002875594 001__ 2875594
002875594 005__ 20241220212554.0
002875594 0247_ $$2DOI$$a10.1116/5.0185291
002875594 0248_ $$aoai:cds.cern.ch:2875594$$pcerncds:FULLTEXT$$pcerncds:CONF$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN$$pcerncds:CONF:FULLTEXT
002875594 037__ $$9arXiv$$aarXiv:2310.08183$$chep-ex
002875594 035__ $$9arXiv$$aoai:arXiv.org:2310.08183
002875594 035__ $$9Inspire$$aoai:inspirehep.net:2709872$$d2024-12-19T22:56:33Z$$h2024-12-20T03:09:31Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002875594 035__ $$9INSPIRE-CNUM$$aC23-03-13.4
002875594 035__ $$9Inspire$$a2709872
002875594 041__ $$aeng
002875594 100__ $$aAbend, Sven$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 111__ $$920230313$$aTerrestrial Very-Long-Baseline Atom Interferometry Workshop (TVLBAI 2023)$$cCERN, Geneva, Switzerland$$d13 - 14 Mar 2023$$f2023$$gcern20230313$$iC23-03-13.4$$wCH$$z20230314
002875594 245__ $$9arXiv$$aTerrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary
002875594 269__ $$c2023-10-12
002875594 260__ $$c2023
002875594 300__ $$a99 p
002875594 500__ $$9arXiv$$aSummary of the Terrestrial Very-Long-Baseline Atom Interferometry
Workshop held at CERN: https://indico.cern.ch/event/1208783/
002875594 520__ $$9arXiv$$aThis document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.
002875594 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002875594 540__ $$3publication$$aCC BY 4.0$$fOther$$uhttps://creativecommons.org/licenses/by/4.0/
002875594 542__ $$3publication$$dAuthor(s)$$g2024
002875594 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002875594 65017 $$2SzGeCERN$$aGeneral Relativity and Cosmology
002875594 65017 $$2SzGeCERN$$aAstrophysics and Astronomy
002875594 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002875594 65017 $$2SzGeCERN$$aOther Fields of Physics
002875594 690C_ $$aCERN
002875594 690C_ $$aPROCEEDINGS
002875594 700__ $$aAllard, Baptiste$$uLCAR, Toulouse$$vLaboratoire Collisions Agrégats Réactivité,CNRS,Université Toulouse III - Paul Sabatier,Toulouse,France
002875594 700__ $$aAlonso, Iván$$uBalearic Islands U.$$vDepartment of Industrial Engineering,Higher Polytechnic School,University of the Balearic Islands,Palma de Mallorca,Spain
002875594 700__ $$aAntoniadis, John$$uCrete U.$$vIFORTH Institute of Astrophysics,N. Plastira 100,70013,Heraklion,Greece
002875594 700__ $$aAraújo, Henrique$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aArduini, Gianluigi$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aArnold, Aidan S.$$uSUPA, UK$$uStrathclyde U.$$vSUPA Department of Physics,University of Strathclyde,Glasgow,G4 0NG,UK
002875594 700__ $$aAßmann, Tobias$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aAugst, Nadja$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aBadurina, Leonardo$$uKing's Coll. London$$uCaltech$$vPhysics Department,King's College London,London,WC2R 2LS,UK$$vWalter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena,CA 91125,USA
002875594 700__ $$aBalaž, Antun$$uBelgrade U.$$vInstitute of Physics Belgrade,University of Belgrade,Pregrevica 118,11080 Belgrade,Serbia
002875594 700__ $$aBanks, Hannah$$uCambridge U., DAMTP$$vDAMTP,University of Cambridge,Wilberforce Road,Cambridge,CB3 0WA,UK
002875594 700__ $$aBarone, Michele$$uDemocritos Nucl. Res. Ctr.$$vInstitute of Nuclear and Particle Physics,NCSR Demokritos,Agia Paraskevi 15310,Greece
002875594 700__ $$aBarsanti, Michele$$uPisa U.$$vDepartment of Civil and Industrial Engineering,University of Pisa,Largo Lucio Lazzarino,Pisa,56122,Italy
002875594 700__ $$aBassi, Angelo$$uSISSA, Trieste$$uINFN, Trieste$$vDepartment of Physics,University of Trieste,Strada Costiera 11,34151 Trieste,Italy$$vIstituto Nazionale di Fisica Nucleare,Trieste Section,Via Valerio 2,34127 Trieste,Italy
002875594 700__ $$aBattelier, Baptiste$$uLP2N, Bordeaux$$vLP2N,Laboratoire Photonique,Numérique et Nanosciences,UniversitéBordeaux-IOGS-CNRS:UMR 5298,1 rue François Mitterrand,33400 Talence,France
002875594 700__ $$aBaynham, Charles F.A.$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aBeaufils, Quentin$$uSYRTE, Paris$$vSYRTE,Observatoire de Paris,Université PSL,CNRS,Sorbonne Université,LNE,61 avenue de l’Observatoire 75014 Paris,France
002875594 700__ $$aBelić, Aleksandar$$uBelgrade U.$$vInstitute of Physics Belgrade,University of Belgrade,Pregrevica 118,11080 Belgrade,Serbia
002875594 700__ $$aBeniwal, Ankit$$uKing's Coll. London$$vPhysics Department,King's College London,London,WC2R 2LS,UK
002875594 700__ $$aBernabeu, Jose$$uValencia U.$$vDepartment of Theoretical Physics,University of Valencia,E-46100 Burjassot,Spain
002875594 700__ $$aBertinelli, Francesco$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aBertoldi, Andrea$$uLP2N, Bordeaux$$vLP2N,Laboratoire Photonique,Numérique et Nanosciences,UniversitéBordeaux-IOGS-CNRS:UMR 5298,1 rue François Mitterrand,33400 Talence,France
002875594 700__ $$aBiswas, Ikbal Ahamed$$uIndian Inst. Tech., New Delhi$$vDepartment of Physics,Indian Institute of Technology Delhi,Hauz Khas,New Delhi,110016,India
002875594 700__ $$aBlas, Diego$$uBarcelona, IFAE$$vGrup de Física Teòrica,Departament de Física,Universitat Autònoma de Barcelona,08193 Bellaterra (Barcelona),Spain; and Institut de Fisica d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology,Campus UAB,08193 Bellaterra (Barcelona),Spain
002875594 700__ $$aBoegel, Patrick$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aBogojević, Aleksandar$$uBelgrade U.$$vInstitute of Physics Belgrade,University of Belgrade,Pregrevica 118,11080 Belgrade,Serbia
002875594 700__ $$aBöhm, Jonas$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aBöhringer, Samuel$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aBongs, Kai$$uDLR, Neustrelitz$$uBirmingham U.$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany$$vUniversity of Birmingham,Birmingham,B15 2TT,UK
002875594 700__ $$aBouyer, Philippe$$uAmsterdam U.$$uAmsterdam, CWI$$uEindhoven, Tech. U.$$vVan der Waals-Zeeman Institute,Institute of Physics,University of Amsterdam,Science Park 904,1098XH Amsterdam,The Netherlands$$vQuSoft,Science Park 123,1098XG Amsterdam,The Netherlands$$vEindhoven University of Technology,P.O. Box 513,5600MB Eindhoven,The Netherlands
002875594 700__ $$aBrand, Christian$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aBrimis, Apostolos$$uCrete U.$$uIESL, Heraklion$$vFoundation for Research and Technology (FORTH),Institute of Electronic Structure and Lasers (IESL),Heraklion,Crete,Greece$$vITCP,Department of Physics,University of Crete,Heraklion,Greece
002875594 700__ $$aBuchmueller, Oliver$$uImperial Coll., London$$uOxford U.$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK$$vUniversity of Oxford,South Parks Road,Oxford OX1 3PU,UK
002875594 700__ $$aCacciapuoti, Luigi$$uESTEC, Noordwijk$$vEuropean Space Agency,Keplerlaan 1,2201AZ Noordwijk,The Netherlands
002875594 700__ $$aCalatroni, Sergio$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aCanuel, Benjamin$$uLP2N, Bordeaux$$vLP2N,Laboratoire Photonique,Numérique et Nanosciences,UniversitéBordeaux-IOGS-CNRS:UMR 5298,1 rue François Mitterrand,33400 Talence,France
002875594 700__ $$aCaprini, Chiara$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aCaramete, Ana$$uBucharest, Inst. Space Science$$vInstitute of Space Science,409 Atomistilor Street,Bucharest,Magurele,Ilfov,077125,Romania
002875594 700__ $$aCaramete, Laurentiu$$uBucharest, Inst. Space Science$$vInstitute of Space Science,409 Atomistilor Street,Bucharest,Magurele,Ilfov,077125,Romania
002875594 700__ $$aCarlesso, Matteo$$uSISSA, Trieste$$uQueen's U., Belfast$$vDepartment of Physics,University of Trieste,Strada Costiera 11,34151 Trieste,Italy$$vCentre for Theoretical Atomic,Molecular,and Optical Physics,School of Mathematics and Physics,Queens University,Belfast BT7 1NN,UK
002875594 700__ $$aCarlton, John$$uKing's Coll. London$$vPhysics Department,King's College London,London,WC2R 2LS,UK
002875594 700__ $$aCasariego, Mateo$$uTaguspark, IST$$uLisbon, CENTRA$$vInstituto de Telecomunicações,Instituto Superior Técnico,Av. Rovisco Pais,Torre Norte,Lisboa,1049-001,Portugal$$vPhysics of Information and Quantum Technologies Group,Centro de Física e Engenharia de Materiais Avançados (CeFEMA),Portugal
002875594 700__ $$aCharmandaris, Vassilis$$uCrete U.$$uIESL, Heraklion$$vDept. of Physics,Univ. of Crete,Greece & Institute of Astrophysics,FORTH,Greece & European University Cyprus,Cyprus
002875594 700__ $$aChen, Yu-Ao$$uUSTC, Hefei$$uCUST, SKLPDE$$vSchool of Physical Sciences,University of Science and Technology of China,Hefei 230026,Anhui,China
002875594 700__ $$aChiofalo, Maria Luisa$$uINFN, Pisa$$vDepartment of Physics,University of Pisa and INFN,Largo Bruno Pontecorvo 3,56126 Pisa,Italy
002875594 700__ $$aCimbri, Alessia$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aColeman, Jonathon$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aConstantin, Florin Lucian$$uPhLAM, Villeneuve d'Ascq$$vLaboratoire PhLAM,CNRS UMR 8523,Villeneuve d'Ascq,France
002875594 700__ $$aContaldi, Carlo R.$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aCui, Yanou$$uUC, Riverside$$vDepartment of Physics and Astronomy,University of California,Riverside,CA,USA
002875594 700__ $$aDa Ros, Elisa$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aDavies, Gavin$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$adel Pino Rosendo, Esther$$uMainz U., Inst. Phys.$$vJohannes Gutenberg University,Staudingerweg 7,55128 Mainz,Germany
002875594 700__ $$aDeppner, Christian$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Satellitengeodäsie und Inertialsensorik,Callinstr. 30b,30167 Hannover,Germany
002875594 700__ $$aDerevianko, Andrei$$uNevada U., Reno$$vDepartment of Physics,University of Nevada,Reno,Nevada 89557,USA
002875594 700__ $$ade Rham, Claudia$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aDe Roeck, Albert$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aDerr, Daniel$$uDarmstadt, Tech. U.$$vTechnische Universität Darmstadt,Fachbereich Physik,Institut für Angewandte Physik,Schlossgartenstr. 7,D-64289 Darmstadt,Germany
002875594 700__ $$aDi Pumpo, Fabio$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aDjordjevic, Goran S.$$uNis U.$$vDepartment of Physics,University of Nis,Serbia
002875594 700__ $$aDöbrich, Babette$$uMunich, Max Planck Inst.$$vMax-Planck-Institut für Physik (Werner-Heisenberg-Institut),München,Germany
002875594 700__ $$aDomokos, Peter$$uWigner RCP, Budapest$$vHUN-REN Wigner Research Centre for Physics H-1525 Budapest,P.O. Box 49.,Hungary
002875594 700__ $$aDornan, Peter$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aDoser, Michael$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aDrougakis, Giannis$$uCrete U.$$uIESL, Heraklion$$vFoundation for Research and Technology (FORTH),Institute of Electronic Structure and Lasers (IESL),Heraklion,Crete,Greece
002875594 700__ $$aDunningham, Jacob$$uSussex U.$$vDepartment of Physics and Astronomy,University of Sussex,Brighton,BN1 9QH,UK
002875594 700__ $$aDuspayev, Alisher$$uMichigan U.$$vDepartment of Physics,University of Michigan,Ann Arbor,Michigan,48109,USA
002875594 700__ $$aEaso, Sajan$$uRutherford$$vSTFC,Rutherford Appleton Laboratory,Harwell campus,Didcot,OX110QX,UK
002875594 700__ $$aEby, Joshua$$uStockholm U.$$vDepartment of Physics,Stockholm University,10691 Stockholm,Sweden
002875594 700__ $$aEfremov, Maxim$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aEkelof, Tord$$uUppsala U.$$vFREIA Laboratory Division,Department of Physics and Astronomy,Uppsala University,Box 516,751 20 Uppsala,Sweden
002875594 700__ $$aElertas, Gedminas$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aEllis, John$$uKing's Coll. London$$vPhysics Department,King's College London,London,WC2R 2LS,UK
002875594 700__ $$aEvans, David$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aFadeev, Pavel$$uMainz U., Inst. Phys.$$vJohannes Gutenberg University,Staudingerweg 7,55128 Mainz,Germany
002875594 700__ $$aFanì, Mattia$$uLos Alamos$$vLos Alamos National Laboratory,Los Alamos NM 87545,USA
002875594 700__ $$aFassi, Farida$$uRabat U.$$vFaculty of Sciences,Mohammed V University in Rabat,4 Avenue Ibn Battouta B.P. 1014 RP,Rabat,Morocco
002875594 700__ $$aFattori, Marco$$uINFN, Florence$$uFlorence U.$$vDepartment of Physics and Astronomy,University of Firenze,50019 Sesto Fiorentino,Italy
002875594 700__ $$aFayet, Pierre$$uLPENS, Paris$$vLaboratoire de physique de l'ENS,Ecole Normale Supérieure-PSL,CNRS,Sorbonne Université,Université Paris Cité,24 rue Lhomond,75231 Paris Cedex 05,France; and CPhT,Ecole polytechnique,IPP,Palaiseau,France
002875594 700__ $$aFelea, Daniel$$uBucharest, Inst. Space Science$$vInstitute of Space Science,409 Atomistilor Street,Bucharest,Magurele,Ilfov,077125,Romania
002875594 700__ $$aFeng, Jie$$uZhongshan U., Zhuhai$$vSchool of Science,Shenzhen Campus of Sun Yat-sen University,Shenzhen 518107,China
002875594 700__ $$aFriedrich, Alexander$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aFuchs, Elina$$uLeibniz U., Hannover$$uBraunschweig, Phys. Tech. Bund.$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany$$vPhysikalisch-Technische Bundesanstalt,Bundesallee 100,38116 Braunschweig,Germany
002875594 700__ $$aGaaloul, Naceur$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aGao, Dongfeng$$uWuhan, MRAMP$$uCAS, APM, Wuhan$$vState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China
002875594 700__ $$aGardner, Susan$$uKentucky U.$$vDepartment of Physics and Astronomy,University of Kentucky,Lexington,KY 40506-0055,USA
002875594 700__ $$aGarraway, Barry$$uSussex U.$$vDepartment of Physics and Astronomy,University of Sussex,Brighton,BN1 9QH,UK
002875594 700__ $$aGauguet, Alexandre$$uLCAR, Toulouse$$vLaboratoire Collisions Agrégats Réactivité,CNRS,Université Toulouse III - Paul Sabatier,Toulouse,France
002875594 700__ $$aGerlach, Sandra$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Satellitengeodäsie und Inertialsensorik,Callinstr. 30b,30167 Hannover,Germany
002875594 700__ $$aGersemann, Matthias$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aGibson, Valerie$$uCambridge U.$$vCavendish Laboratory,University of Cambridge,J. J. Thomson Avenue,Cambridge CB3 0HE,UK
002875594 700__ $$aGiese, Enno$$uDarmstadt, Tech. U.$$vTechnische Universität Darmstadt,Fachbereich Physik,Institut für Angewandte Physik,Schlossgartenstr. 7,D-64289 Darmstadt,Germany
002875594 700__ $$aGiudice, Gian F.$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aGlasbrenner, Eric P.$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aGündoğan, Mustafa$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aHaehnelt, Martin$$uCambridge U., Inst. of Astron.$$vKavli Institute for Cosmology and Institute of Astronomy,Madingley Road,Cambridge,CB3 0HA,UK
002875594 700__ $$aHakulinen, Timo$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aHammerer, Klemens$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aHanımeli, Ekim T.$$uBremen U., ZARM$$vZARM Center of Applied Space Technology and Microgravity,Universität Bremen,Bremen,Germany
002875594 700__ $$aHarte, Tiffany$$uCambridge U.$$vCavendish Laboratory,University of Cambridge,J. J. Thomson Avenue,Cambridge CB3 0HE,UK
002875594 700__ $$aHawkins, Leonie$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aHees, Aurelien$$uSYRTE, Paris$$vSYRTE,Observatoire de Paris,Université PSL,CNRS,Sorbonne Université,LNE,61 avenue de l’Observatoire 75014 Paris,France
002875594 700__ $$aHeise, Jaret$$uUnlisted, US$$vSanford Underground Research Facility,Lead,SD,USA
002875594 700__ $$aHenderson, Victoria A.$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aHerrmann, Sven$$uBremen U., ZARM$$vZARM Center of Applied Space Technology and Microgravity,Universität Bremen,Bremen,Germany
002875594 700__ $$aHird, Thomas M.$$uOxford U.$$vUniversity of Oxford,South Parks Road,Oxford OX1 3PU,UK
002875594 700__ $$aHogan, Jason M.$$uStanford U., Phys. Dept.$$vDepartment of Physics,Stanford University,Stanford,California 94305,USA
002875594 700__ $$aHolst, Bodil$$uBergen U.$$vDepartment of Physics and Technology,University of Bergen,Allegaten 55,5007 Bergen,Norway
002875594 700__ $$aHolynski, Michael$$uBirmingham U.$$vUniversity of Birmingham,Birmingham,B15 2TT,UK
002875594 700__ $$aHussain, Kamran$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aJanson, Gregor$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aJeglič, Peter$$uStefan Inst., Ljubljana$$vJožef Stefan Institute,Jamova 39,SI-1000 Ljubljana,Slovenia
002875594 700__ $$aJelezko, Fedor$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aKagan, Michael$$uSLAC$$vFundamental Physics Directorate,SLAC National Accelerator Laboratory,Menlo Park,CA,USA
002875594 700__ $$aKalliokoski, Matti$$uHelsinki Inst. of Phys.$$uHelsinki U.$$vDetector Laboratory,Helsinki Institute of Physics,P.O.Box 64,Gustaf Hallstromin katu 2,00014,University of Helsinki,Finland
002875594 700__ $$aKasevich, Mark$$uStanford U., Phys. Dept.$$vDepartment of Physics,Stanford University,Stanford,California 94305,USA
002875594 700__ $$aKehagias, Alex$$uNatl. Tech. U., Athens$$vPhysics Division,National Technical University of Athens,Athens,15780,Greece
002875594 700__ $$aKilian, Eva$$uUniversity Coll. London$$vDepartment of Physics & Astronomy,University College London,WC1E 6BT London,UK
002875594 700__ $$aKoley, Soumen$$uGSSI, Aquila$$vDepartment of Physics,Gran Sasso Science Institute,viale Francesco Crispi 7,67100 L'Aquila,Italy
002875594 700__ $$aKonrad, Bernd$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aKopp, Joachim$$uCERN$$uMainz U., Inst. Phys.$$uU. Mainz, PRISMA$$vCERN,CH-1211 Geneva 23,Switzerland$$vJohannes Gutenberg University,Staudingerweg 7,55128 Mainz,Germany$$vPRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7,55128 Mainz,Germany
002875594 700__ $$aKornakov, Georgy$$uWarsaw U. of Tech.$$vWarsaw University of Technology,Faculty of Physics,ul. Koszykowa 75,00-662 Warszawa,Poland
002875594 700__ $$aKovachy, Tim$$uNorthwestern U.$$vDepartment of Physics and Astronomy and Center for Fundamental Physics,Northwestern University,Evanston,IL,USA
002875594 700__ $$aKrutzik, Markus$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aKumar, Mukesh$$uWitwatersrand U.$$vSchool of Physics and Institute for Collider Particle Physics,University of the Witwatersrand,1 Jan Smuts Ave,Braamfontein,Johannesburg,2000,South Africa
002875594 700__ $$aKumar, Pradeep$$uIISER, Bhopal$$vExperimental Condensed Matter Physics Group,Ultrafast Coherent Spectroscopy Laboratory,Indian Institute of Science Education and Research,Bhopal,462066,India
002875594 700__ $$aLämmerzahl, Claus$$uBremen U., ZARM$$vZARM Center of Applied Space Technology and Microgravity,Universität Bremen,Bremen,Germany
002875594 700__ $$aLandsberg, Greg$$uBrown U.$$vDepartment of Physics,Brown University,182 Hope St.,Providence,RI 02912,USA
002875594 700__ $$aLanglois, Mehdi$$uCaltech, JPL$$vJet Propulsion Laboratory,California Institute of Technology,Pasadena,California 91109,USA
002875594 700__ $$aLanigan, Bryony$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aLellouch, Samuel$$uBirmingham U.$$vUniversity of Birmingham,Birmingham,B15 2TT,UK
002875594 700__ $$aLeone, Bruno$$uRutherford$$vOptoelectronics Section,Directorate of Technology,Engineering and Quality,European Space Agency,,Fermi Avenue,Harwell Campus,Didcot,OX11 0FD,UK
002875594 700__ $$aLe Poncin-Lafitte, Christophe$$uSYRTE, Paris$$vSYRTE,Observatoire de Paris,Université PSL,CNRS,Sorbonne Université,LNE,61 avenue de l’Observatoire 75014 Paris,France
002875594 700__ $$aLewicki, Marek$$uWarsaw U.$$vFaculty of Physics,University of Warsaw ul. Pasteura 5,02-093 Warsaw,Poland
002875594 700__ $$aLeykauf, Bastian$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aLezeik, Ali$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aLombriser, Lucas$$uGeneva U., Dept. Theor. Phys.$$vDépartement de Physique Théorique,Université de Genève,24 quai Ernest Ansermet,1211 Genève 4,Switzerland
002875594 700__ $$aLopez-Gonzalez, J.L.$$uSinaloa U.$$vDepartment of Mathematics and Physics,Autonomous University of Aguascalientes,Av. Universidad 940,Aguascalientes,20100,Mexico
002875594 700__ $$aLopez Asamar, Elias$$uMadrid, Autonoma U.$$vDepartamento de Fśica Téorica,Universidad Autónoma de Madrid,Madrid,28049,Spain
002875594 700__ $$aMonjaraz, Cristian López$$uCIIDET, Mexico$$uCINVESTAV, IPN$$vLaboratorio de Tecnologías Cuánticas,Cinvestav Unidad Querétaro,Libramiento Norponiente No. 2000,Fracc. Real de Juriquilla,76230,Querétaro,Mexico
002875594 700__ $$aLuciano, Gaetano$$uLleida U.$$vApplied Physics Section of Environmental Science Department,Escola Politècnica Superior,Universitat de Lleida,Av. Jaume II,69,25001 Lleida,Spain
002875594 700__ $$aMohammed, Mohammed Mahmoud
002875594 700__ $$aMahmoud, M.A.$$uFayoum U.$$vCenter for High Energy Physics (CHEP-FU),Fayoum University,63514- El-Fayoum,Egypt
002875594 700__ $$aMaleknejad, Azadeh$$uCERN$$vCERN,CH-1211 Geneva 23,Switzerland
002875594 700__ $$aKrutzik, Markus$$uLCAR, Toulouse$$uHumboldt U., Berlin$$uBerlin FBI$$vLaboratoire Collisions Agrégats Réactivité,CNRS,Université Toulouse III - Paul Sabatier,Toulouse,France$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany$$vFerdinand-Braun-Institut (FBH),Gustav-Kirchoff-Str.4,12489 Berlin
002875594 700__ $$aMarteau, Jacques$$uIP2I, Lyon$$vUniversite Claude Bernard Lyon 1,IP2I,UMR5822,CNRS-IN2P3,Villeurbanne,69622,France
002875594 700__ $$aMassonnet, Didier$$uCNES, Toulouse$$vFrench Space Agency,Centre Spatial de Toulouse,18 Avenue E. Belin,Toulouse,31400,France
002875594 700__ $$aMazumdar, Anupam$$uU. Groningen, VSI$$vVan Swinderen Institute,University of Groningen,9747 AG,Groningen,The Netherlands
002875594 700__ $$aMcCabe, Christopher$$uKing's Coll. London$$vPhysics Department,King's College London,London,WC2R 2LS,UK
002875594 700__ $$aMeister, Matthias$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aMenu, Jonathan$$uLeuven U.$$vInstitute for Theoretical Physics,KU Leuven,Celestijnenlaan 200D,3001 Leuven,Belgium
002875594 700__ $$aMessineo, Giuseppe$$uINFN, Padua$$vINFN Sezione di Padova,Via F. Marzolo 8,I-35131 Padova,Italy
002875594 700__ $$aMicalizio, Salvatore$$uINRIM, Turin$$vIstituto Nazionale di Ricerca Metrologica,INRIM,Strada delle Cacce 91,10135 Torino,Italy
002875594 700__ $$aMillington, Peter$$uManchester U.$$vDepartment of Physics and Astronomy,University of Manchester,Manchester M13 9PL,UK
002875594 700__ $$aMilosevic, Milan$$uNis U.$$vFaculty of Sciences and Mathematics,University of Nis,Nis,Serbia
002875594 700__ $$aMitchell, Jeremiah$$uCambridge U.$$vCavendish Laboratory,University of Cambridge,J. J. Thomson Avenue,Cambridge CB3 0HE,UK
002875594 700__ $$aMontero, Mario$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aMorley, Gavin W.$$uWarwick U.$$vDepartment of Physics,University of Warwick,Coventry CV4 7AL,UK
002875594 700__ $$aMüller, Jürgen$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aMüstecaplıoğlu, Özgür E.$$uTUBITAK Res. Inst.$$vKoçUniversity,Department of Physics,Sarıyer,Istanbul,34450,Türkıye; TÜBITAK Research Institute for Fundamental Sciences,41470 Gebze,Türkıye
002875594 700__ $$aNi, Wei-Tou$$uWuhan, MRAMP$$uCAS, APM, Wuhan$$vState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China
002875594 700__ $$aNoller, Johannes$$uUniversity Coll. London$$uPortsmouth U., ICG$$vDepartment of Physics & Astronomy,University College London,WC1E 6BT London,UK$$vInstitute of Cosmology & Gravitation,University of Portsmouth,Portsmouth,PO1 3FX,UK
002875594 700__ $$aOdžak, Senad$$uZurich U.$$vUniversity of Sarajevo - Faculty of Science,Zmaja od Bosne 33-35,71000 Sarajevo,Bosnia and Herzegovina
002875594 700__ $$aOi, Daniel K.L.$$uSUPA, UK$$uStrathclyde U.$$uWaterford Inst. Technol.$$vSUPA Department of Physics,University of Strathclyde,Glasgow,G4 0NG,UK$$vWalton Institute for Information and Communication Systems Science,South East Technological University,Waterford,X91 P20H,Ireland
002875594 700__ $$aOmar, Yasser$$uTaguspark, IST$$uLisbon, CENTRA$$uITN, Lisbon$$vInstituto de Telecomunicações,Instituto Superior Técnico,Av. Rovisco Pais,Torre Norte,Lisboa,1049-001,Portugal$$vPhysics of Information and Quantum Technologies Group,Centro de Física e Engenharia de Materiais Avançados (CeFEMA),Portugal$$vPQI - Portuguese Quantum Institute,Portugal
002875594 700__ $$aPahl, Julia$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aPaling, Sean$$uBoulby Underground Lab.$$vBoulby Underground Laboratory,Boulby Mine,Saltburn-by-the-Sea,TS13 4UZ,UK
002875594 700__ $$aPandey, Saurabh$$uLos Alamos$$vLos Alamos National Laboratory,Los Alamos NM 87545,USA
002875594 700__ $$aPappas, George$$uAristotle U., Thessaloniki$$vDepartment of Physics,Aristotle University of Thessaloniki,54124 Thessaloniki,Greece
002875594 700__ $$aPareek, Vinay$$uCrete U.$$uIESL, Heraklion$$vFoundation for Research and Technology (FORTH),Institute of Electronic Structure and Lasers (IESL),Heraklion,Crete,Greece
002875594 700__ $$aPasatembou, Elizabeth$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aPelucchi, Emanuele$$uUniversity Coll., Cork$$vTyndall National Institute-University College Cork,Cork,Ireland
002875594 700__ $$ados Santos, Franck Pereira$$uSYRTE, Paris$$vSYRTE,Observatoire de Paris,Université PSL,CNRS,Sorbonne Université,LNE,61 avenue de l’Observatoire 75014 Paris,France
002875594 700__ $$aPiest, Baptist$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aPikovski, Igor$$uStockholm U.$$uStevens Tech.$$vDepartment of Physics,Stockholm University,10691 Stockholm,Sweden$$vDepartment of Physics,Stevens Institute of Technology,Hoboken,NJ,USA
002875594 700__ $$aPilaftsis, Apostolos$$uManchester U.$$vDepartment of Physics and Astronomy,University of Manchester,Manchester M13 9PL,UK
002875594 700__ $$aPlunkett, Robert$$uFermilab$$vFermi National Accelerator Laboratory,POB 500,Batavia,IL 60510,USA
002875594 700__ $$aPoggiani, Rosa$$uPisa U.$$vDipartimento di Fisica "Enrico Fermi",Università di Pisa,56127 Pisa,Italy
002875594 700__ $$aPrevedelli, Marco$$uU. Bologna, DIFA$$uINFN, Bologna$$vDepartment of Physics and Astronomy,University of Bologna,Bologna,Italy
002875594 700__ $$aPuputti, Julia$$uOulu U.$$vCallio Lab,Kerttu Saalasti Institute,University of Oulu,Pentti Kaiteran katu 1,Oulu,90570,Finland
002875594 700__ $$aVeettil, Vishnupriya Puthiya$$uCrete U.$$uIESL, Heraklion$$vFoundation for Research and Technology (FORTH),Institute of Electronic Structure and Lasers (IESL),Heraklion,Crete,Greece
002875594 700__ $$aQuenby, John$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aRafelski, Johann$$uArizona U.$$vDepartment of Physics,The University of Arizona,Tucson,AZ 85721,USA
002875594 700__ $$aRajendran, Surjeet$$uJohns Hopkins U.$$vDepartment of Physics & Astronomy,The Johns Hopkins University,Baltimore,MD 21218,USA
002875594 700__ $$aRasel, Ernst Maria$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aSfar, Haifa Rejeb$$uSUNY, Buffalo$$vDepartment of Physics,University at Buffalo,239 Fronczak Hall,New York,USA
002875594 700__ $$aReynaud, Serge$$uParis, Lab. Kastler Brossel$$vLaboratoire Kastler Brossel,Sorbonne Université,ENS-PSL,CNRS,Paris,France
002875594 700__ $$aRichaud, Andrea$$uBarcelona, Polytechnic U.$$vDepartament de Física,Universitat Politècnica de Catalunya,Campus Nord B4-B5,E-08034 Barcelona,Spain
002875594 700__ $$aRodzinka, Tangui$$uLCAR, Toulouse$$vLaboratoire Collisions Agrégats Réactivité,CNRS,Université Toulouse III - Paul Sabatier,Toulouse,France
002875594 700__ $$aRoura, Albert$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aRudolph, Jan$$uStanford U., Phys. Dept.$$vDepartment of Physics,Stanford University,Stanford,California 94305,USA
002875594 700__ $$aSabulsky, Dylan O.$$uLSBB, Rustrel$$vLaboratoire Souterrain àBas Bruit (LSBB),CNRS: UAR3538,Avignon University,Rustrel F-84400,France
002875594 700__ $$aSafronova, Marianna S.$$uDelaware U.$$vDepartment of Physics and Astronomy,University of Delaware,Newark,Delaware 19716,USA
002875594 700__ $$aSantamaria, Luigi$$uASI, Rome$$uICRA, Rio de Janeiro$$vItalian Space Agency,Località Terlecchia snc,75100 Matera,Italy
002875594 700__ $$aSchilling, Manuel$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Satellitengeodäsie und Inertialsensorik,Callinstr. 30b,30167 Hannover,Germany
002875594 700__ $$aSchkolnik, Vladimir$$uHumboldt U., Berlin$$vInstitut für Physik,Humboldt-Universität zu Berlin,Newtonstraße 15,Berlin 12489, Germany
002875594 700__ $$aSchleich, Wolfgang$$uUlm U.$$uTexas A-M$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany$$vInstitute for Quantum Science and Engineering (IQSE),and Texas A&M AgriLife Research and Hagler Institute for Advanced Study,Texas A&M University,College Station,TX 77843-4242,USA
002875594 700__ $$aSchlippert, Dennis$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aSchneider, Ulrich$$uCambridge U.$$vCavendish Laboratory,University of Cambridge,J. J. Thomson Avenue,Cambridge CB3 0HE,UK
002875594 700__ $$aSchreck, Florian$$uAmsterdam U.$$vVan der Waals-Zeeman Institute,Institute of Physics,University of Amsterdam,Science Park 904,1098XH Amsterdam,The Netherlands
002875594 700__ $$aSchubert, Christian$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Satellitengeodäsie und Inertialsensorik,Callinstr. 30b,30167 Hannover,Germany
002875594 700__ $$aSchwersenz, Nico$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Quantentechnologien,Wilhelm-Runge-Straße 10,89081 Ulm,Germany
002875594 700__ $$aSemakin, Aleksei$$uTurku U.$$vWihuri Physical Laboratory,Department of Physics and Astronomy,University of Turku,20014 Turku,Finland
002875594 700__ $$aSergijenko, Olga$$uAGH-UST, Cracow$$vMain Astronomical Observatory of the National Academy of Sciences of Ukraine,Zabolotnoho str.,27,03143,Kyiv,Ukraine; AGH University of Science and Technology,Aleja Mickiewicza,30,30-059,Krakow,Poland
002875594 700__ $$aShao, Lijing$$uPeking U., Beijing, KIAA$$vKavli Institute for Astronomy and Astrophysics,Peking University,Beijing 100871,China
002875594 700__ $$aShipsey, Ian$$uOxford U.$$vUniversity of Oxford,South Parks Road,Oxford OX1 3PU,UK
002875594 700__ $$aSingh, Rajeev$$uStony Brook U.$$vCenter for Nuclear Theory,Department of Physics and Astronomy,Stony Brook University,Stony Brook,New York,11794-3800,USA
002875594 700__ $$aSmerzi, Augusto$$uFlorence U., LENS$$vQSTAR,INO-CNR and LENS,Largo Enrico Fermi 2,50125 Firenze,Italy
002875594 700__ $$aSopuerta, Carlos F.$$uICE, Bellaterra$$uCSIC, Catalunya$$uBarcelona, IEEC$$vInstitut de Ciències de l'Espai (ICE,CSIC),Campus UAB,Carrer de Can Magrans s/n,08193 Cerdanyola del Vallès,Spain; Institut d'Estudis Espacials de Catalunya (IEEC),Edifici Nexus,Carrer del Gran Capità 2-4,despatx 201,08034 Barcelona,Spain
002875594 700__ $$aSpallicci, Alessandro D.A.M.$$uLPC2E, Orleans$$vUniversité d'Orléans,Laboratoire de Physique et Chimie de l'Environnement et de l'Espace,3A Avenue de la Recherche Scientifique,45071 Orléans,France
002875594 700__ $$aStefanescu, Petruta$$uBucharest, Inst. Space Science$$vInstitute of Space Science,409 Atomistilor Street,Bucharest,Magurele,Ilfov,077125,Romania
002875594 700__ $$aStergioulas, Nikolaos$$uAristotle U., Thessaloniki$$vDepartment of Physics,Aristotle University of Thessaloniki,54124 Thessaloniki,Greece
002875594 700__ $$aStröhle, Jannik$$uUlm U.$$vInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST),Universität Ulm,Albert-Einstein-Allee 11,89081 Ulm,Germany
002875594 700__ $$aStruckmann, Christian$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aTentindo, Silvia$$uFlorida State U.$$vHigh Energy Physics Group,Department of Physics,Florida State University,513 Keen Building,Tallahassee,FL 32306,USA
002875594 700__ $$aThrossell, Henry$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aTino, Guglielmo M.$$uINFN, Florence$$uFlorence U.$$vDepartment of Physics and Astronomy,University of Firenze,50019 Sesto Fiorentino,Italy
002875594 700__ $$aTinsley, Jonathan N.$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aMircea, Ovidiu Tintareanu$$uBucharest, Inst. Space Science$$vInstitute of Space Science,409 Atomistilor Street,Bucharest,Magurele,Ilfov,077125,Romania
002875594 700__ $$aTkalčec, Kimberly$$uCambridge U.$$vCavendish Laboratory,University of Cambridge,J. J. Thomson Avenue,Cambridge CB3 0HE,UK
002875594 700__ $$aTolley, Andrew.J.$$uImperial Coll., London$$vPhysics Department,Imperial College,Prince Consort Road,London,SW7 2AZ,UK
002875594 700__ $$aTornatore, Vincenza$$uINFN, Milan$$vPolitecnico di Milano,DICA,Geodetic and Geomatics,Milano,Italy
002875594 700__ $$aTorres-Orjuela, Alejandro$$uZhongshan U., Zhuhai$$vTianQin Center for Gravitational Physics,Sun Yat-Sen University (Zhuhai Campus),Zhuhai,Guangdong,China
002875594 700__ $$aTreutlein, Philipp$$uBasel U.$$vDepartment of Physics,University of Basel,Klingelbergstrasse 82,4056 Basel,Switzerland
002875594 700__ $$aTrombettoni, Andrea$$uSISSA, Trieste$$vDepartment of Physics,University of Trieste,Strada Costiera 11,34151 Trieste,Italy
002875594 700__ $$aTsai, Yu-Dai$$uUC, Irvine$$vUniversity of California,Irvine,CA 92617,USA
002875594 700__ $$aUfrecht, Christian$$uFraunhofer Inst., Erlangen$$vSelf-Learning Systems Group,Fraunhofer IIS,Nuremberg,Bavaria,Germany
002875594 700__ $$aUlmer, Stefan$$uHeinrich Heine U., Dusseldorf$$vInstitute for Experimental Physics,Heinrich Heine University,Düsseldorf,Universitätsstrasse 1,40225 Düsseldorf,Germany
002875594 700__ $$aValuch, Daniel$$uBratislava, Slovak Tech. U.$$vFaculty of Electrical Engineering and Information Technology,Slovak University of Technology in Bratislava,Bratislava,Slovakia
002875594 700__ $$aVaskonen, Ville$$uINFN, Padua$$uUnlisted, EE$$vINFN Sezione di Padova,Via F. Marzolo 8,I-35131 Padova,Italy$$vKeemilise ja Bioloogilise Füüsika Instituut,Rävala pst. 10,10143 Tallinn,Estonia$$vDipartimento di Fisica e Astronomia,Università degli Studi di Padova,Via Marzolo 8,35131 Padova,Italy
002875594 700__ $$aVazquez-Aceves, Veronica$$uPeking U., Beijing, KIAA$$vKavli Institute for Astronomy and Astrophysics,Peking University,100871 Beijing,China
002875594 700__ $$aVitanov, Nikolay V.$$uSofiya U.$$vDepartment of Physics,Sofia University,5 James Bourchier blvd.,Sofia 1164,Bulgaria
002875594 700__ $$aVogt, Christian$$uBremen U., ZARM$$vBIAS,Institute of Applied Beam Technology,Klagenfurther Str.,28359 Bremen,Germany
002875594 700__ $$avon Klitzing, Wolf$$uCrete U.$$uIESL, Heraklion$$vFoundation for Research and Technology (FORTH),Institute of Electronic Structure and Lasers (IESL),Heraklion,Crete,Greece
002875594 700__ $$aVukics, András$$uWigner RCP, Budapest$$vHUN-REN Wigner Research Centre for Physics H-1525 Budapest,P.O. Box 49.,Hungary
002875594 700__ $$aWalser, Reinhold$$uDarmstadt, Tech. U.$$vTechnische Universität Darmstadt,Fachbereich Physik,Institut für Angewandte Physik,Schlossgartenstr. 7,D-64289 Darmstadt,Germany
002875594 700__ $$aWang, Jin$$uWuhan, MRAMP$$uCAS, APM, Wuhan$$vState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China
002875594 700__ $$aWarburton, Niels$$uHamilton Math. Inst., Dublin$$vSchool of Mathematics and Statistics,University College Dublin,Belfield,Dublin 4,Ireland,D04 V1W8
002875594 700__ $$aWebber-Date, Alexander$$uLiverpool U.$$vDepartment of Physics,University of Liverpool,Merseyside,L69 7ZE,UK
002875594 700__ $$aWenzlawski, André$$uMainz U., Inst. Phys.$$vJohannes Gutenberg University,Staudingerweg 7,55128 Mainz,Germany
002875594 700__ $$aWerner, Michael$$uLeibniz U., Hannover$$vLeibniz Universität Hannover,Welfengarten 1,30167 Hannover,Germany
002875594 700__ $$aWilliams, Jason$$uCaltech, JPL$$vJet Propulsion Laboratory,California Institute of Technology,Pasadena,California 91109,USA
002875594 700__ $$aWindpassinger, Patrick$$uMainz U., Inst. Phys.$$vJohannes Gutenberg University,Staudingerweg 7,55128 Mainz,Germany
002875594 700__ $$aWindapssinger, Patrcik
002875594 700__ $$aWolf, Peter$$uSYRTE, Paris$$vSYRTE,Observatoire de Paris,Université PSL,CNRS,Sorbonne Université,LNE,61 avenue de l’Observatoire 75014 Paris,France
002875594 700__ $$aWoerner, Lisa$$uDLR, Neustrelitz$$vDeutsches Zentrum für Luft- und Raumfahrt (DLR),Institut für Satellitengeodäsie und Inertialsensorik,Callinstr. 30b,30167 Hannover,Germany
002875594 700__ $$aXuereb, André$$uMalta U.$$vDepartment of Physics,University of Malta,Msida,Malta
002875594 700__ $$aYahia, Mohamed$$uNew York U., Abu Dhabi$$vAbu Dhabi Polytechnic,Institute of Applied Technology,Abu Dhabi,UAE
002875594 700__ $$aCruzeiro, Emmanuel Zambrini$$uTaguspark, IST$$vInstituto de Telecomunicações,Instituto Superior Técnico,Av. Rovisco Pais,Torre Norte,Lisboa,1049-001,Portugal
002875594 700__ $$aZarei, Moslem$$uIsfahan Tech. U.$$vDepartment of Physics,Isfahan University of Technology,Isfahan 84156-83111,Iran
002875594 700__ $$aZhan, Mingsheng$$uWuhan, MRAMP$$uCAS, APM, Wuhan$$vState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China
002875594 700__ $$aZhou, Lin$$uWuhan, MRAMP$$uCAS, APM, Wuhan$$vState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China
002875594 700__ $$aZupan, Jure$$uCincinnati U.$$vDepartment of Physics,University of Cincinnati,Cincinnati,Ohio 45221,USA
002875594 700__ $$aZupanič, Erik$$uStefan Inst., Ljubljana$$vJožef Stefan Institute,Jamova 39,SI-1000 Ljubljana,Slovenia
002875594 773__ $$n2$$pAVS Quantum Sci.$$v6$$wC23-03-13.4$$y2024
002875594 8564_ $$uhttps://lss.fnal.gov/archive/2023/conf/fermilab-conf-23-430-etd.pdf$$yFermilab Library Server
002875594 8564_ $$82484610$$s4963$$uhttp://cds.cern.ch/record/2875594/files/TVLBAI_configuration_vertical.png$$y00015 GGN mitigation using a multigradiometer configuration. \textit{Left panel}: projected 95\%~CL exclusion sensitivities for an atom multigradiometer with the experimental parameters listed in Table~\ref{table:ExperimentalParameters} and $\mathcal{N}=5$ interferometers, assuming that GGN is modelled by the NHNM. The red dot-dashed, purple dotted and green solid lines show the atom multigradiometer exclusion curves for equally-spaced, unequally-spaced (ends) and unequally-spaced (centre) configurations. The orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}. For comparison, the grey and orange lines show the exclusion sensitivities for a single atom gradiometer ($\mathcal{N}=2$) with ASN-only and ASN-and-GGN backgrounds, respectively. \textit{Right panel}: schematic representations of the three interferometer configurations with $\mathcal{N}=5$. The purple dots show the positions of the interferometers in the `unequal spacing (ends)' configuration, the red dots show their positions in the `equal spacing' configurations, and the green dots show the `unequal spacing (centre)' configuration.
002875594 8564_ $$82484611$$s429323$$uhttp://cds.cern.ch/record/2875594/files/lsc.png$$y00039 A diagram of the LSC at Canfranc, showing the horizontal gallery and the vertical shaft used for ventilation~\cite{PerezPerez2022}.
002875594 8564_ $$82484612$$s15666$$uhttp://cds.cern.ch/record/2875594/files/MZAtoms.png$$y00001 \it Left: Outline of the principle of a Mach-Zehnder laser interferometer~\cite{Zehnder1891,Mach1892}. Right: Outline of an analogous atom interferometer. Atoms in the ground state, $\ket{g}$, are represented by solid blue lines, the dashed red lines represent atoms in the excited state, $\ket{e}$, and laser pulses are represented by wavy lines.
002875594 8564_ $$82484613$$s26198925$$uhttp://cds.cern.ch/record/2875594/files/FERMILAB-CONF-23-430-ETD.pdf$$yFulltext
002875594 8564_ $$82484614$$s1320560$$uhttp://cds.cern.ch/record/2875594/files/boulby_fig.png$$y00036 The Boulby underground laboratory, the UK's deep underground science facility operating in a working mine in the North-East of England.
002875594 8564_ $$82484615$$s8150$$uhttp://cds.cern.ch/record/2875594/files/vectorULDM.png$$y00010 \it Left panel: Shot noise limited projection, adapted from ref.~\cite{Abe2021}, to $B-L$ coupled vector ULDM for a dual-species interferometer (\,$^{87}\mathrm{Sr}$ and $^{88}\mathrm{Sr}$). The projections are given in terms of the acceleration sensitivities achievable with VLBAI (see text). The shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022}. Right panel: Shot noise limited projection, adapted from ref.~\cite{Graham2018}, to the spin coupling of pseudoscalar ULDM to atoms. The projections are given in terms of the interrogation time. The shaded yellow region shows bounds from supernova cooling.
002875594 8564_ $$82484616$$s320202$$uhttp://cds.cern.ch/record/2875594/files/BirminghamFringes.png$$y00028 {\it Upper panels:} Photographs of the five AION sidearm systems, installed at their corresponding institutions~\cite{AION:2023fpx}. {\it Bottom panel:} Measurements at the University of Birmingham of the occupation levels of an excited strontium state following atom interferometry sequences in which the phase of the final laser pulse is varied, demonstrating interference fringes analogous to those in an optical Mach-Zehnder interferometer.
002875594 8564_ $$82484617$$s815104$$uhttp://cds.cern.ch/record/2875594/files/migastatus.png$$y00030 (a) Fibre laser system developed by the Muquans company~\cite{Sabulsky2020}, (b) cold $^{87}$Rb atom source~\cite{Beaufils2022}, (c) standard 6 m long section under vacuum test, (d) vacuum tower in production at SAES Parma (Italy), (e) MIGA gallery within the Laboratoire Souterrain {\`a} Bas Bruit (LSBB) and installation of the first sections of the vacuum vessel~\cite{Canuel2022}.
002875594 8564_ $$82484618$$s4403338$$uhttp://cds.cern.ch/record/2875594/files/ELGAR.png$$y00031 Geometry of ELGAR, based on a distributed 2D array of gradiometers with baseline $L= 16.3$~km with a total baseline $L_T=$ 32.1~km. Taken from~\cite{Canuel2020}.
002875594 8564_ $$82484619$$s8031$$uhttp://cds.cern.ch/record/2875594/files/reconstruct.png$$y00009 \it Left panel: Projections for sensitivities to scalar ULDM linearly coupled to electrons (shot noise limited and assuming $\mathrm{SNR}=1$). The lighter-blue 100\,m baseline curve shows the oscillatory nature of the sensitivity projections, while the darker-blue and green curves show the envelope of the oscillations. Right panel: Parameter reconstruction, adapted from ref.~\cite{Badurina2023}, of an injected signal with $f_{\phi}=9.1\,\mathrm{Hz}$ and $d_{m_e}=3.7\times 10^{-5}$ (green cross) for a 1\,km baseline assuming a constant sampling frequency of $0.3$\,Hz. The purple contours show the islands of parameter space compatible with the signal at 95.4\% CL. In both panels, the shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022,Hees2018}.
002875594 8564_ $$82484620$$s20853$$uhttp://cds.cern.ch/record/2875594/files/SNRs1000.png$$y00005 \it Sensitivities in the $(T_*, \alpha)$ plane of AION-100 and -km, as well as other planned experiments, to the SGWB spectrum from sound waves in the plasma that could be formed in the aftermath of bubble collisions. Dashed lines show $SNR=1$ while solid lines $SNR=10$ except for AION-km GGN for which $SNR=10$ is depicted by a thick dashed line while the dotted line corresponds to $SNR=1$. Figure taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82484621$$s41959$$uhttp://cds.cern.ch/record/2875594/files/CoriolisTrajectoryDeflections.png$$y00024 Transverse deflections of atomic trajectories due to Coriolis forces. (a) and (b) show trajectories in the vertical dimension for 10\;m and 80\;m launch heights, respectively. (c) Transverse trajectory deflections for a 10\;m launch height. Dashed red curve: Purely vertical launch. Solid black curve: Launch angle adjusted by $5 \times 10^{-5}$\;rad to minimize transverse deflections. (d) Transverse trajectory deflections for a 80\;m launch height. Dashed red curve: Purely vertical launch. Solid black curve: Launch angle adjusted by $1.4 \times 10^{-4}$\;rad to minimize transverse deflections.
002875594 8564_ $$82484622$$s53410$$uhttp://cds.cern.ch/record/2875594/files/SuperModExamplePlot.png$$y00006 \it Left panel: Cosmic super string spectrum with $G\mu=10^{-11.75}$ and intercommutation probability $p=10^{-2.25}$ in standard cosmology together with its possible modifications by a period of kination or matter domination (MD) ending at temperatures $T > 5$~MeV and $5$~GeV. The grey violins indicate the spectra capable of explaining the NANOGrav 15yr data. Right panel: Sensitivity of various experiments to a modification of the expansion rate at a temperature $T_\Delta$ for a given value of the string tension $G\mu$ with $p=1$. The gray bands indicate values favoured by the NANOGrav 12.5yr data~\cite{Arzoumanian2020,Ellis2021}. The right panel was taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82484623$$s29950$$uhttp://cds.cern.ch/record/2875594/files/DeltaDetectionPlot.png$$y00007 \it Left panel: Cosmic super string spectrum with $G\mu=10^{-11.75}$ and intercommutation probability $p=10^{-2.25}$ in standard cosmology together with its possible modifications by a period of kination or matter domination (MD) ending at temperatures $T > 5$~MeV and $5$~GeV. The grey violins indicate the spectra capable of explaining the NANOGrav 15yr data. Right panel: Sensitivity of various experiments to a modification of the expansion rate at a temperature $T_\Delta$ for a given value of the string tension $G\mu$ with $p=1$. The gray bands indicate values favoured by the NANOGrav 12.5yr data~\cite{Arzoumanian2020,Ellis2021}. The right panel was taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82484624$$s30003$$uhttp://cds.cern.ch/record/2875594/files/TVLBAI_Sensitivity_GGN_both_AION1km_opt_N2_cH.png$$y00012 Impact of GGN on the projected 95\% CL exclusion sensitivity to the ULDM-electron coupling of a single atom gradiometer with the design parameters defined in Table~\ref{table:ExperimentalParameters}. \textit{Left panel}: comparison between the atom shot noise (ASN) (grey) and ASN-plus-GGN-limited sensitivities assuming that the GGN background is described by the Peterson NHNM (orange) or NLNM (blue). The solid and dotted lines are for Rayleigh wave velocities $c_H = 205\,\mathrm{m\,s}^{-1}$ and $c_H = 3232\,\mathrm{m\,s}^{-1}$, respectively. \textit{Right panel}: projected 95\% CL exclusion sensitivities for different values of $\Delta z$ and different atom interferometer positions, where we assume the NHNM and $c_H = 205\,\mathrm{m\,s}^{-1}$. We show exclusion curves for interferometers located towards the Earth's surface (green) and towards the bottom of the shaft (purple), assuming $\Delta z = 100$\,m but keeping all other experimental parameters unchanged. In both panels, the orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}.
002875594 8564_ $$82484625$$s8745$$uhttp://cds.cern.ch/record/2875594/files/beyondGR.png$$y00017 Prospective sensitivities to modified GW dispersion relations of AION 1\,km and AEDGE, compared with the constraints from LVK and gravitational Cherenkov radiation. Figure from~\cite{Ellis2020}.
002875594 8564_ $$82484626$$s258461$$uhttp://cds.cern.ch/record/2875594/files/Gotthard.png$$y00040 A diagram of the Gotthard Base Tunnel running from North to South under the Swiss Alps, showing the horizontal gallery and the pair of 800-m vertical shafts that provide access from Sedrun to the site of the envisioned ``Porta Alpina'' underground railway station.
002875594 8564_ $$82484627$$s7970$$uhttp://cds.cern.ch/record/2875594/files/pseudoULDM.png$$y00011 \it Left panel: Shot noise limited projection, adapted from ref.~\cite{Abe2021}, to $B-L$ coupled vector ULDM for a dual-species interferometer (\,$^{87}\mathrm{Sr}$ and $^{88}\mathrm{Sr}$). The projections are given in terms of the acceleration sensitivities achievable with VLBAI (see text). The shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022}. Right panel: Shot noise limited projection, adapted from ref.~\cite{Graham2018}, to the spin coupling of pseudoscalar ULDM to atoms. The projections are given in terms of the interrogation time. The shaded yellow region shows bounds from supernova cooling.
002875594 8564_ $$82484628$$s19929919$$uhttp://cds.cern.ch/record/2875594/files/fig01_Wuhan10m.png$$y00025 The Wuhan 10 m Atom Interferometer~\cite{Zhou2011}.
002875594 8564_ $$82484629$$s37353$$uhttp://cds.cern.ch/record/2875594/files/clockgradiometer.png$$y00023 Space-time diagram of the interferometer trajectories based on single-photon transitions between ground (blue) and excited (red) states driven by laser pulses from both directions (dark and light gray). The pulse sequence shown here features an additional series of pulses (light gray) traveling in the opposite direction to illustrate the implementation of LMT atom optics (here $n=2$).
002875594 8564_ $$82484630$$s743201$$uhttp://cds.cern.ch/record/2875594/files/CallioLab_labs.png$$y00038 3D model of the Callio Lab tunnel network with insets of the various deep underground labs at the mining site.
002875594 8564_ $$82484631$$s599532$$uhttp://cds.cern.ch/record/2875594/files/Oxford.png$$y00026 \it Layout of the AION-10 atom interferometer in the basement of the Oxford Physics Department.
002875594 8564_ $$82484632$$s16141$$uhttp://cds.cern.ch/record/2875594/files/dmelimits.png$$y00008 \it Left panel: Projections for sensitivities to scalar ULDM linearly coupled to electrons (shot noise limited and assuming $\mathrm{SNR}=1$). The lighter-blue 100\,m baseline curve shows the oscillatory nature of the sensitivity projections, while the darker-blue and green curves show the envelope of the oscillations. Right panel: Parameter reconstruction, adapted from ref.~\cite{Badurina2023}, of an injected signal with $f_{\phi}=9.1\,\mathrm{Hz}$ and $d_{m_e}=3.7\times 10^{-5}$ (green cross) for a 1\,km baseline assuming a constant sampling frequency of $0.3$\,Hz. The purple contours show the islands of parameter space compatible with the signal at 95.4\% CL. In both panels, the shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022,Hees2018}.
002875594 8564_ $$82484633$$s1832136$$uhttp://cds.cern.ch/record/2875594/files/Photos_all_chambers.png$$y00027 {\it Upper panels:} Photographs of the five AION sidearm systems, installed at their corresponding institutions~\cite{AION:2023fpx}. {\it Bottom panel:} Measurements at the University of Birmingham of the occupation levels of an excited strontium state following atom interferometry sequences in which the phase of the final laser pulse is varied, demonstrating interference fringes analogous to those in an optical Mach-Zehnder interferometer.
002875594 8564_ $$82484634$$s15937$$uhttp://cds.cern.ch/record/2875594/files/t3-geometry.png$$y00042 Quantum-clock scheme for LPI tests based on internal-state transitions. After the atom entered in the ground state $\ket{g}$, a $\pi/2$ pulse (red) brings it into a superposition of ground (blue solid line) and excited state $\ket{e}$ (green dashed line), where the finite speed $c$ of the laser light is depicted by an inclined line. The pulse also transfers a momentum $\hbar k$ to the excited state, e.g. induced by single-photon transitions, leading to a spatial superposition of the atom. After redirection via two internal-state changing $\pi$ pulses (purple) in time intervals $T/4$ and $3T/4$, the branches are brought to interference by the final $\pi/2$ pulse at interrogation time $T$, and the population in the excited state is detected. The experiment is performed in a linear gravitational field with mean acceleration $\textbf{g}$. To include possible LPI violations, the acceleration is augmented by the factor $1\pm\alpha\hbar\Omega/(2m c^2)$, including violation parameter $\alpha$, atomic transition frequency $\Omega$, and atomic mass $m$. This Figure was taken from~\cite{DiPumpo2023}.
002875594 8564_ $$82484635$$s4040090$$uhttp://cds.cern.ch/record/2875594/files/ZAIGA.png$$y00032 \it Layout of the ZAIGA laboratory near Wuhan, China for a range of experiments using atom interferometry~\cite{Zhan2019}.
002875594 8564_ $$82484636$$s24920$$uhttp://cds.cern.ch/record/2875594/files/SNRs100.png$$y00004 \it Sensitivities in the $(T_*, \alpha)$ plane of AION-100 and -km, as well as other planned experiments, to the SGWB spectrum from sound waves in the plasma that could be formed in the aftermath of bubble collisions. Dashed lines show $SNR=1$ while solid lines $SNR=10$ except for AION-km GGN for which $SNR=10$ is depicted by a thick dashed line while the dotted line corresponds to $SNR=1$. Figure taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82484637$$s47496$$uhttp://cds.cern.ch/record/2875594/files/meanOmegaGW.png$$y00019 Left panel: The sensitivities of AION 1\,km to GWs from equal mass BH binaries of total mass $M$ at redshift $z$, calculated assuming a level of GGN close to the NHNM and assuming that Rayleigh waves propagate with a speed of $205$~m/s. The contours compare estimates made assuming either no mitigation of GGN, or the level of suppression discussed in the previous Subsection, or complete suppression/mitigation of GGN. Right panel: The mean GW energy density spectrum from massive BH mergers compared with the sensitivities of the indicated experiments. The coloured bands correspond to different BH mass bands and are obtained assuming a constant merger efficiency factor $0.3 < p_{\rm BH} < 1$, following~\cite{Ellis2023}: plot adapted from~\cite{Ellis2023a}.
002875594 8564_ $$82484638$$s1724333$$uhttp://cds.cern.ch/record/2875594/files/CERN_PX46.png$$y00035 3D model of the underground civil infrastructure at Point 4 of the LHC. The vertical atom interferometer is in the PX46 shaft. There is concrete shielding in the gallery connecting to the main cavern. A fast and safety-proof elevator platform surrounds the experiment and is used for assembly, operation and escape in case of hazards~\cite{Arduini2023}.
002875594 8564_ $$82484639$$s35132$$uhttp://cds.cern.ch/record/2875594/files/TVLBAI_Sensitivity_GGN_HNM_AION1km_opt_N5.png$$y00014 GGN mitigation using a multigradiometer configuration. \textit{Left panel}: projected 95\%~CL exclusion sensitivities for an atom multigradiometer with the experimental parameters listed in Table~\ref{table:ExperimentalParameters} and $\mathcal{N}=5$ interferometers, assuming that GGN is modelled by the NHNM. The red dot-dashed, purple dotted and green solid lines show the atom multigradiometer exclusion curves for equally-spaced, unequally-spaced (ends) and unequally-spaced (centre) configurations. The orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}. For comparison, the grey and orange lines show the exclusion sensitivities for a single atom gradiometer ($\mathcal{N}=2$) with ASN-only and ASN-and-GGN backgrounds, respectively. \textit{Right panel}: schematic representations of the three interferometer configurations with $\mathcal{N}=5$. The purple dots show the positions of the interferometers in the `unequal spacing (ends)' configuration, the red dots show their positions in the `equal spacing' configurations, and the green dots show the `unequal spacing (centre)' configuration.
002875594 8564_ $$82484640$$s27757$$uhttp://cds.cern.ch/record/2875594/files/Cavity_AI.png$$y00041 Sketch of the deployment of a cavity for atom interferometry. Between the mirrors M1 and M2, a standing light wave is created that manipulates the atom cloud. In the sketch a scheme for two interferometers A1 and A2 separated by length L is depicted. This is a configuration that could be deployed in MIGA or ELGAR: see Sections~\ref{sec:MIGA} and \ref{sec:ELGAR}.
002875594 8564_ $$82484641$$s82427$$uhttp://cds.cern.ch/record/2875594/files/4850expansionplanmap.png$$y00037 Current and proposed underground laboratory space at SURF, including up to two new caverns on the 4850-foot level (\SI{100}{m} L $\times$ \SI{20}{m} W $\times$ \SI{24}{m} H). There are more than \SI{15}{km} of accessible areas across seven main elevations as well as vertical options.
002875594 8564_ $$82484642$$s27966$$uhttp://cds.cern.ch/record/2875594/files/TVLBAI_Sensitivity_GGN_diff_AION1km_opt_N2_short.png$$y00013 Impact of GGN on the projected 95\% CL exclusion sensitivity to the ULDM-electron coupling of a single atom gradiometer with the design parameters defined in Table~\ref{table:ExperimentalParameters}. \textit{Left panel}: comparison between the atom shot noise (ASN) (grey) and ASN-plus-GGN-limited sensitivities assuming that the GGN background is described by the Peterson NHNM (orange) or NLNM (blue). The solid and dotted lines are for Rayleigh wave velocities $c_H = 205\,\mathrm{m\,s}^{-1}$ and $c_H = 3232\,\mathrm{m\,s}^{-1}$, respectively. \textit{Right panel}: projected 95\% CL exclusion sensitivities for different values of $\Delta z$ and different atom interferometer positions, where we assume the NHNM and $c_H = 205\,\mathrm{m\,s}^{-1}$. We show exclusion curves for interferometers located towards the Earth's surface (green) and towards the bottom of the shaft (purple), assuming $\Delta z = 100$\,m but keeping all other experimental parameters unchanged. In both panels, the orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}.
002875594 8564_ $$82484643$$s37247$$uhttp://cds.cern.ch/record/2875594/files/IMBHDM.png$$y00020 Exclusions of weakly-interacting ultra-light bosonic fields from the measured spins of SMBHs and LIGO/Virgo/KAGRA BHs compared with the prospective sensitivity of a large atom interferometer, which could also exclude the intermediate mass range by measuring spins of IMBHs. These constraints assume negligible bosonic self-interactions.
002875594 8564_ $$82484644$$s26754656$$uhttp://cds.cern.ch/record/2875594/files/2310.08183.pdf$$yFulltext
002875594 8564_ $$82484645$$s46904$$uhttp://cds.cern.ch/record/2875594/files/BHstrains.png$$y00016 The GW strain sensitivities and benchmark signals from BH binaries of different masses at different redshifts. The coloured dots indicate the times before mergers at which inspirals could be measured.
002875594 8564_ $$82484646$$s84505$$uhttp://cds.cern.ch/record/2875594/files/clockai.png$$y00022 (a) Comparison of the laser frequencies involved in conventional and clock atom optics as well as the leading order phase response of the associated interferometer. (b) Space-time diagram of a relativistic Mach-Zehnder interferometer using clock atom optics (dark lines) and conventional two-photon atom optics (dark and light lines). In a clock atom interferometer, the same laser pulse addresses the entire atomic superposition, imprinting the same laser phase and allowing for common-mode noise suppression.
002875594 8564_ $$82484647$$s9886$$uhttp://cds.cern.ch/record/2875594/files/MZOptics.png$$y00000 \it Left: Outline of the principle of a Mach-Zehnder laser interferometer~\cite{Zehnder1891,Mach1892}. Right: Outline of an analogous atom interferometer. Atoms in the ground state, $\ket{g}$, are represented by solid blue lines, the dashed red lines represent atoms in the excited state, $\ket{e}$, and laser pulses are represented by wavy lines.
002875594 8564_ $$82484648$$s38226$$uhttp://cds.cern.ch/record/2875594/files/IMBHMergersMitigatedGGN.png$$y00018 Left panel: The sensitivities of AION 1\,km to GWs from equal mass BH binaries of total mass $M$ at redshift $z$, calculated assuming a level of GGN close to the NHNM and assuming that Rayleigh waves propagate with a speed of $205$~m/s. The contours compare estimates made assuming either no mitigation of GGN, or the level of suppression discussed in the previous Subsection, or complete suppression/mitigation of GGN. Right panel: The mean GW energy density spectrum from massive BH mergers compared with the sensitivities of the indicated experiments. The coloured bands correspond to different BH mass bands and are obtained assuming a constant merger efficiency factor $0.3 < p_{\rm BH} < 1$, following~\cite{Ellis2023}: plot adapted from~\cite{Ellis2023a}.
002875594 8564_ $$82484649$$s112770$$uhttp://cds.cern.ch/record/2875594/files/HannahFigure.png$$y00021 Sensitivities of LVK, LISA and large atom interferometers to GWs from mergers of ECOs weighing between 20 and 200 solar masses, compared with the backgrounds from BH-BH and BH-neutron star binaries~\cite{Banks2023}.
002875594 8564_ $$82484650$$s28269$$uhttp://cds.cern.ch/record/2875594/files/SNRs10.png$$y00003 \it Sensitivities in the $(T_*, \alpha)$ plane of AION-100 and -km, as well as other planned experiments, to the SGWB spectrum from sound waves in the plasma that could be formed in the aftermath of bubble collisions. Dashed lines show $SNR=1$ while solid lines $SNR=10$ except for AION-km GGN for which $SNR=10$ is depicted by a thick dashed line while the dotted line corresponds to $SNR=1$. Figure taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82484651$$s41148$$uhttp://cds.cern.ch/record/2875594/files/twinlattice_scheme.png$$y00034 The twin lattice is formed by retroreflecting light at two frequencies with linear orthogonal polarization. A quarter-wave plate in front of the retroreflector alters the polarization to generate two counterpropagating lattices (indicated in red and blue). After release from the atom chip and state preparation, the BEC is symmetrically split and recombined by the lattices, driving double Bragg diffraction (DBD) and Bloch oscillations (BOs). In this way, the interferometer arms form a Sagnac loop enclosing an area $A$ (shaded in gray) for detecting rotations $\Omega$. The interferometer output ports are detected on a CCD chip by absorption imaging. Figure from \cite{Gebbe2021}.
002875594 8564_ $$82484652$$s606948$$uhttp://cds.cern.ch/record/2875594/files/Fig1RP.png$$y00029 Basic layout of the MAGIS experiment.
002875594 8564_ $$82484653$$s38168$$uhttp://cds.cern.ch/record/2875594/files/GWexpplotbigViolins.png$$y00002 \it Sensitivities to the energy density of GWs, $\Omega_{\rm GW} h^2$, using power-law integration of the proposed terrestrial atom interferometers AION-100, AION-km, as well as the space-borne incarnations of the technology AEDGE and AEDGE+, together with other existing and planned experiments LIGO/Virgo/KAGRA (LVK), ET, PTAs and SKA. Also shown in gray are likelihood distributions in each frequency bin for the GW signal reported by the NANOGrav Collaboration in their 15-year data~\cite{Agazie2023}.
002875594 8564_ $$82484654$$s104962$$uhttp://cds.cern.ch/record/2875594/files/twinlattice_setup.png$$y00033 The twin lattice is formed by retroreflecting light at two frequencies with linear orthogonal polarization. A quarter-wave plate in front of the retroreflector alters the polarization to generate two counterpropagating lattices (indicated in red and blue). After release from the atom chip and state preparation, the BEC is symmetrically split and recombined by the lattices, driving double Bragg diffraction (DBD) and Bloch oscillations (BOs). In this way, the interferometer arms form a Sagnac loop enclosing an area $A$ (shaded in gray) for detecting rotations $\Omega$. The interferometer output ports are detected on a CCD chip by absorption imaging. Figure from \cite{Gebbe2021}.
002875594 8564_ $$82490130$$s38168$$uhttp://cds.cern.ch/record/2875594/files/w2_GWexpplotbigViolins.png$$y00002 \it Sensitivities to the energy density of GWs, $\Omega_{\rm GW} h^2$, using power-law integration of the proposed terrestrial atom interferometers AION-100, AION-km, as well as the space-borne incarnations of the technology AEDGE and AEDGE+, together with other existing and planned experiments LIGO/Virgo/KAGRA (LVK), ET, PTAs and SKA. Also shown in gray are likelihood distributions in each frequency bin for the GW signal reported by the NANOGrav Collaboration in their 15-year data~\cite{Agazie2023}.
002875594 8564_ $$82490131$$s743201$$uhttp://cds.cern.ch/record/2875594/files/w38_CallioLab_labs.png$$y00038 3D model of the Callio Lab tunnel network with insets of the various deep underground labs at the mining site.
002875594 8564_ $$82490132$$s41959$$uhttp://cds.cern.ch/record/2875594/files/w24_CoriolisTrajectoryDeflections.png$$y00024 Transverse deflections of atomic trajectories due to Coriolis forces. (a) and (b) show trajectories in the vertical dimension for 10\;m and 80\;m launch heights, respectively. (c) Transverse trajectory deflections for a 10\;m launch height. Dashed red curve: Purely vertical launch. Solid black curve: Launch angle adjusted by $5 \times 10^{-5}$\;rad to minimize transverse deflections. (d) Transverse trajectory deflections for a 80\;m launch height. Dashed red curve: Purely vertical launch. Solid black curve: Launch angle adjusted by $1.4 \times 10^{-4}$\;rad to minimize transverse deflections.
002875594 8564_ $$82490133$$s24920$$uhttp://cds.cern.ch/record/2875594/files/w4_SNRs100.png$$y00004 \it Sensitivities in the $(T_*, \alpha)$ plane of AION-100 and -km, as well as other planned experiments, to the SGWB spectrum from sound waves in the plasma that could be formed in the aftermath of bubble collisions. Dashed lines show $SNR=1$ while solid lines $SNR=10$ except for AION-km GGN for which $SNR=10$ is depicted by a thick dashed line while the dotted line corresponds to $SNR=1$. Figure taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82490134$$s41148$$uhttp://cds.cern.ch/record/2875594/files/w34_twinlattice_scheme.png$$y00034 The twin lattice is formed by retroreflecting light at two frequencies with linear orthogonal polarization. A quarter-wave plate in front of the retroreflector alters the polarization to generate two counterpropagating lattices (indicated in red and blue). After release from the atom chip and state preparation, the BEC is symmetrically split and recombined by the lattices, driving double Bragg diffraction (DBD) and Bloch oscillations (BOs). In this way, the interferometer arms form a Sagnac loop enclosing an area $A$ (shaded in gray) for detecting rotations $\Omega$. The interferometer output ports are detected on a CCD chip by absorption imaging. Figure from \cite{Gebbe2021}.
002875594 8564_ $$82490135$$s4963$$uhttp://cds.cern.ch/record/2875594/files/w15_TVLBAI_configuration_vertical.png$$y00015 GGN mitigation using a multigradiometer configuration. \textit{Left panel}: projected 95\%~CL exclusion sensitivities for an atom multigradiometer with the experimental parameters listed in Table~\ref{table:ExperimentalParameters} and $\mathcal{N}=5$ interferometers, assuming that GGN is modelled by the NHNM. The red dot-dashed, purple dotted and green solid lines show the atom multigradiometer exclusion curves for equally-spaced, unequally-spaced (ends) and unequally-spaced (centre) configurations. The orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}. For comparison, the grey and orange lines show the exclusion sensitivities for a single atom gradiometer ($\mathcal{N}=2$) with ASN-only and ASN-and-GGN backgrounds, respectively. \textit{Right panel}: schematic representations of the three interferometer configurations with $\mathcal{N}=5$. The purple dots show the positions of the interferometers in the `unequal spacing (ends)' configuration, the red dots show their positions in the `equal spacing' configurations, and the green dots show the `unequal spacing (centre)' configuration.
002875594 8564_ $$82490136$$s38226$$uhttp://cds.cern.ch/record/2875594/files/w18_IMBHMergersMitigatedGGN.png$$y00018 Left panel: The sensitivities of AION 1\,km to GWs from equal mass BH binaries of total mass $M$ at redshift $z$, calculated assuming a level of GGN close to the NHNM and assuming that Rayleigh waves propagate with a speed of $205$~m/s. The contours compare estimates made assuming either no mitigation of GGN, or the level of suppression discussed in the previous Subsection, or complete suppression/mitigation of GGN. Right panel: The mean GW energy density spectrum from massive BH mergers compared with the sensitivities of the indicated experiments. The coloured bands correspond to different BH mass bands and are obtained assuming a constant merger efficiency factor $0.3 < p_{\rm BH} < 1$, following~\cite{Ellis2023}: plot adapted from~\cite{Ellis2023a}.
002875594 8564_ $$82490137$$s8745$$uhttp://cds.cern.ch/record/2875594/files/w17_beyondGR.png$$y00017 Prospective sensitivities to modified GW dispersion relations of AION 1\,km and AEDGE, compared with the constraints from LVK and gravitational Cherenkov radiation. Figure from~\cite{Ellis2020}.
002875594 8564_ $$82490138$$s606948$$uhttp://cds.cern.ch/record/2875594/files/w29_Fig1RP.png$$y00029 Basic layout of the MAGIS experiment.
002875594 8564_ $$82490139$$s27966$$uhttp://cds.cern.ch/record/2875594/files/w13_TVLBAI_Sensitivity_GGN_diff_AION1km_opt_N2_short.png$$y00013 Impact of GGN on the projected 95\% CL exclusion sensitivity to the ULDM-electron coupling of a single atom gradiometer with the design parameters defined in Table~\ref{table:ExperimentalParameters}. \textit{Left panel}: comparison between the atom shot noise (ASN) (grey) and ASN-plus-GGN-limited sensitivities assuming that the GGN background is described by the Peterson NHNM (orange) or NLNM (blue). The solid and dotted lines are for Rayleigh wave velocities $c_H = 205\,\mathrm{m\,s}^{-1}$ and $c_H = 3232\,\mathrm{m\,s}^{-1}$, respectively. \textit{Right panel}: projected 95\% CL exclusion sensitivities for different values of $\Delta z$ and different atom interferometer positions, where we assume the NHNM and $c_H = 205\,\mathrm{m\,s}^{-1}$. We show exclusion curves for interferometers located towards the Earth's surface (green) and towards the bottom of the shaft (purple), assuming $\Delta z = 100$\,m but keeping all other experimental parameters unchanged. In both panels, the orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}.
002875594 8564_ $$82490140$$s82427$$uhttp://cds.cern.ch/record/2875594/files/w37_4850expansionplanmap.png$$y00037 Current and proposed underground laboratory space at SURF, including up to two new caverns on the 4850-foot level (\SI{100}{m} L $\times$ \SI{20}{m} W $\times$ \SI{24}{m} H). There are more than \SI{15}{km} of accessible areas across seven main elevations as well as vertical options.
002875594 8564_ $$82490141$$s599532$$uhttp://cds.cern.ch/record/2875594/files/w26_Oxford.png$$y00026 \it Layout of the AION-10 atom interferometer in the basement of the Oxford Physics Department.
002875594 8564_ $$82490142$$s1724333$$uhttp://cds.cern.ch/record/2875594/files/w35_CERN_PX46.png$$y00035 3D model of the underground civil infrastructure at Point 4 of the LHC. The vertical atom interferometer is in the PX46 shaft. There is concrete shielding in the gallery connecting to the main cavern. A fast and safety-proof elevator platform surrounds the experiment and is used for assembly, operation and escape in case of hazards~\cite{Arduini2023}.
002875594 8564_ $$82490143$$s429323$$uhttp://cds.cern.ch/record/2875594/files/w39_lsc.png$$y00039 A diagram of the LSC at Canfranc, showing the horizontal gallery and the vertical shaft used for ventilation~\cite{PerezPerez2022}.
002875594 8564_ $$82490144$$s28269$$uhttp://cds.cern.ch/record/2875594/files/w3_SNRs10.png$$y00003 \it Sensitivities in the $(T_*, \alpha)$ plane of AION-100 and -km, as well as other planned experiments, to the SGWB spectrum from sound waves in the plasma that could be formed in the aftermath of bubble collisions. Dashed lines show $SNR=1$ while solid lines $SNR=10$ except for AION-km GGN for which $SNR=10$ is depicted by a thick dashed line while the dotted line corresponds to $SNR=1$. Figure taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82490145$$s15666$$uhttp://cds.cern.ch/record/2875594/files/w1_MZAtoms.png$$y00001 \it Left: Outline of the principle of a Mach-Zehnder laser interferometer~\cite{Zehnder1891,Mach1892}. Right: Outline of an analogous atom interferometer. Atoms in the ground state, $\ket{g}$, are represented by solid blue lines, the dashed red lines represent atoms in the excited state, $\ket{e}$, and laser pulses are represented by wavy lines.
002875594 8564_ $$82490146$$s815104$$uhttp://cds.cern.ch/record/2875594/files/w30_migastatus.png$$y00030 (a) Fibre laser system developed by the Muquans company~\cite{Sabulsky2020}, (b) cold $^{87}$Rb atom source~\cite{Beaufils2022}, (c) standard 6 m long section under vacuum test, (d) vacuum tower in production at SAES Parma (Italy), (e) MIGA gallery within the Laboratoire Souterrain {\`a} Bas Bruit (LSBB) and installation of the first sections of the vacuum vessel~\cite{Canuel2022}.
002875594 8564_ $$82490147$$s1320560$$uhttp://cds.cern.ch/record/2875594/files/w36_boulby_fig.png$$y00036 The Boulby underground laboratory, the UK's deep underground science facility operating in a working mine in the North-East of England.
002875594 8564_ $$82490148$$s35132$$uhttp://cds.cern.ch/record/2875594/files/w14_TVLBAI_Sensitivity_GGN_HNM_AION1km_opt_N5.png$$y00014 GGN mitigation using a multigradiometer configuration. \textit{Left panel}: projected 95\%~CL exclusion sensitivities for an atom multigradiometer with the experimental parameters listed in Table~\ref{table:ExperimentalParameters} and $\mathcal{N}=5$ interferometers, assuming that GGN is modelled by the NHNM. The red dot-dashed, purple dotted and green solid lines show the atom multigradiometer exclusion curves for equally-spaced, unequally-spaced (ends) and unequally-spaced (centre) configurations. The orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}. For comparison, the grey and orange lines show the exclusion sensitivities for a single atom gradiometer ($\mathcal{N}=2$) with ASN-only and ASN-and-GGN backgrounds, respectively. \textit{Right panel}: schematic representations of the three interferometer configurations with $\mathcal{N}=5$. The purple dots show the positions of the interferometers in the `unequal spacing (ends)' configuration, the red dots show their positions in the `equal spacing' configurations, and the green dots show the `unequal spacing (centre)' configuration.
002875594 8564_ $$82490149$$s19929919$$uhttp://cds.cern.ch/record/2875594/files/w25_fig01_Wuhan10m.png$$y00025 The Wuhan 10 m Atom Interferometer~\cite{Zhou2011}.
002875594 8564_ $$82490150$$s7970$$uhttp://cds.cern.ch/record/2875594/files/w11_pseudoULDM.png$$y00011 \it Left panel: Shot noise limited projection, adapted from ref.~\cite{Abe2021}, to $B-L$ coupled vector ULDM for a dual-species interferometer (\,$^{87}\mathrm{Sr}$ and $^{88}\mathrm{Sr}$). The projections are given in terms of the acceleration sensitivities achievable with VLBAI (see text). The shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022}. Right panel: Shot noise limited projection, adapted from ref.~\cite{Graham2018}, to the spin coupling of pseudoscalar ULDM to atoms. The projections are given in terms of the interrogation time. The shaded yellow region shows bounds from supernova cooling.
002875594 8564_ $$82490151$$s9886$$uhttp://cds.cern.ch/record/2875594/files/w0_MZOptics.png$$y00000 \it Left: Outline of the principle of a Mach-Zehnder laser interferometer~\cite{Zehnder1891,Mach1892}. Right: Outline of an analogous atom interferometer. Atoms in the ground state, $\ket{g}$, are represented by solid blue lines, the dashed red lines represent atoms in the excited state, $\ket{e}$, and laser pulses are represented by wavy lines.
002875594 8564_ $$82490152$$s1832136$$uhttp://cds.cern.ch/record/2875594/files/w27_Photos_all_chambers.png$$y00027 {\it Upper panels:} Photographs of the five AION sidearm systems, installed at their corresponding institutions~\cite{AION:2023fpx}. {\it Bottom panel:} Measurements at the University of Birmingham of the occupation levels of an excited strontium state following atom interferometry sequences in which the phase of the final laser pulse is varied, demonstrating interference fringes analogous to those in an optical Mach-Zehnder interferometer.
002875594 8564_ $$82490153$$s8150$$uhttp://cds.cern.ch/record/2875594/files/w10_vectorULDM.png$$y00010 \it Left panel: Shot noise limited projection, adapted from ref.~\cite{Abe2021}, to $B-L$ coupled vector ULDM for a dual-species interferometer (\,$^{87}\mathrm{Sr}$ and $^{88}\mathrm{Sr}$). The projections are given in terms of the acceleration sensitivities achievable with VLBAI (see text). The shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022}. Right panel: Shot noise limited projection, adapted from ref.~\cite{Graham2018}, to the spin coupling of pseudoscalar ULDM to atoms. The projections are given in terms of the interrogation time. The shaded yellow region shows bounds from supernova cooling.
002875594 8564_ $$82490154$$s258461$$uhttp://cds.cern.ch/record/2875594/files/w40_Gotthard.png$$y00040 A diagram of the Gotthard Base Tunnel running from North to South under the Swiss Alps, showing the horizontal gallery and the pair of 800-m vertical shafts that provide access from Sedrun to the site of the envisioned ``Porta Alpina'' underground railway station.
002875594 8564_ $$82490155$$s53410$$uhttp://cds.cern.ch/record/2875594/files/w6_SuperModExamplePlot.png$$y00006 \it Left panel: Cosmic super string spectrum with $G\mu=10^{-11.75}$ and intercommutation probability $p=10^{-2.25}$ in standard cosmology together with its possible modifications by a period of kination or matter domination (MD) ending at temperatures $T > 5$~MeV and $5$~GeV. The grey violins indicate the spectra capable of explaining the NANOGrav 15yr data. Right panel: Sensitivity of various experiments to a modification of the expansion rate at a temperature $T_\Delta$ for a given value of the string tension $G\mu$ with $p=1$. The gray bands indicate values favoured by the NANOGrav 12.5yr data~\cite{Arzoumanian2020,Ellis2021}. The right panel was taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82490156$$s30003$$uhttp://cds.cern.ch/record/2875594/files/w12_TVLBAI_Sensitivity_GGN_both_AION1km_opt_N2_cH.png$$y00012 Impact of GGN on the projected 95\% CL exclusion sensitivity to the ULDM-electron coupling of a single atom gradiometer with the design parameters defined in Table~\ref{table:ExperimentalParameters}. \textit{Left panel}: comparison between the atom shot noise (ASN) (grey) and ASN-plus-GGN-limited sensitivities assuming that the GGN background is described by the Peterson NHNM (orange) or NLNM (blue). The solid and dotted lines are for Rayleigh wave velocities $c_H = 205\,\mathrm{m\,s}^{-1}$ and $c_H = 3232\,\mathrm{m\,s}^{-1}$, respectively. \textit{Right panel}: projected 95\% CL exclusion sensitivities for different values of $\Delta z$ and different atom interferometer positions, where we assume the NHNM and $c_H = 205\,\mathrm{m\,s}^{-1}$. We show exclusion curves for interferometers located towards the Earth's surface (green) and towards the bottom of the shaft (purple), assuming $\Delta z = 100$\,m but keeping all other experimental parameters unchanged. In both panels, the orange shaded region is excluded by MICROSCOPE~\cite{Touboul2022}.
002875594 8564_ $$82490157$$s112770$$uhttp://cds.cern.ch/record/2875594/files/w21_HannahFigure.png$$y00021 Sensitivities of LVK, LISA and large atom interferometers to GWs from mergers of ECOs weighing between 20 and 200 solar masses, compared with the backgrounds from BH-BH and BH-neutron star binaries~\cite{Banks2023}.
002875594 8564_ $$82490158$$s37247$$uhttp://cds.cern.ch/record/2875594/files/w20_IMBHDM.png$$y00020 Exclusions of weakly-interacting ultra-light bosonic fields from the measured spins of SMBHs and LIGO/Virgo/KAGRA BHs compared with the prospective sensitivity of a large atom interferometer, which could also exclude the intermediate mass range by measuring spins of IMBHs. These constraints assume negligible bosonic self-interactions.
002875594 8564_ $$82490159$$s16141$$uhttp://cds.cern.ch/record/2875594/files/w8_dmelimits.png$$y00008 \it Left panel: Projections for sensitivities to scalar ULDM linearly coupled to electrons (shot noise limited and assuming $\mathrm{SNR}=1$). The lighter-blue 100\,m baseline curve shows the oscillatory nature of the sensitivity projections, while the darker-blue and green curves show the envelope of the oscillations. Right panel: Parameter reconstruction, adapted from ref.~\cite{Badurina2023}, of an injected signal with $f_{\phi}=9.1\,\mathrm{Hz}$ and $d_{m_e}=3.7\times 10^{-5}$ (green cross) for a 1\,km baseline assuming a constant sampling frequency of $0.3$\,Hz. The purple contours show the islands of parameter space compatible with the signal at 95.4\% CL. In both panels, the shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022,Hees2018}.
002875594 8564_ $$82490160$$s47496$$uhttp://cds.cern.ch/record/2875594/files/w19_meanOmegaGW.png$$y00019 Left panel: The sensitivities of AION 1\,km to GWs from equal mass BH binaries of total mass $M$ at redshift $z$, calculated assuming a level of GGN close to the NHNM and assuming that Rayleigh waves propagate with a speed of $205$~m/s. The contours compare estimates made assuming either no mitigation of GGN, or the level of suppression discussed in the previous Subsection, or complete suppression/mitigation of GGN. Right panel: The mean GW energy density spectrum from massive BH mergers compared with the sensitivities of the indicated experiments. The coloured bands correspond to different BH mass bands and are obtained assuming a constant merger efficiency factor $0.3 < p_{\rm BH} < 1$, following~\cite{Ellis2023}: plot adapted from~\cite{Ellis2023a}.
002875594 8564_ $$82490161$$s104962$$uhttp://cds.cern.ch/record/2875594/files/w33_twinlattice_setup.png$$y00033 The twin lattice is formed by retroreflecting light at two frequencies with linear orthogonal polarization. A quarter-wave plate in front of the retroreflector alters the polarization to generate two counterpropagating lattices (indicated in red and blue). After release from the atom chip and state preparation, the BEC is symmetrically split and recombined by the lattices, driving double Bragg diffraction (DBD) and Bloch oscillations (BOs). In this way, the interferometer arms form a Sagnac loop enclosing an area $A$ (shaded in gray) for detecting rotations $\Omega$. The interferometer output ports are detected on a CCD chip by absorption imaging. Figure from \cite{Gebbe2021}.
002875594 8564_ $$82490162$$s27757$$uhttp://cds.cern.ch/record/2875594/files/w41_Cavity_AI.png$$y00041 Sketch of the deployment of a cavity for atom interferometry. Between the mirrors M1 and M2, a standing light wave is created that manipulates the atom cloud. In the sketch a scheme for two interferometers A1 and A2 separated by length L is depicted. This is a configuration that could be deployed in MIGA or ELGAR: see Sections~\ref{sec:MIGA} and \ref{sec:ELGAR}.
002875594 8564_ $$82490163$$s46904$$uhttp://cds.cern.ch/record/2875594/files/w16_BHstrains.png$$y00016 The GW strain sensitivities and benchmark signals from BH binaries of different masses at different redshifts. The coloured dots indicate the times before mergers at which inspirals could be measured.
002875594 8564_ $$82490164$$s15937$$uhttp://cds.cern.ch/record/2875594/files/w42_t3-geometry.png$$y00042 Quantum-clock scheme for LPI tests based on internal-state transitions. After the atom entered in the ground state $\ket{g}$, a $\pi/2$ pulse (red) brings it into a superposition of ground (blue solid line) and excited state $\ket{e}$ (green dashed line), where the finite speed $c$ of the laser light is depicted by an inclined line. The pulse also transfers a momentum $\hbar k$ to the excited state, e.g. induced by single-photon transitions, leading to a spatial superposition of the atom. After redirection via two internal-state changing $\pi$ pulses (purple) in time intervals $T/4$ and $3T/4$, the branches are brought to interference by the final $\pi/2$ pulse at interrogation time $T$, and the population in the excited state is detected. The experiment is performed in a linear gravitational field with mean acceleration $\textbf{g}$. To include possible LPI violations, the acceleration is augmented by the factor $1\pm\alpha\hbar\Omega/(2m c^2)$, including violation parameter $\alpha$, atomic transition frequency $\Omega$, and atomic mass $m$. This Figure was taken from~\cite{DiPumpo2023}.
002875594 8564_ $$82490165$$s4403338$$uhttp://cds.cern.ch/record/2875594/files/w31_ELGAR.png$$y00031 Geometry of ELGAR, based on a distributed 2D array of gradiometers with baseline $L= 16.3$~km with a total baseline $L_T=$ 32.1~km. Taken from~\cite{Canuel2020}.
002875594 8564_ $$82490166$$s20853$$uhttp://cds.cern.ch/record/2875594/files/w5_SNRs1000.png$$y00005 \it Sensitivities in the $(T_*, \alpha)$ plane of AION-100 and -km, as well as other planned experiments, to the SGWB spectrum from sound waves in the plasma that could be formed in the aftermath of bubble collisions. Dashed lines show $SNR=1$ while solid lines $SNR=10$ except for AION-km GGN for which $SNR=10$ is depicted by a thick dashed line while the dotted line corresponds to $SNR=1$. Figure taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82490167$$s37353$$uhttp://cds.cern.ch/record/2875594/files/w23_clockgradiometer.png$$y00023 Space-time diagram of the interferometer trajectories based on single-photon transitions between ground (blue) and excited (red) states driven by laser pulses from both directions (dark and light gray). The pulse sequence shown here features an additional series of pulses (light gray) traveling in the opposite direction to illustrate the implementation of LMT atom optics (here $n=2$).
002875594 8564_ $$82490168$$s4040090$$uhttp://cds.cern.ch/record/2875594/files/w32_ZAIGA.png$$y00032 \it Layout of the ZAIGA laboratory near Wuhan, China for a range of experiments using atom interferometry~\cite{Zhan2019}.
002875594 8564_ $$82490169$$s84505$$uhttp://cds.cern.ch/record/2875594/files/w22_clockai.png$$y00022 (a) Comparison of the laser frequencies involved in conventional and clock atom optics as well as the leading order phase response of the associated interferometer. (b) Space-time diagram of a relativistic Mach-Zehnder interferometer using clock atom optics (dark lines) and conventional two-photon atom optics (dark and light lines). In a clock atom interferometer, the same laser pulse addresses the entire atomic superposition, imprinting the same laser phase and allowing for common-mode noise suppression.
002875594 8564_ $$82490170$$s29950$$uhttp://cds.cern.ch/record/2875594/files/w7_DeltaDetectionPlot.png$$y00007 \it Left panel: Cosmic super string spectrum with $G\mu=10^{-11.75}$ and intercommutation probability $p=10^{-2.25}$ in standard cosmology together with its possible modifications by a period of kination or matter domination (MD) ending at temperatures $T > 5$~MeV and $5$~GeV. The grey violins indicate the spectra capable of explaining the NANOGrav 15yr data. Right panel: Sensitivity of various experiments to a modification of the expansion rate at a temperature $T_\Delta$ for a given value of the string tension $G\mu$ with $p=1$. The gray bands indicate values favoured by the NANOGrav 12.5yr data~\cite{Arzoumanian2020,Ellis2021}. The right panel was taken from ref~\cite{Badurina2021}.
002875594 8564_ $$82490171$$s8031$$uhttp://cds.cern.ch/record/2875594/files/w9_reconstruct.png$$y00009 \it Left panel: Projections for sensitivities to scalar ULDM linearly coupled to electrons (shot noise limited and assuming $\mathrm{SNR}=1$). The lighter-blue 100\,m baseline curve shows the oscillatory nature of the sensitivity projections, while the darker-blue and green curves show the envelope of the oscillations. Right panel: Parameter reconstruction, adapted from ref.~\cite{Badurina2023}, of an injected signal with $f_{\phi}=9.1\,\mathrm{Hz}$ and $d_{m_e}=3.7\times 10^{-5}$ (green cross) for a 1\,km baseline assuming a constant sampling frequency of $0.3$\,Hz. The purple contours show the islands of parameter space compatible with the signal at 95.4\% CL. In both panels, the shaded orange region shows constraints from MICROSCOPE~\cite{Touboul2022,Hees2018}.
002875594 8564_ $$82490172$$s320202$$uhttp://cds.cern.ch/record/2875594/files/w28_BirminghamFringes.png$$y00028 {\it Upper panels:} Photographs of the five AION sidearm systems, installed at their corresponding institutions~\cite{AION:2023fpx}. {\it Bottom panel:} Measurements at the University of Birmingham of the occupation levels of an excited strontium state following atom interferometry sequences in which the phase of the final laser pulse is varied, demonstrating interference fringes analogous to those in an optical Mach-Zehnder interferometer.
002875594 8564_ $$82484613$$s157461$$uhttp://cds.cern.ch/record/2875594/files/FERMILAB-CONF-23-430-ETD.jpg?subformat=icon-1440$$xicon-1440$$yFulltext
002875594 8564_ $$82484613$$s157461$$uhttp://cds.cern.ch/record/2875594/files/FERMILAB-CONF-23-430-ETD.jpg?subformat=icon-640$$xicon-640$$yFulltext
002875594 8564_ $$82484613$$s157461$$uhttp://cds.cern.ch/record/2875594/files/FERMILAB-CONF-23-430-ETD.jpg?subformat=icon-700$$xicon-700$$yFulltext
002875594 8564_ $$82484613$$s17281$$uhttp://cds.cern.ch/record/2875594/files/FERMILAB-CONF-23-430-ETD.jpg?subformat=icon-180$$xicon-180$$yFulltext
002875594 8564_ $$82484613$$s21169$$uhttp://cds.cern.ch/record/2875594/files/FERMILAB-CONF-23-430-ETD.gif?subformat=icon$$xicon$$yFulltext
002875594 960__ $$a42
002875594 962__ $$b2875594$$ncern20230313
002875594 980__ $$aPROCEEDINGS
002875594 980__ $$aARTICLE