
Generalized threshold of longitudinal multi-bunch instability in synchrotrons

Ivan Karpov and Elena Shaposhnikova
CERN, CH 1211 Geneva 23, Switzerland

(Dated: September 14, 2023)

Beam stability is an essential requirement for particle accelerators. Longitudinal coupled-bunch
instabilities (CBI) are driven by beam interaction with long-range wakefields induced in the resonant
structures with narrow-band impedance. Single-bunch loss of Landau damping (LLD) is mainly
determined by short-range wakefields excited at any geometry change of the beam pipe (broadband
impedance) and leads to undamped bunch oscillations. Up to now, to define the threshold beam
intensity or impedance, these two effects were evaluated separately. We developed an approach to
numerically solve the stability problem in a more general case and derived a new analytical threshold.
We have shown that LLD can modify the mechanism of multi-bunch instability and reduce the CBI
threshold below the LLD threshold. This effect explains the existing observations in the CERN SPS
and should be considered for future accelerators, such as HL-LHC, EIC, FCC, and others.

The interaction of charged particles with the accelera-
tor environment (impedance) can result in the develop-
ment of undamped or exponentially growing bunch oscil-
lations. In the absence of synchrotron radiation damping,
an accelerator design relies either on beam stabilization
only by the natural frequency spread of individual par-
ticles, called Landau damping [1], or on active damping
systems in addition.

It is common in beam stability analysis to sepa-
rate single- and multi-bunch collective effects since they
are driven by short- and long-range wakefields, respec-
tively [2–8]. For the longitudinal beam motion consid-
ered below, many impedance sources, related to the wake
functions via the Fourier transform, can be modeled by
the resonances

Z(ω) =
R

1 + iQ (ω/ωr − ωr/ω)
(1)

with a shunt impedance R, quality factor Q, and res-
onant frequency ωr = 2πfr. The cases of Q ∼ 1 and
Q ≫ 1 correspond to broadband (BB) and narrowband
(NB) impedances, or short- and long-range wakefields,
respectively.

The synchrotron oscillations inside the bunch can be
described as van Kampen modes [9–12]. Their frequen-
cies are modified by the presence of a BB impedance. At
a certain intensity, the coherent mode moves outside the
band of incoherent oscillation frequencies of individual
particles leading to a loss of Landau damping (LLD), see
Fig. 1, left. Only the reactive (imaginary) part of the
accelerator impedance is responsible for this effect, but
the resistive impedance is needed to drive bunched-beam
instabilities. A single-bunch instability resulting from
the coupling of different coherent modes usually appears
at bunch intensities significantly higher than the LLD
threshold and is not discussed in this Letter. Coupled-
bunch instability (CBI), leading to the coherent coupled
motion of individual bunches, is possible if the decay time
of the wakefield 2Q/ωr is longer than the bunch spacing.
This instability takes place even if its coherent frequency
lies inside the incoherent frequency band (Fig. 1, center).

The threshold of CBI driven by a NB impedance was
accurately calculated [4] using the matrix equation de-
rived by Lebedev in 1968 [2]. The LLD threshold in the
longitudinal plane was first found in 1973 [3] and it was
revised recently [13], using the Lebedev equation together
with the approach [12] developed originally for the analy-
sis of single-bunch instability [14]. So far, the thresholds
for these two effects were calculated separately, with few
examples when the CBI growth rates were found in the
presence of two impedance sources [15, 16].
In this work, we evaluate the CBI threshold for two

impedance types using the Lebedev equation. First, we
consider them separately, and then we show that, if the
LLD threshold is comparable to the CBI threshold, the
instability in the presence of two impedances has a sig-
nificantly reduced threshold and can even emerge be-
low the LLD threshold. The mechanism of this multi-
bunch instability is modified as well (Fig. 1, right).
We also derive an analytical expression for the gen-
eral instability threshold and compare it with the re-
sults of self-consistent numerical calculations using code
MELODY [17] and macroparticle tracking simulations
with code BLonD [18, 19].
Let us consider a beam of M identical equidistant

bunches, each containing Np particles with a charge q.
We will use a coordinate system relative to the syn-
chronous particle of the first bunch with the design en-
ergy E0 and the rf phase ϕs0, so that ∆E and ϕ are the
particle energy and rf phase deviations. They are con-
nected via equation, e.g., [6],

dϕ

dt
≡ ϕ̇ =

h2ω2
0η

β2E0

(
∆E

hω0

)
,

where ω0 = 2πf0, f0 is the revolution frequency, β the
normalized particle velocity, h the harmonic number,
η = 1/γ2tr − 1/γ2 the slip factor, γ the Lorentz factor
with value γtr at transition energy. In this work, we an-
alyze a single-rf case Vrf(ϕ) = V0 sin(ϕs0 + ϕ), with V0
being the rf voltage amplitude, but it can be extended to
other rf waveforms. Each particle performs synchrotron
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FIG. 1. Evolution of coherent modes (black and colored circles) and incoherent frequency bands (gray) obtained with semi-
analytical code MELODY versus normalized intensity parameter ζ defined in Eq. (6). Left: LLD with BB impedance, no
instability. Center: CBI with NB impedance. Right: CBI with BB and NB impedances. Thresholds found from exact Eq. (5)
are shown with dashed lines while corresponding approximate solutions (15), (14), and (17) with dotted lines. Examples for
nine bunches in the scaled LHC ring with parameters from Table I and knb/h = 11/9, Qnb = 100, Rnb = 37 kOhm, kbb/h = 5,
Qbb = 1, Rbb = 30 kOhm.

oscillations with energy E and phase ψ

E = ϕ̇2/(2ω2
s0) + Ut(ϕ),

ψ = sgn(η∆E)
ωs(E)√
2ωs0

∫ ϕ

ϕmax

dϕ′√
E − Ut (ϕ′)

,

where ωs0 is the angular oscillation frequency of small-
amplitude synchrotron oscillations in a bare single-rf po-
tential Urf and ωs(E) - oscillation frequency in total po-
tential Ut, modified by intensity effects.

Evaluation of beam stability is usually done in two
steps. First, a stationary solution should be found,
e.g., by the iterative procedure [12] for some distribu-
tion function F = F(E), bunch intensity, and impedance
model. Below we consider the binomial family of the
stationary distribution functions F(E) ∝ (1− E/Emax)

µ
,

where Emax and ϕmax are the maximum energy and
phase of the synchrotron oscillations, and µ defines the
bunch shape. As a result, one obtains the line density
λ(ϕ) =

∫∞
−∞ F(E)dϕ̇ and total potential

Ut(ϕ) =
1

V0 cosϕs0

∫ ϕ

∆ϕs

dϕ′ [Vt(ϕ
′)− V0 sinϕs0] . (2)

The total voltage Vt(ϕ) = Vrf(ϕ)+Vind(ϕ), contains con-
tribution from the stationary beam-induced voltage

Vind(ϕ) = −qMNp hω0

∞∑
k=−∞

Z(kω0)λke
i khϕ,

with k = f/f0 and λk being the Fourier harmonics of the
line density normalized by MNp

λk =
1

2πh

∫ πh

−πh
dϕ λ(ϕ)e−i

k
hϕ, (3)

which are non-zero only for k = pM, p = 0,±1, ...
The synchronous phase shift due to intensity effects ∆ϕs

satisfies the relation V0 sinϕs0 = V0 sin(ϕs0 + ∆ϕs) +
Vind(∆ϕs).
To proceed with the second step, we assume a small

perturbation F̃(E , ψ, t) = F̃(E , ψ,Ω)eiΩt to the station-
ary function F(E). For M equidistant bunches, the per-
turbation F̃ l is characterized by a coupled-bunch mode
number l (l = 0, 1, ...,M −1), defining the phase advance
e−i2πl/Mbetween consecutive bunches, and it should sat-
isfy the linearized Vlasov equation (see, e.g., [6])[

∂

∂t
+ ωs

∂

∂ψ

]
F̃ l = ωs

∂Ũ lind
∂ψ

dF
dE . (4)

Here the perturbed induced potential Ũ lind(ϕ, t) is defined
similarly to Eq. (2). The solution of Eq. (4) must be pe-
riodic function of the phase ψ, and can be expanded in
the harmonics e−imψ (m ̸= 0). Then the corresponding
harmonics of the line-density perturbation λ̃lk(Ω), defined
similarly to Eq. (3), are connected by the Lebedev equa-
tion [2]:

λ̃lk′(Ω) =
ζM

h cosϕs0

∞∑
k=−∞

Gk′k(Ω)
Zk(Ω)

k
λ̃lk(Ω), (5)

with Zk(Ω) = Z(kω0 +Ω) and the intensity parameter

ζ = qNp h
2 ω0 /V0. (6)

Note that λ̃lk are non-zero only for k = pM + l. The
detailed derivations in variables (E , ψ) can be found, e.g.,
in [13]. Below we consider a stationary case with ϕs0 = π.
The matrix elements Gk′k(Ω) in Eq. (5) are

Gk′k = −iω2
s0

∞∑
m=−∞

m

∫ Emax

0

dF(E)
dE

I∗mk(E)Imk′(E)
Ω−mωs(E)

dE ,

(7)
and they contain functions

Imk(E) =
1

π

∫ π

0

ei
k
hϕ(E,ψ) cosmψ dψ. (8)
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The coherent frequency Ω is the solution of Eq. (5) when
its determinant is zero. The beam is unstable if ImΩ < 0.
The exact solution in a general case has to be obtained
numerically, e.g., with code MELODY. Approximate an-
alytical solutions can be also found under certain condi-
tions. Using a general matrix property

det [exp (ε X)] = exp [ε tr (X)] ,

where tr(X) is the trace of a square matrix X, and taking
into account that X(ε) = X(0) + ε(dX/dε)(0) + ..., the
expansion up to the first order of ε yields:

det [I + ε X(ε)] = det (exp {ln [I + εX(ε)]})
= exp (tr {ln [I + εX(ε)]}) ≈ 1 + εtr [X(0)] . (9)

Then equating the determinant of Eq. (5) to zero, we ob-
tain, similarly to [13], the generalized instability thresh-
old

ζth(Ω) ≈ − h

M

[ ∞∑
k=−∞

Gkk(Ω)
Zk(Ω)

k

]−1

. (10)

For the solution Ω = Ωg, valid for any impedance model,
the imaginary part of the sum is zero since ζ is a real
quantity. Here we will consider the sum of NB and
BB resonator impedances, Z = Znb + Zbb, described
by Eq. (1). The small parameter ε ∝ ζth(Ωg), while
its dependence on other parameters can be defined from
comparison with the exact numerical solution [13].

Let us start with a more simple case of the narrow-
band impedance. If Zbb = 0 and

ωs0 ≪ ∆ωnb ≪Mω0, ∆ωnb ≪
∣∣∣∣ωr,nb − pMω0

2

∣∣∣∣ , (11)

where ∆ωnb = ωr,nb/2Qnb is the resonator bandwidth,
all elements in Eq. (5), except with knb = ⌊ωr,nb/ω0⌋,
can be neglected (⌊x⌋ denotes the rounding of x to the
nearest integer). Then the instability threshold is given
by Eq. (10) with only one element in the sum. Under
these assumptions, the solution is exact and can be found
by analyzing the equation

ζnbth (Ω) = − h

M

[
Gknbknb(Ω)

Zknb(Ω)

knb

]−1

(12)

for ImΩ → −0, ReΩ = Ωnb = mωs(Ẽm), 0 < Ẽm < Emax.
The approximate analytic expression can be also ob-
tained for a certain particle distribution from the stabil-
ity diagrams [4]. In a short-bunch approximation, when
ϕmax ≪ π, we have Emax ≈ ϕ2max/2, ϕ(E , ψ) ≈

√
2E cosψ,

ωs(E) ≈ ωs0(1 − E/8), and the functions Imk(E) can be
replaced by Bessel functions Jm(x) of the first kind and
the order m

Imk(E) ≈ imJm

(
k

h

√
2E

)
. (13)

The instability threshold for µ > 1 is the lowest for the
dipole mode m = 1 [20]

ζnbth ≈ hϕ4maxknb
16MRnb

min
y∈[0,1]

[(
1− y2

)1−µ
µ(µ+ 1)

J−2
1

(
yknbϕmax

h

)]
,

(14)
and it is mainly defined by the value of Rnb/knb, since
ImZnb = 0 at ωr.
For numerical calculations, we used the parameters of

the Large Hadron Collider (LHC) at injection energy
from Table I and binomial distribution function with
µ = 2 and zero-intensity ϕmax = 1.3. Due to the very
large number of LHC bunches (3564), a direct compari-
son of macroparticle simulations with the model predic-
tions is computationally too expensive. So we simulated
nine equidistant bunches by reducing the harmonic num-
ber to nine and scaling other parameters to keep ζ and
ωs0/ω0 unchanged.
For nine bunches and a single NB resonator with

knb = 11, a coupled-bunch mode l = 2 with m = 1
should become unstable above a certain threshold. Fig-
ure 1 (center) shows the dipole bunch oscillation mode
(m = 1) as a function of intensity obtained using the
Oide-Yokoya method [14]. A mode inside the synchrotron
frequency spread becomes unstable for ζ > ζnbth , and the
instability growth rate increases with intensity. The in-
stability threshold found as the exact solution of Eq. (12)
coincides with the emergence of the unstable mode. The
solution (14) obtained in the short-bunch approximation
gives about a 10% higher threshold, which is not surpris-
ing since the bunch with ϕmax = 1.3 is not so short.
Assuming only BB impedance, the LLD threshold can

be also derived for the same distribution functions in the
short-bunch approximation. Evaluating the matrix ele-
ments Gkk for Ω = Ωbb = ωs(0) and performing summa-
tion in Eq. (10), one obtains [13]

ζbbth ≈ πϕ5max

32µ (µ+ 1)χ(keffϕmax/h, µ)

1

(ImZ/k)eff
. (15)

The function

χ(y, µ) = y
[
1− 2F3

(
1/2, 1/2; 3/2, 2, µ;−y2

)]
is approaching y for y ≫ 1, where 2F3 is generalized

TABLE I. The accelerator and rf parameters of the LHC and
Super Proton Synchrotron (SPS) at E0 = 450 GeV [21, 22].

Parameter Units LHC SPS
Circumference, C m 26658.86 6911.55
Harmonic number, h 35640 4620
Transition gamma, γtr 55.76 17.95
rf frequency, frf MHz 400.79 200.39
rf voltage, V0 MV 6.0 7.0
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hypergeometric function. The effective impedance is de-
fined as

(ImZ/k)eff =

keff∑
k=−keff

Gkk ImZk/k

/ keff∑
k=−keff

Gkk (16)

with the effective cutoff-frequency number keff which
maximizes the cumulative sum in the nominator. For
a broadband resonator keff = kbb = ωr,bb/ω0.

The results of MELODY calculations for a pure BB
resonator impedance with kbb/h = 5 are shown in Fig. 1
(left). The LLD mode emerges at ζ = ζbbth above the max-
imum incoherent frequency ωs(0) leading to undamped
but stable oscillations. Similarly to the previous case,
the LLD threshold computed from the Lebedev equation
agrees with the Oide-Yokoya method. The analytical ap-
proximation overestimates it by ∼ 30%.
Finally, if we combine the BB and NB impedance con-

tributions, the threshold (10) can be written in the form

1/ζth(Ωg) = 1/ζnbth (Ωg) + 1/ζbbth (Ωg). (17)

The coherent mode Ωg differs from Ωnb and Ωbb found
for each impedance separately. Nevertheless, for a first
estimate, one can use ζnbth (Ωnb) and ζ

bb
th (Ωbb) in Eq. (17).

If ζbbth (Ωnb) ≪ ζnbth (Ωbb), Ωg ≈ Ωbb and the actual CBI
threshold is reduced, as shown in Fig. 1 (right), where
it is even below the LLD threshold. In the opposite
case, the BB impedance has a negligible impact and
Ωg ≈ Ωnb. The relative role of each contribution in
Eq. (17) can also be seen in Fig. 2 from instability thresh-
olds numerically obtained for different (ImZ/k)eff and
kbb using Eq. (5). As expected, a larger BB impedance
leads to a lower CBI threshold, except for the case when
ζbbth (Ωbb) ≫ ζnbth (Ωnb). BLonD simulations follow closely
the growth rates obtained using the Oide-Yokoya method
and the direct solution of the Lebedev equation confirms
the thresholds.

The impact of keff is shown in Fig 2 (bottom). The
CBI threshold is reduced for larger kbb since the LLD
threshold is also reduced, and its effect on the overall
instability threshold is increased. We see, however, that
the growth rates above a certain intensity become smaller
for larger kbb. For this new instability mechanism, the
mode is localized in the bunch center (Fig 3, right), simi-
lar to a single-bunch LLD (Fig 3, left). For larger kbb, the
mode spectrum shifts towards higher frequencies as for
LLD mode [13] and interacts weaker with NB impedance
since knb < kbb. For Zbb = 0, the perturbation looks
very different and involves mainly high-amplitude parti-
cles for the considered knb (Fig 3, center).
Considering LHC parameters without scaling (Ta-

ble I), in the full ring, the lowest CBI threshold due to a
higher-order mode (HOM) of the future crab cavities [21]
with Rnb = 280 kOhm, fr,nb = 582 MHz, and Qnb =
1360 is three times smaller with BB impedance [23].
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FIG. 2. The growth rate of the most unstable mode versus the
normalized intensity parameter ζ for various strengths (top)
and cutoff frequencies (bottom) of the BB impedance. In-
stability and LLD thresholds found from exact Eq. (5) are
shown with vertical dashed and dotted lines, respectively.
BLonD simulations are marked with crosses. The parame-
ters from Table I scaled to h = 9; knb/h = 11/9, Qnb = 100,
Rnb = 37 kOhm, Qbb = 1, and Rbb = 3Abb × (kbb/h) kOhm.
Top: kbb/h = 5, bottom: Abb = 2.

The SPS, being the LHC injector, also provides beams
for the fixed-target physics. For these beams filling the
whole ring, CBI is driven by a higher-order mode (HOM)
in the main 200 MHz rf system with fr ≈ 914 MHz [24].
The CBI thresholds found for the full SPS impedance
model [25, 26] and for only HOM impedance practically
coincide (see Fig. 4) since the LLD threshold is higher
by an order of magnitude. If the beam fills every 5th
rf bucket (LHC-type), the HOM-driven CBI threshold is
higher and the resulting threshold is more affected by the
BB part of the SPS impedance. This explains why the
LHC-type bunch train in the SPS has a very low CBI
threshold, which also weakly depends on the number of
bunches in a train [23]. To deliver high-intensity LHC
beams, an additional 800-MHz rf system leading to the
raised CBI threshold is routinely deployed [22].

To summarize, we proposed the approach to ana-
lyze beam stability in the presence of both broad-
band and narrowband impedance sources. The broad-
band impedance can significantly reduce the threshold
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phase space for LLD mode (BB impedance) at ζ/ζnbth = 0.5
(left), unstable mode driven by NB impedance at ζ/ζnbth = 1.1
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FIG. 4. Growth rates of the most unstable mode (solid
lines) versus bunch intensity found with MELODY for SPS
with M = h (blue), M = h/5 (orange) and LHC train of
72 bunches spaced by 5/frf (green) with corresponding CBI
thresholds driven by only HOM at 914 MHz (dashed lines).
The LLD threshold is shown by a black dotted line. The
SPS parameters from Table I, zero-intensity ϕmax = 0.9, and
µ = 1.5.

of coupled-bunch instability driven by the narrowband
impedance, and there is a new instability mechanism as-
sociated with it. The derived generalized analytical ex-
pression shows the key role of LLD and demonstrates
how two impedance contributions add up. For the LLD-
dominated case, the values of the effective BB impedance
and its cutoff frequency are important. The main conclu-
sions are verified by macroparticle simulations and they
are consistent with beam observations in the SPS. This
understanding can help in finding mitigation measures
aimed at increasing Landau damping for existing high-
current synchrotrons. The discovered effect should be
also taken into account in the design of future rings.

We are grateful to Heiko Damerau for his useful com-
ments.
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