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Abstract. While the computing landscape supporting LHC experiments is cur-
rently dominated by x86 processors at WLCG sites, this configuration will
evolve in the coming years. LHC collaborations will be increasingly employing
HPC and Cloud facilities to process the vast amounts of data expected during the
LHC Run 3 and the future HL-LHC phase. These facilities often feature diverse
compute resources, including alternative CPU architectures like ARM and IBM
Power, as well as a variety of GPU specifications. Using these heterogeneous
resources efficiently is thus essential for the LHC collaborations reaching their
future scientific goals. The Submission Infrastructure (SI) is a central element in
CMS Computing, enabling resource acquisition and exploitation by CMS data
processing, simulation and analysis tasks. The SI must therefore be adapted to
ensure access and optimal utilization of this heterogeneous compute capacity.
Some steps in this evolution have been already taken, as CMS is currently us-
ing opportunistically a small pool of GPU slots provided mainly at the CMS
WLCG sites. Additionally, Power9 processors have been validated for CMS
production at the Marconi-100 cluster at CINECA. This note will describe the
updated capabilities of the SI to continue ensuring the efficient allocation and
use of computing resources by CMS, despite their increasing diversity. The
next steps towards a full integration and support of heterogeneous resources
according to CMS needs will also be reported.

1 Interest on heterogeneous resources

The present availability of compute power in non-CPU, non-x86 processor types is abundant
and increasing in the main High Performance Computing (HPC) facilities [1]. A significant
fraction of the processing power in many of these clusters is already provided by accelerators
(e.g. NVIDIA GPUs in the Leonardo cluster at CINECA), while non-x86 CPU architectures
are present as well (e.g. IBM Power systems such as Summit, Sierra, Marconi-100). These
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diverse resource types are not only deployed at HPC facilities, but are also becoming rele-
vant at WLCG [2] computing sites, traditionally built on x86 architecture CPUs. The LHC
experiments are getting prepared to execute a substantial part of their data processing and
simulation tasks at HPCs, including their non-x86 component. In general, a wider diversity
of computing resource types is expected to become the norm in computing for High Energy
Physics (HEP) experiments, resulting in higher resource heterogeneity [3].

The CMS collaboration [4] has recently analyzed the required evolution of its computing
model and resource needs, looking into the LHC Run 3 and specially at the HL-LHC phase.
The ECom2X study (see, for example [5]) concludes that CMS should expand its pool of re-
sources to facilities beyond those dedicated to the LHC, striving towards using HPC resources
effectively. As a consequence, efforts should be directed towards enabling CMS software to
support non x86_64 CPU architectures, so that CMS computing tasks can be executed on
heterogeneous resources (CPUs, GPUs, FPGAs and TPUs). Moreover, the CMS Phase-2
Computing Model update report [6] also advises to abandon the assumption of uniformity of
our compute resources, evolving our workload management (WM) and resource provisioning
systems to embrace the growing resource heterogeneity.

2 The CMS Submission Infrastructure

The CMS Submission Infrastructure (SI) team is in charge of operating a set of federated
HTCondor [7] pools, aggregating geographically distributed resources from about 70 WLCG
sites, plus non-Grid resource providers, where reconstruction, simulation, and analysis of
CMS physics data takes place. Figure 1 presents a schematic view of this infrastructure.
The SI is in continuous evolution (see for example [8]), managing an ever growing collec-
tion of computing resources, connecting new and more diverse resource types and resource
providers (WLCG, HPC, Cloud, volunteer). The main challenge for the SI team is to drive
the evolution of our infrastructure, while maintaining the efficiency of use in all the available
resources, maximizing data processing throughput and enforcing task priorities according to
CMS research program. The evolution of the SI to support heterogeneous resources will be
described in the following sections.

3 Integration of GPUs to CMS SI

3.1 Non-pledged heterogeneous resources

As a foreword to the discussion of GPUs integration into CMS SI, it’s important to note that,
at the moment, all GPUs in use for CMS offline computing are opportunistic, rather than
pledged resources. In contrast to pledged CPUs at WLCG sites, where agreed-upon stan-
dards exists for job execution slots (e.g. 8-core slots, 48 hours of runtime, a minimum of 2
GB per core), there is no equivalent standard job slot for the case of GPUs yet. This presents
several challenges in terms of how we approach providers regarding GPU resource availabil-
ity for CMS use (e.g. how do we verify the presence of GPUs at each site, what parameters
are acceptable for GPU resource provisioning according to their particular policies, etc). The
lack of a generic GPU slot thus deeply influences our resource provisioning and utilization
strategy. Furthermore, determining the correct GPU type for each CMS task and predicting
task execution parameters on these resources (including maximum execution time and mem-
ory utilization) is, at this point, a non-resolved problem. A detailed job and slot description
is therefore required to ensure the appropriate slot selection, the effective use of the resources
and minimizing resource wastage.
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Figure 1. CMS SI current configuration, including multiple federated pools of resources allocated from
diverse origins (green boxes) and sets of distributed job schedulers (schedds), handling the Tier 0 and
centralized production workloads (WMAgent), as well as analysis job submission (CRAB).

Figure 2. GlideinWMS and HTCondor components building a dynamically sized pool of compute
resources for CMS SI.

3.2 Allocating and using resources in the CMS SI dynamic pools

The SI operates in two distinct stages of resource to requests matchmaking, corresponding
first to resource allocation via GlideinWMS [9] pilot jobs [10], followed by job to slot match-
making managed by HTCondor. Figure 2 highlights the main steps and components involved
in each of the two phases: resource requests for each site are calculated by the Frontend (FE)
component, based on user job requirements compatibility with the static description of the
resources of each site held by the pilot factories. Pilot jobs are then submitted by the factories
onto WLCG sites’ compute elements (CE). Once requests have been accepted by the sites,
allocated resources launch HTCondor startd processes that join the SI pool collector, which
are then negotiated and assigned to the execution of compatible CMS tasks. Provisioning and
using GPU resources just follow the same process.
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3.3 GPU resource description in GlideinWMS factories and first matchmaking

The description of GPU resources available to the SI for the first matchmaking stage is en-
coded into pilot factory entries. Only limited and static information is available at this point,
such as CE and local queues that allow access to GPU nodes, while more detailed GPU specs
will only become available once the pilot jobs start. Some slot attributes are configured in
agreement with the sites’ policies on GPU resources allocation, such as the maximum granted
task execution time. Typically, GPU slots are configured along with standard pilot features
(8 CPU cores, 2 GB/core RAM). An example GPU resource entry in the pilot factory (for a
HTCondor CE) looks like:

<entry name=" CMSHTPC_T2_US_Wisconsin_cmsgrid01_gpu" auth_method="grid_proxy" gatekeeper=
"cmsgrid01.hep.wisc.edu cmsgrid01.hep.wisc.edu:9619" gridtype="condor" ...>
<config>
(...)
<submit_attrs>
<submit_attr name=" +maxMemory" value=" 20000"/>
<submit_attr name=" +xcount" value=" 8"/>
<submit_attr name=" Request_GPUs" value=" 1"/>

</submit_attrs>
</submit>
</config>
<attrs>
<attr name="GLIDEIN_CMSSite" ... type="string" value="T2_US_Wisconsin"/>
<attr name="GLIDEIN_CPUS" ... type="string" value=" 8"/>
<attr name="GLIDEIN_MaxMemMBs" ... type="int" value=" 20240"/>
<attr name="GLIDEIN_Max_Walltime" ... type="int" value="216000"/>
<attr name="GLIDEIN_Resource_Slots" ... type="string" value="GPUs,1,
type=main"/>
(...)

</attrs>
</entry>

At the first matchmaking stage, the FE is configured to only trigger the submission of pilot
jobs for GPU nodes on account of CMS tasks requiring GPUs (note that jobs may not require,
but still profit from using GPUs, see use cases described in section 3.5). Job requirements
are compared to pilot factory entries and pilot jobs are only submitted to matching compute
elements. Not being pledged to CMS, but rather opportunistic, site preferences concerning
how to use their GPUs must be respected.

In practice this means that no CPU jobs will start on the GPU slot for a configurable time
interval (e.g. the first 30 minutes of pilot runtime) to maximize the chances of matching task
that do require GPUs. After this interval, either the slot can be open to matching jobs that can
(but don’t have to) use GPUs, or alternatively return the slot back to site, according to each
site’s preference. Once the GPU component of the resource is in use, our pilots try to saturate
the remainder CPU part by starting smaller compatible payload jobs.

Given the late-binding aspect of our job to resource allocation, and in order to minimize
wastage, once the original workload requesting GPU resources has been completely pro-
cessed, any remaining resource requests (i.e. pilots queued at sites’ CEs) are cancelled by the
FE. This is in fact part of the resource provisioning process for CPU-only pilots as well, but
it’s even more critical in the case of GPUs, being opportunistic and still relatively scarce in
comparison to CPUs.

3.4 GPU resource description in HTCondor and second matchmaking

Once a pilot job gets access to remote resources, a number of configuration scripts are exe-
cuted as part of the pilot startup phase. At this point, the HTCondor GPU discovery tool [11]
is invoked, retrieving GPU properties relevant for matchmaking, which are updated to the slot
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description (the HTCondor machine classad [12] for the slot). Additionally, a CMS custom
script tests and provides a list of CUDA [13] supported runtimes. An example of a GPU slot
classad is the following:

CPUs = 8
TotalSlotMemory = 20000
GPUs = 2
CUDACapability = 8.0
CUDAClockMhz = 1410.0
CUDAComputeUnits = 108
CUDACoresPerCU = 64
CUDADeviceName = "NVIDIA A100-PCIE-40GB"
CUDADriverVersion = 11.3
CUDAECCEnabled = true
CUDAGlobalMemoryMB = 40536
CUDAMaxSupportedVersion = 11030
CMS_CUDA_SUPPORTED_RUNTIMES = 10.1,10.2,11.0,11.1,...
CMS_NVIDIA_DRIVER_VERSION = 515.48.07

As part of the second SI matchmaking stage, the HTCondor negotiator will compare job
requirements with machine attributes for each properly configured GPU slot that joins the SI.
All dynamically retrieved GPU properties can now be used by the negotiator as matchmaking
attributes, allowing for a much more refined matchmaking process in comparison to that
performed by the GlideinWMS FE. An example of minimal job requirements in relation to
GPUs would be:

RequestGPUs = 1
Requirements = CUDACapability >= 3 && CUDARuntime = "11.4" && GPUMemoryMB = 8000 && ...

Correspondingly, the matchmaking logic implemented for GPU slots is configured as
certain conditions such as

Job.CUDARuntime in Machine.CMS_CUDA_SUPPORTED_RUNTIMES

.

3.5 GPU support in the CMS WM system

The CMS WM system acts as an interface between CMS workload requests and the actual
submission of jobs into the HTCondor schedd queues, mapping resource requirements into
concrete job attributes to be used in both matchmaking stages in the SI. In order to support
workflows that require GPU resources, a new set of key/value pairs has been introduced [14].
Two main attributes control how CMS tasks interact with GPUs: A first boolean tag, an at-
tribute not part of the standard HTCondor set, has been introduced, named RequiresGPU,
which describes whether or not tasks must employ GPU slots. A second (integer) attribute,
RequestGPUs, part of the HTCondor standard set, expresses the number of GPUs to be as-
signed to the task in the second matchmaking stage. The combination of these two parameters
in the definition of CMS workloads cover three broad use cases :

1. Job must use GPUs: RequiresGPU = 1 && RequestGPUs>0. This combination will
trigger the submission of GPU pilots by the factories and produce the allocation of
enough GPUs in the HTCondor matchmaking phase.

2. Job can use GPUs: RequiresGPU = 0 && RequestGPUs>0. This case will not pro-
duce any further GPU requests (i.e. GPU pilots will not be submitted), but still jobs
can be assigned GPU slots, if available in the pool, in the second matchmaking.

3. Job can only use CPUs: RequiresGPU = 0 && RequestGPUs=0. This combination
covers purely CPU tasks, with no GPU resources requested or matched.
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Figure 3. GPU resources catalogue provided by the CMS SI team for CMS users, including device
location and type and diverse technical properties.

Additional attributes that further specify the requested GPU properties have been intro-
duced (CUDACapability, CUDARuntime and GPUMemoryMB). Other optional attributes can
be employed as well (e.g. CUDADriverVersion).

4 Availability of GPUs in CMS SI

Several WLCG sites are already generously contributing opportunistically their GPU re-
sources in support of CMS computing activities. In order to provide CMS users with an up-
dated inventory of available GPUs, the SI team conducts regular scans of the grid, gathering
information on recent GPU availability, as well as their specific properties. This information
is published in the CMS SI GPU monitoring table (see Figure 3).

The SI team has executed a number of a scale and performance test on GPUs available
to CMS. Test jobs are submitted to the SI schedds targeting any available GPUs, with the
intention of matching as many as possible. Allocation of GPUs peaked at over 150 GPUs in
parallel, accessing in total about 230 unique opportunistic GPUs, located mainly at CERN
and US Tier-2 sites (see [15]).

5 Integration of non-x86 architectures

The CMS SI and WM systems were originally designed and deployed with the x86_64 stan-
dard in mind. However, both elements of CMS computing have undergone adaptations to
support a broader range of processor architectures. The first non-x86 platform to be made
available at scale for CMS was the Power9 architecture at CINECA’s Marconi-100 cluster. In
its initial phase, the extension of the SI to Power9 slots was tested using manually launched
pilots executing an ad-hoc compiled HTCondor startd and without Singularity/Apptainer
containers. By mid-2022, HTCondor introduced support for ARM (aarch64) and Power
PC (ppc64le) CPU architectures. Startd executables for these architectures were added to
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Figure 4. Multi-architecture matchmaking in the CMS WM and SI systems.

the GlideinWMS pilot factory, enabling allocation and access to these new resource types
through regular GlideinWMS pilots.

The Power9 architecture has now been fully commissioned, having tested the execution
of CMS tasks with valid physics results. The next focus is on ARM architecture. Both
CERN and CNAF have granted access to small sets of ARM machines to be allocated for
CMS into use via the SI. Integration and physics validation tests for ARM are currently
ongoing. Looking ahead to the long term, there is the possibility of incorporating the RISC-
V architecture, by the time of the HL-LHC era.

In practice, resource architecture has become a configurable parameter in the CMS SI
matchmaking processes (see Figure 4). Payload jobs resource requirements may now specify
a particular or multiple architectures. These resources are then provisioned and matched
through the CMS SI following the general case described in Section 3.2.

6 Conclusions and future work

Resource heterogeneity in HEP computing is a key element moving forward. CMS is adapt-
ing its WM and SI systems to properly manage new resource types and providers. No stan-
dard slot definition exists for the emerging heterogeneous collection of resources. Workload
scheduling thus requires careful description of slot properties and job requirements for an
effective matchmaking and efficient use of the resources.

Regarding GPUs, they are still opportunistic but a sizable number and variety is already
available for CMS users via the SI. A detailed inventory of available GPUs is regularly pro-
duced to promote GPU resource exploitation by CMS users. Non-x86 CPU architectures
integration to CMS computing is ongoing, with Power9 fully integrated and validated and
ARM being commissioned.

A number of challenges towards the full exploitation of heterogeneous resources remain.
These include the development of proper benchmarking and accounting, required for realistic
usage at scale in the WLCG context. Another area of future development deals with the
efficient execution of CMS multi-step jobs on CPU+GPU heterogeneous resources.
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