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1 Introduction

The axion, a pseudo-Nambu-Goldstone Boson of a global U(1) symmetry, provides a novel
solution to the strong CP problem [1-4], and is associated with various phenomenological
puzzles, such as the dark matter problem [5-7], dark energy problem or both (see [8-12]
for recent reviews). However, gravity may jeopardize these solutions, as no global symmetry
is allowed in a gravitating system [13-17].

The challenge of preserving the shift symmetry of the axion, the so-called Peccei-Quinn
(PQ) symmetry U(1)pq, against numerous potential sources of global symmetry-breaking
has been coined as the axion quality problem [18-22]. Many attempts have been made to
resolve this issue [23-36], but subtleties still exist as quantum gravitational contributions
are largely unknown and non-perturbative in their natures.

One particularly important direction to calculate a non-perturbative contribution is to
estimate the effect of the Euclidean axion wormhole, the stationary point solution for the
Fuclidean action with gravity whose throat is connected to an asymptotically flat region
where the global PQ charge flows [37-49]. If the wormhole action Sy is large enough, a
semi-classical approximation can be made without needing a complete UV theory of gravity.
As the gravitational impact on IR physics is suppressed by an exponential factor e=Swh,
to a good approximation, Sy = 200 guarantees the axion quality [41]. An early attempt
by Giddings and Strominger [38] suggested Syn ~ Mp/ fq, thus, fo < Mp/200 seemed to
define the preferred parameter region for the axion quality, however, it turned out that the
dynamics of the accompanying radial scalar partner of the axion completely modifies the
conclusion, as Syn ~ log Mp/f, [37, 39-41].

Recently, it is noticed that a large non-minimal coupling of the complex scalar to the
Ricci scalar (£*®R) can make the wormhole action large enough in both metric and Palatini
formalisms of gravity [31, 33]. Here, the complex scalar ® = %¢ei9 has an axion as its
complex phase field and its radial partner. The non-minimal coupling term naturally arises



in an effective theory or is radiatively generated [50], and has been actively investigated for
inflationary cosmology in metric, Palatini or both formulations [51-57].

On the other hand, both studies in refs. [31, 33] heavily rely on numerical calculations and
still need an analytic understanding of the full parameter space. Therefore, in this paper, we
enlarge our scopes and attempt to study the analytical structure of these Euclidean wormholes.
In particular, we take an effective field theory approach by imposing boundary conditions of
wormholes with IR field degrees of freedom, along with identifying the generation of associated
PQ breaking operators at low energies. This approach dramatically simplifies our analysis and
allows us to obtain an analytic expression of the wormhole action that is solely determined by
the IR fields. The solution provides a transparent understanding of the parameter dependence
of the action and perspectives on generalizations with possible limitations.

This paper is organized as follows. We first present the generic Lagrangian structure
associated with axion theories, and take the effective theory approach to obtain a generic
formalism representing the Euclidean wormhole solutions. We demonstrate that the wormhole
action can be decomposed to its UV and IR components, with the IR component containing
the UV cutoff of the theory. We then demonstrate this formalism in several different
examples, each representing a different class of models. We conclude with the implications
of this formalism.

2 Eulcidean wormhole for general axion models

2.1 General Lagrangian

We introduce a set of axion fields {6} = {6(2)};=1 ... n,, characterized as ‘angular fields’
due to their periodic and compact nature, adhering to the discrete gauge symmetries 67 (x) =
0! (x) + 2m. Alongside these symmetries, the axions exhibit continuous global symmetries,
known as the PQ symmetry, described by the transformation

U(l)pg: 0 = 0"+, eR. (2.1)

In conjunction with the axions, we introduce ‘radial fields’, {¢} = {¢*(2)} 4=12,... n,, Whose
vacuum expectation values (VEVs) determine the axion decay constants. These dynamic
scalar fields are commonly observed in various axion scenarios, including UV completions
of the PQ symmetry [30, 39, 41, 43]. Notably, the number of radial scalars can differ from
the count of the axions, i.e., ns # ne. The general action for the axions and their radial
fields in the Einstein frame is given by

M2 Ns Na
§= [dav=g [ -TLR+ 5D Can(@)0u6" 0" + 33 (2(0)1s00'0 |, (22)
A,B 1,J

where Mp = 1/V/87G =~ 2.4 x 10'® GeV denotes the reduced Planck mass, Gap(¢) and
(f2(¢))1 are field dependent metrics in the field spaces of the radial scalar fields and the
axion fields, respectively. Implicitly, we assumed that a potential for the radial fields provides
the vacuum expectation values of ¢? as (¢4) so that (f2((¢)))rs = (f2)1s; however, its
explicit form is not relevant for our discussions in the IR region [39, 40]. We discuss the



Figure 1. A schematic diagram of the Fuclidean wormhole geometry.

effect of potential terms more explicitly in appendix A. The CP properties of the axions
and the radial fields are given as

CP: (0", ¢ — (=07, 0%), "I, A4,

thus no kinetic mixing is allowed between any axion and raidal field.
The discrete gauge symmetry of the axions becomes more transparent by dualizing the
axion field to a three form field strength Hy,,

2
S = /d4x\/jg<—]\/épR+ %GAB(¢)8u¢A8M¢B

1, 1 .
+ o a2 ()" Hiywp HY + 207" p“émlyyypa>, (2.3)
where the covariant Levi-Civita tensor is given by €,,,0 = (—1)”(#’4)" )\/T - _(Ewpa)—l for

the signature of the permutation m(uvpo). Using the differential form notation, the equations
of motion for 0! give Hy = (1/6)Hrpppdx* Ndx¥ NdxP = dBy, where Br = (1/2) By, dat Adx?
is the 2-form gauge field. The equations of motion for H; give H; = (f2(¢))7s*df”. Inserting
these solutions of Hj to the action, we recover the action for the axions in eq. (2.2).

For the wormhole solution, we derive the Euclidean action after Wick rotation

Sp = / d'a/g” ( PRE+ GAB<¢> 00" P + = (fa (czs))”Hmpﬂﬁ”p)

y / dizy/g” ( wpe HIW), (2.4)

where the Euclidean metric is gfl, = 0, in the limit of flat space the Euclidean curvature scalar

is R, and the Euclidean Levi-Civita tensor is given by €%, ,, = mlivpo)  JgF = (hVP7)

The geometry of the Euclidean wormhole is solved by Varymg 55 ok
dr?
(1= Lg/r*)

where L denotes the size of the wormhole throat radius. The schematic shape of the Euclidean

ds?y = gEdr? + 1r2dQ3% = + r2dQ2, (2.5)

wormbhole is depicted in figure 1. It is intriguing to notice that the Ricci scalar in the geometry
eq. (2.5) is solely determined by Ly and the distance from the center of the wormhole

6L3

Rg = _760’ Lo <r < oo. (2.6)



Effectively, the ‘interior’ of the wormhole is in r < Ly and provides a source of nonzero,
integer Peccei-Quinn charge:

Hr=ny €7, (2.7)
oM
where M ~ S2 is the boundary of the wormbhole.
Finally, the Euclidean action eq. (2.4) with the wormhole geometry is given as

Sg[wormhole] = Syp[n, ¢] — ins6” (2.8)

for the background axion fields #/. Here, the first term Syu[n,¢] is from the r.h.s. in the
first line of eq. (2.4), and the second term —in@! is from the r.h.s. in the second line.! The
saddle point approximation in the path integral yields PQ breaking local operators that are
suppressed by non-perturbative instanton factor

€_SE [wormhole] _ €_SWh [n,¢]+in 6" . (29)

One can notice that the 2m-periodicity of the axions provides the Dirac quantization condition
for the PQ charge.

2.2 Field dependent axion wormhole solutions

For the metric ansatz of the Euclidean wormhole eq. (2.5), the field profiles are also evaluated
as the O(4) symmetric solutions: ¢“(r) and Hj,,,(r). First of all, with the quantization
condition eq. (2.7), the equation of motion for Hy,,, gives the solution

Hry=n;*x—. 2.10
P= (210)
Next, one can obtain the equations of motion for metric and scalar fields with respect to
the distance r € [Lg, 00) after inserting the solution of H;. Instead of using r, it is more
convenient to take a new variable 7 defined as [61]

1
7(r) = prCy arctan (\/T4/Lé — 1> . (2.11)
Lo

The range of 7 is from 7(Lg) = 0 to 7(c0) = 1/87L% = 7. The wormhole action Sy
includes the Einstein-Hilbert action, the kinetic term of the radial scalars, and the kinetic
term for the Euclidean 2-from gauge fields By, with the quantization condition, eq. (2.10).
With the integral variable 7, Sy, can be written as

g 1

Too 1
. 4 2714 - -
Swh _/0 dr (127r MpLo + 5Gap(9)———— + 5

(f(z_z(éb))l‘]nan) : (2.12)

! Actually, Syp, here is the half-wormhole action (or instanton action) without the Gibbons-Hawking-York
(GHY) boundary term [58-60]. The GHY surface term is less important in our discussion, so we will not
discuss its contribution explicitly. To make the discussion more concise, we also use the term “wormhole
action” to represent Swn[n, 6] in the whole discussion.



The equations of motion for ¢4 give

d?¢B dpB do© 0 (1
Gan(0)y +Tanc(0) -0 = 52 (U@ nms ), 1)

where the ‘connection’ in the field space is

1 (0GaB(¢) | 0Gac(9) 3GBc(¢>))
r == — . 2.14
ABC((b) 2 ( 8¢C + 8¢B 8¢A ( )
The trace for Einstein’s equation gives
1, . 1 do? doP
das274 _ Loe—20 \WIJ 14 ap 4
12m°MpLy = 5(fa"(9)) “niny = 5GaB(¢)———— (2.15)
For given IR degrees of freedom ¢*, the boundary conditions are given by
ddA (T
¢d( ) _ 0’ ¢A(7_OO> _ ¢A' (2.16)
T T7=0

In general, the throat field values ¢g = ¢(7 = 0) are functions of IR fields, with its sensitivity
being quite model dependent. The throat radius is directly given by the axion decay constant
at the throat for given wormhole charges ny,

127 M2 LA = %( £2(60))  nim,. (2.17)

One can easily notice that eq. (2.15) with eq. (2.17) resemble equations in classical mechanics
describing the motion of point particles. Using the canonical momenta p4 and the potential
V of ¢ given by

doB 1 . 1 .
pA = GAB(QS)%a V= i(fa 2(¢0)) " niny — §(fa 2(e) " nny. (2.18)
Eq. (2.13) can be written as
dpa |1 BC 1 4B
— 4+ = (6AG )poc—i-aAV:O, —G Ppapp+V =0, (2.19)
dr 2 2

where GABG e = 6. The potential V(¢) and the metric of the kinetic terms G 4p(¢) do
not explicitely depend on 7, so if the solution exists, pas are given by the functions of ¢?s,
i.e. pa(¢@). For given IR field values ¢, the throat values ¢y are determined by the equations,

¢* dpt 1 6
\/(fJQ(CbO))IJan " ]\ﬁp GAB(o)pp(2) = 7r4f (for each A). (2.20)

Utilizing the equations of motion, the wormhole action can be represented by several ways.

Too ol
St o] = [ dr(f2 @) g = 3xMELY + [ pate)
0

= ooy s + [ e i) (2.21)



The last expression of eq. (2.21) shows how Sy, consists of the sum of the UV (near the
throat) and IR (the field dependent) contributions. The first term of the r.h.s. corresponds to
the form of the Giddings-Strominger wormhole [38], and the second term represents the effect
of the radial field’s profile in the wormhole geometry. It contributes to the action positively
and determines how the wormhole action depends on the IR field degrees of freedom.

Before moving on to the next section, we outline our assumptions for evaluating the
wormbhole action. First, we take the Planck scale as the cut-off scale of the 4-dimensional
effective field theory. The actual cut-off scale A of the effective theory may be much lower
than the Planck scale. If the throat radius Ly in our evaluation is less than 1/A, the effects
induced by operators suppressed by the cut-off scale should not be ignored, which could
invalidate the existence of wormhole solutions. Therefore for a valid wormhole solution to
exist, dimensional analysis requires Ly > 1/A, leading to a wormhole action of order M2 /A2,
which can be easily O(100) for A < O(0.1) Mp. In this sense, the axion quality problem
may imply a low cutoff scale for the four-dimensional effective theory.

However, for the contribution of O(M3/A?) to the action Sy, the prefactor heavily
relies on UV physics. Therefore, as a conservative approach, we explicitly evaluate the axion
wormbhole solution for various models with minimal assumption about new physics at the UV
and see the validity of our approach. For instance, if the value of the wormhole action is not
sufficiently larger than O(1), we conclude that the axion quality issue is highly dependent on
the UV physics such as the cut-off scale, higher dimensional operators, multiple wormhole
contributions, etc. On the other hand, if the wormhole action is much larger than O(1), we
consider that the solution is less sensitive to UV physics, providing a feasible solution to the
axion quality problem. In this study, we will take a more conservative view of the cut-off
scale and the higher dimensional operators and focus on clarifying the analytic structure
of the wormhole action. Based on the solutions, we investigate the conditions under which
the wormhole action can be sufficiently large.

3 Case studies: single axion models

3.1 Complex scalar model

The structure of the wormhole action becomes more transparent in single axion models. We
start with the minimal field content, a single axion plus a radial mode associated with a
single U(1)pq. In this case, we take ¢! = ¢, 01 = 0, and G11 = G(9), (f2($))11 = f2().
The action takes the form

2
s= [dazv=g (_Ang + 5G(0),00"6 + ;ﬁ(@auea“e) - (3.1)

Using the master formulas eqs. (2.17) and (2.19), we obtain the throat radius Ly and the
scalar field equation of motion as

3= (npan) #O-60 (5 p) 62
2726 \ Mp fa(¢0) f2(@)  f2(do)
Using eq. (2.20) we obtain the condition for the throat value of ¢¢ as the function of IR field ¢.
¢ dp G(p) /6

s Mp VGG 1 4 (3:3)




Note that the solution ¢q is independent of n, while the radial profile of ¢(7) depends on
n as eq. (3.2). The corresponding wormhole action eq. (2.21) becomes

Too 2 ¢ dp G 2
Sulnd) = [ ar 2~ [* e Gl

f2(e) o (@) f2(p)
. do d@ G(p)
"o T VI R IR 34

In the second line of the equation, we assume ¢y > ¢. Because ¢g is independent of n, the
wormhole action is linearly dependent on the wormhole charge n.

In the following sections, we derive several analytic results for the wormhole action in
various models of single axion cases.

3.1.1 Model with a non-minimal coupling to gravity

We consider an example of a complex scalar field. Here we allow a non-minimal coupling
to gravity [62, 63]. The action is

M3
S— /d‘{mﬁl ( +§\<1>y2> R+0 @8“(1)*] (3.5)
Decomposing the complex scalar into the radial mode ¢, and the angular mode (axion) 6,
1 .
B(a) = 5 o(a)e" (3.6)

the action in the Einstein frame becomes

s=[day= ( VPR 1 LG(6)0u00"0 + ;fzwwaﬂe) , (3.7)
where
MP(ME + £¢*(1 + af)) Mpé

G(p) = —L—F , folp) = —. 3.8
(¢) (M3 + £¢2)2 fa(9) T (3.8)

We introduce a constant « that represent different gravity formalisms,

=6 (Metric formalism)

=0 (Palatini formalism) (3.9)

Following the equations of motion for Euclidean action, we get two master formulae for the
boundary conditions and the wormhole action. For boundary conditions, eq. (3.3) gives

¢ (L+a§)(L+Edd/Mp) \/ L+60%(1+ ag)/Mp

: I €0R(1 + ac) /M3
(@2 — 6%)ac? /MR G
arctan Vu TER( + ab)ME) (1 + ERMD) 4 (3.10)



We expect that ¢g is proportional to the Planck mass Mp. Therefore, one can safely take an
approximation of ¢ < ¢g, where ¢ is the IR field whose actual value is hierarchically smaller
than the cut-off scale of the model. Ignoring the O(¢/¢g) contributions, ¢g is provided by

¢ 71'\/6
Mi(;: ==~ (1+0(9) (€ <1)
5
=\ 1¢ 0 +00/) (£>1, a=6)

= \/§(1+(’)(1/JE)) €>1, a=0). (3.11)

We note that the throat field value ¢y in the Palatini formalism is different from that in
the metric formalism. However, the wormhole throat size is insensitive to ¢y because the
axion decay constant f,(¢) becomes independent of ¢ as £¢? > M]%, and converges to the
form Mp/\/€. The throat radius is given by

1 n n 1
Lo = 2721/6 <MPfa(¢0)> "3 (]\4%) (€< 1)
_ n3 (V€
© 2m2/10 \ M3

__on (V€ _
= (M]%> (E>1, a=0). (3.12)

Finally, the corresponding wormhole action becomes

(E>1, a=06)

2¢0

1
\/ Ag¢ o arccos (m) +1In gf)\/TTga

where A¢, = EP3(1 + af)/M3.
Figure 2 compares the action results from our effective theory approach with ¢ = 10 GeV

Swh[n, d] =n , (3.13)

with the actions calculated numerically using a shooting method implemented in [33]. We

use a potential

V(9) = 2 (¢* - fi)2 (3.14)

that gives the vacuum value of the axion decay constant f, = 10" GeV. It clearly shows
the validity of our approximation in which the parameter dependence becomes transparent.
Depending on the values of ¢ and «, the form of the wormhole action can be decomposed into
the UV part mostly given by the throat regime, and the IR part logarithmically dependent
on the radial field ¢:

Synln, ] ~n (sgg (€] + In Aez[§]> . (3.15)

The UV part has the form SYV[¢] = co + c1VE:

6
Sl = ™Y for € <1
6 30
zln\3f+7r4 VE for >1,aa=6
VIRVAO)
:1n2+T\/§ for £ > 1, =0. (3.16)
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Figure 2. (Left) The full wormhole action Sy for a complex scalar with a non-minimal coupling
for both formalisms. The solid lines correspond to the full analytic computations with ¢ = 10'° GeV,
and the numerically obtained values correspond to the markers with f, = 10*® GeV as in ref. [33].
It clearly shows the behavior of the action Syn ~ /€ for £ > 1. (Right) The UV field value ¢ for
both metric and Palatini scenarios. The values correspond to the minimal coupled case in the £ < 1
regime, whereas in the £ > 1 regime the behaviors deviate, with the Palatini case saturating and the
metric case decreasing as 1/+/€.

The logarithmic contribution of £ can be naturally parameterized by the perturbative cut-off
Aeg €], whose dependence on the value of £ is given as

Acg[€] = Mp for £ <1
:J\/.gfp foré >1,aa=6
Mp

- for £>1,a=0. (3.17)

It behaves as Aeg[€] ~ Mp/€ in the metric formalism, while ~ Mp/+/€ in the Palatini
formalism. They coincide with the perturbative cut-off scales of the model around the
vacuum in each formalism [54, 64-67].

We note that, for a large non-minimal coupling, the perturbative cut-off scale is sensitive
to the background field value of ¢, especially when the axions originate from the underlying
U(1) symmetries (not a non-abelian symmetry) [54, 67]. We have

A(g) = ]Vép for ¢ < ]\Zp,
£¢? Mp Mp
=S por 2P Mp
My or ¢ L p K e’
=Mp for % <L ¢ (3.18)

3

for the metric formalism (o = 6), while

A(p) = Mp for ¢ < ]\\Z;

M
=9 for7§<<q§<<Mp,

=Mp for Mp < ¢ (3.19)
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Figure 3. Comparison between the field dependent cutoff A(¢) in egs. (3.18), (3.19) and the effective
energy scale of the wormhole m , where R is the scalar curvature eq. (2.6), at a given position
r € [Lg, 00) for both metric (left) and Palatini (right) formalisms. The non-minimal coupling is taken
as £ = 10*. The blue shaded region represents where \/@ > A.

for the Palatini formalism (o = 0) in the Einstein frame. Therefore, one needs to estimate the
validity of the solution by comparing the field dependent cut-off scale A(¢(r)) and a typical
energy scale represented by the scalar curvature /|R(r)| in the range of r = [Lg, 00).

In figure 3, we compare the two scales in the large £ limit, along with the profile of the
field ¢(r). The ¢ field profile has a universal r dependence o 1/r away from the throat, then
differs for regions closer to the wormhole throat depending on the gravity formalism. We
identify that the energy scale from the curvature ur = \/|R| always stays smaller than the
local cut-off scale A(¢) out of the throat. At the throat, r ~ Lo, the two scales are about the
same [39, 41], which may imply that various quantum corrections become important. However,
the higher-loop corrections are suppressed by the numerical loop-factors, ~ 1/872 ~ 1072,
We leave a systematic study of these corrections near the wormhole throat to future work.

We also note the spacetime regime where ¢ ~ A(¢). This does not lead to the perturba-
tivity break-down, in general, as long as the higher dimensional terms ~ Cy 1, (¢/A(¢))"¢*
are negligible with Cyy,, < 1 for all n > 1. In our setup, as given by appendix A explicitly,
the higher dimensional terms in the scalar potential are indeed suppressed by the power
of Planck scale Mp in the Jordan frame and further suppressed by the power of £ in the
Einstein frame. Therefore, the perturbative corrections in a regime of background field
¢ ~ A(¢) for r > Lo would not be dangerous.

The combination of In Aeg[€]/¢ in the wormhole action eq. (3.15) can provide a more
closed expression of the U(1)pqg breaking non-perturbative factor as

e Swntind — oxp [—n (S&J}Y[ﬁ] +1n Aerle] 19)] = (ﬂe_sgfy[g]@)n. (3.20)
¢ Aeff [5]
This combination will enter the effective Lagrangian of ®. At this moment, the overall
scale of the prefactor M2 that will be multiplied by the local operator eq. (3.20) is not
trivial. Conservatively we can think of it as just O(M3), but it can change greatly depending
on the cut-off scales in the vacuum like O(Ly*, Adg[€]). We leave the detailed estimation
to future work.

,10,



The form of eq. (3.20) clearly shows that (i) the contribution of a wormhole with a
PQ charge of n is equivalent to n times the contribution of a unit-charged wormhole, (ii)
when combined with an axion-dependent term, the primary contribution is the holomorphic
function of ®. Each properties are not independent of each other. In our example, the UV
contribution is nearly independent of the IR field value, so the IR contribution is quite
similar to the case of an extremal instanton with Ly = 0. Since f2(¢) < f2(¢o) with ¢ < ¢o,

we have p(¢) ~ —n/fo(¢) and

o dyp
o falp)

The holomorphicity of the local operator is quite general even for multiple axion cases if

¢
S&%[n,qﬁ]:A dpp(p) = n (3.21)

the UV contribution of the wormhole (contribution near the throat) is nearly independent
of the IR field values for the radial scalar partners.

Before closing this section, let us briefly discuss different types of axion models. When
an axion comes from string theory [68], the radial scalar partner usually has a geometrical
meaning. In that case, for G(¢) = 1 in eq. (3.1), the axion decay constant has the form
fa(p) = faeP?/Mr with B = O(1), a dilaton-like coupling. It is well known from many
studies [41, 42, 69-71] that the corresponding axion wormhole action depends less on the
dynamics of the scalar partner than in the case we discussed. For the change of the radial
field value A¢p ~ Mp in the wormhole background, the axion decay constant does not change
significantly, i.e. Afa(d)/fa(¢) = O(1). Therefore, the parameter dependence of the action is
more similar to the Giddings-Strominger wormhole action, Sy, ~ Mp/ f,. Since the throat
size is sensitive to the IR field value, the holomorphicity of the wormhole induced operator
does not hold in general. We can first define a complex scalar field

T(z) = S(x) —if(x) (3.22)
to represent the kinetic term of the axion and its radial partner as

2M3

72T + 772 OO, (3.23)

50,0+ 5 72(6)(0,6)" =

It can be easily proved that the wormhole solution exists only for |5] < /2/3. From
egs. (3.3), (3.4) we have

nMp sin L\/EB
S = Pﬁfa((@“ ) — nsin (”fﬁ) s, (3.24)
where S = Re(T'). This gives
e~ Swntind — o=nT o oxp [Z (1 — sin (71/6@*)) (T+T7)|. (3.25)

The non-holomorphic piece that exists in addition to the holomorphic part e ™! disappears
when 5 = /2/3, i.e. Ly = 0. In this sense, the fact that many examples for axions in string
theory give 5 > 1/2/3 could be related to the condition of preserving supersymmetry
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3.2 Complex scalar model with an additional scalar field

Apart from a complex scalar ®, other real scalar fields y that couple to ® can exist. One of
the well-motivated forms of the coupling is that the additional scalar couples to the kinetic
term of the complex scalar as a product form Z(x) x Kiin (P, P*).

In this section, we discuss how such an additional scalar field changes the wormhole
action. Our starting action is given by

M? 1 1
S = /d4$\/—g (—;R—F 52(x)Kkin((I>,<I>*) + 28,»(8“)()

4 Mfz’ 1 2 1
_ / 'ov/=g |~ LR+ 5200 (0,00"6 + [1(9)0,00°0) + 500X | . (3.26)

For a given complex scalar, ¢ is the radial partner of the axion 6. ¢ and x are properly
normalized without introducing a kinetic mixing between them. Considering eq. (2.4), w
identify fields as ¢! = ¢, ¢? = x, ' = 0, and the metric of the kinetic term as G1; = Z(x),
G2 = Go1 =0, Goz = 1, (fH)11 = Z()*(9).

From the equations of motion for the Euclidean action, we have the relation between
the throat radius and the throat field values as

1 n
L= . (3.27)
° 226 <MP\/Z(X0)f(¢o)>
From egs. (2.13), (2.15), the equations of motion for ¢ and x are
dx>2 (d¢> n?
e O R4 YN — 7
(&) +20(%) = 207 )~ 20w G
2y 1dz 2 1 dz
With the boundary conditions ¢'(0 ) = 0, these equations are simplified as
(%) - . ( @ )
dr Zz( ) \f2(8)  f2(¢o)

dx> n? ( 1 )

3.29
() = 7 (700~ 700 1329
For given IR fields x and ¢, the throat field values ¢g and xp are determined by

%o s 1 X0 dx 1
VI60)/Fe) =1 Iy VZ(@) V1= Z()/Z(x0)’
X 1
0 dx _ TF\/E, (3.30)
x Mp/Z(x0)/Z(z) -1 4
assuming ¢g > ¢ and yg > x. With the solutions, the wormhole action becomes
Too n2 %0 dsp 1
Swhl|n, @, X :/ dT—————+—=n 3.31
o= T z@ee T Favic e O

Notice that the general expression for the wormhole action does not explicitly depend on
Z(x). However, the existence of x affects the value of ¢g, so the form of Syy can have a
nontrivial dependence on x. Being equipped with the general formulation for this case, we
now present some specific examples and examine their implications.
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3.2.1 Model with a light dilaton

Let us consider a dilatonic coupling for the complex scalar field & = %(Z)ew [30], so

Z(x) = 2XMe - f(4) = 6. (3.32)

Here we take a convention § > 0. Using eq. (3.30), we get

exp (—W) = cos (Tﬁ) : (3.33)

The wormbhole solution is only available for § < /2/3. We also obtain

/ —Bx/Mp —Bxo/Mp
]Z(; — z; . 62M sin (Wfﬂ> = eﬁxﬂMtan (Tﬁ) . (3.34)

The wormhole throat radius becomes

2 1 n _ 1 n
Lo= 27‘(’2\/6 (Mpeﬁwao) 27-(-2\/6 (Ml%tan (WT\/E,B) /ﬁ) . (3.35)

It is confirmed that the wormhole throat size is small Ly < 1/Mp, so the UV contribution
is just O(1). For ¢ < ¢g, the corresponding wormhole action can be represented by the
function of ¢ and x as

Shn,qb,x:n/ — 3.36
The IR dominated wormhole action has the form of Syy ~ nln Mp/f.(x,$), where the
effective axion decay constant is provided by f,(¢, x) = €?X¢. Therefore, the overall value

%0 dgb 1 - (ZMpSiH(T%éﬁ)/B)'

is log-enhanced, almost always leading to an at most O(10) value. This indicates that this
case (n = 1) lies beyond the regime of validity of the effective theory. Only a large wormhole
solution with a large enough n with the radius size greater than O(10) can be trusted. This
particular case can also be interpreted in the sense that the dilaton field x alters the axion
decay constant to an effective value f,. The PQ breaking local operator is proportional to

, BX P "
—Swntind _ € . 3.37
‘ (ﬂMp sin (293) /B) (337

3.2.2 Model with a R2-term

The previous type of action can naturally arise from a theory consisting of a complex scalar

non-minimally coupled to gravity, along with a R?-term:?

S = /d%\/fg [— (Ag’% + £¢|<I>|2> R+ %}# + 0,0 D" — V(|<1>|)] . (3.38)

2This class of theories are also considered as a UV extension to theories incorporating non-minimal couplings
to gravity [72-75].
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In metric formalism, introducing the R? term leads to a new degree of freedom in the Einstein
frame. The equivalent form of the action becomes

S = / d*zv/—g l PR+ L Vids (a $O"$ + ¢20, 98“9)

1
+50ux0"x = U(x, 9) (3.39)
with the potential term containing the Yy, ¢ dependence as the form
M2 2 2 _x_
Ulc.é) = 32 l Vi (l + S ) + Vi V() (3.40)

For the following discussion, we neglect the effect of V' (¢) as we did in the previous sections.
However, the first term of U(x, ¢) cannot be simply ignored. Around the minimum, the
mass of x is ms = O(Mp/\/&s). If the mass of x is smaller than Mp/&,, x plays a role of
unitarizing the action up to the Planck scale at the vacuum.

Let us consider cases of large s. When £ — 0, x is supermassive, therefore it is just
frozen with the condition 0, U(x, ¢) = 0. In this limit, we recover the single complex scalar
model, eq. (3.5). Thus, Syn ~ /& +1In Mp/({4$). On the other hand, in the opposite limit
&s — 00, x is effectively massless. Hence, the action becomes the form of eq. (3.26). In this
case, even for a large value of &, Syn ~ In Mp/(e®X/MP¢) with 3 = 1/1/6. This implies that
there is a screening effect of £y as &, increases. More specifically, we notice that in the regime
where £5¢° > M3, U(x, $) resembles a quartic potential

Ux, ) ~ %62‘/%% (ﬁi/és) ¢*. (3.41)

From the IR value of x, the displacement of y in the wormhole background is at most of
O(Mp), so that eQ@MLP = O(1). When the quartic coupling A = 5(275/53 < 1, this potential
term is irrelevant and the system reduces to the previous example in section 3.2.1. It results
in a small wormhole action as eq. (3.36). As A gradually increases (£5 decreases), the potential
is approximated by a quartic term of ¢ with a very large self coupling. In this case, the
throat size explicitly depends on the values of & and &, [39], giving the form

1/3
n né;
L~ SR (27T2q§:> for \/gfz, L€ K éi. (3.42)

In turn, this leads to the throat part of the wormhole action

S = 33 MEL2 ~ ( 23) for \/&5 < & < €, (3.43)

This S‘Evlﬁ is depicted in figure 4. For a large value of {;, the analytic form of S (112 are

different in three limiting cases, (I) £ < /&y (Green), (II) /€y < & < £¢ (Orange),
(IIT) & < & (Blue).
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Figure 4. S‘(Vl}f for £, = 10%. The black dots represent the numerical computation, the orange line

corresponds to eq. (3.43), the green line corresponds to the value when {; < 1, and the blue line
corresponds to the value obtained with eq. (3.27). We note a transition around &, ~ fg, and another
transition expected around & < /&4, both depicted in dashed-gray lines.

Therefore, the value of & is quite important to determine the size of axion wormhole
action when £4 > 1. Actually, in the metric formalism, the natural value of &, is proportional
to 53) because of the quantum corrections from the following renormalization group equation
at one-loop level [76-83].

s 1 1\?
h = <5¢ N 6> _ (3.44)

This implies that even if the tree-level value of &, is vanishing, we expect &, is naturally
generated as s ~ 0.02 535 InA/p ~ 0.0253). Inserting this to the wormhole action, eq. (3.43),

we have S‘(Vl )~ 1.5 (n =1). This shows the difficulty of solving the axion quality problem
with the help of the non-minimal coupling to gravity for the complex scalar field that includes
the axion as & = %qﬁeie.

Before closing this section, we briefly comment on the case of Palatini formalism. In the
Palatini formalism, there is no new scalar degree of freedom even if we introduce R?-term
(see [84] for a review). In the Einstein frame, eq. (3.38) becomes

10,2 £510,2[*
(1+ &2 /Mp) — 2(1+ & /Mp)2Mp

Because of nontrivial higher derivative terms, it is more difficult to figure out the effect of large

S = /d"‘x\/fg (— ]\gf%R + ) : (3.45)

&s. From a naive dimensional analysis, ¢ ~ ¢/r, and for §¢¢2 > M2, the higher derivative
term can be important when the distance becomes scale as r < /&5 /§p M p ! By comparing it
with the throat radius in the small &, limit Ly ~ {;/ 4M1§1, we see that the higher derivative

terms are not effective in the regime Ly < r < oo for £2 < 55’5, while it can provide a nontrivial
effect in the opposite limit. We leave the study for the Palatini formalism to a future work.
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4 Discussion

In this study, we employ the effective theory approach with a complex scalar field, which
incorporates the axion as its complex phase degree, to investigate the Euclidean wormhole
action, where the stability of the wormhole throat relies on the presence of a non-zero Peccei-
Quinn charge associated with axions. Our analysis yielded a clear understanding of both the
parameter dependence of the UV contribution and the IR behavior of the wormhole action.
We achieve this understanding by explicitly calculating the dependency of the infrared (IR)
degrees of freedom in axion models featuring radial scalar partners. In particular, when a
significant non-minimal coupling of the scalar field with gravity is present, our analysis reveals
that the UV contribution of the wormhole action becomes substantial, reaching the order
of Sg}Y = O(+/€). This substantial wormhole action, surpassing a value of approximately
0(200) with & > 104, offers a straightforward solution to the axion quality problem.

The reason behind the substantial magnitude of the action in the case of a large non-
minimal coupling lies in the fact that, unlike the minimally coupled model with & = 0,
the dynamics of the radial field becomes independent of that of the axion as the radial
field surpasses a critical threshold. Consequently, as we approach the wormhole throat
from the asymptotic region, the axion’s decay constant simply converges to Mp/+/E. This
decoupling phenomenon between the radial scalar field and the axion field appears to be
rooted in symmetry considerations and may also be associated with the conditions of the
scalar potential required for inflation. However, we demonstrated that the effects of a large
non-minimal coupling can be mitigated by introducing the R2-term with a specific range
of coupling values. The true impact of a large £ warrants a more detailed investigation in
both the metric and Palatini formalisms.

If additional gauge symmetries are present, the QCD axion must necessarily be a
gauge singlet, formed as a combination of pseudo-Nambu-Goldstone bosons, denoted as
0(x) = 3 ;qr0' (). Other combinations are absorbed by the gauge bosons. For complex
scalar fields ®; = %qb]ewl, which carry charges under these gauge symmetries, this results

in local operators proportional to e~ SwnTiar0" ~ =S5 [1;(®1/Acg)?. On one hand, if the
axion is a composite particle, evaluating the wormhole solution becomes highly intricate.
This complexity arises because we must account for strongly interacting fermions in the
equations of motion. Subsequent research will provide a deeper connection between more
fundamental theory and axion phenomenology.
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A The effect of the scalar potential on the axion wormhole action

In this appendix, we discuss the effect of the scalar potential including higher dimensional
operators on the axion wormhole solution in more detail. Throughout the appendix, instead
of the singular coordinate for the wormhole geometry, we take the regular one as

dr?

m + T2dQ§ = dp2 + a2(p)dQ§ (Al)
0

2 _
dSWh =

where

dp 1

dr \/1—[/3/7“47

At the wormbhole throat (p = 0), a(p) = Lo, and a(p) = r =~ p in the area far away from
the wormhole (p > Ly).
Considering a complex scalar field that contains an axion 6(x),

a(p) =r. (A.2)

_ L e
<I>—\/§¢e , (A.3)

we can add a potential term V;(|®|) to the action eq. (3.5) as

M2
S = /d4x\/—g l— (;’ + §|<1>y2> R+ 0,90"®* — VJ(|‘I>|)] : (A.4)
In the Einstein frame, the Euclidean action for the matter part is given as
o0 1 do\ 2 n?
Sma:22/d37G <> ——+V A5
(SE)mat ™ 0 pa (2 (®) dp + 87T4f3((b)a6 +V(9) |, ( )

where G(¢) and f,(¢) are given by eq. (3.8). Here the potential in the Einstein frame is given
by V(¢) = Vy(¢)/(1 + £¢?/M3)%. The PQ charge quantization of the wormhole (eq. (2.7))

is used for the axion kinetic term as

25 2(0)a’ (52) =n. (A.6)

where 0 is the Euclidean dual of the 3-from field strength H,,,. Then, the equations of
motion for ¢ are

©o  3dads)  1dG(0) (d8\? | ' diu(¢) _dV(®)
¢ (dp”adpdp)W w0 (i) * e 6~

The Einstein equation gives

da\? a? n? 1 do\?
(&) =1~ (s 200 () +v0) @9

As p — 0, a(p) — Lo, the derivatives da/dp, dp/dp — 0. From the solutions of these
equations, the contribution to the wormhole action can be written as

& dSwh
n= ) de (g, (A.9)

(A7)
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Figure 5. The dSy1/dp contribution for minimal gravity, evaluated with f, = 10 GeV, n = 1,
and A = 0.1. The blue lines depict the total contribution, whereas the red lines correspond to the
contribution from the potential (2m2aV (¢)), with different values of Xe.

The potential contribution to the wormhole action can be separated as
ASyn = / dp (25 (9)) . (A.10)
0

For the scalar potential in the Jordan frame, V; is taken as the following form

Vi(9) = ﬁ(aﬁ? - 72) (1 + ]\Z¢2+-~> : (A11)

To simplify the numerical calculation, we choose f, as a vacuum expectation value of ¢ for
general values of A and Ag. We include the higher dimensional term with a natural cut-off
scale Mp in the Jordan frame. The perturbative cut-off A(¢) in the Einstein frame could
differ from Mp depending on the background value of ¢. However, it does not mean the
cut-off scale in the potential term of eq. (A.11) should be directly dependent on A(¢).

In figure 5 and figure 6, we depict the action contribution dSyy/dp including higher-order
operators from numerical calculations incorporating a shooting method with the potential
eq. (A.11). We see that for all cases, the potential contribution A(dSyp/dp) = 272a3V (¢) is
subdominant compared to the total value by orders of magnitude, which makes the wormhole
solution insensitive to the potential form. Although they are subdominant, the potential
contribution becomes maximal around the wormhole throat because the value of ¢ increases
as p — 0. Therefore, it is sufficient to discuss the contribution from the potential term
focusing around the wormbhole throat.

From eq. (A.8), the throat radius Lg is given by

, 1 n CVienrz)
o= 272,/6 (MPfa(¢0)> (1 3M3 ) 7 (4.12)

where ¢g = ¢(p)|,—0. Therefore, as the potential contribution increases, the size of the

wormhole also increases. Compared to the massless scalar case discussed in the text, the
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n=1, A=0.1, =10, Metric n=1 A=0.1, £ =10* Palatini
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Figure 6. The dSyn/dp contribution for non-minimal gravity in the metric formalism(left), and
non-minimal gravity in the Palatini formalism(right). All cases were evaluated with f, = 10!¢ GeV,
n=1,A=0.1, and £ = 10, using the same color scheme as figure 5.

contribution of the potential term is suppressed by the factor
ASwn _ V()R | V(60) A3
Swh 6MP 1272/6 M3 fo (o)
One can directly insert the values of ¢¢ in eq. (3.11) for each model to eq. (A.13) and estimate
its magnitude. Considering the scalar potential eq. (A.11) and f,(¢) in eq. (3.8), we have

ASwn _ 1 V(o) Mp i
Swh 12726 \ Mp (14 @2/ M2)3/2¢, ) )

For each case, i.e. £ < 1 and £ > 1 in the metric (o = 6) or Palatini (o« = 0) formalism, we have

ASun . 1 TI'\E
S = eI vy ( 4 Mp) ~ 0.006)\<1 + 3.7)\6) (€< 1) (A.15)
4,/E 5 0.0004) < )\6>
= Vs oy 2Mp ) e (1412578 >1,a=6 A.16
31 ﬁ307r2M?3 J < 45 P) 53/2 § (f « ) ( )
1 3 0.0009\
~ 27/6r263/20 & <\f2MP> - W(l + 1‘5)‘6) (E>1,a=0) (A-17)

for ¢9 > f,. These corrections depending on the couplings A, Ag of the scalar potential
and the non-minimal coupling ¢ are consistent with the results in figure 5 and figure 6.
We therefore numerically and analytically confirm that the contribution of the potential
term is small, less than 1% for reasonable values of the couplings. The contribution is much
suppressed in the limit of large £&. The parameter dependence of large £ can be well understood
since the potential in the Einstein frame depends more strongly on £ than on f,(¢).

On the other hand, it is less trivial that the contribution of the potential term is also
suppressed for £ < 1. The origin of the numerical suppression is mainly due to the three-
dimensional surface volume of a 3-sphere (Vgs = 272) surrounding the wormhole. It appears
in the action eq. (A.4) as

1w
2VEf2(¢)as’

The equations of motion give L% oc 1/Vgs which is numerically smaller than the expected

(A.18)

value from dimensional analysis.
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