Track reconstruction for the ATLAS Phase-II High-Level Trigger using Graph Neural Networks on FPGA

On behalf of the ATLAS TDAQ collaboration Mini-workshop on Real time tracking CTD, October 13, 2023, Toulouse, France

Sachin Gupta (Physikalisches Institut, Heidelberg University)

ATLAS upgrade for HL-LHC

- From 2029, LHC Luminosity will be 7.5 times the current one.
- Average number of inelastic p-p collision per bunch will be increased to 200 (Currently 40).
- Shifting towards a new all silicon Inner Tracker(ITk)
- Upgrade in the trigger and data acquisition system (TDAQ) is also required

Ref: ATL-ITK-SLIDE-2018-073

ATLAS Event Filter for HL-LHC

- Track reconstruction for Inner Tracker
- Computationally intensive task for high particle density
- For real time tracking :
 - Precise algorithm
 - Fast computing resources
 - Accept trade off in precision for high throughput
- Exploration of modern machine learning techniques with heterogeneous computing architecture (CPUs + GPUs +FPGAs)

Ref: ATLAS-TDR-029-ADD-1

Track reconstruction with GNN

- Metric Learning: uses deep neural network
- Module Map: uses geometric observables for construction

 Implements interaction network to model the relationship between graph objects

 Creates track candidates as a sequence of hits

Track reconstruction with GNN

Graph construction using MLP

• MLP is trained to construct graph with the available info : hit position (r,ϕ,z)

- Graph: Nodes(hits), Edge (Connection between two hits)
- ullet All hits are mapped to some latent space and Edge is drawn among the hits lying within the circle of radius r
- Network learns to push hits belonging to the same track within the circle: Red hits in the figure

Hits in the latent space

Edge classification (GNN)

- Goal: classify edges as "True" or "False"
 - could they belong to a track?

- GNNs rely on Message Passing:
 - Node vectors (properties of node) are updated through an update function (MLP)
 - Information is passed along edges to neighboring nodes
 - All messages are aggregated at each node
 - After one or more message passing steps, use classifier to make edge-level predictions

Resource Estimation for Intel FPGAs* with HLS4ML

* AMD FPGAs : Under exploration

FPGA deployment

- For FPGA translation, ML model must be converted to HLS
- Frameworks HLS4ML and Xilinx/FINN are used for conversion

HLS4ML documentation

- For resource estimation :
 - PyTorch model is translated to ONNX, then HLS4ML generates HDL code
 - Using Quartus RTL compilation resource were estimated on target device (Intel S10 GX)

FINN documentation

Resource Estimates: Intel S10 GX

- Entire model was unrolled onto FPGAs
- Only small models were considered because of the reuse factor 1

Ref: M.Sc. thesis Sara Schjødt Kjaer (public link to be added)

- Aggregation at nodes and Index matrix not supported in HLS4ML
- Simplified GNN with 1 message passing steps: more resources for full GNN

Takeaway

- To completely unroll a model on FPGAs, DSP blocks are predominantly used
- Can we compress the model while keeping the pipeline precise?
- Yes, by applying ML compression techniques :
 - Quantization Aware Training
 - Pruning

Model Compression study in step 1

Quantization Aware Training (QAT)

- Parameter's representation are trained for arbitrary precision instead of FP32
- Bit width of weights, activation and bias is predefined, and training is done afterwards

Pruning

- Idea: Sparse matrix speed up computation
- Pruning is performed iteratively, after certain epochs weights can be removed either with or without structure
- Weights are penalized with L1 loss i.e., making some of them closer to zero and pruning them after some epochs

Performance metric for Step 1

- Aim: To have all true edges with small fraction of false edges
- Performance quantified by Efficiency and Purity

•
$$eff = \frac{\text{# true edges in the graph}}{\text{#Total true edges}}$$

• $purity = \frac{\text{# true edges in the graph}}{\text{#total edges in the graph}}$

Setting up QAT

- Parameter's bit width are different for different regions
- For our study we have three variable for each parameter:
 - $b_{w[1,2-4,5]} = [B_I, B_H, B_O]$
 - $b_{A[1,2-3,4]} = [A_I, A_H, A_O]$
- Architecture adapted for FPGA target :
 - Batchnorm was used
 - No bias after linear layers

Results with TrackML dataset

- Pruning: 10 % with frequency 180 epochs
- Performance is retained even by order of 3 reduction in BOPs for QAT+pruned
- Smaller model (less BOPs)

 can be selected, but the graph
 size will be larger in comparison

Ref: https://indico.jlab.org/event/459/contributions/11375/

Summary and Outlook

- Translation of GNN based pipeline on FPGAs with HLS4ML and resource estimation
- Resource estimation suggests to compress ML model
- Model compression techniques studied for Step 1 (Graph Construction)
- For non-ML methods manual translation of the code to hardware (VHDL)
- Outlook:
 - Resource estimate for QAT+Pruned MLP
 - Model compression study for the GNN and resource estimation
 - Study with AMD FPGAs via FINN translation
 - Graph segmentation to reduce the graph size
 - Performance with ITk data

HL-LHC tt event in ATLAS ITI

at $<\mu>=200$

Thank you for your attention

Questions?

Backup Slides

Translation of non-ML Steps: Module Map

Module Map

Goal of graph construction: Limit amount of false edges while keeping true edges

- For each module pair, find max and min of geometric values
- Apply geometric cuts for each pair
- Construct map of possible connections/edges
- Store in permutation invariant matrix

VHDL implementation of Module Map

Module Map: VHDL implementation

- Preliminary design implemented targeting realistic ITk conditions
- End-to-end simulation working
- (Very) preliminary resource utilization estimates on AMD xcvu37p-fsvh2892-2L-e

What is the TrackML Datase

- Simplified detector geometry, adapted from early ATLAS ITk designs
- Pile-up 200 conditions like @ HL-LHC
- We are starting with a pre-processed dataset of particles p_T > 1 GeV

Translating & obtaining resource estimates

Metric learning

- MLP extracted from graph construction
- Converted to ONNX before translation

Graph Neural Network

- Some GNN operations are currently not supported in HLS4ML
- Constructed a simplified GNN based on GNN4ITk architecture, removing two unsupported model features:
 - Aggregation at nodes (message passing)
 - Indexing operation connecting node and edge indices

Track reconstruction

VHDL implementation of walkthrough method developed and tested in simulation

Edge classification (GNN)

Use type of GNN called "Interaction Network"

- Interaction Network adds an extra step to the message passing algorithm
- "Edge network" updates edge features, allowing two nodes to form unique relationships
- Improves quality of edge-level predictions

Finally, edge scores are assigned to all edges in an event Use threshold value (e.g. ~0.5) to discard false edges

 v_i^k node features e_{ij}^k edge features at iteration k

Track reconstruction methods

Method 1: Walkthrough

- Identify starting node
- Traverse edges with high scores
- Longest path found
 - → track candidate

Method 2: Connected components

- For edges above threshold score, identify connected paths
- Assign component index to nodes

Method 3: Connected components followed by walkthrough

Segmentation: Subgraph Edge Visualization (all edges)

Black points: hits = nodes Blue lines: edges preserved in subgraph (nodes in same segments) Green lines: edges NOT preserved in subgraph (nodes in different segments)