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1 Introduction

In the past decade there has been a surge of interest in studying general properties of
scattering amplitudes stemming from the fundamental principles of causality, crossing, and
unitarity. One powerful method for doing this is the numerical S-matrix bootstrap [1–3]. It
allows to determine model-independent bounds on physical observables and extract scattering
amplitudes from them.

The case of massive particles has been widely studied in various space-time dimensions [4–
34]. Particles with spins have been studied in [35]. Alternative approaches have been developed
in [36–39], and progress has been made in establishing new rigorous results in [40, 41]. The
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case of massless particles has been investigated to a lesser extent, and the numerical algorithms
are less effective. Nevertheless, some intriguing results have been obtained: bounds on the
quark antiquark potential [42, 43], universal constraints on pion low energy constants [44],
no-go theorems for quantum gravity with supersymmetry [45, 46], and universal bounds
on photon scattering [47].

In this work, we apply the numerical bootstrap to a simple physical process: the 2 → 2
scattering amplitude of massless identical scalars in four space-time dimensions.1 We focus
on the class of IR safe amplitudes that can be described at low energies by a derivatively
coupled Effective Field Theory (EFT)2

LEFT =−1
2(∂ϕ)2+c4(∂ϕ)4+c6(∂µ∂ν∂ρϕ)(∂µϕ)(∂νϕ)(∂ρϕ)+c8(∂µ∂νϕ)4+. . . (1.1)

Examples of such theories include neutral Goldstone bosons of the spontaneously broken U(1)
symmetry, spontaneous conformal symmetry breaking, or co-dimension one defects. The
real coefficients cn in the potential are called the Wilson coefficients. Their mass dimension
reads as [cn] = −n.

We can use the EFT Lagrangian density (1.1) to systematically compute the 2 → 2
scattering amplitude of Goldstones at each order in the small s expansion T (k)

EFT ∼ O(sk),
where s is the Mandelstam variable describing the squared total energy of the process. The
EFT expansion provides the most generic parametrization of the amplitude compatible with
crossing symmetry, and unitarity. Since the Mandelstam variable s is dimensionful, the
validity of the EFT expansion as an approximation of the amplitude itself depends on a scale,
a priori unknown, called the EFT cutoff. For the moment, we will be agnostic about the
cutoff. Instead, without loss of generality, we identify the EFT expansion with the small s

asymptotic expansion of the nonperturbative scattering amplitude of Goldstones3

T (s, t, u) =
N∑

k=2
T (k)

EFT(s, t, u) + O(sN+1), (1.2)

where the first terms are given by

T (2)
EFT(s, t, u) = g2 (s2 + t2 + u2), T (3)

EFT(s, t, u) = g3 stu, (1.3)

together with4

T (4)
EFT(s, t,u)= g4

(
s2+t2+u2

)2
− g2

2
480π2

(
s2(41s2+t2+u2) log(−s

√
g2)+

t2(s2+41t2+u2) log(−t
√

g2)+u2(s2+t2+41u2) log(−u
√

g2)
)
. (1.4)

1Stronger bounds can be obtained by including multi-particle constraints. This is an extremely hard
problem in higher dimension. In 2d some progress has been made in [48].

2Here we have only included the kinetic term and terms which contain four fields ϕ and up to 8 derivatives.
3To be more precise, the small s expansion is valid at fixed scattering angle θ. Since t = − s

2 (1 − cos θ),
and u = − s

2 (1 + cos θ), then t, u are small. For simplicity of narration we also use the identification
O(sn) ∼ O (sn logm(−s)), where m ≥ 1.

4The real coefficients gn introduced in the EFT expansion are simply related to the Wilson coefficients
as g2 = 2c4, and g3 = 3c6. The relation between g4 and c4 is scheme-dependent. We work in the scheme in
which the physical imaginary part is given by (1.4), this leads to the relation g4 = c8/4.
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The s, t and u are the usual Mandelstam variables which obey the relation s+ t+u = 0. The
above expressions can be easily derived without any reference to the Lagrangian by using
only crossing, and unitarity as shown in appendix B, where we provide the full expansion
up to O(s6) order.

Let us stress that the logs in (1.4) contain the scale √
g2 which defines our coupling

g4. Alternatively we could define the coupling g4(µ) with an arbitrary scale µ in the logs,
namely we could use log(−s/µ2) instead of log(−s

√
g2) in (1.4). Then the two observables

are simply related as g4(µ) = g4 −
7g2

2
160π2 log(µ2√g2). In perturbation theory this is simply

a change in the renormalization scheme.
When working with the scattering of massive particles there is canonical choice of the

physical units: setting the mass gap m = 1. In the case of massless particles there is no
obvious choice. In the EFT framework the natural candidate is the cutoff scale. However,
from a non-perturbative perspective, the cutoff is not a well defined concept. It is more
natural to use the first dimensionful parameter g2 in (1.2) to set the units. Notice that g2
is a nice candidate because it is universal and notoriously positive [49]. Two dimensionless
couplings are then formed as

ḡ3 ≡ g3

g
3/2
2

, ḡ4 ≡ g4
g2

2
. (1.5)

For later purpose, we will always define dimensionless ‘bar‘ variables in units of g2, for
example the dimensionless Mandelstam variable reads

s̄ ≡ s
√

g2. (1.6)

The first goal of our paper is

• To estimate universal bounds on {ḡ3, ḡ4}, and study the extremal amplitudes saturating
those bounds.

• To improve the numerical non-perturbative methods for massless particles. In particular
to solve the issue with slow numerical convergence observed in [47].

What can we say a priori about the allowed values of {ḡ3, ḡ4}? The first statement is
that both couplings can take arbitrarily large values. To understand this, let us consider
a situation in which all coefficients in the low energy expansion of the amplitude (1.2) are
given by a simple formula of the form

gn = knM−2nα, (1.7)

where kn are some order one real numbers, α is a dimensionless small parameter, and M an
arbitrary scale. We can think of M as the lightest particle in a weakly coupled QFT which we
integrated out, and α as the dimensionless coupling of this putative UV theory. We provide
some explicit examples in appendix C. Plugging (1.7) into (1.5) we get

ḡ3 = k3

k
3/2
2

1√
α

, ḡ4 = k4
k2

2

1
α

. (1.8)

– 3 –



J
H
E
P
0
3
(
2
0
2
4
)
0
2
8

In the weak coupling limit α → 0 the observables (1.8) become infinitely large, and the logs
in (1.4) become negligible. In this regime, we conjecture that it is possible to describe the
bootstrap results in perturbation theory using tree-level models.5 Our conjecture makes a
number of observable predictions that we verify using our numerics in section 2.3.

The complementary scenario is when both ḡ3, ḡ4 ∼ 1. This is the regime in which the
non-perturbative bootstrap is most powerful. In this case the logarithms in (1.4) are not
parametrically suppressed, and the bounds are non-trivial.6 In this regime the S-matrix
bootstrap is superior to other methods like “positivity” because it bounds the real part of
the scattering amplitude by employing non-linear unitarity constraints, see appendix A for
details. For the explanation of this fact using a simple analytic model see [43]. For the
comparison between the bounds obtained using the S-matrix bootstrap and positivity in
the case of massive particles see [24, 25].

When talking about EFT approximation of a physical phenomenon, there is an important
requirement to satisfy: the separation of scales between the IR physics and its UV completion.
This separation is parametrized by the introduction of an additional dimensionful parameter,
the cutoff of the EFT, that we denote by M . Recall, that g2 was chosen to set the units.
With the cutoff in mind, we can define a new dimensionless positive coupling ξ

g2 = ξM−4. (1.9)

In the example of the weakly coupled UV completion discussed above, we can compare this
expression with (1.7). From this it follows that ξ = k2α is infinitesimally small for α → 0.
Contrarily, for strongly coupled UV completions we expect ξ ∼ 1. The effect of an additional
gap due to the EFT cutoff on the bootstrap bounds in the case of massive particles has been
discussed in [25]. In [25], the authors proposed a simple algorithm to mimic the presence
of the EFT cutoff in a non-perturbative amplitude by bounding its imaginary part at low
energies s ≪ M2, and checked the consistency of the method with the EFT expectations.
Here, we employ a refined variation of that idea using the strategy inspired by [21] and we
apply it to the case of massless scalars.

Imagine that an experimentalist tells us that the scattering amplitude for a massless
process is well approximated by some experimental data for all s,−t ≤ M , and that the
error of this approximation is given by a function err(s, t, u). This can be implemented
by the following condition

s ∈ [0, M2] : |T (s, cos θ)− Texperimental(s, cos θ)| ≤ err(s, cos θ). (1.10)

Problems of this type were originally studied in [21] in two dimensions in the case of
form factors where instead of the experimental data the authors used the numerical data
obtained using the Hamiltonian Truncation method [73].7 In this paper we will explain
how to implement (1.10) in four dimensions. Since we do not have any experimental or
numerical data for the neutral Goldstone scattering we will use as a proxi of this data

5For interesting results on weakly coupled models using “positivity” see for example [50–72].
6In appendix F we derive the sum-rules for ḡ3, ḡ4 taking into account the logs. There it is clear that no

simple bounds can be obtained with simple analytic arguments.
7Similar idea was recently explored in the context of pion physics in [33].
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the EFT representation (1.2) up to O(s4) order assuming is valid in the extended region
s ∈ [0, M2]. The error function will be estimated as our ignorance of the O(s5) order terms
in this expansion. We refer to this type of study as model-dependent. Summarizing, we
define the second goal of our paper as

• Determine model-dependent bounds on {ḡ3, ḡ4} by requiring that

s ∈ [0, M2] :
∣∣∣∣∣T (s, cos θ)−

4∑
n=2

T (n)
EFT(s, cos θ)

∣∣∣∣∣ ≤ err(s, cos θ). (1.11)

The paper is organized as follows. In section 2 we present our numerical results on
universal bounds and discuss their physical meaning in great detail. In section 3 we briefly
summarize the technology of [3] and introduce our improvements for efficiently studying
massless particles. In section 4 we introduce the machinery needed for obtaining model-
dependent bounds defined by (1.11). We conclude in section 5. Some additional results
are provided in appendices. We refer to them throughout the text in places where they
become relevant.

The numerical data and a notebook to extract the amplitude and perform the fit analysis
can be downloaded from the repository https://doi.org/10.5281/zenodo.8422615.

2 Universal bounds on Wilson coefficients

We investigate numerically the space of UV complete amplitudes of Goldstones in four
dimensions. To this end, we use the numerical method introduced in [3] and [44]. We briefly
review this method in section 3. There, we also introduce several crucial improvements
of this method needed for studying massless particles efficiently. Below we summarize our
physical results.8

By using this method we determine the lower bound on the coupling ḡ4 as a function of
ḡ3. This bound is given by the orange line in figure 1(a). All values of the couplings ḡ3 and
ḡ4 above the orange line are allowed. There is a nontrivial absolute minimum for ḡ4

min ḡ4 = 1.58± 0.02
(4π)2 (2.1)

attained for ḡ3 ≃ −0.54. The value of ḡ4 is scheme-dependent as it appears at the same
order as the logs in the amplitude. We define it in terms of the physical amplitude as in
equations (1.2)–(1.4).

Looking at figure 1(a) we observe that ḡ4 is unbounded from above, while ḡ3 is unbounded
in both directions. We have already argued in section 1 how arbitrarily large values of the
Wilson coefficients can be realized by a simple mechanism. The absence of these bounds
can be proven theoretically by construction (in any number of space-time dimensions) as

8In this section, we present our results using the ansatz defined in (3.15) with its improvement. If not
explicitly specified in the figures, we use Nmax = 26 and nmax = 8 and impose unitarity constraints up to spin
200. We refer the reader to section 3 for precise definition of these variables. For now, what is necessary to
know is that Nmax measures the size/freedom of the ansatz.
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of the absolute minimum of the bound.
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(b) We plot the ratio: ḡ3/
√

ḡ4 vs ḡ3. Dashed lines
indicate the approximate asymptotes of the bound.

Figure 1. The allowed region for the parameters ḡ3 and ḡ4 defined in (1.5) lies above the orange line.

explained in appendix C. In figure 1(b) we present our bound for the ratio ḡ3/
√

ḡ4.9 From
figure 1(b), we observe that the ratio ḡ3/

√
ḡ4 goes to a constant as |ḡ3| → ∞, and we can

estimate the following bound on this ratio

−15.3 ⪅
ḡ3√
ḡ4

⪅ 4.2 . (2.2)

When ḡ3 = 0, our bound applies to the special case of the scattering of dilatons in N = 4
SYM on the Coulomb branch [74]. By giving a vev to one of the six scalars, we induce the
spontaneous symmetry breaking of both conformal and SU(4) R-symmetry. Fluctuations
around the vev correspond to the dilaton, the remaining five real scalars correspond to the
Goldstones of the unbroken Sp(4) symmetry. At low energies the amplitude with only dilatons
matches the expansion in (1.2) up to order O(s4) included, and the mixing with the other
Goldstones happens at higher orders. The condition ḡ3 = 0 is consequence of SUSY and the
soft theorems. By looking at our bound at ḡ3 = 0 point we report the following result

min
ḡ3=0

ḡ4 ≃ 1.95
(4π)2 . (2.3)

2.1 Phenomenology of the boundary

At each point on the boundary of the allowed region, given by the orange line in figure 1,
there is a unique amplitude which we can reconstruct numerically. The amplitudes on the
boundary are called extremal. Our goal in this subsection is to understand the physics
contained in these extremal amplitudes.

The simplest way to analyze a scattering process is to plot partial amplitudes Tℓ(s) (also
called partial waves) for several values of angular momentum ℓ = 0, 2, 4, . . .. Recall, that

9It is interesting to note that for the weakly coupled UV completion discussed around (1.7) we have
ḡ3√
ḡ4

= k3√
k2k4

which is independent of the small coupling α.
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Figure 2. The numerical values of the branching ratio of the cross section ḡℓ
2 defined in (2.6) of the

amplitudes on the lower boundary in figure 1 as a function of ḡ3. The colors represent different values
of the angular momentum ℓ = 0, 2, 4, 6.

in the physical region the scattering amplitudes in d = 4 space-time dimensions is written
in terms of the partial amplitudes as

T (s, t) = 2π
∑

ℓ=0,2,...

(1 + 2ℓ)Pℓ

(
1 + 2t

s

)
Tℓ(s), (2.4)

where Pℓ(x) is the Legendre polynomial. For more details, see appendix A.
In order to diagnose how the various degrees of freedom in the amplitude distribute in the

spin channels, it is useful to look at the spin decomposition of some observables. A convenient
choice is given by g2 and its sum-rule representation, derived in appendix F. One has

g2 = 1
π

∫ ∞

0
ds

Im T (s, 0)
s3 = 1

π

∫ ∞

0
ds

σtot
s2 ≥ 0, (2.5)

where σtot is the total cross section. If we decompose the amplitude in the forward direction
in partial waves inside the integral, we can define the following dimensionless coefficients that
can be thought as branching ratios of the cross section in each spin channel [25],

ḡℓ
2 ≡ 2g−1

2 (1 + 2ℓ)
∫ ∞

0
ds

Im Tℓ(s)
s3 ≥ 0 . (2.6)

The values ḡℓ
2, interpreted as a sort of partial cross sections, are thus a good indication of

the spin content of the amplitude. In figure 2 we present the value of ḡℓ
2 using different

colors for different spins as a function of ḡ3 that we use to parametrize the boundary. The
sum rule (2.6) is already well approximated by the sum of the branching ratios ḡℓ

2 with few
angular momenta ℓ = 0, 2, 4, 6. By looking at the figure we see that when ḡ3 ≫ 1 the ℓ = 0
ratio gives the most important contribution to the cross-section, suggesting that our bounds
might have a simple description in terms of a perturbative QFT amplitude. On the other
hand, when ḡ3 ≪ −1, the sum of the higher spin ratios dominate and we might envision a
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Figure 3. Trajectory of the lowest lying scalar zero as function of ḡ3.

string-like amplitude. Close to the minimum value of ḡ4 where we do expect strongly coupled
physics, the spins arrange in a non-trivial way.

We can refine our physical picture by studying the position of the spectrum of resonances
as a function of ḡ3. Consider partial waves

Sℓ(s) ≡ 1 + i

8Tℓ(s). (2.7)

Resonances are given by zeros sR of the partial waves Sℓ(sR) = 0 in the upper half plane.
Their position in the complex plane can be interpreted in terms of the mass and the width
sR = (m + iΓ/2)2 of the unstable particle [46]. In figure 3 we plot the position of the lowest
lying resonance in the ℓ = 0 partial wave for several values of ḡ3. Connecting the dots we
obtain a smooth continuous trajectory parametrized by ḡ3. The nature of this zero changes as
we follow it along the trajectory. When ḡ3 ≫ 1, in red, the zero shows up close to the real axis
with a mass parametrically larger than its width m ≫ Γ. Then it can be described as a light
weakly coupled scalar particle. On the opposite extreme, when ḡ3 ≪ −1, its interpretation
is obscure as it goes close to the left cut region s < 0. Around the minimum value of ḡ4,
when ḡ3 ∼ −1, its real and imaginary part are of the same order and we can interpret it
as a σ-like particle, as the famous scalar resonance in QCD.

Combining the information in figure 2 and figure 3, we can envision the existence of
three distinct regions which will be investigated below,

Region I (QCD-like) : |ḡ3| ∼ 0, (2.8)
Region II (string-like) : ḡ3 ≪ −1, (2.9)
Region III (spin-0 exchange) : ḡ3 ≫ +1. (2.10)

Let us clarify our name choice for Region I. Region I describes amplitudes coming from
strongly coupled theories (since the log terms in the effective amplitude cannot be neglected).
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|S4|

-like resonanceσ

Leading Regge

Sub-leading Regge

Figure 4. On the left, we plot the phase shifts for both spins ℓ = 0, 4 in red, and the absolute
value |Sℓ| of the corresponding partial waves in blue. Red dashed is the one-loop EFT approximation
expected to be reliable up to the scale s̄ ∼ 1. On the right, we plot the absolute value |Sℓ| in the
complex s̄ plane. There we observe the presence of zeros that we interpret as resonances.

These amplitudes have resonances. The scalar (σ-) resonance is strongly coupled since it
lies deep in the complex plane of energy as we showed in figure 3. Moreover, higher spin
resonances form Regge trajectories as we show in the next subsection. We choose the name
“QCD-like” for region I in order to indicate all of the above properties, since QCD with
massless quarks is a typical model which possesses all of them.

2.2 Complex spin analysis of the amplitude minimizing ḡ4

In Region I, based on the previous analysis, we do expect to find amplitudes resembling
QCD. As a benchmark point we take the minimum value of ḡ4. We study the spectrum
of unstable resonances contained in the amplitude.

Consider the phase shift δℓ(s) defined via

Sℓ(s) = e2iδℓ(s). (2.11)
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The typical signature of a weakly coupled resonance is a rotation of the phase by π. Its
mass can be estimated by looking at the energy at which the phase passes through π/2.
The rotation of the phase can be associated to the presence of a zero of the partial wave in
the complex plane close to the real axis. When the resonance is not weakly coupled it is
more difficult to detect it by the phase shift analysis. The better way to study resonances
is to inspect the complex plane as we do below.

In figure 4 on the top panels we study δ0(s) and |S0(s)| in the complex s̄ plane. We
observe the presence of a broad resonance far away from the real axis. We call it σ resonance.
In figure 4 on the bottom panels, we plot the phase shift δ4(s) and the absolute value of
the spin four partial wave |S4(s)|. In this case, the δ4(s) clearly passes through π/2 around
s̄ ∼ 40, and it keeps growing at higher energies. In the complex plane we find two zeros: one
close to the real axis, and a heavier one with large imaginary part. The former is interpreted
as a weakly coupled spin four particle, the latter as a spin four σ-like resonance. Unitarity
saturation in the spin four channel is not yet achieved by our numerics as it can be appreciated
by looking at the solid blue line in the bottom-left panel. We know empirically that the
lack of convergence does not affect the position of the resonances, but rather its width (the
imaginary part) — see also the discussions in [7, 14, 46].

The theory of complex angular momenta [75] — see also [76] for a recent review —
suggests that resonances with higher spins are different realizations of the same object, the
Reggeon. Reggeons have a mass that continuously depend on the spin-ℓ parameter. Projecting
the amplitude on various real spin channels we expect to follow the resonance along its
trajectory, the famous Regge trajectory. The analytic continuation in spin of partial waves
is performed through the Froissart-Gribov formula

Sℓ(s) = 1 + i

32π

∫ ∞

0
dt

8
πs

Qℓ

(
1 + 2t

s

)
DisctT (s, t), (2.12)

where Qℓ(x) is the Legendre polynomial of the second kind.
We collect the various resonances in the Chew-Frautschi diagram for different spins

ℓ ≤ 10 in figure 5 (top panel). The resulting distribution is suggestive. We clearly see two
trajectories.10 The red dots belong to the leading trajectory, since it contains the particles
that have the lowest mass for each spin; the blue dots to the sub-leading trajectory or more
informally the daughter trajectory. The resonances in the leading trajectory are weakly
coupled, and the linear universal behaviour emerges in our data [77] as we follow it to higher
spins. The daughter particles are σ-like and deep in the complex plane, therefore the linearity
is lost. In figure 5 (bottom left) we zoom in the low spin region where ℓ ≤ 2. We observe the
crossing of the two trajectories around spin ℓc ∼ 1.4. We indicate the lightest σ-like resonance
of ℓ = 0 studied in figure 3 with a green dot. In the zoomed figure we appreciate how it does
not belong to any trajectory, but rather is an isolated particle. This is in agreement with the
fact that the analytic continuation in spin of our ansatz only converges for Re ℓ > ℓ0 = 0.

In figure 5 (bottom right), we collect the position of the resonance in the complex plane.
On the bottom left of the figure, we see how the leading trajectory moves and similarly
for the sub-leading on the top part of the plot. In the complex plane s̄ it becomes clear

10Notice, that the Regge trajectories have been recently found numerically also in [14], see figure 12 and
in [46], see figure 4.
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(s̄

R
)

 resonanceσ

Figure 5. Chew-Frautschi diagram for the amplitude that minimize ḡ4. On the top panel, the
leading (in red) and sub-leading (in blue) trajectories are presented up to spin 10. The spin 0 (green)
resonance is not part of a trajectory. In this plot, we show various Nmax to express the convergence of
the position of the zero and we use darker color for larger Nmax. On the bottom left panel, we zoom
on the trajectories at low spin. The leading (red) is well converged in this region, this is not the case
for the sub-leading (blue) and we expect it to move up. On the bottom right panel, we present the
position of the resonance in the complex plane for both the leading (circle) and sub-leading (triangle)
trajectory. In the circled region, we do not trust the position of the resonance.

that the crossing of the two trajectories observed above is just the result of a projection.
Moreover, we find a surprising behaviour between spins 2 ⪅ ℓ ⪅ 3. The corresponding arcs
are highlighted with ‘circles’. We believe the behaviour there is not physical, but rather
consequence of poor convergence in that region of the complex-spin plane. We remind the
reader that our numerics are affected by a systematic error due to truncation both in the size
of the ansatz Nmax and the number of spin constraints imposed. The amplitude studied in
this section gives the best approximation of the minimum value of ḡ4 at hand, but it is not
necessarily well converged for all energies and spins. Indeed, the position of the resonance
in those regions still has a strong dependence on Nmax.

Analytic continuation of unitarity for complex spin is rigorously possible only in the
elastic region. When the scattering is elastic it is possible to prove that |Sℓ| = 1 for Re ℓ > ℓ0.
For the scattering of massless particles there is no such statement. However, since the
extremal amplitudes we study are mostly elastic at low energies and for all spins, it would be

– 11 –



J
H
E
P
0
3
(
2
0
2
4
)
0
2
8

0 5 10 15 20

0

5

10

15

20

25

30

16

18

20

22

24

26

Figure 6. Cross section σtot = s−1ImsT (s, t = 0) for the amplitude that minimize ḡ4. The dashed
black line is the EFT expansion in (2.14). The different colors is the cross section of the amplitude
with different Nmax.

natural to expect that |Sℓ| ≈ 1. In appendix D, figure 16 we plot the absolute value of Sℓ on
the real axis for various spins in the neighboring of Re s̄R. We check that our expectations are
realized when the Regge trajectories are smooth and monothonic, but fail for the problematic
spins 2 ⪅ ℓ ⪅ 3, the circled arcs in figure 5.

We call ℓ(t) the parametric curve that describes the Regge trajectory as function of t.
The highest intercept ℓ(0) among all Regge trajectories determines the asymptotic behaviour
of the total cross section

σtot =
ImT (s, 0)

s
∼ sℓ(0)−1 (2.13)

From figure 5, we can extract the intercept of the leading Regge trajectory to be ℓ(0) ≈ 0.75.
However, due to the crossing phenomenon at spin ℓc ≈ 1.4 the daughter trajectory becomes
dominant at higher energies. Even though the numerical convergence is harder for the
daughter trajectory, we do estimate that the leading intercept will have ℓ(0) ∼ 1.2, a feature
typical of the pomeron trajectory.11,12

Finally, we look at the total cross section as a function of s̄ in figure 6. Curves with
different colours correspond to different values of Nmax. At low energies we can compare the
non-perturbative cross section with the EFT approximation in dashed black

σEFT
tot = s−1ImsT EFT(s, t = 0) = 7

80π
g2

2s3 + 1
60π

g2g3s4. (2.14)

11As shown on figure 5, the position (real part) of the leading (red) trajectory is well converged in Nmax,
this is not true for the sub-leading. Thus, it is difficult to determine the intercept of this trajectory precisely
and similarly for the position of the crossing between the two trajectories.

12There is a tension, though, between this Regge analysis, and the behaviour of our ansatz for the amplitude
at infinity. The former predicts an almost constant total cross-section, the latter a vanishing cross-section at
infinity. Numerical evidence suggests that resonances of higher spins appear as we increase the size of the
ansatz used in our numerics, and therefore we expect to solve this tension only asymptotically. We leave the
detailed investigation of this conundrum to further study.
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In this case, since the UV physics is strongly coupled, the cutoff of the EFT approximation
is given by naive dimensional analysis and is expected to be around s̄ ∼ 1. However, when
s̄ < 1 the EFT approximation is good for all angles, and this explains the nice agreement
of the phase shifts in figure 4, where the EFT approximation is plotted in dashed red. The
peak in the total cross-section happens at the mass of the lightest spin two resonance.

One could repeat a similar analysis to all amplitudes in the Region I. By simple inspection,
we can generically say that all amplitudes in this region share the same qualitative features,
although the details of the spectrum change.

2.3 Asymptotic bounds and tree level physics

When we take ḡ3 large, we expect the EFT approximation in equation (1.2) to be valid
in the regime when

|ḡ3|s̄3 ≪ s̄2 =⇒ s̄ ≪ |ḡ3|−1. (2.15)

To retain the relevant terms when s̄ ≪ |ḡ3|−1, it is convenient to define the rescaled variable
ŝ = s̄|ḡ3|−1. In this new regime, the amplitude can be approximated by13

T = 1
ḡ2

3

(
(ŝ2 + t̂2 + û2) + ŝt̂û + ḡ4

ḡ2
3
(ŝ2 + t̂2 + û2)2 +O(ŝ5)

)
+O(ḡ−4

3 ), (2.16)

where the logs are suppressed by higher powers of ḡ3. The large ḡ3 parameter plays the role of
ℏ−1 in a putative effective action expansion, and the amplitude is well approximated by the
expansion of a tree level UV theory. Following this logic, we might expect the coefficient of the
O(ŝ4) term in (2.16) to be an order one number. The only possibility is that ḡ4 ∼ ḡ2

3 , and this
prediction is precisely satisfied by the asymptotic behaviour of the boundary region in 1(b).

In the ḡ3 → ∞ limit, we can apply the technology developed in [64] to determine bounds
on the ratio ḡ3√

ḡ4
. We obtain14

−15.67 ⪅
ḡ3√
ḡ4

≤ 3
√
2 ≃ 4.2 (2.17)

which is compatible with our asymptotic numerical estimate (2.2). The upper bound is
saturated by a simple tree level massive scalar exchange [64], compatible with the spin zero
dominance observed in figure 2, and the presence of a light weakly coupled scalar resonance
in figure 3. The difference in the lower bound is likely due to the difficulty of the primal
numerical algorithm to converge at large negative g3, therefore we expect the gap between
the two methods to close. For the lower bound, there is no known function that saturates it.

Studying the extremal amplitudes that saturate the asymptotic bounds we can guess the
tree level UV completion in the large ḡ3 limit. Moreover, using some simple unitarization
model, we can estimate the behaviour of the amplitude away from the tree-level approximation
for large, but finite ḡ3. We report this analysis in the next paragraphs.

13Similar ideas have been developed and applied to the branon S-matrix of confining strings [? ].
14This bound is obtained using 35 null constraints, ie. n = 16 in the notation of [64], see for example

figure 10 there.
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Figure 7. The masses of the lightest resonances plotted versus their spin. They lie on a line. We
interpret this line as a Regge trajectory.

Region II (string-like). In region II, the amplitude receives contribution from all spins
starting at spin ℓ = 2 according to figure 2. Performing a partial wave analysis we observe
the presence of weakly coupled massive resonances for all spins ℓ ≥ 2. We estimate the mass
of these resonances and produce the corresponding Chew-Frautschi plot of the spin ℓ of the
particle as a function of its mass squared m̄2 ≡ √

g2m2 for each value of ḡ3 ≪ −1.15 In
figure 7 we show the resonances for ℓ ≤ 6 for two values of ḡ3. All the points approximately
lie on a single straight line, and we fit it with an ansatz of the form

ℓ(m̄2) ≈ α(0) + α′ × m̄2. (2.18)

The coefficient α(0) is called the Regge intercept and α′ the slope. The estimation of the
coefficients α(0) and α′ of the Regge trajectories for different values of ḡ3 is presented in
figure 8. To match the tree level EFT description in (2.16), all mass parameters in the
amplitude must scale as ḡ−1

3 at leading order. Indeed, we experimentally observe that16

α(0) = 1.45± 0.25, α′/|ḡ3| = 0.059± 0.005 (2.19)

We can conclude that in this region, the amplitudes exhibit a string-like behavior. In the
limit ḡ3 → −∞, the amplitude at the boundary is described by a meromorphic string-like
amplitude with the following properties

• Spin ℓ contribution given by the limit ḡ3 ≪ −1 of figure 2. In particular, it has no spin
0 exchange.

• Leading Regge trajectory with intercept and slope given by (2.19)

• Ratios of Wilson coefficients given by ḡ3√
ḡ4

≈ −15.67.
15The resonance are weakly coupled and are close to the real axis and therefore Re(s̄R) ≈ m̄2.
16We analyze here the leading Regge trajectory. The amplitude are not converged enough to extract the

daughter trajectories.
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Figure 8. Estimation of the coefficients α(0) and α′ of the Regge trajectories defined in (2.18) for
different values of ḡ3.

We are not aware of any string model which generates amplitudes compatible with these
properties. For the recent works on string amplitudes, see [77–80].

Region III (spin-0 exchange). In region III, the boundary precisely approaches the
tree level positivity prediction

lim
ḡ3→∞

ḡ3√
ḡ4

= 3
√
2. (2.20)

The positivity bound is saturated by a simple tree-level scalar exchange

Tspin 0(s, t, u) ≡ −λ2
(

m2

s − m2 + m2

t − m2 + m2

u − m2 + 3
)

, (2.21)

where λ is the dimensionless coupling and m the mass of the scalar exchanged. Expanding
this amplitude around s = 0 keeping x ≡ cos θ fixed we obtain an expansion of the form (2.16).
Matching the two expressions, upon identifying s in (2.21) with ŝ, we can express the low
energy Wilson coefficients g2, g3 in terms of the UV parameters λ, m

g2 = λ2

m4 , g3 = 3λ2

m6 . (2.22)

The matching predicts also g4 = λ2

2m8 , which is consistent with (2.20). In addition to the
correct asymptotic behavior of the bound, this statement is supported by two additional
observation. First, in this region, the sum-rule (2.6) is dominated by the spin-0 contribution
as shown in figure 2. Second, in figure 9 we plot the real and imaginary part of the spin zero
partial amplitude extracted on the boundary of figure 1 at ḡ3 = 1/2. Our result is depicted
in red. In blue and orange we provide an estimate of this partial amplitude obtained by
applying the Inverse Amplitude Method (IAM) to (2.21), and using the value for the mass
and the coupling given by the matching conditions in (2.22) for ḡ3 = 1/2. We review the
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Figure 9. Real and imaginary part of the spin zero partial amplitude S0, obtained on the boundary
of figure 1 at ḡ3 = 1/2. Our numerical result is depicted in red. The blue and orange lines provide the
rough estimates obtained using the inverse amplitude method reviewed in appendix E.

IAM in appendix E. The agreement is good in the region around the light resonance. At
higher energies the amplitude is not trivial but contains broad higher spin resonance. Their
mass does not scale with ḡ3, so in units of the mass of the light resonance ŝ, they decouple.

3 S-matrix machinery for massless particles and its improvements

In this section we introduce and explain our improvements of the numerical S-matrix bootstrap
machinery needed for studying massless particles. We start in subsection 3.1 by reviewing
the standard machinery. Our improvements are then presented in subsections 3.2 and 3.3.

3.1 Machinery review

In order to study scattering amplitudes numerically in the generic scenario we use the
machinery introduced in [3] combined with an extension of this machinery introduced in [44]
needed for working with massless particle. It consists of writing the following ansatz

Ansatz 1: Tansatz(s, t, u) =
∑
a,b,c

αabc ρa(s)ρb(t)ρc(u) + N(s, t, u), (3.1)

where αabc are real coefficients. Crossing requires that they are fully symmetric in their
indices. Due to the relation among the Mandelstam variables s + t + u = 0, not all terms
are independent in the expansion (3.1), it is standard to require

∀(abc) ̸= 0 : αabc = 0 , (3.2)

which removes the redundant terms. The ρ-variable is defined as

ρ(z) ≡
√
4m2 − z0 −

√
4m2 − z√

4m2 − z0 +
√
4m2 − z

, (3.3)
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where m is the mass of the external particle (in our case m = 0) and z0 is an arbitrary
parameter, numerical results do not depend on it. We choose z0 = −1. The infinite sum
in (3.1) is truncated in practice in such a way that max(a + b + c) ≤ Nmax. The numerics
is ran for several values Nmax. This allows for an Nmax → ∞ extrapolation.

The first term in the ansatz (3.1) has the square root branch point at s = 0, however
the effective amplitude of Goldstones given by (1.2)–(1.4) has a log branch-point because
of the log-terms in (1.4). The latter can never be represented by the former at finite Nmax.
In order to deal with this issue we have added the additional term N(s, t, u) in (3.1). Let
us explain how to obtain its explicit expression. Let us first denote the non-analytic part
of the effective amplitude (1.2)–(1.4) (which contains the log-terms) by

N(s, t,u)≡− g2
2

480π2

(
s2(41s2+t2+u2) log(−s

√
g2)+

t2(s2+41t2+u2) log(−t
√

g2)+u2(s2+t2+41u2) log(−u
√

g2)
)
. (3.4)

We can then also define

N(s, t,u)≡− g2
2s4

0
480π2

[
χ2

s H(s|t,u) logχs+χ2
t H(t|s,u) logχt+χ2

uH(u|t,s) logχu

]
, (3.5)

where we the χ-variable is defined as

χs ≡ 1
4(ρs − 1)2 − 1

4(ρs − 1)3 = s

s0
− 3

(
s

s0

)2
+O(s5/2) (3.6)

and the H-function is given by

H(s|, t, u) = 41χ2
s + χ2

t + χ2
u. (3.7)

The non-analytic expression (3.4) has an unlimited growth at large energies and, thus, violates
unitarity. The term (3.5) instead remains finite at large energies. It is constructed in such
a way that at low energies it reproduces (3.4), namely

N(s, t, u) = N(s, t, u)− s2
[
β1,1s2 + β1,2tu + β1,3(t2 + u2)

]
log(−s0

√
g2) +O(s5). (3.8)

Next, we require that at low energies the ansatz (3.1) precisely reproduces the effective
amplitude (1.2). Performing the expansion of (3.1) we simply get

T (s, t,u)=N(s, t,u)+α000+k1(α,x)s1/2+k2(α,x)s+k3(α,x)s3/2+k4(α,x)s2

+k5(α,x)s5/2+k6(α,x)s3+k7(α,x)s7/2+k8(α,x)s8+O(s9/2), (3.9)

where ki(α, x) are some functions which depend on the coefficients of the ansatz and x ≡ cos θ,
where θ is the scattering angle. These functions can be easily obtained in Mathematica, their
form, however, is too large (and depends on Nmax) in order to be written here. Comparing
this expansion with (1.2)–(1.4) we conclude that

α000 = 0, k1 = 0, k2 = 0, k3 = 0, k4 = g2,

k5 = 0, k6 = g3, k7 = 0, k8 = g4. (3.10)

– 17 –



J
H
E
P
0
3
(
2
0
2
4
)
0
2
8

g2 1 10 100 500 1000 10000

ḡ4 0.01978 0.01245 0.01100 0.01062 0.01070 0.01171

Table 1. Lower bound on ḡ4 for different choices of g2. The best bound is achieved at g2 = 500. Here
we use Nmax = 20 and Lmax = 80.

After solving these constraints and plugging the solution back to (3.1) we obtain the ansatz
which is fully compatible with the effective amplitude (1.2)–(1.4).

The ansatz (3.1) satisfies crossing and maximal analyticity by construction. The non-
linear unitarity formulated in the semi-definite positive way (A.12) is imposed numerically
using SDPB [81, 82].

The parameter g2 defines the mass scale. In practice for performing the numerics we set
it to some constant value, for example one could chose g2 = 1. Our results do not depend
on this choice since we always work with dimensionless quantities. It can happen, however,
that at finite Nmax there is a preferred value of g2 for which the numerics converges faster.
In table 1 we show the lower bound on ḡ4 (keeping ḡ3 free) for different choices of g2. We see
that the best bound is achieved for roughly g2 = 500. When we construct bounds on ḡ4 as
a function of ḡ3 the optimal value of g2 changes with ḡ3. As a result one needs to carefully
adjust it in order to achieve the most optimal numerical convergence.

3.2 Improvement 1

Let us consider the first derivative in t of the amplitude in the forward limit, namely

∂tT (s, t = 0, u). (3.11)

Up to O(s5), (3.11) is finite in the series representation (1.2). It is reasonable to expect
that (3.11) is finite at any order but we do not know of any general proof. From now on
we assume that (3.11) is finite. This for instance allows to write the following sum-rule
for the g3 coefficient

g3 = 2
π

∫ ∞

0
ds

(3 Im T (s, t)
2s4 − ∂t Im T (s, t)

s3

)
t→0

. (3.12)

See appendix F for its derivation.
Consider now the ansazt (3.1). Evaluating (3.11) using this ansatz we immediately

see that (3.11) diverges. This is an unpleasant behaviour which prevents us for instance
from using the sum-rule (3.12). In what follows we introduce a minor modification of the
ansatz (3.1) which removes this divergence.

Let us define the following auxiliary variable

ζ(z) ≡ 1
4(ρ(z)− 1)2 = − z

z0
+O(z3/2). (3.13)

Using it we can then define the following modified r-variable

r0(z) ≡ 1,

ra(z) ≡ ζ(z)ρa(z), a > 1.
(3.14)
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Figure 10. The lower bound on ḡ4 using the ansatz 2. Both curves are constructed using the
ansatz (3.15) with (3.16). In red curve with nmax = 3, for large values of Lmax it starts changing
rapidly. We refer to this region as the ramp. For the red curve, the ramp disappears and we are left
with the stable bound. The bounds here are constructed with Nmax = 18.

Using this variable we propose the new ansatz

Ansatz 2: Tansatz(s, t, u) =
∑
a,b,c

αabc r
a(s)rb(t)rc(u) + N(s, t, u). (3.15)

One can explicitly check that the ansatz (3.15) has finite value of (3.11). Below, we will
check that this modification does not change the results of the bounds, see for example
figure 13 for comparison of extrapolated bound.

3.3 Improvement 2

In order to numerically impose the unitarity condition (A.12) we need to project scattering
amplitudes to partial amplitudes. The latter are labelled by the angular momentum ℓ =
0, 2, 4, . . .. In theory we need to impose (A.12) for infinitely many values ℓ. In practice,
however, this is impossible, and we impose (A.12) for a finite set of angular momenta
ℓ = 0, 2, 4, . . . , Lmax.

The parameter Lmax is the new player in the setup. In order to obtain physical results
one needs to find the Lmax value high enough such that the numerical output stabilizes and
remains independent of the change of Lmax. For some numerical problems (especially for
massless particles) the output keeps changing with Lmax. In those situations one runs the
numerics for several different values of Lmax and then performs the extrapolation Lmax → ∞.

In [47] it was observed that the numerics breaks down for large values of Lmax. This
was a severe obstacle for performing the Lmax → ∞ extrapolation in [47] reliably. In this
subsection we reproduce the same phenomenon in the case of neutral Goldstones using the
ansatz (3.15) and propose a modified ansatz which solves this problem.

Recall, that the ansatz (3.15) contains the log-terms via the expressions (3.4) and (3.7).
We identified the ramp behaviour with the expression (3.7). It turned out that (3.7) is too
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restrictive. In order to add more freedom we can instead write

H(s|t, u) =
nmax∑

a,b,c=0
γabc χa

sχb
tχ

c
u, (3.16)

where nmax is a truncation parameter for the sum. The real coefficients γabc are symmetric
in the last two indices as required by crossing. We tune these coefficients in such a way
that in the low energy expansion we get

H(s|t, u) = 41s2 + t2 + u2 + O(s3). (3.17)

This ensures that the ansatz correctly reproduces the effective amplitude (1.2) at low energies.
Due to this requirement (3.7) is the same as (3.16) but only up to O(s3) terms.

The main result is given in figure 10. In this figure we compute the lower bound on ḡ4
(keeping ḡ3 free) as a function of Lmax using the ansatz (3.15) with a different amount of
freedom in the log term N. We observe that for low nmax the bound becomes abnormally strong.
Increasing Lmax further we observe that the numerics breaks down (becomes unfeasible).
This is clearly an unphysical and problematic behavior. The rapid increase of the red line
will be referred to as the ramp.17 As we increase nmax, the ramp is “pushed away” to higher
Lmax and the extrapolation to infinite spin can be taken. For moderate values of Lmax the
two curves are consistent with each other, however, for large Lmax the blue curve remains
stable and does not exhibit any ramp behavior. Notice, that as the two curves are built with
different nmax, the freedom in ansatz used for the blue curve is bigger which explains why
they do not overlap at intermediate spin. In the limit Nmax → ∞ this difference completely
disappears as will be shown in the end of this subsection.

Let us now focus on the case of Nmax = 20 and compare bounds with several different
values of nmax. We do it in figure 11. We can see that the ramp disappears in all these
cases. In figure 12 we fix nmax = 4 and scan instead over various values of Nmax. We
see that the behaviour of the bound remains stable with Lmax for any Nmax (no ramp).
Using the data presented in figure 12 we can perform the Lmax → ∞ extrapolation. We
use several different fits in order to estimate the extrapolated value and its error. In the
repository with our numerical data linked to this paper we provide further details about
the fits used. In figure 13(a) we presented our Lmax → ∞ extrapolated bound (with error
bars) on ḡ4 as a function of Nmax.

We have introduced several types of ansatz which at finite Nmax lead to consistent, but
slightly different answers. Let us now perform the Nmax → ∞ extrapolation and show that
different choices lead to the same result within the error bars. We will focus again on the
ḡ4 minimization problem (keeping the ḡ3 value free). Our extrapolation for various ansatz
choices is presented in figure 13(a). The ḡ4 bound in the Nmax → ∞ limit for various ansatz
choices is summarized in particular in figure 13(b).

17For the ansatz (3.1) the ramp starts for higher values of Lmax and, thus, is much less pronounced in the
given interval of Lmax.
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Figure 11. Lower bound on ḡ4 for the two types of the ansatz (3.1) and (3.15) and various values of
nmax in (3.16). Here we focus only on Nmax = 20.
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Figure 12. Lower bound on ḡ4 as a function of Lmax for various values of Nmax. Here we use the
ansatz 2 and keep nmax = 6.

4 Model-dependent bounds

Let us now study the allowed space of amplitudes in the scenario in which we have an EFT-
inspired model. We impose that the effective field theory approximation of the amplitude is
valid in the extended region s ∈ [0, M2] for all angles. This is imposed by the condition (1.11).
In practice we impose non-linear unitarity in the whole range of energies s ∈ [0,∞]. Thus,
we can impose the condition (1.11) only on the imaginary part of the amplitude (the real
part will be adjusted by the numerics accordingly), namely

s ∈ [0, M2] : |ImsT (s, cos θ)− ImsTEFT(s, cos θ)| ≤ err(s, cos θ). (4.1)
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Figure 13. Extrapolation of the lower bound on ḡ4 in different scenarios. In the left plot we show
the numerical data by dots and the extrapolation by the solid line. In the right plot we show the
extrapolated bound for different cases. Solid lines show the error bars. The results are fully consistent
among each other within the error bars.

We emphasize here that the model is defined by a ‘band’ given by ImsTEFT(s, cos θ) ±
err(s, cos θ) constraining the amplitude up to a cut-off scale M2. For example, experimental
measure of the differential cross-section could be used to define the model. In that follow,
we will describe how this can be implemented numerically in subsection 4.1 and present
the result for a simple model in subsection 4.2.

4.1 Machinery for the model-dependent bounds

Here we explain how to construct numerically scattering amplitudes which obey crossing,
maximal analyticity and unitarity at all energies and satisfy the condition (4.1) describing
a model. Since we have two regions with s ≤ M2 and s > M2 it is natural to write the
ansatz as a sum of two terms

Tansatz(s, t, u) = T 1
ansatz(s, t, u) + T 2

ansatz(s, t, u). (4.2)

Here the first term takes care of the low energy behaviour of the amplitude, in other words it
must approximately describe (1.2) in the extended region s ∈ [0, M2]. The second term takes
care of the high energy behaviour and it is adjusted by the numerics in such a way that the
full ansatz (4.2) obeys non-linear unitarity. Our proposal for the two terms in (4.2) reads as18

T 1
ansatz(s, t, u) ≡ N(s, t, u) +

N1
max∑

a,b,c=0
αabc r

a
1(s)rb

1(t)rc
1(u), (4.3)

18Note that T 1
ansatz is the same as the ansatz in the universal bounds in (3.15).
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T 2
ansatz(s, t, u) ≡

N2
max∑

a,b,c=0
βabc ρa

2(s)ρb
2(t)ρc

2(u), (4.4)

where N(s, t, u) is defined in (3.5) and the two types of the ρ-variable are defined as

ρ1(z) ≡
√
−z0 −

√
−z√

−z0 +
√
−z

, ρ2(z) ≡

√
M2 − z′0 −

√
M2 − z√

M2 − z′0 +
√

M2 − z
, (4.5)

with r1 defined by (3.14) using ρ1. Here z0 < 0 and z′0 ≤ 0 are real negative parameters
which can be chosen at our will. In practice we choose z0 = −1 and z′0 = 0. The above
variables are constructed in such a way that they contain a branch cut starting from s = 0
and s = M2 respectively.

In order to impose unitarity (A.11) we choose a set of points using the Chebyshev grid.
In practice we pick 100 points in the s ∈ [0, M2] region and 200 points in the s > M2 region.
We impose non-linear unitarity at these 300 points and for angular momenta ℓ = 0, 2, . . . , 150.

In the region s ∈ [0, M2] on top of the non-linear unitarity we also impose the condi-
tion (4.1). In practice this is done as follows. We pick a linear grid in the x ≡ cos θ variable
and use 10 points in the interval x ∈ [0, 1].19 We impose (4.1) for all possible combinations
of 100 points in s (distributed with the Chebyshev grid) and the 10 points in x.20 On top of
it we also project the condition (4.1) into partial wave. We impose this condition only for
spin-ℓ which lead to non-zero projection of the ‘band’ and the precise number of spin depend
on the model. We impose the projected condition (4.1) for 100 points in s and each ℓ.

We observe that for the runs we have performed, one can choose a fixed size of ansatz
T 1

ansatz (4.3) needed to reproduce the desired low energy behavior. Then an extrapolation can
be performed in N2

max which dictate the freedom of the high energy behavior. In practice,
we chose N1

max = 10, nmax = 8 and converge in N2
max.

4.2 Result using a model for the IR amplitude

Here we define a simple model based on the EFT expansion of the amplitude. The error
function can be defined as follows. In appendix B we compute the imaginary part of T (5)

EFT
term exactly. We can equate the error function to this term. However, in order to take into
account corrections due to higher order terms T (n)

EFT with n ≥ 6 we replace ḡ3 by ϵ and use
ϵ as an extra parameter. We find then the ‘band’ of the model by

ImsTEFT(s, t, u) = g2
2

480π
s2(41s2 + t2 + u2) (4.6)

err(s, t, u) = ϵ

1920π
g

5/2
2 s3(36s2 − 4(t2 + u2)

)
. (4.7)

This model is thus defined by two dimensionless parameters, namely ξ defined in (1.9) and ϵ

defined in (4.7). In what follows we will focus our attention on the ξ = 1 case. This choice
favors the class of amplitudes with strongly coupled UV completions. See the discussion
below (1.9) for the explanation. Regarding ϵ, we impose the condition (4.1) for two different

19For a t − u symmetric amplitude, the amplitude is symmetric in x → −x and we could only consider the
half interval x ∈ [0, 1]. In general, one could choose a grid in the full interval x ∈ [−1, +1].

20In practice, we observe that convergence in the size of the grid in x is fast and 10 points were a safe choice.
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Figure 14. The allowed region of parameters is enclosed inside the islands. Two colors represent
two different values of the parameter ϵ introduced in (4.7). The two values we use are ϵ = 1/2 and
ϵ = 1. For building this plot we also chose ξ = 1 defined in (1.9). The orange line indicate the bound
of figure 1. In figure 15, we plotted the imaginary part of the amplitude at the points A,B,C,D.
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Point D

Figure 15. Examples of UV completion of the amplitude at different point labeled by A,B,C,D in
the boundary of figure 14 for ϵ = 1. We picked pairs of points close to each extremity and plotted
the imaginary part of the amplitude in the forward limit at the upper/lower boundary. In gray, we
represented the band chosen using (4.6) and (4.7).

values, namely ϵ = 1/2 and ϵ = 1. The resulting bound is given in figure 14. As one
can see the lower bound agrees with the universal bound in figure 1(a). Indeed, the lower
inequality of the extended EFT condition in (4.1) is never active, in agreement with the
fact that the amplitudes in Region I admit a strongly coupled UV completion, and that
in some sense are extremal.

As we discussed in section 2.2, the amplitudes extracted from the lower boundary A − C

in figure 14 have Regge trajectories. We carefully analysed them for one specific point on
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this boundary, namely for the ḡ3 ≃ −0.54 point and they were presented in figure 5. At
the upper B − D boundary of figure 14, we also observed evidences of Regge trajectories
and similar analysis could be performed.

It is interesting to see how the EFT amplitude is UV completed along the boundary. In
figure 15, we show the imaginary part of the amplitude in the forward limit at two pairs
ot points for the case ϵ = 1. For s < M2, the constraint imposed (4.1) is clearly satisfied
and is saturated along the upper boundary. In contrast, for s > M2, the imaginary part is
unitarised differently depending on the point on the boundary.

5 Conclusions and outlook

In this paper we initiated the exploration of the space of 2 → 2 scattering amplitudes of
massless neutral Goldstone bosons in four dimensions. We numerically determined the
allowed region of the first two non-universal Wilson coefficients appearing in the 2 → 2
scattering, dubbed ḡ3 and ḡ4 both in the universal scenario, and by imposing a low energy
model for the amplitude.

In the universal scenario we used the numerical approach of [3, 44] where an analytic
ansatz is written for the amplitude and unitarity is imposed numerically. In this paper we
proposed two new improvements of the ansatz in section 3. The first improvement allows us
to use the usual Bootstrap ansatz to match the fixed-s, small t behaviour of the amplitude
predicted by the EFT expansion in (1.3). The second removes the ramp instability for large
number of angular momentum constraints Lmax discovered in [47]. We presented the main
result in the universal scenario in figure 1.

On the boundary given by the orange line in figure 1 we can reconstruct the amplitudes
numerically. Analyzing the branching ratios of the cross section in various spin channels
and the behaviour of the lightest spin zero resonance, we identified three different regions
along the boundary. The two asymptotic regions correspond respectively to weakly coupled
string amplitudes with approximately linear Regge trajectories, and weakly coupled scalar
exchanges. In between these two regimes, the amplitude resembles a strongly coupled theory
like QCD. For the special point that minimizes ḡ4, we performed for the first time a thorough
analysis of the spectrum of resonances continuing the scattering amplitude to complex spins.
We could interpolate the first two Regge trajectories by following the resonances in spin, and
extract reliably their intercepts without fitting. We observed a curious crossing phenomenon
among the two trajectories.

The amplitudes we extracted on the boundary for large values of ḡ3 and ḡ4 are not fully
converged for the finite size ansatz we used. This is rather unsatisfactory. In the future, one
could attempt to solve this issue by centering the ρ-variables at multiple different points. One
of the realizations of this idea called the wavelet ansatz was advocated for in [25]. Numerical
convergence is controlled also by the number of spin constraints that should be taken to
be very large. However, computing the partial wave projection with high precision and
for very large spin is numerically expensive. In [46], the authors introduced the notion of
unitarity in the sky, and showed how dramatically improves the convergence in the spin
cutoff. We believe that by combining the improvements introduced in this paper with both
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the ideas mentioned in this paragraph might pave the way to more efficient numerical studies
of massless scattering amplitudes.

The universal bounds determined in this paper apply to the dilatons of N = 4 SYM on
the Coulomb branch. It would be interesting to consider also the other massless Goldstones of
the R-symmetry breaking, and study the mixed system of dilatons and Goldstones. Another
possible direction is to generalize the Bootstrap of neutral Goldstones to other dimensions.
In three dimensions, we could study the low energy dynamics of M2 branes, using maximal
supersymmetry to obtain the bounds on the Wilson coefficients from the scattering of neutral
massless scalars. On the other hand, in higher dimensions such bounds could be used to
constrain the Wilson coefficients of the effective action of various strings compactifications
and to test the consistency of the available non-perturbative results with the principles of
analyticity, crossing, and unitarity.

In the model-dependent scenario we assumed that the amplitude is described by an
EFT-inspired model at energies below a chosen cut-off scale M . In section 4.1 we proposed
a concrete numerical implementation of this idea inspired by [21]. The main result in the
model-dependent scenario is given in figure 14. This method is not limited to massless
particles. One could use this approach also for the scattering of physical pions, and improve
the results obtained in [7] by injecting the available experimental or lattice data as low
energy constraints into the bootstrap setup.

As briefly reviewed in the end of appendix C the Wilson coefficients of the dilaton
scattering in six dimesions is related to the difference of the UV and IR a-anomalies denoted
by ∆a. In general, as it is well known, there are no bounds on ∆a in 6d from the 2 → 2
scattering of dilatons. However, adding an extra assumption/knowledge about their IR
behaviour up to some energy scale one can apply our model-dependent scenario to get some
bounds on ∆a. In QFTs with explicit conformal symmetry breaking one can introduce a
massless scalar probe field (also often called the dilaton) which carries information about ∆a.
No new bounds can be constructed on ∆a in this case using our technique.
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A Non-linear unitarity

The partial amplitudes for the scattering of identical particles in a general number of
dimensions have the following form

Sℓ(s) = 1 + i

Nd(s)
Tℓ(s), (A.1)

where the interacting part of the partial amplitudes are defined as

Tℓ(s) ≡
∫ +1

−1
dx µd,ℓ(x)T (s, t(x), u(x)). (A.2)

Here ℓ = 0, 2, 4, . . . is the angular momentum and x ≡ cos θ is the cosine of the scattering
angle. The object Nd(s) for massless particles is given by

Nd(s) ≡ 2d−1s
4−d

2 , (A.3)

and the measure reads as

µd, ℓ(x) =
j! Γ

(
d−3

2

)
4π(d−1)/2Γ(d − 3 + ℓ)

× (1− x2)
d−4

2 C
(d−3)/2
ℓ (x). (A.4)

The relation between the (t, u) and (s, x) variables for massless particles is given by

t = −s

2 (1− x), u = −s

2 (1 + x). (A.5)

The relation (A.2) can be inverted. As a result the interacting part of the scattering
amplitude can be written as a sum of interacting partial amplitudes as follows

T (s, t) =
∑

ℓ=0,2,...

c
(d)
ℓ P

(d)
ℓ

(
1 + 2t

s

)
Tℓ(s), (A.6)

where the d-dimensional Legendre polynomials are defined as

P
(d)
ℓ (x) ≡ 2F1

(
−ℓ, ℓ + d − 3,

d − 2
2 ,

1− x

2

)
. (A.7)

By using the properties of the hypergeometric functions we can rewrite the d-dimensional
Legendre polynomials as

P
(d)
ℓ (x) = Γ(1 + ℓ)Γ(d − 3)

Γ(ℓ + d − 3) C
( d−3

2 )
ℓ (x) = C

( d−3
2 )

ℓ (x)

C
( d−3

2 )
ℓ (1)

, (A.8)

where C
(d)
ℓ are the Gegenbauer polynomials. Notice that P

(d)
ℓ (1) = 1. The coefficients c

(d)
ℓ

in the decomposition (A.6) read as

c
(d)
ℓ = 2π

d
2−1(d + 2ℓ − 3)Γ(d + ℓ − 3)

Γ
(

d
2 − 1

)
Γ(ℓ + 1)

. (A.9)
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For further discussion of the above expressions see either [16] or [76]. Notice that in equa-
tion (A.3) we have an additional factor of 2d−1 compared to the conventions of [76].

Unitarity of theory leads to the following non-linear constraint on the partial amplitudes

∀s ≥ 0, ∀ℓ : |Sℓ(s)|2 ≤ 1. (A.10)

In this paper we refer to the condition (A.10) as the non-linear unitarity. This condition
is equivalent to

2Nd(s) ImTℓ(s) ≥ |Tℓ(s)|2. (A.11)

The unitarity constraint (A.11) can be written in a positive semi-definite form as(
1 1
1 1

)
+ 1

Nd(s)

(
0 −iT ∗

ℓ (s)
iTℓ(s) 0

)
⪰ 0 (A.12)

or equivalently (
1 0
0 0

)
+

− 1
2Nd

Im Tℓ N−1/2
d Re Tℓ

N−1/2
d Re Tℓ 2 Im Tℓ

 ⪰ 0 (A.13)

The condition (A.13) has an advantage of consisting of purely real matrices compared
to (A.12).

The non-linear unitarity condition (A.11) contains the following simple condition

ImTℓ(s) ≥ 0. (A.14)

It is called positivity. The positivity condition is a necessary, but not sufficient condition
to have a unitary theory.

B Effective amplitude from unitarity

Consider the following amplitude

T tree(s, t,u)= g2 (s2+t2+u2)+g3 stu+g4
(
s2+t2+u2

)2

+g5 stu
(
s2+t2+u2

)
+g6

(
s2+t2+u2

)3
+g′6 (stu)2+O(s7), (B.1)

where gn are real coefficients. This amplitude arises in a typical tree level computation of
the scattering of Goldstone bosons described by the Lagrangian density (1.1). The tree
level amplitude (B.1) does not satisfy (A.11). One needs to compute loop corrections in
order to obtain the full amplitude which obeys (A.11). Let us write this full amplitude
in the following form

T full(s, t, u) = T tree(s, t, u) + N(s, t, u). (B.2)

Here the tree level amplitude in the small energy expansion is given by (B.1) and the function
N(s, t, u) represents all the loop corrections. Loop computation is a hard task. Luckily there
is a simpler way to determine the function N(s, t, u) as we show in this appendix.
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The main idea is to use (A.11) on the full amplitude (B.2), thus we get the follow-
ing condition

ImNℓ(s) = 2−ds
d−4

2
∣∣T full

ℓ (s)
∣∣2 + (particle production) , (B.3)

where we have denote the partial wave projection of the function N(s, t, u) by

Nℓ(s) ≡
∫ +1

−1
dxµd,ℓ(x)N(s, t(x), u(x)). (B.4)

We solve this equation iteratively order by order in small energy expansion by simply requiring
non-linear unitarity (A.11).21 Off course, this procedure stops at the order in which particle
production appears as emphasize in (B.3).

Leading order computation. Let us start by focusing on the very first term in (B.1),
namely we simply consider the following tree level amplitude

T tree(s, t, u) = g2 (s2 + t2 + u2) + O(s3). (B.5)

According to (A.2) we can compute the partial amplitudes. Only ℓ = 0 and ℓ = 2 components
are non-zero. They read

T tree
ℓ=0 (s) = a0 g2s2 (1 + O(s)) , T tree

ℓ=2 (s) = a2 g2s2 (1 + O(s)) , (B.6)

where the kinematic coefficients read as

a0 ≡ 3d − 2
2dπ(d−3)/2Γ((d + 1)/2)

, a2 ≡ 1
2dπ(d−3)/2Γ((d + 3)/2)

. (B.7)

We can obtain the leading order of the right-hand side in (B.3) by (B.6), we get the following
result then

ImN tree
ℓ=0 (s)= 2−da2

0 g2
2s

d
2 +2 (1+O(s)) , ImN tree

ℓ=2 (s)= 2−da2
2 g2

2s
d
2 +2 (1+O(s)) . (B.8)

Analogously to (A.6) we can write the function N(s, t, u) as a sum of its partial waves, namely

N(s, t, u) =
∑

ℓ=0,2,...

c
(d)
ℓ P

(d)
ℓ

(
1 + 2t

s

)
Nℓ(s). (B.9)

Plugging here the result (B.8) and using (A.7) together with (A.9) we finally get

ImsN(s, t, u) = s
d
2 h(s|t, u), (B.10)

where the function h(s|t, u) reads as

h(s|t, u) ≡ g2
2

4d+1π
d−3

2 Γ(d+3
2 )

(
(9d2 + 6d − 4)s2 + 4(t2 + u2)

)
+ O(s3). (B.11)

21We remind that the small energy expansion means the expansion around s = 0 where the variables t and
u are written in the form (A.5) and the cosine of the scattering angle x ≡ cos θ is kept fixed.
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Now we can simply guess the form of the function N(s, t, u) which is crossing symmetric
and satisfies the constraint (B.10). We get

N(s, t, u) = Ld(s)h(s|t, u) + Ld(t)h(t|s, u) + Ld(u)h(u|t, s), (B.12)

where the function Ld(s) is defined as

d = even : Ld(s) ≡ − 1
π
log(−s

√
g2)s

d
2 , (B.13)

d = odd : Ld(s) ≡ −(−s)
d
2 . (B.14)

The case of 4d. Let us focus on d = 4 for simplicity from now on. Let us summarize the
result obtained in the previous section. The full amplitude in d = 4 which obeys non-linear
unitarity has the form (B.2), where the function N(s, t, u) has the following form

N(s, t,u)= log(−s
√

g2)f(s|t,u)+log(−t
√

g2)f(t|s,u)+log(−u
√

g2)f(u|t,s). (B.15)

The function f(s|t, u) has the following small energy expansion

f(s|t, u) ≡ f4(s|t, u) + f5(s|t, u) + f6(s|t, u) + O(s6), fn(s|t, u) ∼ sn, (B.16)

and the leading term in this expansion has just been found precisely and reads

f4(s|t, u) ≡ − g2
2

480π2 s2
(
41 s2 + t2 + u2

)
. (B.17)

This is precisely the result quoted in (1.4).

The case of 6d. As another example let us also write the effective amplitude in 6d. It reads

TEFT(s, t,u)= T (2)
EFT(s, t,u)+T (3)

EFT(s, t,u)+T (4)
EFT(s, t,u)+T (5)

EFT(s, t,u)+O(s6), (B.18)

where we have

T (2)
EFT = g2 (s2 + t2 + u2), T (3)

EFT = g3 stu, T (4)
EFT = g4

(
s2 + t2 + u2

)2
, (B.19)

together with

T (5)
EFT(s, t,u)= g5 stu

(
s2+t2+u2

)
− g2

2
26880π3

(
s3(89s2+t2+u2) log(−s

√
g2)+

t3(s2+89t2+u2) log(−t
√

g2)+u3(s2+t2+89u2) log(−u
√

g2)
)
. (B.20)

Computation of sub-leading orders in d = 4. We can compute the sub-leading terms
in the expansion (B.16) by recursively repeating the logic of the previous section. We do not
provide further details and simply quote the final result. At the order O(s5) we get

f5(s|t, u) = − g2g3
1920π2 s3(36s2 − 4(t2 + u2)). (B.21)

At the order O(s6) we get

f6(s|t, u) = f
(1)
6 (s|t, u) + f

(2)
6 (s|t, u) + f

(3)
6 (s|t, u), (B.22)

– 30 –



J
H
E
P
0
3
(
2
0
2
4
)
0
2
8

where the three functions are given by

f
(1)
6 (s|t, u) = − g2

3
1920π2 s4(s2 + t2 + u2), (B.23)

f
(2)
6 (s|t, u) = − g2g4

560π2 s4(79s2 + 4(t2 + u2)), (B.24)

together with

f
(3)
6 (s|t, u) = g3

2
48384000π4×

s4
(
7560 log(s)

(
79s2 + 4(t2 + u2)

)
+ 2561(t2 + u2)− 39029s2

)
. (B.25)

Where we notice that the later correspond to a two-loop computation.

C Weak coupling amplitudes and absence of bounds

Following [64], we can define the following two amplitudes in d space-time dimensions

Tspin 0(s, t,u)≡−λ2M4−d

(
M2

s−M2 +
M2

t−M2 +
M2

u−M2 +3
)

, (C.1)

Tstu pole(s, t,u)≡−λ2M4−d

(
M6

(s−M2)(t−M2)(u−M2)+1
)
−γ(d)Tspin 0(s, t,u), (C.2)

where we have defined

γ(d) ≡ 4
9 2F1

(1
2 , 1,

d − 1
2 ; 19

)
, (C.3)

to remove the spin 0 contribution to Tstu pole. Both amplitudes trivially satisfy crossing
and maximal analyticity.

Let us now expand these amplitudes around small energies. This can be done by
using (A.5) and expanding around s = 0. For the first amplitude we obtain

Md Tspin 0(s, t, u) = M2λ2(s + t + u) + λ2(s2 + t2 + u2) + M−2λ2(s3 + t3 + u3)+
M−4λ2(s4 + t4 + u4) + O(s5). (C.4)

Comparing this expression with (1.2), we conclude that for the first amplitude we have

Tspin 0 : g2 = M−dλ2, g3 = 3M−d−2λ2, g4 = 1
2 M−d−4λ2. (C.5)

Analogously we can obtain the low energy coefficients for the second amplitude, they read

Tstu pole :

g2 = 1
2M−dλ2(1− 2γ(d)

)
,

g3 = M−d−2λ2(1− 3γ(d)
)
,

g4 = 1
4 M−d−4λ2(1− 2γ(d)

)
.

(C.6)
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g2 g3 g4 ḡ3 ḡ4

Tspin 0
λ2

Md
3λ2

Md+2
λ2

2Md+4
3

λ4/d
1

2λ8/d

Tstu pole
λ2(1−2γ(d))

2Md
λ2(1−3γ(d))

Md+2
λ2(1−2γ(d))

4Md+4
21+ 2

d (1−3γ(d))
λ4/d(1−2γ(d))1+ 2

d

2
4
d
−2

λ8/d(1−2γ(d))4/d

Table 2. The low energy expansion coefficients for the amplitudes (C.1) and (C.2).

Plugging the results (C.5) and (C.6) into the definition of dimensionless couplings (1.5) we
obtain the following expressions

Tspin 0 : ḡ3 = 3
λ4/d

, ḡ4 = 1
2λ8/d

, (C.7)

Tstu pole : ḡ3 = 21+ 2
d (1− 3γ(d))

λ4/d(1− 2γ(d))1+ 2
d

, ḡ4 = 2 4
d
−2

λ8/d(1− 2γ(d))4/d
. (C.8)

We summarize the above result in a compact form in table 2.
For generic values of the coupling λ the amplitudes (C.1) and (C.2) do not satisfy the

requirement of the non-linear unitarity. However, in the extreme weakly coupling limit λ → 0
this problem is alleviated and unitarity is reduced to the positivity of the residues. In this
sense, both amplitudes satisfied “weak coupling” unitarity [64].

Let us now discuss if any bounds on the parameter ḡ3 can be constructed. From (C.7)
we observe that the amplitude Tspin 0 allows for infinitely large values of ḡ3 in any number
of dimensions, namely

lim
λ→0

ḡ3 = lim
λ→0

3
λ4/d

= +∞. (C.9)

This means that there always exists a weakly coupled theory with a very large positive value
of ḡ3, thus by construction no upper bound exists for this quantity. Analogously we can
conclude that there is no lower bound on ḡ3 in d > 2 space-time dimensions. This follows
from the ḡ3 expression for the Tstu pole amplitude in (C.8), namely

lim
λ→0

ḡ3 = lim
λ→0

21+ 2
d (1− 3γ(d))

λ4/d(1− 2γ(d))1+ 2
d

= −∞. (C.10)

The latter equality holds in d > 2 and can be straightforwardly checked by using the
definition (C.3). Also notice, that from the definition of γ(d) (C.3), it follows that g2 ≥ 0
for the amplitude Tstu pole as required by positivity.

Rerunning these arguments for the ḡ4 parameter we observe that no upper bound on
ḡ4 can be constructed. However, no statement can be made about the lower bound, which
is consistent with our numerical result presented in figure 1.

It is interesting to discuss the absence of bounds on ḡ3 in the context of the 6d a-theorem.
In [83] the authors used the massless probe field (often ambiguously called the dilaton) to
measure the difference between the UV and the IR a-anomaly. This difference is denoted
by ∆a. By using the Weyl anomaly matching they obtained the low energy behaviour of
the scattering amplitudes of the probe field. Their result is given by equations (3.18) and
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(3.19) in [83]. We can connect their notation with ours by comparing equations (3.18) and
(3.19) in [83] with (1.2). We find that

g2 = b̄

f6 , g3 = 9∆a

2f8 , b̄ ≡ b

2f2 , (C.11)

where b̄ is some dimensionless coefficient and f > 0 is a dimensionful parameter. From
positivity one concludes that b̄ ≥ 0. Plugging (C.11) into (1.5) in d = 6 we obtain

ḡ3 = 9
2 b̄−4/3 ∆a. (C.12)

Since we have just shown that by construction no bounds exist on ḡ3 one concludes that
it is impossible to prove the 6d a-theorem by simply considering the 2-to-2 scattering of
the probe fields.

D Complex spin partial amplitude

E Inverse amplitude method

Using elastic unitarity it is possible to unitarize tree-level amplitudes in the s-channel. One
method for doing this is called the Inverse Amplitude Method (IAM) (see for example [84, 85]).
The main idea is to assume elastic unitarity which implies

2Nd(s) Im Tℓ(s) = |Tℓ(s)|2 ⇒ Im
( 1
Tℓ(s)

)
= − 1

2Nd(s)
. (E.1)

This equation fixes the imaginary part of the amplitude and leaves the real part free. At
this point we are left to choose how the imaginary part arises. The simplest way to solve
the above equation is by requiring

1
Tℓ(s)

= − i

2Nd(s)
+ 1

αℓ(s)
, αℓ(s) ∈ R. (E.2)

Equivalently, this can be rewritten as

IAM 1: Sℓ(s) =
1 + i αℓ(s)

2Nd(s)

1− i αℓ(s)
2Nd(s)

. (E.3)

The partial amplitude (E.3) is clearly a pure phase and, thus, obeys elastic unitarity. The real
function αℓ(s) is called the seed. Its explicit form depends on the model under consideration.
We refer to the partial amplitude (E.3) as the amplitudes obtained with the IAM 1.

In the case of massless particles, we know that the imaginary part arises from the log(−s)
term. Using this information we can, thus, make another choice for solving (E.1). Using
Im(log(−s)) = −π for s > 0 one can rewrite (E.1) as

Im
( 1
Tℓ(s)

)
= Im

( log(−s)
2πNd(s)

)
. (E.4)
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Figure 16. Absolute value of the partial amplitude Sℓ for complex spin on the real axis. The data are
represented in blue. |Sℓ| = 1 is plotted in orange for reference. The position of the leading resonance
of the leading trajectory is indicated by a black dashed line.

Solving this equation we obtain

IAM 2: Tℓ(s) =
α̃ℓ(s)

1 + α̃ℓ(s) log(−s)
2πNd(s)

, α̃ℓ(s) ∈ R . (E.5)

We refer to the interacting part of the partial amplitude (E.5) as the one obtained with the IAM
2. The two solutions (E.3) and (E.5) are equivalent upon the following redefinition of the seeds

1
αℓ(s)

= 1
α̃ℓ(s)

+ log(s)
2Nd(s)π

. (E.6)
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The natural choice for the seeds reads as

IAM 1 : αℓ(s) = T tree
ℓ (s), (E.7)

IAM 2 : α̃ℓ(s) = T tree
ℓ (s). (E.8)

In figure 9 we have plotted the spin zero partial amplitudes obtained using IAM1 and
IAM2 for the three-level amplitude (2.21). Both IAM1 and IAM2 expressions have a similar
behaviour. The advantage of IAM 2 is that it naturally reproduces the correct low energy
behaviour (1.2) up to O(s4) order.

F Sum-rules for the coefficients gn

The coefficients gn are defined in (1.2). There are relation which relate the value of these
coefficients to certain integral over the imaginary part of the interacting part of the scattering
amplitude. We refer to this relations as the sum-rules.

The most efficient way to derive this sum-rules is by using the technology of [69]. There
the authors introduced the notion of arcs an(s, t). They are defined as

an(s, t) ≡ 1
2πi

∮
Cs

ds′

s′
T (s′, t)

[s′(s′ + t)]n+1 , (F.1)

where Cs is the circle centered at −t/2 and of radius s + t/2 and exclude the real axis. For
n ≥ 0 we can deform the contour and drop the arc at infinity provided that the amplitude
admit 2 subtractions.22

an(s, t) = 1
π

∫ ∞

s
ds′
( 1

s′
+ 1

s′ + t

) ImT (s′, t)
[s′(s′ + t)]n+1 . (F.2)

The arcs (F.1) are related to the gn coefficients. Indeed, by consider a contour Cs of small
radius, we can use TEFT in (F.1). For example, the first arc is given by

a0(s, t) = 2g2 − g3t + O(s2) (F.3)

The two simplest sum-rules follows directly and reads

g2 = 1
π

∫ ∞

0
ds

Im T (s, 0)
s3 , (F.4)

g3 = 2
π

∫ ∞

0
ds

(3 Im T (s, t)
2s4 − ∂t Im T (s, t)

s3

)
t→0

. (F.5)

Using the positivity constraint (A.14) one immediately concludes that g2 ≥ 0. No similar
statement can be made about g3. The above sum-rule for g3 exists only if the first derivative
in t in the forward limit, namely ∂t Im T (s, t = 0), is finite. This not required by basic axioms.
However, it is true in all example we encounter. It would be interesting to understand if
this statement can be proven. From the perspective of the arc (F.3), this is equivalent to
the statement that the O(s2) satisfy the same property.

22In gapped theory, this is guarantied due to the Martin-Froissart bound [86, 87]. See also [88] for a recent
discussion for massless particles.
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It is very useful to decompose the amplitudes in (F.4) and (F.5) into partial amplitudes
according to (A.6). We can then define the following coefficients

g
(ℓ)
2 ≡

c
(d)
ℓ

π

∫ ∞

0
ds

Im Tℓ(s)
s3 , (F.6)

g
(ℓ)
3 ≡

2c
(d)
ℓ

π

∫ ∞

0
ds

Im Tℓ(s)
s4

(3
2 − 2ℓ(d + ℓ − 3)

(d − 2)

)
. (F.7)

Since we work with the scattering of identical particles ℓ = 0, 2, 4, . . . Comparing these
to (F.4) and (F.5) we conclude that

gn =
∞∑

ℓ=0
g(ℓ)

n , n = 2, 3. (F.8)

In order to see this we used the following equalities

P
(d)
ℓ (1) = 1 , ∂tP

(d)
ℓ

(
1 + 2t

s

) ∣∣∣∣∣
t→0

= 2j(d + ℓ − 3)
(d − 2)

1
s

, (F.9)

which are straightforward to obtain from the explicit expression (A.7).
For completeness let us also write the sum-rule for the coefficient g4. It reads as

g4 = 1
2π

∫ ∞

0
ds

(
ImT (s, 0)

s5 + 42πβ

s(1 + s
√

g2)

)
, (F.10)

where β = − g2
2

480π2 in d = 4 and β = 0 in d ≥ 5. In order to derive this expression we compute
the arc a1 explicitly in the forward limit to obtain

g4 + 21β log (s√g2) + O (s) = 1
2π

∫ ∞

s
ds

ImT (s, 0)
s5 (F.11)

to simplify, we can make use of the identity

log(x) =
∫ ∞

x
dy

−1
y(1 + y) +O(x). (F.12)

To write

g4 = 1
2π

∫ ∞

s
ds

(
ImT (s, 0)

s5 + 42πβ

s(1 + s
√

g2)

)
+ O (s) (F.13)

= 1
2π

∫ ∞

0
ds

(
ImT (s, 0)

s5 + 42πβ

s(1 + s
√

g2)

)
(F.14)

G Large energy constraints

In this appendix we study the large energy behaviour s → ∞ of the simplest ansatz (3.1)
reviewed in section 3.1. Let us write this ansatz here again for convenience

Tansatz(s, t, u) =
∑
a,b,c

αabc ρa(s)ρb(t)ρc(u) + N(s, t, u). (G.1)
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The term N(s, t, u) contains the logs. Its precise form depends on the dimension. In
what follows we will completely ignore N(s, t, u) for simplicity. However, once N(s, t, u)
is known the discussion below can be straightforwardly adopted in order to take it into
account. The ρ-variables were defined in (3.3). In the s → ∞ limit the ρ-variables have
the following expansions

ρ(s) = −1 + 2i

s1/2 + 2
s
− 2i

s3/2 + O
(
s−2

)
,

ρ(t) = −1 + 2
√
2

(1− x)1/2
1

s1/2 − 4
1− x

1
s
++ 4

√
2

(1− x)3/2
1

s3/2 + O
(
s−2

)
,

ρ(u) = −1 + 2
√
2

(1 + x)1/2
1

s1/2 − 4
1 + x

1
s
++ 4

√
2

(1 + x)3/2
1

s3/2 + O
(
s−2

)
,

(G.2)

where x is defined as the cosine of the scattering angle θ, see (1.5). Plugging these into the
ansatz (G.1) we can write the following expansions

Tansatz(s, t, u) = A0 +
A1(x)
s1/2 + A2(x)

s
+ A3(x)

s3/2 + O(s−2), (G.3)

where the coefficients An are straightforward to compute. Let us write for concreteness the
first two coefficient in this expansion, they read

A0 =
∑
a,b,c

αabc (−1)a+b+c,

A1(x) =
∑
a,b,c

−2αabc (−1)a+b+c

(
ia +

√
2b√

1− x
+

√
2c√

1 + x

)
.

(G.4)

The coefficient A0 is real instead the coefficients An(x) with n ≥ 1 have both real and
imaginary parts.

The expansion (G.3) can then be used to evaluate the large energy behaviour of the
partial amplitude related to the scattering amplitude via (A.2). Let us write this expression
here for convenience

Tℓ(s)=
ℓ!Γ

(
d−3

2

)
4π(d−1)/2Γ(d−3+ℓ)

×
∫ +1

−1
dx
(
(1−x)(1+x)

) d−4
2 C

(d−3)/2
ℓ (x)T (s, t(x),u(x)),

(G.5)
where C

(d−3)/2
ℓ (x) is the Gegenbauer polynomial. Plugging (G.3) into (G.5) we obtain

Tℓ(s) = Bℓ
0 +

Bℓ
1

s1/2 + Bℓ
2

s
+ Bℓ

3
s3/2 + O(s−2), (G.6)

where the coefficients Bℓ
n are real numbers given by

Bℓ
n ≡

ℓ! Γ
(

d−3
2

)
4π(d−1)/2Γ(d − 3 + ℓ)

×
∫ +1

−1
dx
(
(1− x)(1 + x)

) d−4
2 C

(d−3)/2
ℓ (x)An(x). (G.7)

Let us define for convenience the following constants

m ≡ 22−dπ
3−d

2

Γ
(

d−1
2

) , nℓ ≡
2d−7/2Γ (ℓ + 1/2) Γ

(
d−1

2

)
Γ
(

d−3
2

)
πΓ (d + ℓ − 5/2) . (G.8)
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Then plugging (G.4) into (G.7) we get

Bℓ
0 = mδℓ,0

∑
a,b,c

αabc (−1)a+b+c,

Bℓ
1(x) = m

∑
a,b,c

−2αabc (−1)a+b+c
(
iaδℓ,0 +

√
2(b + c)nℓ

)
.

(G.9)

Notice that one should worry about commuting the expansion (G.3) with the integration
in (G.5). The practical way of testing if the expression (G.6) is correct is to evaluate the
coefficients Bℓ

n defined in (G.7). We quickly observe that Bℓ
n remain finite only for

n ≤ d/2. (G.10)

As a result the representation (G.6) breaks down for n > d/2. This happens because of the
presence of x = ±1 singularities in (G.2) which are not compensated in the integrals (G.7).

Now recall the non-linear unitarity condition on partial amplitudes given by (A.11)
together with (A.3). Let us write it here explicitly for convenience

ImTℓ(s) ≥ 2−ds
d−4

2 |Tℓ(s)|2. (G.11)

Plugging here the expansion (G.6) and taking into account that the coefficient Bℓ
0 is real

as a consequence of the reality of the coefficient A0, we obtain

ImBℓ
1

s1/2 + ImBℓ
2

s
+ ImBℓ

3
s3/2 +O(s−2)≥ 2−ds

d−4
2

∣∣∣∣∣Bℓ
0+

Bℓ
1

s1/2 +
Bℓ

2
s
+ Bℓ

3
s3/2 +O(s−2)

∣∣∣∣∣
2

. (G.12)

In order for this inequality to be satisfied we need to require that the left-hand side decays
with s at the same rate or slower than the right-hand side. This imposes the constraints on
the coefficients Bℓ

n. Below we derive these constraints for several values of d.

The case of 4d. In the case of d = 4 the condition (G.12) reads as

ℓ = 0 : ImB0
1

s1/2 + ImB0
2

s
+ O(s−3/2) ≥ 2−d

∣∣∣∣∣B0
0 + B0

1
s1/2 + B0

2
s

+ O(s−3/2)
∣∣∣∣∣
2

,

ℓ ≥ 2 : ImBℓ
1

s1/2 + ImBℓ
2

s
+ O(s−3/2) ≥ 2−d

∣∣∣∣∣ Bℓ
1

s1/2 + Bℓ
2

s
+ O(s−3/2)

∣∣∣∣∣
2

.

(G.13)

Recall that Bℓ
0 = 0 for ℓ ≥ 2 due to (G.9). The above conditions can be satisfied only

if we require B0
0 = 0. Taking into account (G.9) we conclude that in 4d the following

condition must be obeyed

d = 4 :
∑
a,b,c

αabc (−1)a+b+c = 0. (G.14)

Requiring this condition is equivalent to setting A0 = 0 in the s → ∞ expansion of the
ansatz (G.3).
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The case of 5d. In the case of d = 5 the condition (G.12) reads as

ℓ=0 : ImB0
1

s1/2 + ImB0
2

s
+O(s−3/2)≥ 2−ds1/2

∣∣∣∣∣B0
0+

B0
1

s1/2 +
B0

2
s

+O(s−3/2)
∣∣∣∣∣
2

,

ℓ≥ 2 : ImBℓ
1

s1/2 + ImBℓ
2

s
+O(s−3/2)≥ 2−ds1/2

∣∣∣∣∣ Bℓ
1

s1/2 +
Bℓ

2
s
+O(s−3/2)

∣∣∣∣∣
2

.

(G.15)

The above conditions can be again satisfied only if we require B0
0 = 0. Taking into ac-

count (G.9) we conclude that in 5d the same condition as in d = 4 must be obeyed, namely

d = 5 :
∑
a,b,c

αabc (−1)a+b+c = 0. (G.16)

The case of 6d. In the case of d = 6 the condition (G.12) reads as

ℓ=0 : ImB0
1

s1/2 + ImB0
2

s
+O(s−3/2)≥ 2−ds

∣∣∣∣∣B0
0+

B0
1

s1/2 +
B0

2
s

+O(s−3/2)
∣∣∣∣∣
2

,

ℓ≥ 2 : ImBℓ
1

s1/2 + ImBℓ
2

s
+O(s−3/2)≥ 2−ds

∣∣∣∣∣ Bℓ
1

s1/2 +
Bℓ

2
s
+O(s−3/2)

∣∣∣∣∣
2

.

(G.17)

The above conditions can be satisfied only if we require B0
0 = 0 and Bℓ

1 = 0 for any ℓ ≥ 0.
Taking into account (G.9) we conclude that in 6d the following conditions must be obeyed

d = 6 :

∑
a,b,c

αabc (−1)a+b+c = 0,

∑
a,b,c

αabc a(−1)a+b+c = 0,

∑
a,b,c

αabc (b + c)(−1)a+b+c = 0.

(G.18)

Notice, that since αabc are totally symmetric, the last condition in (G.18) is actually redundant.
Requiring these conditions is equivalent to setting A0 = 0 and A1(x) = 0 in the s → ∞
expansion of the ansatz (G.3).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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