrate out

the massive ghost at tree level. Besides exhibiting the correspondence with Eq. (4.1), the

above Lagrangian includes an operator satisfying the CK duality at the next order in 1/m.

This is a natural candidate operator for the CCK duality as well.
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(DF )2+YM+ϕ3. The (DF )2+YM+ϕ3 theory is defined by the Lagrangian

L(DF )2+YM+ϕ3 =L(DF )2+YM +
1

2
(Dµϕ

aA)2 − g λ

3
fabcfABCϕaAϕbBϕcC +

mg

2
CαabφαϕaAϕbA ,

(5.7)

and also satisfies the traditional CK duality at tree level [63]. As before, the heavy scalar

can be integrated out, to give the EFT Lagrangian

LEFT
(DF )2+YM+ϕ3

fr
= LEFT

(DF )2+YM +
1

2
(Dµϕ

aA)2

− g λ

3
fabcfABCϕaAϕbBϕcC − g2

4
fabefecdϕaAϕbBϕcAϕdB

− g

2m2
fabefecdF a

µνF
c µνϕbAϕdA − g2

m2
fabefecdϕaADµϕ

bBDµϕ
cAϕdB

− 2
g2

m4
fabefecdF a

µνDρϕ
bADρF

cµνϕdA +O
(
1/m6

)
, (5.8)

where we have neglected all terms that contribute beyond the dimension-six double-trace

and dimension-eight single-trace orders, because these only contribute to YM amplitudes

of dimension twelve and higher after application of the CCK replacement rule and are

therefore not relevant to map to Eq. (5.6). This Lagrangian follows from the dimensional

reduction of Eq. (5.6).8

How can these two massive theories be related by the CCK duality? At large m, they

generate the EFTs we encountered before and extend them to arbitrary mass dimension.

Due to our power counting (see e.g. Eq. (4.18)), we expect that an increasing number of

flavor traces be needed in the CCK replacement rule when considering higher-and-higher

EFT orders. To relate the (DF )2+YM and (DF )2+YM+ϕ3 amplitudes for general m, the

treatment of an arbitrary number of trace factors should therefore be needed. Deriving the

associated complete set of rules is however beyond the scope of this paper. Nevertheless,

restricting to low-multiplicity amplitudes, we can test the CCK duality at the level of these

two massive theories without having to treat large numbers of flavor traces. In particular,

up to six points, the amplitudes featuring at least one external gluon do not involve triple

flavor traces. Therefore, the CCK map already derived could potentially extend to all

orders in the EFT expansion at that multiplicity.

We have indeed explicitly confirmed that the CCK replacement rule of Eq. (4.18) maps

(DF )2+YM+ϕ3 amplitudes to (DF )2+YM ones for any value of the mass m.9 The cor-

responding formula reads

A(DF 2)+YM −A(4)
ym =

∑

Φ,σ

A(DF 2)+YM+ϕ3 [σ]
F[σ]

m2
−

∑

Φ,σ,Φ̄,σ̄

A(DF 2)+YM+ϕ3 [σ|σ̄]F[σ]
m2

F[σ̄]

m2
,

(5.9)

8As before, the ϕ3 vertex does not follow from dimensional reduction but needs to be included by hand.

An ambiguity could arise if it were to matter whether this interaction would be included before or after

performing field redefinitions. However, we find that the difference between these two treatments is a term

of the form fabxfycdfyexfABCϕaAϕbBϕcCF d
µνF

eµν , which vanishes due to the Jacobi identity.
9As we are interested in comparing the EFTs of these theories, we did not consider amplitudes with

external heavy scalars φ. We leave the discussion of such amplitudes to future work.
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which is valid for n ≤ 6 and where the sums are taken with a root-leg gluon as in Eq. (4.19).

We remind the reader of the fact that λ has been implicitly set to 1 on the r.h.s.. This

result implies that the CCK relations extend to all orders in the EFT expansion, up to

six-point amplitudes at least.

Beyond six points, we expect that Eq. (5.9) would receive triple-trace contributions.

Indeed, at seven points, we have confirmed that the dimension-ten EFT amplitudes gen-

erated from LEFT
(DF )2+YM+ϕ3 and LEFT

(DF )2+YM are related by the following generalization of

Eq. (4.18):
n∏

i=1

λ|σi|−2Tr(σi)
CCK

(−1)n+1
n∏

i=1

F[σi]

m2
, (5.10)

for products of n traces. We conjecture that this CCK replacement rule is valid at all mass

dimensions and multiplicities.

It is then also possible to generalize the unified treatment of all amplitudes, regardless

of their nth root leg, beyond the dimension-eight relation of Eq. (4.30). Schematically, one

obtains ∑

all permutations

A(DF 2)+YM+ϕ3,n
CCK

A(DF 2)+YM,n (5.11)

where the sum runs over the permutations of all (DF 2) + YM + ϕ3 amplitudes with 2 ≤
m ≤ n external scalars ϕ. The replacement rule for flavor traces is λ|σ|−2Tr(σ) → F[σ]/m2

if the root leg is a gluon (n /∈ σ) and λ|σ|−1Tr(σn) → F[σñ] if it is a scalar (n ∈ σ), with

a crucial minus sign for multiple traces as in Eq. (5.10). This relies on the CCK duality

between GBAS amplitudes of different mass dimensions, which we exploited already in

Sec. 4.3 at dimension eight. We have explicitly confirmed Eq. (5.11) up to six points.

Finally, we have tested the extension of Eq. (4.29), which relates dimension-four GBAS

to dimension-eight YM amplitudes, to the full tower of EFT operators. We find that such

a relation does indeed hold for general m up to at least six points. At six points, beyond

dimension eight, there are contributions from triple-trace amplitudes, because Eq. (4.29)

does not require a root-leg gluon. These are captured by the formula,

A(DF 2)+YM −A(4)
ym −A(6)

ym =
1

m4

∑

Φ,Φ̄

∑

σ,σ̄

A(DF 2)+YM+ϕ3 [σ|σ̄] F[σ] F[σ̄]

− 2

m6

∑

Φ1,Φ2,Φ3

A(DF 2)+YM+ϕ3 [Φ1|Φ2|Φ3] F[Φ1] F[Φ2] F[Φ3]

(5.12)

where the sums in the first line are the same as in Eq. (4.29), while the triple trace sums

satisfy Φ1,Φ2,Φ3 ∈ P++(1...6) with Φi ∩ Φj = ∅ and Φ1 < Φ2 < Φ3, referring again to

some ordering to avoid overcounting. The fact that the (DF )2+YM amplitudes can be

decomposed in multiple different ways, namely according to Eqs. (5.9), (5.11) and (5.12),

requires an intricate self-duality of the (DF )2+YM+ϕ3 amplitudes which deserves to be

better understood. Comparing the EOMs of these theories for general mass would certainly

shed light on this mapping and clarify how to extend it. We leave such explorations to

future work.
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6 Conclusions

We extend the CCK duality between the GBAS and YM theories to the higher-derivative

regime, focusing on EFTs which satisfy the traditional color-kinematics duality. We first

investigate the operators of lowest mass dimensions, before proposing generalizations to

an infinite tower of operators. We find that a pure-gluon theory with operators of mass

dimension ≤ 2k can be generated from a theory of gluons and bi-adjoint scalars featuring

operators of mass dimension ≤ 2(k − 1). Remarkably, the latter GBAS EFT can be

obtained from the dimensional reduction of a pure-gluon theory including operators of

mass dimension ≤ 2(k − 1), up to a cubic scalar interaction added a posteriori.

The established higher-derivative CCK duality follows from a clear correspondence

between all terms in the equations of motion of the two theories. Expressed at the level

of amplitudes, it proceeds through the replacement of traces of scalar flavor structures

by kinematic factors. Remarkably, the CCK duality requires intricate cancellations be-

tween GBAS amplitudes featuring different numbers of flavor traces. These for instance

occur between the double-trace dimension-four and single-trace dimension-six GBAS sec-

tors needed to generate dimension-eight YM amplitudes. With this insight, we establish

simple all-multiplicity relations between GBAS and YM amplitudes up to dimension eight.

Specifically, dimension-six YM+F 3 amplitudes are derived from single-trace dimension-

four GBAS amplitudes through the replacement of flavor traces by local gauge-invariant

functions of the kinematics. We leverage this relation to derive closed-form expressions for

the BCJ numerators of the dimension-six YM theory, at any multiplicity and with manifest

gauge invariance on all legs.

Beyond the minimal higher-derivative correction, we focus on towers of EFT operators

which are compatible with the traditional CK duality. We find two ways of constructing

the CK-dual dimension-eight YM amplitudes from GBAS inputs. Firstly, the same CCK

replacement rule, applied to dimension-four double-trace—with a crucial minus sign—and

dimension-six single-trace GBAS amplitudes, results precisely in pure-gluon amplitudes.

Alternatively, the dimension-eight YM amplitudes are derived from dimension-four double-

trace GBAS ones only, when more permutations of the external particles are included.

These relations again lead to a simple procedure to construct the BCJ numerators of the

YM theory at dimension eight. This serves as a new proof for the standard CK duality up

to dimension eight, at any multiplicity and tree level. By confirming our CCK relations in

the (DF )2+YM(+ϕ3) theories at low multiplicity, we have obtained strong evidence that

they extend to all orders in the EFT expansion.

Several directions would deserve to be investigated further. Relations conjectured

between the (DF )2+YM(+ϕ3) theories at all EFT orders and multiplicities ought to be

(dis)proved. We find evidence that the existence of a CK duality is sufficient to ensure a

CCK one, but we do not know whether it is a necessary condition. Hence, it would be

very interesting to explore further the equations of motion generated by gluon operators

which are not those considered in this work. Similarly, staying in the realm of CK-dual

theories, there may be BCJ-compatible operators at high mass dimensions beyond those

encoded in (DF )2+YM theory. If so, understanding how they enter a CCK duality would
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be insightful.

Beyond the ideas touched upon in this paper, we have not studied the double copy to

gravity. We have derived BCJ numerators for the YM EFT up to dimension eight, which

can directly be used in the traditional double copy, but it would be a natural extension of

our work to make manifest a CCK duality for higher-derivative corrections to gravity, as

done in [67] at dimension four. This reference also identified a CCK duality at the level of

the EOMs of the BAS and NLSM theories, which is another direction of investigation that

we plan to explore in the future. We anticipate that the NLSM+ϕ theories found in [56, 81]

are likely to play an important role. Another insight of [67] which we have not extended

yet to EFTs concerns the relation between conserved currents, which is possibly affected

by our enlarged CCK dualities. Finally, the ultimate amplitude relations that we find are

simpler than could be expected from a first inspection of the equations of motion, due

to intricate cancellations between multi-trace replacements. It would be worth exploring

whether such relations extend to the level of loop integrands. The same applies to the

CCK duality more generally.
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A Diagrammatic map at five points and dimension eight

In this appendix we exemplify the CCK duality between the GBAS theory at mass dimen-

sion four (double trace) and six (single trace) and the YM theory at mass dimension eight.

Blue and green lines correspond to EOM solutions at dimension six and eight, respectively.

GBAS YM





∅





∅





∅

GBAS YM

crocodile
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